CINXE.COM
Search results for: prostatectomy
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: prostatectomy</title> <meta name="description" content="Search results for: prostatectomy"> <meta name="keywords" content="prostatectomy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="prostatectomy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="prostatectomy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: prostatectomy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Local Availability Influences Choice of Radical Treatment for Prostate Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jemini%20Vyas">Jemini Vyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatobi%20Adeyoe"> Oluwatobi Adeyoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Branagan"> Jenny Branagan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandran%20Tanabalan"> Chandran Tanabalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Pai"> Aakash Pai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Radical prostatectomy and radiotherapy are both viable options for the treatment of localised prostate cancer. Over the years medicine has evolved towards a patient-centred approach. Patient decision-making is not motivated by clinical outcomes alone. Geographical location and ease of access to treating clinician are contributory factors. With the development of robotic surgery, prostatectomy has been centralised into tertiary centres. This has impacted on the distances that patients and their families are expected to travel. Methods: A single centre retrospective study was undertaken over a five-year period. All patients with localised prostate cancer, undergoing radical radiotherapy or prostatectomy were collected pre-centralisation. This was compared to the total number undergoing these treatments post centralisation. Results: Pre-centralisation, both radiotherapy and prostatectomy groups had to travel a median of less than five miles for treatment. Post-centralisation of pelvic surgery, prostatectomy patients had to travel a median of more than 40 miles, whilst travel distance for the radiotherapy group was unchanged. In the post centralisation cohort, there was a 63% decline in the number of patients undergoing radical prostatectomy per month from a mean of 5.1 to 1.9. The radical radiotherapy group had a concurrent 41% increase in patient numbers with a mean increase from 13.3 to 18.8 patients per month. Conclusion: Choice of radical treatment in localised prostate cancer is based on multiple factors. This study infers that local availability can influence choice of radical treatment. It is imperative that efforts are made to maintain accessibility to all viable options for prostate cancer patients, so that patient choice is not compromised. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prostate" title="prostate">prostate</a>, <a href="https://publications.waset.org/abstracts/search?q=prostatectomy" title=" prostatectomy"> prostatectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy"> radiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=centralisation" title=" centralisation"> centralisation</a> </p> <a href="https://publications.waset.org/abstracts/157692/local-availability-influences-choice-of-radical-treatment-for-prostate-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The Impact of Centralisation on Radical Prostatectomy Outcomes: Our Outcomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jemini%20Vyas">Jemini Vyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatobi%20Adeyoe"> Oluwatobi Adeyoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Branagan"> Jenny Branagan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandran%20Tanabalan"> Chandran Tanabalan</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Beatty"> John Beatty</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Pai"> Aakash Pai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The development of robotic surgery has accelerated centralisation to tertiary centres, where robotic radical prostatectomy (RP) is offered. The purpose of concentrating treatment in high volume specialist centres is to improve the quality of care and patient outcomes. The aim of this study was to assess the impact on clinical outcomes of centralisation for locally diagnosed patients undergoing RP. Methods: Clinical outcomes for 169 consecutive laparoscopic & open RP pre-centralisation were retrospectively compared with 50 consecutive robotic RP conducted over a similar period post-centralisation. Preoperative risk stratification and time to surgery were collected. Perioperative outcomes, including length of stay (LOS) and complications, were collated. Post-operative outcomes, including erectile dysfunction (ED), biochemical recurrence (BCR), and urinary continence, were assessed. Results: Preoperative risk stratification showed no difference between the two groups. The median time from diagnosis to treatment was similar between the two groups (pre-centralisation, 121 days, post-centralisation, 117 days). The mean length of stay (pre-centralisation, 2.1 days, post-centralisation, 1.6 days) showed no significant difference (p=0.073). Proportion of overall complications (pre-centralisation, 11.4%, post-centralisation, 8.7%) and complications, above Clavien-Dindo 2, were similar between the two groups (pre-centralisation1.2%, post-centralisation 2.2%). Post operative functional parameters, including continence and ED, were comparable. Five-year BCR free rate was 78% for the pre-centralisation group and 79% for the post centralisation group. Conclusion: For our cohort of patients, clinical outcomes have remained static during centralisation. It is imperative that centralisation is accompanied by increased capacity, streamlining of pathways, and training to ensure that improved quality of care is achieved. Our institution has newly acquired a robot, and prospectively studying this data may support the reversal of centralisation for RP surgery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prostate" title="prostate">prostate</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=prostatectomy" title=" prostatectomy"> prostatectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical" title=" clinical"> clinical</a> </p> <a href="https://publications.waset.org/abstracts/157728/the-impact-of-centralisation-on-radical-prostatectomy-outcomes-our-outcomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Thulium Laser Vaporisation and Enucleation of Prostate in Patients on Anticoagulants and Antiplatelet Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Fatah">Abdul Fatah</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveenchandra%20Acharya"> Naveenchandra Acharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Vamshi%20Krishna"> Vamshi Krishna</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Shivaprasad"> T. Shivaprasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Ramayya"> Ramesh Ramayya </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Significant number of patients with bladder outlet obstruction due to BPH are on anti-platelets and anticoagulants. Prostate surgery in this group of patients either in the form of TURP or Open prostatectomy is associated with increased risk of bleeding complications requiring transfusions, packing of the prostatic fossa or ligation or embolization of internal iliac arteries. Withholding of antiplatelets and anticoagulants may be associated with cardiac and other complications. Efficacy of Thulium Laser in the above group of patients was evaluated in terms of peri-operative, postoperative and delayed bleeding complications as well as cardiac events in peri-operative and immediate postoperative period. Methods: 217 patients with a mean age of 68.8 years were enrolled between March 2009 and March 2013 (36 months), and treated for BPH with ThuLEP. Every patient was evaluated at base line according to: Digital Rectal Examination (DRE), prostate volume, Post-Voided volume (PVR), International Prostate Symptoms Score (I-PSS), PSA values, urine analysis and urine culture, uroflowmetry. The post operative complications in the form of drop in hemoglobin level, transfusion rates, post –operative cardiac events within a period of 30 days, delayed hematuria and events like deep vein thrombosis and pulmonary embolism were noted. Results: Our data showed a better post-operative outcome in terms of, postoperative bleeding requiring intervention 7 (3.2%), transfusion rate 4 (1.8%) and cardiac events within a period of 30 days 4(1.8%), delayed hematuria within 6 months 2(0.9 %) compared other series of prostatectomies. Conclusion: The thulium LASER prostatectomy is a safe and effective option for patients with cardiac comorbidties and those patients who are on antiplatelet agents and anticoagulants. The complication rate is less as compared to larger series reported with open and transurethral prostatectomies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thulium%20laser" title="thulium laser">thulium laser</a>, <a href="https://publications.waset.org/abstracts/search?q=prostatectomy" title=" prostatectomy"> prostatectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=antiplatelet%20agents" title=" antiplatelet agents"> antiplatelet agents</a>, <a href="https://publications.waset.org/abstracts/search?q=bleeding" title=" bleeding"> bleeding</a> </p> <a href="https://publications.waset.org/abstracts/2182/thulium-laser-vaporisation-and-enucleation-of-prostate-in-patients-on-anticoagulants-and-antiplatelet-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Concordance between Biparametric MRI and Radical Prostatectomy Specimen in the Detection of Clinically Significant Prostate Cancer and Staging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rammah%20Abdlbagi">Rammah Abdlbagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Egmen%20Tazcan"> Egmen Tazcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiriti%20Tripathi"> Kiriti Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayagam%20Sudhakar"> Vinayagam Sudhakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Swallow"> Thomas Swallow</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Pai"> Aakash Pai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction and Objectives: MRI has an increasing role in the diagnosis and staging of prostate cancer. Multiparametric MRI includes multiple sequences, including T2 weighting, diffusion weighting, and dynamic contrast enhancement (DCE). Administration of DCE is expensive, time-consuming, and requires medical supervision due to the risk of anaphylaxis. Biparametric MRI (bpMRI), without DCE, overcomes many of these issues; however, there is conflicting data on its accuracy. Furthermore, data on the concordance between bpMRI lesion and pathology specimen, as well as the rates of cancer stage upgrading after surgery, is limited within the available literature. This study aims to examine the diagnostic test accuracy of bpMRI in the diagnosis of prostate cancer and radiological assessment of prostate cancer staging. Specifically, we aimed to evaluate the ability of bpMRI to accurately localise malignant lesions to better understand its accuracy and application in MRI-targeted biopsies. Materials and Methods: One hundred and forty patients who underwent bpMRI prior to radical prostatectomy (RP) were retrospectively reviewed from a single institution. Histological grade from the prostate biopsy was compared with surgical specimens from RP. Clinically significant prostate cancer (csPCa) was defined as Gleason grade group ≥2. bpMRI staging was compared with RP histology. Results: Overall sensitivity of bpMRI in diagnosing csPCa independent of location and staging was 98.87%. Of the 140 patients, 29 (20.71%) had their prostate biopsy histology upgraded at RP. 61 (43.57%) patients had csPca noted on RP specimens in areas that were not identified on the bpMRI. 55 (39.29%) had upstaging after RP from the original staging with bpMRI. Conclusions: Whilst the overall sensitivity of bpMRI in predicting any clinically significant cancer was good, there was notably poor concordance in the location of the tumour between bpMRI and eventual RP specimen. The results suggest that caution should be exercised when using bpMRI for targeted prostate biopsies and validates the continued role of systemic biopsies. Furthermore, a significant number of patients were upstaged at RP from their original staging with bpMRI. Based on these findings, bpMRI results should be interpreted with caution and can underestimate TNM stage, requiring careful consideration of treatment strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biparametric%20MRI" title="biparametric MRI">biparametric MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=Ca%20prostate" title=" Ca prostate"> Ca prostate</a>, <a href="https://publications.waset.org/abstracts/search?q=staging" title=" staging"> staging</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20prostatectomy%20histology" title=" post prostatectomy histology"> post prostatectomy histology</a> </p> <a href="https://publications.waset.org/abstracts/157550/concordance-between-biparametric-mri-and-radical-prostatectomy-specimen-in-the-detection-of-clinically-significant-prostate-cancer-and-staging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Greenlight Laser Prostatectomy: A Safe and Effective Day Case Option for Bladder Outlet Obstruction in the Elderly Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gordon%20Weight">Gordon Weight</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermione%20Tsoi"> Hermione Tsoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Cutinha"> Patrick Cutinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Rajpal"> Sanjay Rajpal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Greenlight-laser prostatectomy (GLLP) is becoming a popular treatment option for bladder outlet obstruction and lower urinary tract symptoms (LUTS). In this retrospective study, we aim to explore the patient selection, perioperative morbidity, and functional outcomes of GLLP. Methods: Patients who underwent GLLP at a UK tertiary centre between June 2018 and November 2021 were included in this study. Retrospective data covering patient demographics, perioperative parameters and postoperative outcomes were collected using the electronic records systems. Results: 305 patients were included in this study with a mean age of 73 (range 30-90) years. The most common indication (62.6%) for the procedure was patient’s wish to be free from long-term catheters (LTC) or intermittent catheterisation (ISC), followed by failed medical therapy for LUTS (36.4%). 84.6% of patients had an ASA ≥2, and 32.1% took anticoagulant or antiplatelet therapy. Inpatient stays were minimal, with the majority (68.2%) of patients were performed as day case, and only 10.5% of patients requiring more than a single night admission. The 3-month readmission rate was 10.8%, with the most common causes being haematuria and urinary-tract infection. The successful TWOC rate at follow up was 91.2%. Amongst the 19 patients who failed TWOC, 14 had LTC prior to the procedure and 4 had been performing ISC. Conclusions: Our study shows that GLLP is a safe and effective day case treatment and can be suitable for elderly and comorbid patients. Patients requiring LTC or ISC pre-operatively should be counselled carefully about the risk of not being catheter-free post procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urology" title="urology">urology</a>, <a href="https://publications.waset.org/abstracts/search?q=endourology" title=" endourology"> endourology</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate" title=" prostate"> prostate</a>, <a href="https://publications.waset.org/abstracts/search?q=bladder%20outlet%20obstruction" title=" bladder outlet obstruction"> bladder outlet obstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a> </p> <a href="https://publications.waset.org/abstracts/164029/greenlight-laser-prostatectomy-a-safe-and-effective-day-case-option-for-bladder-outlet-obstruction-in-the-elderly-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Decisional Regret in Men with Localized Prostate Cancer among Various Treatment Options and the Association with Erectile Functioning and Depressive Symptoms: A Moderation Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caren%20Hilger">Caren Hilger</a>, <a href="https://publications.waset.org/abstracts/search?q=Silke%20Burkert"> Silke Burkert</a>, <a href="https://publications.waset.org/abstracts/search?q=Friederike%20Kendel"> Friederike Kendel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Men with localized prostate cancer (PCa) have to choose among different treatment options, such as active surveillance (AS) and radical prostatectomy (RP). All available treatment options may be accompanied by specific psychological or physiological side effects. Depending on the nature and extent of these side effects, patients are more or less likely to be satisfied or to struggle with their treatment decision in the long term. Therefore, the aim of this study was to assess and explain decisional regret in men with localized PCa. The role of erectile functioning as one of the main physiological side effects of invasive PCa treatment, depressive symptoms as a common psychological side effect, and the association of erectile functioning and depressive symptoms with decisional regret were investigated. Men with localized PCa initially managed with AS or RP (N=292) were matched according to length of therapy (mean 47.9±15.4 months). Subjects completed mailed questionnaires assessing decisional regret, changes in erectile functioning, depressive symptoms, and sociodemographic variables. Clinical data were obtained from case report forms. Differences among the two treatment groups (AS and RP) were calculated using t-tests and χ²-tests, relationships of decisional regret with erectile functioning and depressive symptoms were computed using multiple regression. Men were on average 70±7.2 years old. The two treatment groups differed markedly regarding decisional regret (p<.001, d=.50), changes in erectile functioning (p<.001, d=1.2), and depressive symptoms (p=.01, d=.30), with men after RP reporting higher values, respectively. Regression analyses showed that after adjustment for age, tumor risk category, and changes in erectile functioning, depressive symptoms were still significantly associated with decisional regret (B=0.52, p<.001). Additionally, when predicting decisional regret, the interaction of changes in erectile functioning and depressive symptoms reached significance for men after RP (B=0.52, p<.001), but not for men under AS (B=-0.16, p=.14). With increased changes in erectile functioning, the association of depressive symptoms with decisional regret became stronger in men after RP. Decisional regret is a phenomenon more prominent in men after RP than in men under AS. Erectile functioning and depressive symptoms interact in their prediction of decisional regret. Screening and treating depressive symptoms might constitute a starting point for interventions aiming to reduce decisional regret in this target group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20surveillance" title="active surveillance">active surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=decisional%20regret" title=" decisional regret"> decisional regret</a>, <a href="https://publications.waset.org/abstracts/search?q=depressive%20symptoms" title=" depressive symptoms"> depressive symptoms</a>, <a href="https://publications.waset.org/abstracts/search?q=erectile%20functioning" title=" erectile functioning"> erectile functioning</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=radical%20prostatectomy" title=" radical prostatectomy"> radical prostatectomy</a> </p> <a href="https://publications.waset.org/abstracts/62967/decisional-regret-in-men-with-localized-prostate-cancer-among-various-treatment-options-and-the-association-with-erectile-functioning-and-depressive-symptoms-a-moderation-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Pathological Disparities in Patients Diagnosed with Prostate Imaging Reporting and Data System 3 Lesions: A Retrospective Study in a High-Volume Academic Center</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Reza%20Roshandel">M. Reza Roshandel</a>, <a href="https://publications.waset.org/abstracts/search?q=Tannaz%20Aghaei%20Badr"> Tannaz Aghaei Badr</a>, <a href="https://publications.waset.org/abstracts/search?q=Batoul%20Khoundabi"> Batoul Khoundabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20C.%20Lewis"> Sara C. Lewis</a>, <a href="https://publications.waset.org/abstracts/search?q=Soroush%20Rais-Bahrami"> Soroush Rais-Bahrami</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Sfakianos"> John Sfakianos</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Mehrazin"> Reza Mehrazin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ash%20K.%20Tewari"> Ash K. Tewari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Prostate biopsy is the most reliable diagnostic method for choosing the appropriate management of prostate cancer. However, discrepancies between Gleason grade groups (GG) of different biopsies remain a significant concern. This study aims to assess the association of the radiological factors with GG discrepancies in patients with index Prostate Imaging Reporting and Data System (PI-RADS) 3 lesions, using radical prostatectomy (RP) specimens as the most accurate and informative pathology. Methods: This single-institutional retrospective study was performed on a total of 2289 consecutive prostate cancer patients with combined targeted and systematic prostate biopsy followed by radical prostatectomy (RP). The database was explored for patients with the index PI-RADS 3 lesions version 2 and 2.1. Cancers with PI-RADS 4 or 5 scoring were excluded from the study. Patient characteristics and radiologic features were analyzed by multivariable logistic regression. Number-density of lesions was defined as the number of lesions per prostatic volume. Results: Of the 151 prostate cancer cases with PI-RADS 3 index lesions, 27% and 17% had upgrades and downgrades at RP, respectively. Analysis of grade changes showed no significant associations between discrepancies and the number or the number density of PI-RADS 3 lesions. Moreover, the study showed no significant association of the GG changes with race, age, location of the lesions, or prostate volume. Conclusions: This study demonstrated that in PI-RADS 3 cancerous nodules, the chance of the pathology changes in the final pathology of RP specimens was low. Furthermore, having multiple PI-RADS 3 nodules did not change the conclusion, as the possibility of grade changes in patients with multiple nodules was similar to those with solitary lesions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prostate" title="prostate">prostate</a>, <a href="https://publications.waset.org/abstracts/search?q=adenocarcinoma" title=" adenocarcinoma"> adenocarcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=multiparametric%20MRI" title=" multiparametric MRI"> multiparametric MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=Gleason%20score" title=" Gleason score"> Gleason score</a>, <a href="https://publications.waset.org/abstracts/search?q=robot-assisted%20surgery" title=" robot-assisted surgery"> robot-assisted surgery</a> </p> <a href="https://publications.waset.org/abstracts/161253/pathological-disparities-in-patients-diagnosed-with-prostate-imaging-reporting-and-data-system-3-lesions-a-retrospective-study-in-a-high-volume-academic-center" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Ultra-Sensitive Point-Of-Care Detection of PSA Using an Enzyme- and Equipment-Free Microfluidic Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20%20Li">Ying Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Hu"> Rui Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shizhen%20Chen"> Shizhen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Zhou"> Xin Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunhuang%20Yang"> Yunhuang Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prostate cancer is one of the leading causes of cancer-related death among men. Prostate-specific antigen (PSA), a specific product of prostatic epithelial cells, is an important indicator of prostate cancer. Though PSA is not a specific serum biomarker for the screening of prostate cancer, it is recognized as an indicator for prostate cancer recurrence and response to therapy for patient’s post-prostatectomy. Since radical prostatectomy eliminates the source of PSA production, serum PSA levels fall below 50 pg/mL, and may be below the detection limit of clinical immunoassays (current clinical immunoassay lower limit of detection is around 10 pg/mL). Many clinical studies have shown that intervention at low PSA levels was able to improve patient outcomes significantly. Therefore, ultra-sensitive and precise assays that can accurately quantify extremely low levels of PSA (below 1-10 pg/mL) will facilitate the assessment of patients for the possibility of early adjuvant or salvage treatment. Currently, the commercially available ultra-sensitive ELISA kit (not used clinically) can only reach a detection limit of 3-10 pg/mL. Other platforms developed by different research groups could achieve a detection limit as low as 0.33 pg/mL, but they relied on sophisticated instruments to get the final readout. Herein we report a microfluidic platform for point-of-care (POC) detection of PSA with a detection limit of 0.5 pg/mL and without the assistance of any equipment. This platform is based on a previously reported volumetric-bar-chart chip (V-Chip), which applies platinum nanoparticles (PtNPs) as the ELISA probe to convert the biomarker concentration to the volume of oxygen gas that further pushes the red ink to form a visualized bar-chart. The length of each bar is used to quantify the biomarker concentration of each sample. We devised a long reading channel V-Chip (LV-Chip) in this work to achieve a wide detection window. In addition, LV-Chip employed a unique enzyme-free ELISA probe that enriched PtNPs significantly and owned 500-fold enhanced catalytic ability over that of previous V-Chip, resulting in a significantly improved detection limit. LV-Chip is able to complete a PSA assay for five samples in 20 min. The device was applied to detect PSA in 50 patient serum samples, and the on-chip results demonstrated good correlation with conventional immunoassay. In addition, the PSA levels in finger-prick whole blood samples from healthy volunteers were successfully measured on the device. This completely stand-alone LV-Chip platform enables convenient POC testing for patient follow-up in the physician’s office and is also useful in resource-constrained settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=point-of-care%20detection" title="point-of-care detection">point-of-care detection</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=PSA" title=" PSA"> PSA</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-sensitive" title=" ultra-sensitive"> ultra-sensitive</a> </p> <a href="https://publications.waset.org/abstracts/108885/ultra-sensitive-point-of-care-detection-of-psa-using-an-enzyme-and-equipment-free-microfluidic-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Anatomical Features of Internal Pudendal Artery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Yasky">Adel Yasky</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Al-Talalwah"> Waseem Al-Talalwah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shorok%20Al%20Dorazi"> Shorok Al Dorazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Soames"> Roger Soames</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The internal pudendal artery is a standard branch of the anterior division of the internal iliac artery. The current study includes 41 cadavers to investigate the origin and branches of the internal pudendal artery and its clinical significances. The internal pudendal artery arose directly from the anterior division of the internal iliac artery in 48.3% while it arose indirectly in 48.5%. However, the internal pudendal artery arose from the posterior division of internal iliac artery in 1.6%. Moreover, it arose internal iliac artery bifurcation site in 1.6%. Further, the internal pudendal artery supplied the urinary bladder in 17.1%. Also, the internal pudendal artery supplied the rectum 33.5% respectively. It gave uterine and vaginal arteries in 9.4% and 7.8% respectively. Finally, it supplied the sciatic nerve via giving lateral sacral branch in 1.6%. Internists, surgeons and radiologists have to be aware of the variability to decrease iatrogenic injury. Therefore, unnecessary proximal ligation should be avoided at the site of indirect origin of the internal pudendal artery to prevent sciatic neuropathy. Further, intrapelvic bleeding as result of laceration of internal pudendal branches during hysterectomy, prostatectomy or proctectomy should be expected. Therefore, this study increases the awareness of surgeons leading to minimize iatrogenic faults, <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20pudendal%20artery" title="internal pudendal artery">internal pudendal artery</a>, <a href="https://publications.waset.org/abstracts/search?q=inferior%20gluteal%20artery" title=" inferior gluteal artery"> inferior gluteal artery</a>, <a href="https://publications.waset.org/abstracts/search?q=superior%20gluteal%20artery" title=" superior gluteal artery"> superior gluteal artery</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20iliac%20artery" title=" internal iliac artery"> internal iliac artery</a>, <a href="https://publications.waset.org/abstracts/search?q=impotence" title=" impotence"> impotence</a>, <a href="https://publications.waset.org/abstracts/search?q=decreased%20libido" title=" decreased libido"> decreased libido</a> </p> <a href="https://publications.waset.org/abstracts/30963/anatomical-features-of-internal-pudendal-artery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Early Cell Cultures Derived from Human Prostate Cancer Tissue Express Tissue-Specific Epithelial and Cancer Markers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Ryabov">Vladimir Ryabov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Baryshevs"> Mikhail Baryshevs</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Voskresenskey"> Mikhail Voskresenskey</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Popov"> Boris Popov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human prostate gland (PG) samples were obtained from patients who had undergone radical prostatectomy for prostate cancer (PC) and used to extract total RNA and prepare the prostate stromal cell cultures (PSCC) and patients-derived organoids (PDO). Growth of the cell cultures was accessed under microscopic evaluation in transmitted light and the marker expression by reverse polymerase chain reaction (RT-PCR), immunofluorescence, and immunoblotting. Some PCR products from prostate tissue, PSCC, and PDO were cloned and sequenced. We found that the cells of early and late passages of PSCC and corresponding PDO expressed luminal (androgen receptor, AR; cytokeratin 18, CK18) and basal (CK5, p63) epithelial markers, the production of which decreased or disappeared in late PSCC and PDO. The PSCC and PDO of early passages from cancer tissue additionally produced cancer markers AMACR, TMPRSS2-ERG, and Ezh2. The expression of TMPRSS2-ERG fusion transcripts was verified by cloning and sequencing the PCR products. The results obtained suggest that early passages of PSCC might be used as a pre-clinical model for the evaluation of early markers of prostate cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=localized%20prostate%20cancer" title="localized prostate cancer">localized prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20epithelial%20markers" title=" prostate epithelial markers"> prostate epithelial markers</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer%20markers" title=" prostate cancer markers"> prostate cancer markers</a>, <a href="https://publications.waset.org/abstracts/search?q=AMACR" title=" AMACR"> AMACR</a>, <a href="https://publications.waset.org/abstracts/search?q=TMPRSS2-ERG" title=" TMPRSS2-ERG"> TMPRSS2-ERG</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20stromal%20cell%20cultures" title=" prostate stromal cell cultures"> prostate stromal cell cultures</a>, <a href="https://publications.waset.org/abstracts/search?q=PDO" title=" PDO"> PDO</a> </p> <a href="https://publications.waset.org/abstracts/153032/early-cell-cultures-derived-from-human-prostate-cancer-tissue-express-tissue-specific-epithelial-and-cancer-markers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Nanorods Based Dielectrophoresis for Protein Concentration and Immunoassay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhen%20Cao">Zhen Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhu"> Yu Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junxue%20Fu"> Junxue Fu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Immunoassay, i.e., antigen-antibody reaction, is crucial for disease diagnostics. To achieve the adequate signal of the antigen protein detection, a large amount of sample and long incubation time is needed. However, the amount of protein is usually small at the early stage, which makes it difficult to detect. Unlike cells and DNAs, no valid chemical method exists for protein amplification. Thus, an alternative way to improve the signal is through particle manipulation techniques to concentrate proteins, among which dielectrophoresis (DEP) is an effective one. DEP is a technique that concentrates particles to the designated region through a force created by the gradient in a non-uniform electric field. Since DEP force is proportional to the cube of particle size and square of electric field gradient, it is relatively easy to capture larger particles such as cells. For smaller ones like proteins, a super high gradient is then required. In this work, three-dimensional Ag/SiO2 nanorods arrays, fabricated by an easy physical vapor deposition technique called as oblique angle deposition, have been integrated with a DEP device and created the field gradient as high as of 2.6×10²⁴ V²/m³. The nanorods based DEP device is able to enrich bovine serum albumin (BSA) protein by 1800-fold and the rate has reached 180-fold/s when only applying 5 V electric potential. Based on the above nanorods integrated DEP platform, an immunoassay of mouse immunoglobulin G (IgG) proteins has been performed. Briefly, specific antibodies are immobilized onto nanorods, then IgG proteins are concentrated and captured, and finally, the signal from fluorescence-labelled antibodies are detected. The limit of detection (LoD) is measured as 275.3 fg/mL (~1.8 fM), which is a 20,000-fold enhancement compared with identical assays performed on blank glass plates. Further, prostate-specific antigen (PSA), which is a cancer biomarker for diagnosis of prostate cancer after radical prostatectomy, is also quantified with a LoD as low as 2.6 pg/mL. The time to signal saturation has been significantly reduced to one minute. In summary, together with an easy nanorod fabrication and integration method, this nanorods based DEP platform has demonstrated highly sensitive immunoassay performance and thus poses great potentials in applications for early point-of-care diagnostics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectrophoresis" title="dielectrophoresis">dielectrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=immunoassay" title=" immunoassay"> immunoassay</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20angle%20deposition" title=" oblique angle deposition"> oblique angle deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20concentration" title=" protein concentration"> protein concentration</a> </p> <a href="https://publications.waset.org/abstracts/87142/nanorods-based-dielectrophoresis-for-protein-concentration-and-immunoassay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Single Cell Analysis of Circulating Monocytes in Prostate Cancer Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leander%20Van%20Neste">Leander Van Neste</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirk%20Wojno"> Kirk Wojno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The innate immune system reacts to foreign insult in several unique ways, one of which is phagocytosis of perceived threats such as cancer, bacteria, and viruses. The goal of this study was to look for evidence of phagocytosed RNA from tumor cells in circulating monocytes. While all monocytes possess phagocytic capabilities, the non-classical CD14+/FCGR3A+ monocytes and the intermediate CD14++/FCGR3A+ monocytes most actively remove threatening ‘external’ cellular materials. Purified CD14-positive monocyte samples from fourteen patients recently diagnosed with clinically localized prostate cancer (PCa) were investigated by single-cell RNA sequencing using the 10X Genomics protocol followed by paired-end sequencing on Illumina’s NovaSeq. Similarly, samples were processed and used as controls, i.e., one patient underwent biopsy but was found not to harbor prostate cancer (benign), three young, healthy men, and three men previously diagnosed with prostate cancer that recently underwent (curative) radical prostatectomy (post-RP). Sequencing data were mapped using 10X Genomics’ CellRanger software and viable cells were subsequently identified using CellBender, removing technical artifacts such as doublets and non-cellular RNA. Next, data analysis was performed in R, using the Seurat package. Because the main goal was to identify differences between PCa patients and ‘control’ patients, rather than exploring differences between individual subjects, the individual Seurat objects of all 21 patients were merged into one Seurat object per Seurat’s recommendation. Finally, the single-cell dataset was normalized as a whole prior to further analysis. Cell identity was assessed using the SingleR and cell dex packages. The Monaco Immune Data was selected as the reference dataset, consisting of bulk RNA-seq data of sorted human immune cells. The Monaco classification was supplemented with normalized PCa data obtained from The Cancer Genome Atlas (TCGA), which consists of bulk RNA sequencing data from 499 prostate tumor tissues (including 1 metastatic) and 52 (adjacent) normal prostate tissues. SingleR was subsequently run on the combined immune cell and PCa datasets. As expected, the vast majority of cells were labeled as having a monocytic origin (~90%), with the most noticeable difference being the larger number of intermediate monocytes in the PCa patients (13.6% versus 7.1%; p<.001). In men harboring PCa, 0.60% of all purified monocytes were classified as harboring PCa signals when the TCGA data were included. This was 3-fold, 7.5-fold, and 4-fold higher compared to post-RP, benign, and young men, respectively (all p<.001). In addition, with 7.91%, the number of unclassified cells, i.e., cells with pruned labels due to high uncertainty of the assigned label, was also highest in men with PCa, compared to 3.51%, 2.67%, and 5.51% of cells in post-RP, benign, and young men, respectively (all p<.001). It can be postulated that actively phagocytosing cells are hardest to classify due to their dual immune cell and foreign cell nature. Hence, the higher number of unclassified cells and intermediate monocytes in PCa patients might reflect higher phagocytic activity due to tumor burden. This also illustrates that small numbers (~1%) of circulating peripheral blood monocytes that have interacted with tumor cells might still possess detectable phagocytosed tumor RNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circulating%20monocytes" title="circulating monocytes">circulating monocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=phagocytic%20cells" title=" phagocytic cells"> phagocytic cells</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20immune%20response" title=" tumor immune response"> tumor immune response</a> </p> <a href="https://publications.waset.org/abstracts/141106/single-cell-analysis-of-circulating-monocytes-in-prostate-cancer-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Clinical Efficacy of Localized Salvage Prostate Cancer Reirradiation with Proton Scanning Beam Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Shang">Charles Shang</a>, <a href="https://publications.waset.org/abstracts/search?q=Salina%20Ramirez"> Salina Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Shang"> Stephen Shang</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Estrada"> Maria Estrada</a>, <a href="https://publications.waset.org/abstracts/search?q=Timothy%20R.%20Williams"> Timothy R. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Over the past decade, proton therapy utilizing pencil beam scanning has emerged as a preferred treatment modality in radiation oncology, particularly for prostate cancer. This retrospective study aims to assess the clinical and radiobiological efficacy of proton scanning beam therapy in the treatment of localized salvage prostate cancer, following initial radiation therapy with a different modality. Despite the previously delivered high radiation doses, this investigation explores the potential of proton reirradiation in controlling recurrent prostate cancer and detrimental quality of life side effects. Methods and Materials: A retrospective analysis was conducted on 45 cases of locally recurrent prostate cancer that underwent salvage proton reirradiation. Patients were followed for 24.6 ± 13.1 months post-treatment. These patients had experienced an average remission of 8.5 ± 7.9 years after definitive radiotherapy for localized prostate cancer (n=41) or post-prostatectomy (n=4), followed by rising PSA levels. Recurrent disease was confirmed by FDG-PET (n=31), PSMA-PET (n=10), or positive local biopsy (n=4). Gross tumor volume (GTV) was delineated based on PET and MR imaging, with the planning target volume (PTV) expanding to an average of 10.9 cm³. Patients received proton reirradiation using two oblique coplanar beams, delivering total doses ranging from 30.06 to 60.00 GyE in 17–30 fractions. All treatments were administered using the ProBeam Compact system with CT image guidance. The International Prostate Symptom Scores (IPSS) and prostate-specific antigen (PSA) levels were evaluated to assess treatment-related toxicity and tumor control. Results and Discussions: In this cohort (mean age: 76.7 ± 7.3 years), 60% (27/45) of patients showed sustained reductions in PSA levels post-treatment, while 36% (16/45) experienced a PSA decline of more than 0.8 ng/mL. Additionally, 73% (33/45) of patients exhibited an initial PSA reduction, though some showed later PSA increases, indicating the potential presence of undetected metastatic lesions. The median post-retreatment IPSS score was 4, significantly lower than scores reported in other treatment studies. Overall, 69% of patients reported mild urinary symptoms, with 96% (43/45) experiencing mild to moderate symptoms. Three patients experienced grade I or II proctitis, while one patient reported grade III proctitis. These findings suggest that regional organs, including the urethra, bladder, and rectum, demonstrate significant radiobiological recovery from prior radiation exposure, enabling tolerance to additional proton scanning beam therapy. Conclusions: This retrospective analysis of 45 patients with recurrent localized prostate cancer treated with salvage proton reirradiation demonstrates favorable outcomes, with a median follow-up of two years. The post-retreatment IPSS scores were comparable to those reported in follow-up studies of initial radiation therapy treatments, indicating stable or improved urinary symptoms compared to the end of initial treatment. These results highlight the efficacy of proton scanning beam therapy in providing effective salvage treatment while minimizing adverse effects on critical organs. The findings also enhance the understanding of radiobiological responses to reirradiation and support proton therapy as a viable option for patients with recurrent localized prostate cancer following previous definitive radiation therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prostate%20salvage%20radiotherapy" title="prostate salvage radiotherapy">prostate salvage radiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20therapy" title=" proton therapy"> proton therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20radiation%20tolerance" title=" biological radiation tolerance"> biological radiation tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=radiobiology%20of%20organs" title=" radiobiology of organs"> radiobiology of organs</a> </p> <a href="https://publications.waset.org/abstracts/191367/clinical-efficacy-of-localized-salvage-prostate-cancer-reirradiation-with-proton-scanning-beam-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>