CINXE.COM

Search results for: crude oil

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: crude oil</title> <meta name="description" content="Search results for: crude oil"> <meta name="keywords" content="crude oil"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="crude oil" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="crude oil"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 691</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: crude oil</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">691</span> The Influence of Crude Oil on Growth of Freshwater Algae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Saboonchi%20Azhar">Al-Saboonchi Azhar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of Iraqi crude oil on growth of three freshwater algae (Chlorella vulgaris Beij., Scenedesmus acuminatus (Lag.) Chodat. and Oscillatoria princeps Vauch.) were investigated, basing on it's biomass expressed as Chl.a. Growth rate and doubling time of the cell were calculated. Results showed that growth rate and species survival varied with concentrations of crude oil and species type. Chlorella vulgaris and Scenedesmus acuminatus were more sensitive in culture containing crude oil as compared with Oscillatoria princeps cultures. The growth of green algae were significantly inhibited in culture containing (5 mg/l) crude oil, while the growth of Oscillatoria princeps reduced in culture containing (10 mg/l) crude oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20algae" title=" green algae"> green algae</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyanobacteria" title=" Cyanobacteria "> Cyanobacteria </a> </p> <a href="https://publications.waset.org/abstracts/24663/the-influence-of-crude-oil-on-growth-of-freshwater-algae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">690</span> Crude Distillation Process Simulation Using Unisim Design Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Patrascioiu">C. Patrascioiu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jamali"> M. Jamali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the simulation of the crude distillation process using the Unisim Design simulator. The necessity of simulating this process is argued both by considerations related to the design of the crude distillation column, but also by considerations related to the design of advanced control systems. In order to use the Unisim Design simulator to simulate the crude distillation process, the identification of the simulators used in Romania and an analysis of the PRO/II, HYSYS, and Aspen HYSYS simulators were carried out. Analysis of the simulators for the crude distillation process has allowed the authors to elaborate the conclusions of the success of the crude modelling. A first aspect developed by the authors is the implementation of specific problems of petroleum liquid-vapors equilibrium using Unisim Design simulator. The second major element of the article is the development of the methodology and the elaboration of the simulation program for the crude distillation process, using Unisim Design resources. The obtained results validate the proposed methodology and will allow dynamic simulation of the process. &nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation" title=" distillation"> distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Unisim%20Design" title=" Unisim Design"> Unisim Design</a>, <a href="https://publications.waset.org/abstracts/search?q=simulators" title=" simulators"> simulators</a> </p> <a href="https://publications.waset.org/abstracts/81696/crude-distillation-process-simulation-using-unisim-design-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">689</span> Effect of Crude oil Contamination on the Morphological Traits and Protein Content of Avicennia Marina</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20Moradi">Babak Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Zare-Maivan"> Hassan Zare-Maivan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A greenhouse investigation has been conducted to study the effect of crude oil on morphology and protein content of Avicennia marina plant. Avicennia marina seeds were sown in different concentrations of the crude oil mixed soil (i.e., 2.5, 5, 7.5, and 10 w/w). Controls and replicates were also set up. Morphological traits were recorded 4 months after plantation. Avicennia marina seedlings could tolerate up to 10% (w/w). Results demonstrated that there was a reduction in plant shoot and root biomass with the increase of crude oil concentration. Plant height, total leaf number and length reduced significantly with increase of crude oil contamination. Investigation revealed that there is a great impact of crude oil contamination on protein content of the roots of the experimental plant. Protein content of roots grown in different concentrations of crude oil were more than those of the control plant. Further, results also showed that protein content was increased with increased concentration of crude oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avicennia%20marina" title="Avicennia marina">Avicennia marina</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20contamination" title=" oil contamination"> oil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20content" title=" protein content"> protein content</a> </p> <a href="https://publications.waset.org/abstracts/23576/effect-of-crude-oil-contamination-on-the-morphological-traits-and-protein-content-of-avicennia-marina" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">688</span> Remediation of Crude Oil Contaminated Soils by Indigenous Bacterial Isolates Using Cow Dung as a Bioenhancement Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Osazee">E. Osazee</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20U.%20Bashir"> L. U. Bashir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted at the Department of Biological Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria, to determine the effects of different weights of cow dung on indigenous bacterial isolates in remediation of crude oil contaminated soils. The soil (1kg) was contaminated with 20g of crude oil and this was treated with three (40g, 80g and 120g) weights of cow dung. The soils were amended after two weeks of crude oil contamination. Soil samples were collected from the plastic bags for microbiological analyses. The isolates were cultured to test their ability to grow on crude oil. The ability of the isolates to utilize the crude oil was determined using media dilution technique. Bacteria such as Proteus mirabilis, Bacillus lacterosporus, Morganella morganii, Serratia marcescens and Bacillus alvei were isolated. The variables measured were heterotrophic bacterial populations, hydrocarbon utilizing bacterial populations and the percentage of crude oil degraded in the soils. Data collected were subjected to analysis of variance (ANOVA). Results obtained indicated that all the different weights of cow dung showed appreciable effect in crude oil decontamination. Based on the findings of the experiments, it could be deduced that 120g of cow dung promoted higher degradation of hydrocarbons. Thus, it should be recommended for remediation of crude oil contaminated soil in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20dung" title=" cow dung"> cow dung</a>, <a href="https://publications.waset.org/abstracts/search?q=amendment" title=" amendment"> amendment</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=decontamination" title=" decontamination"> decontamination</a> </p> <a href="https://publications.waset.org/abstracts/180383/remediation-of-crude-oil-contaminated-soils-by-indigenous-bacterial-isolates-using-cow-dung-as-a-bioenhancement-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">687</span> Production of Pour Point Depressant for Paraffinic Crude Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mosaad%20Attia%20Elkasaby">Mosaad Attia Elkasaby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crude oil contains paraffines, aromatics, and asphaltenes in addition to some organic impurities, with increasing demands to reduce the cost of crude oil production, the uses of a pour point depressant is mandatory to maintain good flow rate. The wax materials cause many problems during production, storage, and transport, especially at low temperature, as these waxes tend, at low temperatures, to precipitate on the wall lines, thus leads to the high viscosity of crude oil and impede the flow rate, which represents an additional burden for crude oil pumping system from the place of production to the refinery. There are many ways to solve this problem, including, but not limited to, heat the crude and the use of organic solvents. But one of the most important disadvantages of these methods is the high economic cost. The aim of this innovation is to manufacture some polymeric materials (polymers based on aniline) that are processed locally that can be used as a pour point depressant of crude oil. For the first time, polymer based on aniline is modified and used with a number of organic solvents and tested with solvent (Styrene). It was found that the polymer based on aniline, when modified, had full solubility in styrene, unlike other organic solvent that was used in the past, such as chloroform and toluene. We also used a new solvent (PONA) that is obtained from the process of hydrotreating and separation of straight run naphtha to dissolve polymer based on aniline as a pour point depressant of crude oil. This innovative include studies conducted on highly paraffinic crude oil (C.O.1 and C.O.2). On using concentration (2500 ppm) of polymer based on aniline, the pour point of crude oil has decreased from +33 to - 9°C in case of crude oil (C.O.1) and from + 42 to – 6°C in case crude oil (C.O.2) at the same concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PPD" title="PPD">PPD</a>, <a href="https://publications.waset.org/abstracts/search?q=aniline" title=" aniline"> aniline</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffinic%20crude%20oils" title=" paraffinic crude oils"> paraffinic crude oils</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a> </p> <a href="https://publications.waset.org/abstracts/159751/production-of-pour-point-depressant-for-paraffinic-crude-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">686</span> Rheological and Computational Analysis of Crude Oil Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar">Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Kumar"> Satish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jashanpreet%20Singh"> Jashanpreet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 &deg;C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfactant" title="surfactant">surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=natural" title=" natural"> natural</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/57573/rheological-and-computational-analysis-of-crude-oil-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">685</span> Process Optimization for Albanian Crude Oil Characterization </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xhaklina%20Cani">Xhaklina Cani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilirjan%20Malollari"> Ilirjan Malollari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismet%20Beqiraj"> Ismet Beqiraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorina%20Lici"> Lorina Lici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil characterization is an essential step in the design, simulation, and optimization of refining facilities. To achieve optimal crude selection and processing decisions, a refiner must have exact information refer to crude oil quality. This includes crude oil TBP-curve as the main data for correct operation of refinery crude oil atmospheric distillation plants. Crude oil is typically characterized based on a distillation assay. This procedure is reasonably well-defined and is based on the representation of the mixture of actual components that boil within a boiling point interval by hypothetical components that boil at the average boiling temperature of the interval. The crude oil assay typically includes TBP distillation according to ASTM D-2892, which can characterize this part of oil that boils up to 400 C atmospheric equivalent boiling point. To model the yield curves obtained by physical distillation is necessary to compare the differences between the modelling and the experimental data. Most commercial use a different number of components and pseudo-components to represent crude oil. Laboratory tests include distillations, vapor pressures, flash points, pour points, cetane numbers, octane numbers, densities, and viscosities. The aim of the study is the drawing of true boiling curves for different crude oil resources in Albania and to compare the differences between the modeling and the experimental data for optimal characterization of crude oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TBP%20distillation%20curves" title="TBP distillation curves">TBP distillation curves</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/50929/process-optimization-for-albanian-crude-oil-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">684</span> Chemical Demulsification for Treating Crude Oil Emulsion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miran%20Sabah%20Ibrahim">Miran Sabah Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahit%20Aktas"> Nahit Aktas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of emulsifiers is highly important in the process of breaking emulsions. This examination employed five commercial demulsifiers in various temperatures for evaluating the separation efficiency. Furthermore, two different crude oils (Khurmala and Demir Dagh crude oil) were utilized for preparing emulsion. The outcomes revealed that the application commercial demulsifiers for Khurmala crude oil at 55°C and 100 ppm (KD-3100, KD-3200, FD-6144, FD-6210 and RI35Q) the separation efficiency were (78, 80.6, 78, 86 and 90 %) respectively. However, at 65 °C and 100 ppm (KD-3100, KD-3200, FD-6144, FD-6210 and RI35Q) separation efficiency were (87, 85, 91.3, 94 and 97 %) respectively. Nonetheless, utilizing Demir Dagh crude oil at 55 °C and 100 ppm (KD-3100, KD-3200, FD-6144, FD-6210 and RI35Q) resulted in the separation efficiency of (63.3, 66.6, 65, 73 and 76.6 %) respectively, and at 65 °C and 100 ppm (KD-3100, KD-3200, FD-6144, FD-6210 and RI35Q) were (77, 76.6, 80, 82 and 85 %) respectively. The combinations of FD-6144 and RI35Q at 55°C and ratio of (1:1) and (1:3) for Khurmala crude oil led to (96 and 90.6 %) efficiency respectively. However, the efficiency decreased to (98.6 and 93.3 %) respectively at 65 °C. The same combinations applied on Demir Dagh Crude oil and the results were (78 and 63.3 %) at 55 °C and (86.6 and 71 %) at 65 °C. Three different brine concentrations (NaCl) (0.5, 2 and 3.5 %) were prepared and utilized. It was found that the optimum NaCl concentration was at 3.5 % NaCl concentration for both khurmala and Demir dagh crude oil at 55 °C and 65 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demulsifier" title="demulsifier">demulsifier</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion" title=" emulsion"> emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20emulsion" title=" breaking emulsion"> breaking emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsifying%20agent%20%28surfactant%29" title=" emulsifying agent (surfactant)"> emulsifying agent (surfactant)</a> </p> <a href="https://publications.waset.org/abstracts/67207/chemical-demulsification-for-treating-crude-oil-emulsion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">683</span> Isolation, Identification and Crude Oil Biodegradation Potential of Providencia sp. BAZ 01</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisami%20A.">Aisami A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20A.%20Adamu"> Z. A. Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Bulama"> Lawan Bulama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to growing issues of crude oil pollution in both marine and terrestrial environments, Billions to Trillions of US Dollars were spent over the years for the treatment of this spill. There is an urgent need for effective bioremediation strategies. This current study focuses on the isolation and characterization of a crude oil-degrading bacterium from hydrocarbon-contaminated soil samples. Soil samples were collected from an oil spill site and subjected to enrichment culture techniques in a mineral salt medium supplemented with crude oil as the singular carbon source. The isolates were screened for their crude oil-degrading capabilities using gravimetric analysis. The most efficient isolation was identified through 16S rRNA gene sequencing. Cultural and physical conditions such pH, temperature salinity and crude oil concentrations were optimized. The isolates showed significant crude oil degradation efficiency, reducing oil concentration (2.5%) by 75% within 15 days of incubation. The strain was identified as Providencia sp. through molecular characterization, the sequence was deposited at the NCBI Genbank with accession number MN880494. The bacterium exhibited optimal growth at 32.5°C, pH 7.0 to 7.5, and in the presence of 1.5% (w/v) NaCl. The isolated Providencia sp. shows encouraging potential for bioremediation of crude oil-contaminated environments. This study successfully isolated and characterized a crude oil-degrading Providencia sp., highlighting its potential in bioremediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil%20degradation" title="crude oil degradation">crude oil degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=providencia%20sp." title=" providencia sp."> providencia sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20utilization" title=" hydrocarbon utilization"> hydrocarbon utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution." title=" environmental pollution."> environmental pollution.</a> </p> <a href="https://publications.waset.org/abstracts/188258/isolation-identification-and-crude-oil-biodegradation-potential-of-providencia-sp-baz-01" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">682</span> Oil Logistics for Refining to Northern Europe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Klepikov">Vladimir Klepikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To develop the programs to supply crude oil to North European refineries, it is necessary to take into account the refineries’ location, crude refining capacity, and the transport infrastructure capacity. Among the countries of the region, we include those having a marine boundary along the Northern Sea and the Baltic Sea (from France in the west to Finland in the east). The paper envisages the geographic allocation of the refineries and contains the evaluation of the refineries’ capacities for the region under review. The sustainable operations of refineries in the region are determined by the transportation system capacity to supply crude oil to them. The assessment of capacity of crude oil transportation to the refineries is conducted. The research is performed for the period of 2005/2015, using the quantitative analysis method. The countries are classified by the refineries’ aggregate capacities and the crude oil output on their territory. The crude oil output capacities in the region in the period under review are determined. The capacities of the region’s transportation system to supply crude oil produced in the region to the refineries are revealed. The analysis suggested that imported raw materials are the main source of oil for the refineries in the region. The main sources of crude oil supplies to North European refineries are reviewed. The change in the refineries’ capacities in the group of countries and each particular country, as well as the utilization of the refineries' capacities in the region in the period under review, was studied. The input suggests that the bulk of crude oil is supplied by marine and pipeline transport. The paper contains the assessment of the crude oil transportation by pipeline transport in the overall crude oil cargo flow. The refineries’ production rate for the groups of countries under the review and for each particular country was the subject of study. Our study yielded the trend towards the increase in the crude oil refining at the refineries of the region and reduction in the crude oil output. If this trend persists in the near future, the cargo flow of imported crude oil and the utilization of the North European logistics infrastructure may increase. According to the study, the existing transport infrastructure in the region is able to handle the increasing imported crude oil flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=European%20region" title="European region">European region</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20terminal%20capacity" title=" oil terminal capacity"> oil terminal capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline%20capacity" title=" pipeline capacity"> pipeline capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=tanker%20draft" title=" tanker draft"> tanker draft</a> </p> <a href="https://publications.waset.org/abstracts/80050/oil-logistics-for-refining-to-northern-europe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">681</span> Improving the Quality of Casava Peel-Leaf Mixture through Fermentation with Rhizopus oligosporusas Poultry Ration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirnawati">Mirnawati</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ciptaan"> G. Ciptaan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferawati"> Ferawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to improve the quality of the cassava peel-leaf mixture (CPLM) through fermentation with Rhizopus oligosporusas poultry ration. This research is an experimental study using a completely randomized design (CRD) with four treatments and five replications. The treatments were cassava peel-leaf mixture (CPLM) fermented with Rhizopus oligosporus. The treatments were a combination of cassava peel and leaves with the ratio of; A (9:1), B (8:2), C (7:3), and D (6:4). The observed variables were protease enzyme activity, crude protein, crude fiber, nitrogen retention, digestibility of crude fiber, and metabolic energy. The results of the diversity analysis showed that there was a very significant (p < 0.01) effect on protease activity, crude protein, crude fiber, nitrogen retention, digestibility of crude fiber, and energy metabolism of fermented CPLM. Based on the results of the study, it can be concluded that CPLM (6:4) fermented with Rhizopus oligosporus gave the best results seen from protease activity 7,25 U/ml, 21.23% crude protein, 19.80% crude fiber, 59.65% nitrogen retention, 62.99% crude fiber digestibility and metabolic energy 2671 Kcal/kg. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality" title="quality">quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Casava%20peel-leaf%20mixture" title=" Casava peel-leaf mixture"> Casava peel-leaf mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhizopus%20oligosporus" title=" Rhizopus oligosporus"> Rhizopus oligosporus</a> </p> <a href="https://publications.waset.org/abstracts/141172/improving-the-quality-of-casava-peel-leaf-mixture-through-fermentation-with-rhizopus-oligosporusas-poultry-ration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">680</span> Ecosystem Restoration: Remediation of Crude Oil-Polluted Soil by Leuceana leucocephala (Lam.) de Wit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayodele%20Adelusi%20Oyedeji">Ayodele Adelusi Oyedeji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was carried out under a controlled environment with the aim of examining remediation of crude oil polluted soil. The germination rate, heights and girths, number of leaves and nodulation was determined following standard procedures. Some physicochemical (organic matter, pH, nitrogen, phosphorous, potassium, calcium, magnesium and sodium) characteristics of soil used were determined using standard protocols. Results showed that at varying concentration of crude oil i.e 0 ml, 25 ml, 50 ml, 75 ml and 100 ml, Leuceana leucocephala had germination rate of 92%, 90%, 84%, 62% and 56% respectively, mean height of 73.70cm, 58.30cm, 49.50cm, 46.45cm and 41.80cm respectively after 16 weeks after planting (WAP), mean girth of 0.54mm, 0.34mm, 0.33mm, 0.21mm and 0.19mm respectively at 16 WAP, number of nodules 18, 10, 10, 6 and 2 respectively and number of leaves 24.00, 16.00, 13.00, 10.00 and 6.00 respectively. The organic matter, pH, nitrogen, phosphorous, potassium, calcium, magnesium, and sodium decreased with the increase in the concentration of crude oil. Furthermore, as the concentration of crude oil increased the germination rate, height, girth, and number of leaves and nodules decreased, suggesting the effect of crude oil on Leuceana leucocephala. The plant withstands the varying concentration of the crude oil means that it could be used for the remediation of crude oil contaminated soil in the Niger Delta region of Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20conservation" title="ecosystem conservation">ecosystem conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=Leuceana%20leucocephala" title=" Leuceana leucocephala"> Leuceana leucocephala</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20pollution" title=" soil pollution"> soil pollution</a> </p> <a href="https://publications.waset.org/abstracts/111043/ecosystem-restoration-remediation-of-crude-oil-polluted-soil-by-leuceana-leucocephala-lam-de-wit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">679</span> Blending Effects on Crude Oil Stability: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muheddin%20Hamza">Muheddin Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Entisar%20Etter"> Entisar Etter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is a part of investigating the possibility of blending two crude oils obtained from Libyan oil fields, namely crude oil (A) and crude oil (B) with different ratios, prior to blending the crude oils have to be compatible in order to avoid phase out and precipitation of asphaltene from the bulk of crude. The physical properties of both crudes such as density, viscosity, pour point and sulphur content were measured according to (ASTM) method. To examine the stability of both crudes and their blends, the oil compatibility model using microscopic, colloidal instability index (CII) using SARA analysis and asphaltene stabilization test using Turbiscan tests were conducted in the Libyan Petroleum Institute laboratories. Compatibility tests were carried out with both crude oils, the insolubility number (IN), and the solubility blending number (SBN), for both crude oils and their blends were calculated. The criteria for compatibility of any blend is that the volume average solubility blending number (SBN) is greater than the insolubility number (IN) of any component in the blend, the results indicated that both crudes were compatible. To support the results of compatibility tests the SARA analysis was done for the fractional determination of (saturates, aromatics, resins and asphaltenes) content. From this result, the colloidal Instability index (CII) and resin to asphaltenes ratio (R/A) were calculated for crudes and their blends. The results show that crude oil (B) which has higher (R/A) and lower (CII) is more stable than crude oil (A) and as the ratio of crude (B) increases in the blend the (CII) and (R/A) were improved, and the blends becomes more stable. Asphaltene stabilization test was also conducted for the crudes and their blends using Turbiscan MA200 according to the standard test method ASTM D7061-04, the Turbiscan shows that the crude (B) is more stable than crude (A) which shows a fair tendency. The (CII) and (R/A) were compared with the solubility number (SBN) for each crude and the blends along with Turbiscan results. The solubility blending number (SBN) of the crudes and their blends show that the crudes are compatible, also by comparing (R/A) and (SBN) values of the blends, it can be seen that they are complements of each other. All the experimental results show that the blends of both crudes are more stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene" title="asphaltene">asphaltene</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibility" title=" compatibility"> compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20blends" title=" oil blends"> oil blends</a>, <a href="https://publications.waset.org/abstracts/search?q=resin" title=" resin"> resin</a>, <a href="https://publications.waset.org/abstracts/search?q=SARA" title=" SARA"> SARA</a> </p> <a href="https://publications.waset.org/abstracts/68752/blending-effects-on-crude-oil-stability-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">678</span> Antioxidant Enzymes and Crude Mitochondria ATPases in the Radicle of Germinating Bean (Vigna unguiculata) Exposed to Different Concentrations of Crude Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stella%20O.%20Olubodun">Stella O. Olubodun</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20E.%20Eriyamremu"> George E. Eriyamremu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examined the effect of Bonny Light whole crude oil (WC) and its water soluble fraction (WSF) on the activities of antioxidant enzymes (catalase (CAT) and superoxide dismutase (SOD)) and crude mitochondria ATPases in the radicle of germinating bean (Vigna unguiculata). The percentage germination, level of lipid peroxidation, antioxidant enzyme, and mitochondria Ca2+ and Mg2+ ATPase activities were measured in the radicle of bean after 7, 14, and 21 days post germination. Viable bean seeds were planted in soils contaminated with 10ml, 25ml, and 50ml of whole crude oil (WC) and its water soluble fraction (WSF) to obtain 2, 5, and 10% v/w crude oil contamination. There was dose dependent reduction of the number of bean seeds that germinated in the contaminated soils compared with control (p<0.001). The activities of the antioxidant enzymes, as well as, adenosine triphosphatase enzymes, were also significantly (p<0.001) altered in the radicle of the plants grown in contaminated soil compared with the control. Generally, the level of lipid peroxidation was highest after 21 days post germination when compared with control. Stress to germinating bean caused by Bonny Light crude oil or its water soluble fraction resulted in adaptive changes in crude mitochondria ATPases in the radicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzymes" title="antioxidant enzymes">antioxidant enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=bonny%20light%20crude%20oil" title=" bonny light crude oil"> bonny light crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=radicle" title=" radicle"> radicle</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria%20ATPases" title=" mitochondria ATPases"> mitochondria ATPases</a> </p> <a href="https://publications.waset.org/abstracts/17845/antioxidant-enzymes-and-crude-mitochondria-atpases-in-the-radicle-of-germinating-bean-vigna-unguiculata-exposed-to-different-concentrations-of-crude-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">677</span> Amelioration of Stability and Rheological Properties of a Crude Oil-Based Drilling Mud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammadi%20Larbi">Hammadi Larbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bergane%20Cheikh"> Bergane Cheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling for oil is done through many mechanisms. The goal is first to dig deep and then, after arriving at the oil source, to simply suck it up. And for this, it is important to know the role of oil-based drilling muds, which had many benefits for the drilling tool and for drilling generally, and also and essentially to know the rheological behavior of the emulsion system in particular water-in-oil inverse emulsions (Water/crude oil). This work contributes to the improvement of the stability and rheological properties of crude oil-based drilling mud by organophilic clay. Experimental data from steady-state flow measurements of crude oil-based drilling mud are classically analyzed by the Herschel-Bulkley model. The effects of organophilic clay type VG69 are studied. Microscopic observation showed that the addition of quantities of organophilic clay type VG69 less than or equal to 3 g leads to the stability of inverse Water/Oil emulsions; on the other hand, for quantities greater than 3g, the emulsions are destabilized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drilling" title="drilling">drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=organophilic%20clay" title=" organophilic clay"> organophilic clay</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/157950/amelioration-of-stability-and-rheological-properties-of-a-crude-oil-based-drilling-mud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">676</span> Prediction of Metals Available to Maize Seedlings in Crude Oil Contaminated Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stella%20O.%20Olubodun">Stella O. Olubodun</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20E.%20Eriyamremu"> George E. Eriyamremu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study assessed the effect of crude oil applied at rates, 0, 2, 5, and 10% on the fractional chemical forms and availability of some metals in soils from Usen, Edo State, with no known crude oil contamination and soil from a crude oil spill site in Ubeji, Delta State, Nigeria. Three methods were used to determine the bioavailability of metals in the soils: maize (<em>Zea mays</em>) plant, EDTA and BCR sequential extraction. The sequential extract acid soluble fraction of the BCR extraction (most labile fraction of the soils, normally associated with bioavailability) were compared with total metal concentration in maize seedlings as a means to compare the chemical and biological measures of bioavailability. Total Fe was higher in comparison to other metals for the crude oil contaminated soils. The metal concentrations were below the limits of 4.7% Fe, 190mg/kg Cu and 720mg/kg Zn intervention values and 36mg/kg Cu and 140mg/kg Zn target values for soils provided by the Department of Petroleum Resources (DPR) guidelines. The concentration of the metals in maize seedlings increased with increasing rates of crude oil contamination. Comparison of the metal concentrations in maize seedlings with EDTA extractable concentrations showed that EDTA extracted more metals than maize plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=availability" title="availability">availability</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil%20contamination" title=" crude oil contamination"> crude oil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=EDTA" title=" EDTA"> EDTA</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a> </p> <a href="https://publications.waset.org/abstracts/38382/prediction-of-metals-available-to-maize-seedlings-in-crude-oil-contaminated-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">675</span> The Potential Use of Crude Palm Oil Liquid Wastes to Improve Nutrient Levels in Vegetable Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Basri%20Jumin">Hasan Basri Jumin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of crude palm oil waste combined to suitable concentration of benzyl-adenine give the significant effect to mean relative growth rate of vegetable plants and the same pattern in net assimilation rate crude palm oil waste has also significantly increased during 28 days old plants. Combination of treatment of suitable concentration of crude palm oil and benzyl adenine increased the growth and production of vegetable plants. The relative growth rate of vegetable plants was rapid 3 weeks after planting and gradually decreased at the end of the harvest time period. Combination of 400 mg.l-1 CPO with 1.0 mgl-1 till 10mgl-1 BA increased the Mean Relative Growth Rate (MRGR), Net assimilation rate (NAR), Leaf area and dry weight of Brassica juncea, Brassica oleraceae and Lactuca sativa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzyladenine" title="benzyladenine">benzyladenine</a>, <a href="https://publications.waset.org/abstracts/search?q=crude-palm-oil" title=" crude-palm-oil"> crude-palm-oil</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient" title=" nutrient"> nutrient</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable" title=" vegetable"> vegetable</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/80918/the-potential-use-of-crude-palm-oil-liquid-wastes-to-improve-nutrient-levels-in-vegetable-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">674</span> Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdolreza%20Memari">Abdolreza Memari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscosity" title="viscosity">viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=Iranian%20crude%20oil" title=" Iranian crude oil"> Iranian crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20based" title=" radial based"> radial based</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20ball%20method" title=" roller ball method"> roller ball method</a>, <a href="https://publications.waset.org/abstracts/search?q=KHAN%20model" title=" KHAN model "> KHAN model </a> </p> <a href="https://publications.waset.org/abstracts/29815/prediction-fluid-properties-of-iranian-oil-field-with-using-of-radial-based-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">673</span> Fault Tree Analysis and Bayesian Network for Fire and Explosion of Crude Oil Tanks: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Zerouali">B. Zerouali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kara"> M. Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hamaidi"> B. Hamaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mahdjoub"> H. Mahdjoub</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rouabhia"> S. Rouabhia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a safety analysis for crude oil tanks to prevent undesirable events that may cause catastrophic accidents. The estimation of the probability of damage to industrial systems is carried out through a series of steps, and in accordance with a specific methodology. In this context, this work involves developing an assessment tool and risk analysis at the level of crude oil tanks system, based primarily on identification of various potential causes of crude oil tanks fire and explosion by the use of Fault Tree Analysis (FTA), then improved risk modelling by Bayesian Networks (BNs). Bayesian approach in the evaluation of failure and quantification of risks is a dynamic analysis approach. For this reason, have been selected as an analytical tool in this study. Research concludes that the Bayesian networks have a distinct and effective method in the safety analysis because of the flexibility of its structure; it is suitable for a wide variety of accident scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayesian%20networks" title="bayesian networks">bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank" title=" crude oil tank"> crude oil tank</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tree" title=" fault tree"> fault tree</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a> </p> <a href="https://publications.waset.org/abstracts/30636/fault-tree-analysis-and-bayesian-network-for-fire-and-explosion-of-crude-oil-tanks-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">660</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">672</span> Direct Conversion of Crude Oils into Petrochemicals under High Severity Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anaam%20H.%20Al-ShaikhAli">Anaam H. Al-ShaikhAli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansour%20A.%20Al-Herz"> Mansour A. Al-Herz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research leverages the proven HS-FCC technology to directly crack crude oils into petrochemical building blocks. Crude oils were subjected to an optimized hydro-processing process where metal contaminants and sulfur were reduced to an acceptable level for feeding the crudes into the HS-FCC technology. The hydro-processing is achieved through a fixed-bed reactor which is composed of 3 layers of catalysts. The crude oil is passed through a dementalization catalyst followed by a desulfurization catalyst and finally a de-aromatization catalyst. The hydroprocessing was conducted at an optimized liquid hourly space velocity (LHSV), temperature, and pressure for an optimal reduction of metals and sulfur from the crudes. The hydro-processed crudes were then fed into a micro activity testing (MAT) unit to simulate the HS-FCC technology. The catalytic cracking of crude oils was conducted over tailored catalyst formulations under an optimized catalyst/oil ratio and cracking temperature for optimal production of total light olefins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petrochemical" title="petrochemical">petrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20cracking" title=" catalytic cracking"> catalytic cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst%20synthesis" title=" catalyst synthesis"> catalyst synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=HS-FCC%20technology" title=" HS-FCC technology"> HS-FCC technology</a> </p> <a href="https://publications.waset.org/abstracts/167542/direct-conversion-of-crude-oils-into-petrochemicals-under-high-severity-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">671</span> In-Situ Synthesis of Zinc-Containing MCM-41 and Investigation of Its Capacity for Removal of Hydrogen Sulfide from Crude Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nastaran%20Hazrati">Nastaran Hazrati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Miran%20Beigi"> Ali Akbar Miran Beigi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Abdouss"> Majid Abdouss</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Vahid"> Amir Vahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen sulfide is the most toxic gas of crude oil. Adsorption is an energy-efficient process used to remove undesirable compounds such as H2S in gas or liquid streams by passing the stream through a media bed composed of an adsorbent. In this study, H2S of Iran crude oil was separated via cold stripping then zinc incorporated MCM-41 was synthesized via an in-situ method. ZnO functionalized mesoporous silica samples were characterized by XRD, N2 adsorption and TEM. The obtained results of adsorption of H2S showed superior ability of all the materials and with an increase in ZnO amount adsorption was increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MCM-41" title="MCM-41">MCM-41</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=H2S%20removal" title=" H2S removal"> H2S removal</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/22843/in-situ-synthesis-of-zinc-containing-mcm-41-and-investigation-of-its-capacity-for-removal-of-hydrogen-sulfide-from-crude-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">670</span> Effects of Different Dietary Crude Fiber Levels on the Growth Performance of Finishing Su-Shan Pigs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Bixia">Li Bixia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ren%20Shouwen"> Ren Shouwen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fu%20Yanfeng"> Fu Yanfeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Tu%20Feng"> Tu Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoming%20Fang"> Xiaoming Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xueming%20Wang"> Xueming Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of dietary crude fiber in different breed pigs is not the same. Su-shan pigs are a new breed formed by crossing Taihu pigs and Yorkshire pigs. In order to understand the resistance of Su-shan pigs to dietary crude fiber, 150 Su-shan pigs with 60 kg of average body weight and similar body conditions were allocated to three groups randomly, and there are 50 pigs in each group. The percentages of dietary crude fiber were 8.35%, 9.10%, and 11.39%, respectively. At the end of the experiment, 15 pigs randomly selected from each group were slaughtered. The results showed as follows: average daily gain of the 9.10% group was higher than that of the 8.35% group and the 11.39% group; there was a significant difference between the 9.10% group and the 8.35% group (p &lt; 0.05. Levels of urea nitrogen, total cholesterol and high density lipoprotein in the 9.10% group were significantly higher than those in the 8.35% group and the 11.39% group (p &lt; 0.05). Ratios of meat to fat in the 9.10% group and the 11.39% group were significantly higher than that in the 8.35% group (p &lt; 0.05). Lean percentage of 9.10% group was higher than that of 8.35% group and 11.39% group, but there was no significant difference in three groups (p &gt; 0.05). The weight of small intestine and large intestine in the 11.39% group was higher than that in the 8.35% group, and the 9.10% group and the difference reached a significant level (p &lt; 0.05). In conclusion, increasing dietary crude fiber properly could reduce fat percentage, and improve the ratio of meat to fat of finishing Su-shan pigs. The digestion and metabolism of dietary crude fiber promoted the development of stomach and intestine of finishing Su-shan pig. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su-shan%20pigs" title="Su-shan pigs">Su-shan pigs</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20crude%20fiber" title=" dietary crude fiber"> dietary crude fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20biochemical%20indexes" title=" serum biochemical indexes"> serum biochemical indexes</a> </p> <a href="https://publications.waset.org/abstracts/91658/effects-of-different-dietary-crude-fiber-levels-on-the-growth-performance-of-finishing-su-shan-pigs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">669</span> Antimicrobial, Antioxidant and Cytotoxic Activities of Cleoma viscosa Linn. Crude Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suttijit%20Sriwatcharakul">Suttijit Sriwatcharakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bioactivity studies from the weed ethanolic crude extracts from leaf, stem, pod and root of wild spider flower; Cleoma viscosa Linn. were analyzed for the growth inhibition of 6 bacterial species; Salmonella typhimurium TISTR 5562, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus TISTR 1466, Streptococcus epidermidis ATCC 1228, Escherichia coli DMST 4212 and Bacillus subtilis ATCC 6633 with initial concentration crude extract of 50 mg/ml. The agar well diffusion results found that the extracts inhibit only gram positive bacteria species; S. aureus, S. epidermidis and B. subtilis. The minimum inhibition concentration study with gram positive strains revealed that leaf crude extract give the best result of the lowest concentration compared with other plant parts to inhibit the growth of S. aureus, S. epidermidis and B. subtilis at 0.78, 0.39 and lower than 0.39 mg/ml, respectively. The determination of total phenolic compounds in the crude extracts exhibited the highest phenolic content was 10.41 mg GAE/g dry weight in leaf crude extract. Analyzed the efficacy of free radical scavenging by using DPPH radical scavenging assay with all crude extracts showed value of IC50 of leaf, stem, pod and root crude extracts were 8.32, 12.26, 21.62 and 35.99 mg/ml, respectively. Studied cytotoxicity of crude extracts on human breast adenocarcinoma cell line by MTT assay found that pod extract had the most cytotoxicity CC50 value, 32.41 µg/ml. Antioxidant activity and cytotoxicity of crude extracts exhibited that the more increase of extract concentration, the more activities indicated. According to the bioactivities results, the leaf crude extract of Cleoma viscosa Linn. is the most interesting plant part for further work to search the beneficial of this weed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Cleoma%20viscosa%20Linn." title=" Cleoma viscosa Linn."> Cleoma viscosa Linn.</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity%20test" title=" cytotoxicity test"> cytotoxicity test</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20compound" title=" total phenolic compound"> total phenolic compound</a> </p> <a href="https://publications.waset.org/abstracts/52855/antimicrobial-antioxidant-and-cytotoxic-activities-of-cleoma-viscosa-linn-crude-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">668</span> Study of a Crude Oil Desalting Plant of the National Iranian South Oil Company in Gachsaran by Using Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Kiani">H. Kiani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Moradi"> S. Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Soltani%20Soulgani"> B. Soltani Soulgani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mousavian"> S. Mousavian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Desalting/dehydration plants (DDP) are often installed in crude oil production units in order to remove water-soluble salts from an oil stream. In order to optimize this process, desalting unit should be modeled. In this research, artificial neural network is used to model efficiency of desalting unit as a function of input parameter. The result of this research shows that the mentioned model has good agreement with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalting%20unit" title="desalting unit">desalting unit</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/3441/study-of-a-crude-oil-desalting-plant-of-the-national-iranian-south-oil-company-in-gachsaran-by-using-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">667</span> Exploring the Biochemical and Therapeutic Properties of Aged Garlic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhan%20Saeed">Farhan Saeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The core objective of this work is to explicate the biochemical and therapeutic properties of aged garlic. For this purpose, two varieties of garlic were obtained from Ayub Agricultural Research Institute (AARI) Faisalabad-Pakistan. Additionally, fresh garlic was converted into aged garlic via fermentation method in the incubator at 70 to 80 % humidity level and 60C0 temperature for one month. Similarly, biochemical and antioxidant properties of fresh and aged garlic were also elucidated. Mean values showed that moisture content was decreased, whereas crude fat, crude protein, crude fiber, crude ash and total carbohydrates were enhanced after fermentation. Additionally, crude protein of fresh and aged garlic was 7.57±0.16 and 5.52±0.12%, respectively, whilst 9.68±0.41 and 8.78±0.29%, respectively, after the fermentation process. In addition, NFE contents were also enhanced up to 39% after the fermentation method. Moreover, Zn, S, Al, K, Fe, Na, Mg, and Cu contents were also increased. Furthermore, Total phenolic contents (TPC) of fresh and aged garlic were 2498.70 & 2188.50mg GAE/kg whilst 3008.59, & 2591.81mg GAE/kg for aged garlic. In conclusion, aged garlic explicated the better biochemical properties, mineral profile and antioxidant properties as compared to fresh garlic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aged%20garlic" title="aged garlic">aged garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20values" title=" nutritional values"> nutritional values</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20properties" title=" bioactive properties"> bioactive properties</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/143777/exploring-the-biochemical-and-therapeutic-properties-of-aged-garlic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">666</span> Polysaccharides as Pour Point Depressants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20EL-Soll">Ali M. EL-Soll</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical properties of Sarir waxy crude oil was investigated, pour-point was determined using ASTM D-79 procedure, paraffin content and carbon number distribution of the paraffin was determined using gas liquid Chromatography(GLC), polymeric additives were prepared and their structures were confirmed using IR spectrophotometer. The molecular weight and molecular weigh distribution of these additives were determined by gel permeation chromatography (GPC). the performance of the synthesized additives as pour-point depressants was evaluated, for the mentioned crude oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sarir" title="sarir">sarir</a>, <a href="https://publications.waset.org/abstracts/search?q=waxy" title=" waxy"> waxy</a>, <a href="https://publications.waset.org/abstracts/search?q=crude" title=" crude"> crude</a>, <a href="https://publications.waset.org/abstracts/search?q=pour%20point" title=" pour point"> pour point</a>, <a href="https://publications.waset.org/abstracts/search?q=depressants" title=" depressants"> depressants</a> </p> <a href="https://publications.waset.org/abstracts/8204/polysaccharides-as-pour-point-depressants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">665</span> Fed-Batch Mixotrophic Cultivation of Microalgae Scenedesmus sp., Using Airlift Photobioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshmidevi%20Rajendran">Lakshmidevi Rajendran</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharathidasan%20Kanniappan"> Bharathidasan Kanniappan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Raja"> Gopi Raja</a>, <a href="https://publications.waset.org/abstracts/search?q=Muthukumar%20Karuppan"> Muthukumar Karuppan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the feasibility of fed-batch mixotrophic cultivation of microalgae Scenedesmus sp. in a 3-litre airlift photobioreactor under standard operating conditions. The results of this study suggest the algae species may serve as an excellent feed for aquatic species using organic byproducts. Microalgae Scenedesmus sp., was cultured using a synthetic wastewater by stepwise addition of crude glycerol concentration ranging from 2-10g/l under fed-batch mixotrophic mode for a period of 15 days. The attempts were made with the stepwise addition of crude glycerol as a carbon source in the initial growth phase to evade the inhibitory nature of high glycerol concentration on the growth of Scenedesmus sp. Crude glycerol was chosen since it is readily accessible as byproduct from biodiesel production sectors. Highest biomass concentration was achieved to be 2.43 g/l at the crude glycerol concentration of 6g/l after 10 days which is 3 fold times the increase in the biomass concentration compared with the control medium without the addition of glycerol. Biomass growth data obtained for the microalgae Scenedesmus sp. was fitted well with the modified Logistic equation. Substrate utilization kinetics was also employed to model the biomass productivity with respect to the various crude glycerol concentration. The results indicated that the supplement of crude glycerol to the mixotrophic culture of Scenedesmus sp., enhances the biomass concentration, chlorophyll and lutein productivity. Thus the application of fed-batch mixotrophic cultivation with stepwise addition of crude glycerol to Scenedesmus sp., provides a subtle way to reduce the production cost and improvisation in the large-scale cultivation along with biochemical compound synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airlift%20photobioreactor" title="airlift photobioreactor">airlift photobioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20glycerol" title=" crude glycerol"> crude glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae%20Scenedesmus%20sp." title=" microalgae Scenedesmus sp."> microalgae Scenedesmus sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=mixotrophic%20cultivation" title=" mixotrophic cultivation"> mixotrophic cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=lutein%20production" title=" lutein production"> lutein production</a> </p> <a href="https://publications.waset.org/abstracts/85027/fed-batch-mixotrophic-cultivation-of-microalgae-scenedesmus-sp-using-airlift-photobioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">664</span> Alternative Animal Feed Additive Obtain with Different Drying Methods from Carrot Unsuitable for Human Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20G%C3%B6%C3%A7men">Rabia Göçmen</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%C5%9Fah%20Kanbur"> Gülşah Kanbur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinan%20Sefa%20Parlat"> Sinan Sefa Parlat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to determine that carrot powder obtain by different drying methods (oven and vacuum-freeze dryer) of carrot unfit for human consumption that whether feed additives in animal nutrition or not. Carrots randomly divided 2 groups. First group was dried by using oven, second group was by using vacuum freeze dryer methods. Dried carrot prepared from fresh carrot was analysed nutrient matter (energy, crude protein, crude oil, crude ash, beta carotene, mineral concentration and colour). The differences between groups in terms of energy, crude protein, ash, Ca and Mg was not significant (P> 0,05). Crude oil, P, beta carotene content and colour values (L, a, b) with vacuum-freeze dryer group was greater than oven group (P<0,05). Consequently, carrot powder obtained by drying the vacuum-freeze dryer method can be used as a source of carotene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carrot" title="carrot">carrot</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20freeze%20dryer" title=" vacuum freeze dryer"> vacuum freeze dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=oven" title=" oven"> oven</a>, <a href="https://publications.waset.org/abstracts/search?q=beta%20carotene" title=" beta carotene"> beta carotene</a> </p> <a href="https://publications.waset.org/abstracts/28419/alternative-animal-feed-additive-obtain-with-different-drying-methods-from-carrot-unsuitable-for-human-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">663</span> Characterization of Biosurfactant during Crude Oil Biodegradation Employing Pseudomonas sp. PG1: A Strain Isolated from Garage Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaustuvmani%20Patowary">Kaustuvmani Patowary</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Deka"> Suresh Deka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil pollution accidents, nowadays, have become a common phenomenon and have caused ecological and social disasters. Microorganisms with high oil-degrading performance are essential for bioremediation of petroleum hydrocarbon. In this investigation, an effective biosurfactant producer and hydrocarbon degrading bacterial strain, Pseudomonas sp.PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated garage soil of Pathsala, Assam, India, using crude oil enrichment technique. The growth parameters such as pH and temperature were optimized for the strain and upto 81.8% degradation of total petroleum hydrocarbon (TPH) has been achieved after 5 weeks when grown in mineral salt media (MSM) containing 2% (w/v) crude oil as the carbon source. The biosurfactant production during the course of hydrocarbon degradation was monitored by surface tension measurement and emulsification activity. The produced biosurfactant had the ability to decrease the surface tension of MSM from 72 mN/m to 29.6 mN/m, with the critical micelle concentration (CMC)of 56 mg/L. The biosurfactant exhibited 100% emulsification activity on crude oil. FTIR spectroscopy and LCMS-MS analysis of the purified biosurfactant revealed that the biosurfactant is Rhamnolipidic in nature with several rhamnolipid congeners. Gas Chromatography-Mass spectroscopy (GC-MS) analysis clearly demonstrated that the strain PG1 efficiently degrade different hydrocarbon fractions of the crude oil. The study suggeststhat application of the biosurfactant producing strain PG1 as an appropriate candidate for bioremediation of crude oil contaminants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbon" title="petroleum hydrocarbon">petroleum hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20contamination" title=" hydrocarbon contamination"> hydrocarbon contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=rhamnolipid" title=" rhamnolipid"> rhamnolipid</a> </p> <a href="https://publications.waset.org/abstracts/27073/characterization-of-biosurfactant-during-crude-oil-biodegradation-employing-pseudomonas-sp-pg1-a-strain-isolated-from-garage-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">662</span> Desulfurization of Crude Oil Using Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Namratha%20Pai">Namratha Pai</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Vasantharaj"> K. Vasantharaj</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Haribabu"> K. Haribabu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our Team is developing an innovative cost effective biological technique to desulfurize crude oil. ’Sulphur’ is found to be present in crude oil samples from .05% - 13.95% and its elimination by industrial methods is expensive currently. Materials required :- Alicyclobacillus acidoterrestrius, potato dextrose agar, oxygen, Pyragallol and inert gas(nitrogen). Method adapted and proposed:- 1) Growth of bacteria studied, energy needs. 2) Compatibility with crude-oil. 3) Reaction rate of bacteria studied and optimized. 4) Reaction development by computer simulation. 5) Simulated work tested by building the reactor. The method being developed requires the use of bacteria Alicyclobacillus acidoterrestrius - an acidothermophilic heterotrophic, soil dwelling aerobic, Sulfur bacteria. The bacteria are fed to crude oil in a unique manner. Its coated onto potato dextrose agar beads, cultured for 24 hours (growth time coincides with time when it begins reacting) and fed into the reactor. The beads are to be replenished with O2 by passing them through a jacket around the reactor which has O2 supply. The O2 can’t be supplied directly as crude oil is inflammable, hence the process. Beads are made to move around based on the concept of fluidized bed reactor. By controlling the velocity of inert gas pumped , the beads are made to settle down when exhausted of O2. It is recycled through the jacket where O2 is re-fed and beads which were inside the ring substitute the exhausted ones. Crude-oil is maintained between 1 atm-270 M Pa pressure and 45°C treated with tartaric acid (Ph reason for bacteria growth) for optimum output. Bacteria being of oxidising type react with Sulphur in crude-oil and liberate out SO4^2- and no gas. SO4^2- is absorbed into H2O. NaOH is fed once reaction is complete and beads separated. Crude-oil is thus separated of SO4^2-, thereby Sulphur, tartaric acid and other acids which are separated out. Bio-corrosion is taken care of by internal wall painting (phenolepoxy paints). Earlier methods used included use of Pseudomonas and Rhodococcus species. They were found to be inefficient, time and energy consuming and reduce the fuel value as they fed on skeleton. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alicyclobacillus%20acidoterrestrius" title="alicyclobacillus acidoterrestrius">alicyclobacillus acidoterrestrius</a>, <a href="https://publications.waset.org/abstracts/search?q=potato%20dextrose%20agar" title=" potato dextrose agar"> potato dextrose agar</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20reactor%20principle" title=" fluidized bed reactor principle"> fluidized bed reactor principle</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20time%20for%20bacteria" title=" reaction time for bacteria"> reaction time for bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibility%20with%20crude%20oil" title=" compatibility with crude oil"> compatibility with crude oil</a> </p> <a href="https://publications.waset.org/abstracts/18847/desulfurization-of-crude-oil-using-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil&amp;page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil&amp;page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10