CINXE.COM
Search results for: antibiotic resistance
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: antibiotic resistance</title> <meta name="description" content="Search results for: antibiotic resistance"> <meta name="keywords" content="antibiotic resistance"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="antibiotic resistance" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="antibiotic resistance"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3459</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: antibiotic resistance</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3459</span> Selection Effects on the Molecular and Abiotic Evolution of Antibiotic Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abishek%20Rajkumar">Abishek Rajkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibiotic resistance can occur naturally given the selective pressure placed on antibiotics. Within a large population of bacteria, there is a significant chance that some of those bacteria can develop resistance via mutations or genetic recombination. However, a growing public health concern has arisen over the fact that antibiotic resistance has increased significantly over the past few decades. This is because humans have been over-consuming and producing antibiotics, which has ultimately accelerated the antibiotic resistance seen in these bacteria. The product of all of this is an ongoing race between scientists and the bacteria as bacteria continue to develop resistance, which creates even more demand for an antibiotic that can still terminate the newly resistant strain of bacteria. This paper will focus on a myriad of aspects of antibiotic resistance in bacteria starting with how it occurs on a molecular level and then focusing on the antibiotic concentrations and how they affect the resistance and fitness seen in bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title="antibiotic">antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular" title=" molecular"> molecular</a>, <a href="https://publications.waset.org/abstracts/search?q=mutation" title=" mutation"> mutation</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/66066/selection-effects-on-the-molecular-and-abiotic-evolution-of-antibiotic-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3458</span> Antibiotic Resistance and Tolerance to Biocides in Enterobacter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rebiahi%20Sid%20Ahmed">Rebiahi Sid Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Boutarfi%20Zakaria"> Boutarfi Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmoun%20Malika"> Rahmoun Malika</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Galvez"> Antonio Galvez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to explore the possible correlation between resistance to antibiotics and tolerance to biocides in Gram-negative bacilli isolated from the University Hospital Center of Tlemcen. This study focused on 175 clinical isolates of Gram-negative bacilli, it is a question of exploring: their level and profile of resistance to antibiotics, their tolerance to biocides, as well as the identification of the genetic supports of this resistance. Enterobacter spp. was the most predominant bacterial genus, all isolates harbored at least one of the studied genes with significant resistance capacity. Our results show, in some cases, a possible positive correlation between the presence of biocide tolerance genes and those of antibiotic resistance; in fact, tolerance to biocides could be one of the co-selection factors for antibiotic resistance. The results of this study should encourage the good practice of hygiene measures as well as the rational use of antimicrobials in order to hinder the development and emergence of resistance in our hospital departments.Mots clés : Antibiotiques, Biocides, Enterobacter, Hôpital, Résistance, <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title="antibiotic">antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=biocides" title=" biocides"> biocides</a>, <a href="https://publications.waset.org/abstracts/search?q=enterobacter" title=" enterobacter"> enterobacter</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital" title=" hospital"> hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/159663/antibiotic-resistance-and-tolerance-to-biocides-in-enterobacter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3457</span> The Biology of Persister Cells and Antibiotic Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zikora%20K.%20G.%20Anyaegbunam">Zikora K. G. Anyaegbunam</a>, <a href="https://publications.waset.org/abstracts/search?q=Annabel%20A.%20Nnawuihe"> Annabel A. Nnawuihe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngozi%20J.%20Anyaegbunam"> Ngozi J. Anyaegbunam</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20A.%20Eze"> Emmanuel A. Eze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discovery and production of new antibiotics is unavoidable in the fight against drug-resistant bacteria. However, this is only part of the problem; we have never really had medications that could completely eradicate an infection. All pathogens create a limited number of dormant persister cells that are resistant to antibiotic treatment. When the concentration of antibiotics decreases, surviving persisters repopulate the population, resulting in a recurrent chronic infection. Bacterial populations have an alternative survival strategy to withstand harsh conditions or antibiotic exposure, in addition to the well-known methods of antibiotic resistance and biofilm formation. Persister cells are a limited subset of transiently antibiotic-tolerant phenotypic variations capable of surviving high-dose antibiotic therapy. Persisters that flip back to a normal phenotype can restart growth when antibiotic pressure drops, assuring the bacterial population's survival. Persister cells have been found in every major pathogen, and they play a role in antibiotic tolerance in biofilms as well as the recalcitrance of chronic infections. Persister cells has been implicated to play a role in the establishment of antibiotic resistance, according to growing research. Thusthe need to basically elucidate the biology of persisters and how they are linked to antibiotic resistance, and as well it's link to diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=persister%20cells" title="persister cells">persister cells</a>, <a href="https://publications.waset.org/abstracts/search?q=phenotypic%20variations" title=" phenotypic variations"> phenotypic variations</a>, <a href="https://publications.waset.org/abstracts/search?q=repopulation" title=" repopulation"> repopulation</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20genetic%20transfers" title=" mobile genetic transfers"> mobile genetic transfers</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title=" antibiotic resistance"> antibiotic resistance</a> </p> <a href="https://publications.waset.org/abstracts/148200/the-biology-of-persister-cells-and-antibiotic-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3456</span> Assessment of the Role of Plasmid in Multidrug Resistance in Extended Spectrum βEtalactamase Producing Escherichia Coli Stool Isolates from Diarrhoeal Patients in Kano Metropolis Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullahi%20Musa">Abdullahi Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yakubu%20Kukure%20Enebe%20Ibrahim"> Yakubu Kukure Enebe Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeshina%20Gujumbola"> Adeshina Gujumbola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emergence of multidrug resistance in clinical Escherichia coli has been associated with plasmid-mediated genes. DNA transfer among bacteria is critical to the dissemination of resistance. Plasmids have proved to be the ideal vehicles for dissemination of resistance genes. Plasmids coding for antibiotic resistance were long being recognized by many researchers globally. The study aimed at determining the antibiotic susceptibility pattern of ESBL E. coli isolates claimed to be multidrug resistance using disc diffusion method. Antibacterial activity of the test isolates was carried out using disk diffusion methods. The results showed that, majority of the multidrug resistance among clinical isolates of ESBL E. coli was as a result of acquisition of plasmid carrying antibiotic-resistance genes. Production of these ESBL enzymes by these organisms which are normally carried by plasmid and transfer from one bacterium to another has greatly contributed to the rapid spread of antibiotic resistance amongst E. coli isolates, which lead to high economic burden, increase morbidity and mortality rate, complication in therapy and limit treatment options. To curtail these problems, it is of significance to checkmate the rate at which over the counter drugs are sold and antibiotic misused in animal feeds. This will play a very important role in minimizing the spread of resistance bacterial strains in our environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title="Escherichia coli">Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmid" title=" plasmid"> plasmid</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug%20resistance" title=" multidrug resistance"> multidrug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=ESBL" title=" ESBL"> ESBL</a>, <a href="https://publications.waset.org/abstracts/search?q=pan%20drug%20resistance" title=" pan drug resistance"> pan drug resistance</a> </p> <a href="https://publications.waset.org/abstracts/181463/assessment-of-the-role-of-plasmid-in-multidrug-resistance-in-extended-spectrum-vetalactamase-producing-escherichia-coli-stool-isolates-from-diarrhoeal-patients-in-kano-metropolis-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3455</span> Bacterial Diversity and Antibiotic Resistance in Coastal Sediments of Izmir Bay, Aegean Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilknur%20Tuncer">Ilknur Tuncer</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihayet%20Bizsel"> Nihayet Bizsel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The scarcity of research in bacterial diversity and antimicrobial resistance in coastal environments as in Turkish coasts leads to difficulties in developing efficient monitoring and management programs. In the present study, biogeochemical analysis of sediments and antimicrobial susceptibility analysis of bacteria in Izmir Bay, eastern Aegean Sea under high anthropogenic pressure were aimed in summer period when anthropogenic input was maximum and at intertidal zone where the first terrigenious contact occurred for aquatic environment. Geochemical content of the intertidal zone of Izmir Bay was firstly illustrated such that total and organic carbon, nitrogen and phosphorus contents were high and the grain size distribution varied as sand and gravel. Bacterial diversity and antibiotic resistance were also firstly given for Izmir Bay. Antimicrobially assayed isolates underlined the multiple resistance in the inner, middle and outer bays with overall 19% high MAR (multiple antibiotic resistance) index. Phylogenetic analysis of 16S rRNA gene sequences indicated that 67 % of isolates belonged to the genus Bacillus and the rest included the families Alteromonadaceae, Bacillaceae, Exiguobacteriaceae, Halomonadaceae, Planococcaceae, and Staphylococcaceae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20phylogeny" title="bacterial phylogeny">bacterial phylogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20antibiotic%20resistance" title=" multiple antibiotic resistance"> multiple antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rRNA%20genes" title=" 16S rRNA genes"> 16S rRNA genes</a>, <a href="https://publications.waset.org/abstracts/search?q=Izmir%20Bay" title=" Izmir Bay"> Izmir Bay</a>, <a href="https://publications.waset.org/abstracts/search?q=Aegean%20Sea" title=" Aegean Sea"> Aegean Sea</a> </p> <a href="https://publications.waset.org/abstracts/8995/bacterial-diversity-and-antibiotic-resistance-in-coastal-sediments-of-izmir-bay-aegean-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3454</span> Antibiotic Prescribing Pattern and Associated Risk Factors Promoting Antibiotic Resistance, a Cross Sectional Study in a Regional Hospital in Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Agyepong">Nicholas Agyepong</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Gyan"> Paul Gyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inappropriate prescribing of antibiotic is a common healthcare concern globally resulted in an increased risk of adverse reactions and the emergence of antimicrobial resistance. The wrong antibiotic prescribing habits may lead to ineffective and unsafe treatment, worsening of disease condition, and thus increase in health care costs. The study was to examine the antibiotic prescribing pattern and associated risk factors at Regional Hospital in the Bono region of Ghana. A retrospective cross-sectional study was conducted to describe the current prescribing practices at the Hospital from January 2014 to December, 2021. A systematic random sampling method was used to select the participants for the study. STATA version 16 software was used for data management and analysis. Descriptive statistics and logistic regression analysis were used to analyze the data. Statistical significance set at p<0.05. Antibiotic consumption was equivalent to 11 per 1000 inhabitants consuming 1 DDD per day. Most common prescribed antibiotic was amoxicillin/clavulanic acid (14.39%) followed by erythromycin (11.44%), and ciprofloxacin (11.36%). Antibiotics prescription have been steadily increased over the past eight years (2014: n=59,280 to 2021: n=190,320). Prescribers above the age of 35 were more likely to prescribe antibiotics than those between the ages of 20 and 25 (COR=21.00; 95% CI: 1.78 – 48.10; p=0.016). Prescribers with at least 6 years of experience were also significantly more likely to prescribe antibiotics than those with at most 5 years of experience (COR=14.17; 95% CI: 2.39 – 84.07; p=0.004). Thus, the establishment of an antibiotic stewardship program in the hospitals is imperative, and further studies need to be conducted in other facilities to establish the national antibiotic prescription guideline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title="antibiotic">antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title=" antimicrobial resistance"> antimicrobial resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=prescription" title=" prescription"> prescription</a>, <a href="https://publications.waset.org/abstracts/search?q=prescribers" title=" prescribers"> prescribers</a> </p> <a href="https://publications.waset.org/abstracts/186426/antibiotic-prescribing-pattern-and-associated-risk-factors-promoting-antibiotic-resistance-a-cross-sectional-study-in-a-regional-hospital-in-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3453</span> Characterization of Antibiotic Resistance in Cultivable Enterobacteriaceae Isolates from Different Ecological Niches in the Eastern Cape, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martins%20A.%20Adefisoye">Martins A. Adefisoye</a>, <a href="https://publications.waset.org/abstracts/search?q=Mpaka%20Lindelwa"> Mpaka Lindelwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadare%20Folake"> Fadare Folake</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20I.%20Okoh"> Anthony I. Okoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evolution and rapid dissemination of antibiotic resistance from one ecosystem to another has been responsible for wide-scale epidemic and endemic spreads of multi-drug resistance pathogens. This study assessed the prevalence of Enterobacteriaceae in different environmental samples, including river water, hospital effluents, abattoir wastewater, animal rectal swabs and faecal droppings, soil, and vegetables, using standard microbiological procedure. The identity of the isolates were confirmed using matrix-assisted laser desorption ionization-time of flight mass spectrophotometry (MALDI-TOF) while the isolates were profiled for resistance against a panel of 16 antibiotics using disc diffusion (DD) test, and the occurrence of resistance genes (ARG) was determined by polymerase chain reactions (PCR). Enterobacteriaceae counts in the samples range as follows: river water 4.0 × 101 – 2.0 × 104 cfu/100 ml, hospital effluents 1.5 × 103 – 3.0 × 107 cfu/100 ml, municipal wastewater 2.3 × 103 – 9.2 × 104 cfu/100 ml, faecal droppings 3.0 × 105 – 9.5 × 106 cfu/g, animal rectal swabs 3.0 × 102 – 2.9 × 107 cfu/ml, soil 0 – 1.2 × 105 cfu/g and vegetables 0 – 2.2 × 107 cfu/g. Of the 700 randomly selected presumptive isolates subjected to MALDI-TOF analysis, 129 (18.4%), 68 (9.7%), 67 (9.5%), 41 (5.9%) were E. coli, Klebsiella spp., Enterobacter spp., and Citrobacter spp. respectively while the remaining isolates belong to other genera not targeted in the study. The DD test shows resistance ranging between 91.6% (175/191) for cefuroxime and (15.2%, 29/191) for imipenem The predominant multiple antibiotic resistance phenotypes (MARP), (GM-AUG-AP-CTX-CXM-CIP-NOR-NI-C-NA-TS-T-DXT) occurred in 9 Klebsiella isolates. The multiple antibiotic resistance indices (MARI) the isolates (range 0.17–1.0) generally showed >95% had MARI above the 0.2 thresholds, suggesting that most of the isolates originate from high-risk environments with high antibiotic use and high selective pressure for the emergence of resistance. The associated ARG in the isolates include: bla TEM 61.9 (65), bla SHV 1.9 (2), bla OXA 8.6 (9), CTX-M-2 8.6 (9), CTX-M-9 6.7 (7), sul 2 26.7 (28), tet A 16.2 (17), tet M 17.1 (18), aadA 59.1 (62), strA 34.3 (36), aac(3)A 19.1 (20), (aa2)A 7.6 (8), and aph(3)-1A 10.5 (11). The results underscore the need for preventative measures to curb the proliferation of antibiotic-resistant bacteria including Enterobacteriaceae to protect public health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enterobacteriaceae" title="enterobacteriaceae">enterobacteriaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic-resistance" title=" antibiotic-resistance"> antibiotic-resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=MALDI-TOF" title=" MALDI-TOF"> MALDI-TOF</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20genes" title=" resistance genes"> resistance genes</a>, <a href="https://publications.waset.org/abstracts/search?q=MARP" title=" MARP"> MARP</a>, <a href="https://publications.waset.org/abstracts/search?q=MARI" title=" MARI"> MARI</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health" title=" public health"> public health</a> </p> <a href="https://publications.waset.org/abstracts/110886/characterization-of-antibiotic-resistance-in-cultivable-enterobacteriaceae-isolates-from-different-ecological-niches-in-the-eastern-cape-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3452</span> Antibiotic Guideline Adherence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Harris">I. A. Harris</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Naylor"> J. M. Naylor </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibiotic guidelines are published in order to reduce the risk of perioperative infection in orthopaedics. We surveyed 20 orthopaedic hospitals in Australia to determine their protocols for antibiotic prophylaxis around joint replacement surgery. We tested the protocols against Australian guidelines. We found that less than half of all protocols adhered to Australian guidelines. This indicates that current practice may lead to increased infection rates and increased antibiotic resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title="antibiotics">antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=practice%20guidelines" title=" practice guidelines"> practice guidelines</a>, <a href="https://publications.waset.org/abstracts/search?q=orthopaedic%20surgery" title=" orthopaedic surgery"> orthopaedic surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20replacement" title=" joint replacement"> joint replacement</a> </p> <a href="https://publications.waset.org/abstracts/21551/antibiotic-guideline-adherence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3451</span> A Comparison of Antibiotic Resistant Enterobacteriaceae: Diabetic versus Non-Diabetic Infections </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Dashti">Zainab Dashti</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Vali"> Leila Vali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The Middle East, in particular Kuwait, contains one of the highest rates of patients with Diabetes in the world. Generally, infections resistant to antibiotics among the diabetic population has been shown to be on the rise. This is the first study in Kuwait to compare the antibiotic resistance profiles and genotypic differences between the resistant isolates of Enterobacteriaceae obtained from diabetic and non-diabetic patients. Material/Methods: In total, 65 isolates were collected from diabetic patients consisting of 34 E. coli, 15 K. pneumoniae and 16 other Enterobacteriaceae species (including Salmonella spp. Serratia spp and Proteus spp.). In our control group, a total of 49 isolates consisting of 37 E. coli, 7 K. pneumoniae and 5 other species (including Salmonella spp. Serratia spp and Proteus spp.) were included. Isolates were identified at the species level and antibiotic resistance profiles, including Colistin, were determined using initially the Vitek system followed by double dilution MIC and E-test assays. Multi drug resistance (MDR) was defined as isolates resistant to a minimum of three antibiotics from three different classes. PCR was performed to detect ESBL genes (blaCTX-M, blaTEM & blaSHV), flouroquinolone resistance genes (qnrA, qnrB, qnrS & aac(6’)-lb-cr) and carbapenem resistance genes (blaOXA, blaVIM, blaGIM, blaKPC, blaIMP, & blaNDM) in both groups. Pulse field gel electrophoresis (PFGE) was performed to compare clonal relatedness of both E. coli and K.pneumonaie isolates. Results: Colistin resistance was determined in three isolates with MICs of 32-128 mg/L. A significant difference in resistance to ampicillin (Diabetes 93.8% vs control 72.5%, P value <0.002), augmentin (80% vs 52.5%, p value < 0.003), cefuroxime (69.2% vs 45%, p value < 0.0014), ceftazadime (73.8% vs 42.5%, p value <0.001) and ciprofloxacin (67.6% vs 40%, p value < 0.005) were determined. Also, a significant difference in MDR rates between the two groups (Diabetes 76.9%, control 57.5%, p value <0.036 were found. All antibiotic resistance genes showed a higher prevalence among the diabetic group, except for blaCTX-M, which was higher among the control group. PFGE showed a high rate of diversity between each group of isolates. Conclusions: Our results suggested an alarming rate of antibiotic resistance, in particular Colistin resistance (1.8%) among K. pneumoniea isolated from diabetic patients in Kuwait. MDR among Enterobacteriaceae infections also seems to be a worrying issue among the diabetics of Kuwait. More efforts are required to limit the issue of antibiotic resistance in Kuwait, especially among patients with diabetes mellitus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=enterobacreriacae" title=" enterobacreriacae"> enterobacreriacae</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20antibiotic%20resistance" title=" multi antibiotic resistance "> multi antibiotic resistance </a> </p> <a href="https://publications.waset.org/abstracts/56509/a-comparison-of-antibiotic-resistant-enterobacteriaceae-diabetic-versus-non-diabetic-infections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3450</span> Diversities, Antibiogram and Antibiotic Resistance Genes in Staphylococcus Species in Raw Meat from a Research Farm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Ayodeji%20Adegoke">Anthony Ayodeji Adegoke</a>, <a href="https://publications.waset.org/abstracts/search?q=Olayinka%20Ayobami%20Aiyegoro"> Olayinka Ayobami Aiyegoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Thor%20Axel%20Stenstrom"> Thor Axel Stenstrom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study to investigate the species diversities, antibiogram and antibiotic resistance genes in Staphylococcus species from raw meat and dairy products collected from an abattoir and a farm shop of a research institute in Irene, South Africa over a six-month period was conducted. Polymerase Chain Reaction was used to speciate the bacteria and to detect the presence and otherwise of resistance genes. Antibiotic susceptibility testing was performed by disk diffusion method on Mueller-Hinton agar according to the Clinical Laboratory Standards Institute standards. A total of twenty-six (26) antibiotics were used to determine the antibiotic susceptibility. S. xylosus was the predominant isolate with 30% total occurrence, followed by S. epidermis, S. aureus, S. saprophyticus and S. haemolyticus with 25%, 15%, 15%, and 10% abundance respectively. The isolates were resistant to ceftezidime, gentamycin, nalidixic acid, nortrafuration, ampicillin, penicillin, oxytetracycline, tetracycline, doxycycline, clindamycin and lincomycin. mecA genes was detected among the methicillin resistant Staphylococcus species (MRSS) but no vancomycin resistance genes (van A and van B) were detected in these isolates. The presence of MRSS and multidrug resistant Staphylococcus species in meat affirms the need to avoid consumption of partially cooked meat currently rampant in South Africa, to avoid the spread of difficult to control pathogens in epidemiological proportion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20species" title="Staphylococcus species">Staphylococcus species</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title=" antibiotics"> antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance%20genes" title=" antibiotic resistance genes"> antibiotic resistance genes</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20products" title=" food products"> food products</a>, <a href="https://publications.waset.org/abstracts/search?q=methicillin%20resistance" title=" methicillin resistance"> methicillin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=mecA%20gene" title=" mecA gene"> mecA gene</a> </p> <a href="https://publications.waset.org/abstracts/52262/diversities-antibiogram-and-antibiotic-resistance-genes-in-staphylococcus-species-in-raw-meat-from-a-research-farm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3449</span> Bacteriological Screening and Antibiotic – Heavy Metal Resistance Profile of the Bacteria Isolated from Some Amphibian and Reptile Species of the Biga Stream in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurcihan%20Hacioglu">Nurcihan Hacioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cigdem%20Gul"> Cigdem Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Tosunoglu"> Murat Tosunoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the antibiogram and heavy metal resistance profile of the bacteria isolated from total 34 studied animals (Pelophylax ridibundus = 12, Mauremys rivulata = 14, Natrix natrix = 8) captured around the Biga Stream, are described. There was no database information on antibiogram and heavy metal resistance profile of bacteria from these area’s amphibians and reptiles. In this study, a total of 200 bacteria were successfully isolated from cloaca and oral samples of the aquatic amphibians and reptiles as well as from the water sample. According to Jaccard’s similarity index, the degree of similarity in the bacterial flora was quite high among the amphibian and reptile species under examination, whereas it was different from the bacterial diversity in the water sample. The most frequent isolates were A. hydrophila (31.5%), B. pseudomallei (8.5%), and C. freundii (7%). The total numbers of bacteria obtained were as follows: 45 in P. ridibundus, 45 in N. natrix 30 in M. rivulata, and 80 in the water sample. The result showed that cefmetazole was the most effective antibiotic to control the bacteria isolated in this study and that approximately 93.33% of the bacterial isolates were sensitive to this antibiotic. The Multiple Antibiotic Resistances (MAR) index indicated that P. ridibundus (0.95) > N. natrix (0.89) > M. rivulata (0.39). Furthermore, all the tested heavy metals (Pb+2, Cu+2, Cr+3, and Mn+2) inhibit the growth of the bacterial isolates at different rates. Therefore, it indicated that the water source of the animals was contaminated with both antibiotic residues and heavy metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteriological%20quality" title="bacteriological quality">bacteriological quality</a>, <a href="https://publications.waset.org/abstracts/search?q=amphibian" title=" amphibian"> amphibian</a>, <a href="https://publications.waset.org/abstracts/search?q=reptile" title=" reptile"> reptile</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title=" antibiotic"> antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20resistance" title=" heavy metal resistance"> heavy metal resistance</a> </p> <a href="https://publications.waset.org/abstracts/27052/bacteriological-screening-and-antibiotic-heavy-metal-resistance-profile-of-the-bacteria-isolated-from-some-amphibian-and-reptile-species-of-the-biga-stream-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3448</span> Evaluation of Antimicrobial Efficacy of Nanofluid Containing Carbon Nanotubes Functionalized with Antibiotic on Urinary Tract Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erfan%20Rahimi">Erfan Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Bahari%20Far"> Hadi Bahari Far</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojgan%20Shikhpour"> Mojgan Shikhpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Urinary tract infection is one of the most common nosocomial infections, especially among women. E. coli is one of the main causes of urinary tract infections and one of the most common antibiotics to fight this bacterium is ampicillin. As conventional antibiotics led to bacterial antibiotic resistance, modification of the pure drugs can address this issue. The aim of this study was to prepare nanofluids containing carbon nanotubes conjugated with ampicillin to improve drug performance and reduce antibiotic resistance. Methods: Multi-walled carbon nanotubes (MWCNTs) were activated with thionyl chloride by reflux system and nanofluids containing antibiotics were prepared by ultrasonic method. The properties of the prepared nano-drug were investigated by general element analysis, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. After the treatment of the desired strain with nanofluid, microbial studies were performed to evaluate the antibacterial effects and molecular studies were carried out to measure the expression of the resistance gene AcrAB. Result: We have shown that the antimicrobial effect of ampicillin-functionalized MWCNTs at low concentrations performed better than that of the conventional drug in both resistant and ATCC strains. Also, a decrease in antibiotic resistance of bacteria treated with ampicillin-functionalized MWCNTs compared to the pure drug was observed. Also, ampicillin-functionalized MWCNTs downregulated the expression of AcrAB in treated bacteria. Conclusion: Because carbon nanotubes are capable of destroying the bacterial wall, which provides antibiotic resistance features in bacteria, their usage in the form of nanofluids can make lower dosages (about three times less) than that of the pure drug more effective. Additionally, the expression of the bacterial resistance gene AcrAB decreased, thereby reducing antibiotic resistance and improving drug performance against bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urinary%20tract%20infection" title="urinary tract infection">urinary tract infection</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title=" antibiotic resistance"> antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a> </p> <a href="https://publications.waset.org/abstracts/143263/evaluation-of-antimicrobial-efficacy-of-nanofluid-containing-carbon-nanotubes-functionalized-with-antibiotic-on-urinary-tract-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3447</span> Evaluation of Antibiotic Resistance Profiles of Staphlyococci Isolated from Various Clinical Specimens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Recep%20Kesli">Recep Kesli</a>, <a href="https://publications.waset.org/abstracts/search?q=Merih%20Simsek"> Merih Simsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20Demir"> Cengiz Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20Turkyilmaz"> Onur Turkyilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Goal of this study was to determine the antibiotic resistance of Staphylococcus aureus (S. aureus) and Methicillin resistant staphylococcus aureus (MRSA) strains isolated at Medical Microbiology Laboratory of ANS Application and Research Hospital, Afyon Kocatepe University, Turkey. Methods: S. aureus strains isolated between October 2012 and September 2016, from various clinical specimens were evaluated retrospectively. S. aureus strains were identified by both the conventional methods and automated identification system -VITEK 2 (bio-Mérieux, Marcy l’etoile, France), and Meticillin resistance was verified using oxacillin disk with disk-diffusion method. Antibiotic resistance testing was performed by Kirby-Bauer disc diffusion method according to CLSI criteria, and intermediate susceptible strains were considered as resistant. Results: Seven hundred S.aureus strains which were isolated from various clinical specimens were included in this study. These strains were mostly isolated from blood culture, tissue, wounds and bronchial aspiration. All of 306 (43,7%) were oxacillin resistant. While all the S.aureus strains were found to be susceptible to vancomycin, teicoplanin, daptomycin and linezolid, 38 (9.6 %), 77 (19.5 %), 116 (29.4 %), 152 (38.6 %) and 28 (7.1 %) were found to be resistant aganist to clindamycin, erythromycin, gentamicin, tetracycline and sulfamethoxazole/trimethoprim, retrospectively. Conclusions: Comparing to the Methicillin sensitive staphylococcus aureus (MSSA) strains, increased resistance rates of, trimethoprim-sulfamethoxazole, clindamycin, erythromycin, gentamicin, and tetracycline were observed among the MRSA strains. In this study, the most effective antibiotic on the total of strains was found to be trimethoprim-sulfamethoxazole, the least effective antibiotic on the total of strains was found to be tetracycline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=MRSA" title=" MRSA"> MRSA</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=VITEK%202" title=" VITEK 2"> VITEK 2</a> </p> <a href="https://publications.waset.org/abstracts/71749/evaluation-of-antibiotic-resistance-profiles-of-staphlyococci-isolated-from-various-clinical-specimens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3446</span> A Program of Data Analysis on the Possible State of the Antibiotic Resistance in Bangladesh Environment in 2019</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Kadir">S. D. Kadir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Antibiotics have always been at the centrum of the revolution of modern microbiology. Micro-organisms and its pathogenicity, resistant organisms, inappropriate or over usage of various types of antibiotic agents are fuelled multidrug-resistant pathogenic organisms. Our present time review report mainly focuses on the therapeutic condition of antibiotic resistance and the possible roots behind the development of antibiotic resistance in Bangladesh in 2019. Methodology: The systemic review has progressed through a series of research analyses on various manuscripts published on Google Scholar, PubMed, Research Gate, and collected relevant information from established popular healthcare and diagnostic center and its subdivisions all over Bangladesh. Our research analysis on the possible assurance of antibiotic resistance been ensured by the selective medical reports and on random assay on the extent of individual antibiotic in 2019. Results: 5 research articles, 50 medical report summary, and around 5 patients have been interviewed while going through the estimation process. We have prioritized research articles where the research analysis been performed by the appropriate use of the Kirby-Bauer method. Kirby-Bauer technique is preferred as it provides greater efficiency, ensures lower performance expenditure, and supplies greater convenience and simplification in the application. In most of the reviews, clinical and laboratory standards institute guidelines were strictly followed. Most of our reports indicate significant resistance shown by the Beta-lactam drugs. Specifically by the derivatives of Penicillin's, Cephalosporin's (rare use of the first generation Cephalosporin and overuse of the second and third generation of Cephalosporin and misuse of the fourth generation of Cephalosporin), which are responsible for almost 67 percent of the bacterial resistance. Moreover, approximately 20 percent of the resistance was due to the fact of drug pumping from the bacterial cell by tetracycline and sulphonamides and their derivatives. Conclusion: 90 percent of the approximate antibiotic resistance is due to the usage of relative and true broad-spectrum antibiotics. The environment has been created by the following circumstances where; the excessive usage of broad-spectrum antibiotics had led to a condition where the disruption of native bacteria and a series of anti-microbial resistance causing a disturbance of the surrounding environments in medium, leading to a state of super-infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title="antibiotics">antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title=" antibiotic resistance"> antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirby%20Bauer%20method" title=" Kirby Bauer method"> Kirby Bauer method</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiology" title=" microbiology"> microbiology</a> </p> <a href="https://publications.waset.org/abstracts/125458/a-program-of-data-analysis-on-the-possible-state-of-the-antibiotic-resistance-in-bangladesh-environment-in-2019" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3445</span> Association of Antibiotics Resistance with Efflux Pumps Genes among Multidrug-Resistant Klebsiella pneumonia Recovered from Hospital Waste Water Effluents in Eastern Cape, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okafor%20Joan">Okafor Joan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nwodo%20Uchechukwu"> Nwodo Uchechukwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Klebsiella pneumoniae (K. pneumoniae) is a significant pathogen responsible for opportunistic and nosocomial infection. One of the most significant antibiotic resistance mechanisms in K. pneumoniae isolates is efflux pumps. Our current study identified efflux genes (AcrAB, OqxAB, MacAB, and TolC) and regulatory genes (RamR and RarA) in multidrug-resistant (MDR) K. pneumoniae isolated from hospital effluents and investigated their relationship with antibiotic resistance. The sum of 145 K. pneumoniae isolates was established by PCR and screened for antibiotic susceptibility. PCR detected efflux pump genes, and their link with antibiotic resistance was statistically examined. However, 120 (83%) of the confirmed isolated were multidrug-resistant, with the largest percentage of resistance to ampicillin (88.3%) and the weakest rate of resistance to imipenem (5.5%). Resistance to the other antibiotics ranged from 11% to 76.6%. Molecular distribution tests show that AcrA, AcrB, MacA, oqxB oqxA, TolC, MacB were detected in 96.7%, 85%, 76.7%, 70.8%, 55.8%, 39.1%, and 29.1% respectively. However, 14.3% of the isolates harboured all seven genes screened. Efflux pump system AcrAB (83.2%) was the most commonly detected in K. pneumonia isolated across all the antibiotics class-tested. In addition, the frequencies of RamR and RarA were 46.2% and 31.4%, respectively. AcrAB and OqxAB efflux pump genes were significantly associated with fluoroquinolone, beta-lactam, carbapenem, and tetracycline resistance (p<0.05). The high rate of efflux genes in this study demonstrated that this resistance mechanism is the dominant way in K. pneumoniae isolates. Appropriate treatment must be used to reduce and tackle the burden of resistant Klebsiella pneumonia in hospital wastewater effluents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Klebsiella%20pneumonia" title="Klebsiella pneumonia">Klebsiella pneumonia</a>, <a href="https://publications.waset.org/abstracts/search?q=efflux%20pumps" title=" efflux pumps"> efflux pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=regulatory%20genes" title=" regulatory genes"> regulatory genes</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug-resistant" title=" multidrug-resistant"> multidrug-resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital" title=" hospital"> hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a> </p> <a href="https://publications.waset.org/abstracts/159759/association-of-antibiotics-resistance-with-efflux-pumps-genes-among-multidrug-resistant-klebsiella-pneumonia-recovered-from-hospital-waste-water-effluents-in-eastern-cape-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3444</span> Determination of Identification and Antibiotic Resistance Rates of Pseudomonas aeruginosa Strains from Various Clinical Specimens in a University Hospital for Two Years, 2013-2015</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Recep%20Kesli">Recep Kesli</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulsah%20Asik"> Gulsah Asik</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20Demir"> Cengiz Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20Turkyilmaz"> Onur Turkyilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Pseudomonas aeruginosa (P. aeruginosa) is an important nosocomial pathogen which causes serious hospital infections and is resistant to many commonly used antibiotics. P. aeruginosa can develop resistance during therapy and also it is very resistant to disinfectant chemicals. It may be found in respiratory support devices in hospitals. In this study, the antibiotic resistance of P. aeruginosa strains isolated from bronchial aspiration samples was evaluated retrospectively. Methods: Between October 2013 and September 2015, a total of 318 P. aeruginosa were isolated from clinical samples obtained from various intensive care units and inpatient patients hospitalized at Afyon Kocatepe University, ANS Practice and Research Hospital. Isolated bacteria identified by using both the conventional methods and automated identification system-VITEK 2 (bioMerieux, Marcy l’etoile France). Antibacterial resistance tests were performed by using Kirby-Bauer disc (Oxoid, Hampshire, England) diffusion method following the recommendations of CLSI. Results: Antibiotic resistance rates of identified 318 P. aeruginosa strains were found as follows for tested antibiotics; 32 % amikacin, 42% gentamicin, 43% imipenem, 43% meropenem, 50% ciprofloxacin, 57% levofloxacin, 38% cefepime, 63% ceftazidime, and 85% piperacillin/tazobactam. Conclusion: Resistance profiles change according to years and provinces for P. aeruginosa, so these findings should be considered empirical treatment choices. In this study, the highest and lowest resistance rates found against piperacillin/tazobactam % 85, and amikacin %32. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20aeruginosa" title="Pseudomonas aeruginosa">Pseudomonas aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance%20rates" title=" antibiotic resistance rates"> antibiotic resistance rates</a>, <a href="https://publications.waset.org/abstracts/search?q=intensive%20care%20unit" title=" intensive care unit"> intensive care unit</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20spp." title=" Pseudomonas spp."> Pseudomonas spp.</a> </p> <a href="https://publications.waset.org/abstracts/49745/determination-of-identification-and-antibiotic-resistance-rates-of-pseudomonas-aeruginosa-strains-from-various-clinical-specimens-in-a-university-hospital-for-two-years-2013-2015" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3443</span> Genomic and Transcriptomic Analysis of Antibiotic Resistance Genes in Biological Wastewater Treatment Systems Treating Domestic and Hospital Effluents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thobela%20Conco">Thobela Conco</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheena%20Kumari"> Sheena Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Chika%20Nnadozie"> Chika Nnadozie</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Nasr"> Mahmoud Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=Thor%20A.%20Stenstr%C3%B6m"> Thor A. Stenström</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushal%20Ali"> Mushal Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20Ismail"> Arshad Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizal%20Bux"> Faizal Bux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discharge of antibiotics and its residues into the wastewater treatment plants (WWTP’s) create a conducive environment for the development of antibiotic resistant pathogens. This presents a risk of potential dissemination of antibiotic resistant pathogens and antibiotic resistance genes into the environment. It is, therefore, necessary to study the level of antibiotic resistance genes (ARG’s) among bacterial pathogens that proliferate in biological wastewater treatment systems. In the current study, metagenomic and meta-transcriptomic sequences of samples collected from the influents, secondary effluents and post chlorinated effluents of three wastewater treatment plants treating domestic and hospital effluents in Durban, South Africa, were analyzed for profiling of ARG’s among bacterial pathogens. Results show that a variety of ARG’s, mostly, aminoglycoside, β-lactamases, tetracycline and sulfonamide resistance genes were harbored by diverse bacterial genera found at different stages of treatment. A significant variation in diversity of pathogen and ARGs between the treatment plant was observed; however, treated final effluent samples from all three plants showed a significant reduction in bacterial pathogens and detected ARG’s. Both pre- and post-chlorinated samples showed the presence of mobile genetic elements (MGE’s), indicating the inefficiency of chlorination to remove of ARG’s integrated with MGE’s. In conclusion, the study showed the wastewater treatment plant efficiently caused the reduction and removal of certain ARG’s, even though the initial focus was the removal of biological nutrients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20genetic%20elements" title=" mobile genetic elements"> mobile genetic elements</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment%20plants" title=" wastewater treatment plants"> wastewater treatment plants</a> </p> <a href="https://publications.waset.org/abstracts/109116/genomic-and-transcriptomic-analysis-of-antibiotic-resistance-genes-in-biological-wastewater-treatment-systems-treating-domestic-and-hospital-effluents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3442</span> Seasonal Effect of Antibiotic Resistant Bacteria into the Environment from Treated Sewage Effluents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Al-Bahry">S. N. Al-Bahry</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Al-Musharafi"> S. K. Al-Musharafi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Y.%20Mahmoud"> I. Y. Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycled treated sewage effluents (TSE) is used for agriculture, Public park irrigation and industrial purposes. TSE was found to play a major role in the distribution of antibiotic resistant bacteria into the environment. Fecal coliform and enterococci counts were significantly higher during summer compared to winter seasons. Oman has low annual rainfall with annual average temperature varied between 15-45oC. The main source of potable water is from seawater desalination. Resistance of the isolates to 10 antibiotics (Amikacin, Ampicillin, chloramphenicol, gentamycine, minocylin, nalidixicacid, neomycin, streptomycin, Tetracycline, Tobramycin, and Trimethoprim) was tested. Both fecal coliforms and enterococci were multiple resistant to 2-10 antibiotics. However, temperature variation during summer and winter did not affect resistance of the isolates to antibiotics. The significance of this investigation may be indicator to the environmental TSE pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20treated%20effluent" title=" sewage treated effluent"> sewage treated effluent</a> </p> <a href="https://publications.waset.org/abstracts/25718/seasonal-effect-of-antibiotic-resistant-bacteria-into-the-environment-from-treated-sewage-effluents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3441</span> Antibiotic Susceptibility Profile and Horizontal Gene Transfer in Pseudomonas sp. Isolated from Clinical Specimens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadaf%20Ilyas">Sadaf Ilyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Riaz"> Saba Riaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extensive use of antibiotics has led to increases emergence of antibiotic-resistant organisms. Pseudomonas is a notorious opportunistic pathogen involoved in nosocomial infections and exhibit innate resistance to many antibiotics. The present study was conducted to assess the prevalence, levels of antimicrobial susceptibility and resistance mechanisms of Pseudomonas. A total of thirty clinical strains of Pseudomonas were isolated from different clinical sites of infection. All clinical specimens were collected from Chughtais Lahore Lab. Jail road, during 8-07-2010 to 11-01-2011. Biochemical characterization was done using routine biochemical tests. Antimicrobial susceptibility was determined by Kirby-Baeur method. The plasmids were isolated from all the strains and digested with restriction enzyme PstI and EcoRI. Transfer of Multi-resistance plasmid was checked via transformation and conjugation to confirm the plasmid mediated resistance to antibiotics. The prevalence of Pseudomonas in clinical specimens was found out to be 14% of all bacterial infections. IPM has shown to be the most effective drug against Pseudomonas followed by CES, PTB and meropenem, wheareas most of the Pseudomonas strains have developed significant resistance against Penicillins and some Cephalasporins. Antibiotic resistance determinants were carried by plasmids, as they conferred resistance to transformed K1 strains. The isolates readily undergo conjugation, transferring the resistant genes to other strains, illustrating the high rates of cross infection and nosocomial infection in the immunocompromised patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pseudomonas" title="pseudomonas">pseudomonas</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title=" antibiotics"> antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20resistance" title=" drug resistance"> drug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20gene%20transfer" title=" horizontal gene transfer"> horizontal gene transfer</a> </p> <a href="https://publications.waset.org/abstracts/43006/antibiotic-susceptibility-profile-and-horizontal-gene-transfer-in-pseudomonas-sp-isolated-from-clinical-specimens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3440</span> The Appropriateness of Antibiotic Prescribing within Dundee Dental Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Ainine">Salma Ainine</a>, <a href="https://publications.waset.org/abstracts/search?q=Colin%20Ritchie"> Colin Ritchie</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracey%20McFee"> Tracey McFee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The societal impact of antibiotic resistance is a major public health concern. The increase in the incidence of resistant bacteria can ultimately be fatal. Objective: To analyse the appropriateness of antibiotic prescribing in Dundee Dental Hospital, ultimately improving the safety and quality of patient care. Methods: Two examiners independently cross-checked approximately fifty consecutive prescriptions, and corresponding patient case notes, for three data collection cycles between August 2014–September 2015. The Scottish Dental Clinical Effectiveness Program (SDCEP) Drug Prescribing for Dentistry guidelines was the standard utilised. The criteria: clinical justification, regime justification, and review arrangements was measured, and compared to the standard. Results: Cycle one revealed 42% of antibiotic prescriptions were appropriate. Interventions included: multiple staff meetings, an introduction of a checklist attached to the prescription pack, and production of patient leaflets explaining indications for antibiotics. Cycle two and three revealed 44%, and 30% compliance, respectively. Conclusion: The results of the audit have yet to meet target standards set out in prescribing guidelines. However, steps are being taken and change has occurred on a cultural level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20stewardship" title=" antibiotic stewardship"> antibiotic stewardship</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20infection" title=" dental infection"> dental infection</a>, <a href="https://publications.waset.org/abstracts/search?q=hygiene%20standards" title=" hygiene standards"> hygiene standards</a> </p> <a href="https://publications.waset.org/abstracts/46609/the-appropriateness-of-antibiotic-prescribing-within-dundee-dental-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3439</span> Prevalence of Multidrug-resistant Escherichia coli Isolated from Ready to Eat: Crispy Fried Chicken in Jember, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enny%20Suswati">Enny Suswati</a>, <a href="https://publications.waset.org/abstracts/search?q=Supangat%20Supangat"> Supangat Supangat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background. Ready-to-eat food products are becoming increasingly popular because consumers are increasingly busy, competitive, and changing lifestyles. Examples of ready-to-eat foods include crispy fried chicken. Escherichia coli is one of the most important causes of food-borne diseases and the most frequent antibiotic-resistant pathogen globally. This study assessed the prevalence and antibiotic resistance profile of E. coli from ready-to-eat crispy fried chicken in Jember city, Indonesia. Methodology. This cross-sectional study was conducted from November 2020 to April 2021 by collecting 81crispy fried chicken samples from 27 food stalls in campus area using a simple random sampling method. Isolation and determination of E. coli use were performed by conventional culture method. An antibiotic susceptibility test was conducted using Kirby Bauer disk diffusion method on the Mueller–Hinton agar. Result. Out of 81crispy fried chicken samples, 77 (95.06%) were positive for E. coli. High E. coli drug resistance was observed on ampicillin, amoxicillin (100%) followed by cefixime (98.72%), erythromycin (97.59%), sulfamethoxazole (93.59%), azithromicin (83.33%), cefotaxime (78.28%), choramphenicol (75.64%), and cefixime (74.36%). On the other hand, there was the highest susceptibility for ciprofloxacin (64.10%). The multiple antibiotic resistance indexes of E. coli isolates varied from 0.4 to 1. The predominant antimicrobial resistance profiles of E. coli were CfmCroAmlAmpAzmCtxSxtCE (n=17), CfmCroAmlCipAmpAzmCtxSxtCE (n=16), and CfmAmlAmpAzmCtxSxtCE (n=5), respectively. Multidrug resistance was also found in the isolates' 76/77 (98.70%). Conclusion. The resistance pattern CfmCroAmlAmpAzmCtxSxtCE was the most common among the E. coli isolates, with 17 showing it. The multiple antibiotic index (MAR index) ranged from 0.4 to 1. Hygienic measures should be rigorously implemented and monitoring resistance of E. coli is required to reduce the risks related to the emergence of multi-resistant bacteria <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20drug" title="antibacterial drug">antibacterial drug</a>, <a href="https://publications.waset.org/abstracts/search?q=ready%20to%20eat" title=" ready to eat"> ready to eat</a>, <a href="https://publications.waset.org/abstracts/search?q=crispy%20fried%20chicken" title=" crispy fried chicken"> crispy fried chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=escherichia%20coli" title=" escherichia coli"> escherichia coli</a> </p> <a href="https://publications.waset.org/abstracts/163867/prevalence-of-multidrug-resistant-escherichia-coli-isolated-from-ready-to-eat-crispy-fried-chicken-in-jember-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3438</span> Antibiotic and Fungicide Exposure Reveal the Evolution of Soil-Lettuce System Resistome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chenyu%20Huang">Chenyu Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Minrong%20Cui"> Minrong Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Fang"> Hua Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Luqing%20Zhang"> Luqing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunlong%20Yu"> Yunlong Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emergence and spread of antibiotic resistance genes (ARGs) have become a pressing issue in global agricultural production. However, understanding how these ARGs spread across different spatial scales, especially when exposed to both pesticides and antibiotics, has remained a challenge. Here, metagenomic assembly and binning methodologies were used to determine the mechanism of ARG propagation within soil-lettuce systems exposed to both fungicides and antibiotics. The results of our study showed that the presence of fungicide and antibiotic stresses had a significant impact on certain bacterial communities. Notably, we observed that ARGs were primarily transferred from the soil to the plant through plasmids. The selective pressure exerted by fungicides and antibiotics contributed to an increase in unique ARGs present on lettuce leaves. Moreover, ARGs located on chromosomes and plasmids followed different transmission patterns. The presence of diverse selective pressures, a result of compound treatments involving antibiotics and fungicides, amplifies this phenomenon. Consequently, there is a higher probability of bacteria developing multi-antibiotic resistance under the combined pressure of fungicides and antibiotics. In summary, our findings highlight that combined fungicide and antibiotic treatments are more likely to drive the acquisition of ARGs within the soil-plant system and may increase the risk of human ingestion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil-lettuce%20system" title="soil-lettuce system">soil-lettuce system</a>, <a href="https://publications.waset.org/abstracts/search?q=fungicide" title=" fungicide"> fungicide</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title=" antibiotic"> antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=ARG" title=" ARG"> ARG</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission" title=" transmission"> transmission</a> </p> <a href="https://publications.waset.org/abstracts/176413/antibiotic-and-fungicide-exposure-reveal-the-evolution-of-soil-lettuce-system-resistome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3437</span> The Instablity of TetM Gene Encode Tetracycline Resistance Gene in Lactobacillus casei FNCC 0090</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Devi%20Silvian">Sarah Devi Silvian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanna%20Shobrina%20Iqomatul%20Haq"> Hanna Shobrina Iqomatul Haq</a>, <a href="https://publications.waset.org/abstracts/search?q=Fara%20Cholidatun%20Nabila"> Fara Cholidatun Nabila</a>, <a href="https://publications.waset.org/abstracts/search?q=Agustin%20Krisna%20Wardani"> Agustin Krisna Wardani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacteria ability to survive in antibiotic is controlled by the presence of gene that encodes the antibiotic resistance protein. The instability of the antibiotic resistance gene can be observed by exposing the bacteria under the lethal dose of antibiotic. Low concentration of antibiotic can induce mutation, which may take a role in bacterial adaptation through the antibiotic concentration. Lactobacillus casei FNCC 0090 is one of the probiotic bacteria that has an ability to survive in tetracycline by expressing the tetM gene. The aims of this study are to observe the possibilities of mutation happened in L.casei FNCC 0090 by exposing in sub-lethal dose of tetracycline and also observing the instability of the tetM gene by comparing the sequence between the wild type and mutant. L.casei FNCC 0090 has a lethal dose in 60 µg/ml, low concentration is applied to induce the mutation, the range from 10 µg/ml, 15 µg/ml, 30 µg/ml, 45 µg/ml, and 50 µg/ml. L.casei FNCC 0090 is exposed to the low concentration from lowest to the highest concentration to induce the adaptation. Plasmid is isolated from the highest concentration culture which is 50 µg/ml by using modified alkali lysis method with the addition of lysozyme. The tetM gene is isolated by using PCR (Polymerase Chain Reaction) method, then PCR amplicon is purified and sequenced. Sequencing is done on both samples, wild type and mutant. Both sequences are compared and the mutations can be traced in the presence of nucleotides changes. The changing of the nucleotides means that the tetM gene is instable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20casei%20FNCC%200090" title="L. casei FNCC 0090">L. casei FNCC 0090</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=tetM" title=" tetM"> tetM</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracycline" title=" tetracycline"> tetracycline</a> </p> <a href="https://publications.waset.org/abstracts/97102/the-instablity-of-tetm-gene-encode-tetracycline-resistance-gene-in-lactobacillus-casei-fncc-0090" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3436</span> Emergence of Fluoroquinolone Resistance in Pigs, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igbakura%20I.%20Luga">Igbakura I. Luga</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20A.%20Adikwu"> Alex A. Adikwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparison of resistance to quinolones was carried out on isolates of Shiga toxin-producing <em>Escherichia coli</em>O157:H7 from cattle and <em>mecA</em> and <em>nuc</em> genes harbouring <em>Staphylococcus aureus</em> from pigs. The isolates were separately tested in the first and current decades of the 21<sup>st</sup> century. The objective was to demonstrate the dissemination of resistance to this frontline class of antibiotic by bacteria from food animals and bring to the limelight the spread of antibiotic resistance in Nigeria. A total of 10 isolates of the <em>E. coli </em>O157:H7 and 9 of <em>mecA</em> and <em>nuc</em> genes harbouring S. aureus were obtained following isolation, biochemical testing, and serological identification using the Remel Wellcolex <em>E. coli </em>O157:H7 test. Shiga toxin-production screening in the <em>E. coli </em>O157:H7 using the verotoxin <em>E. coli</em> reverse passive latex agglutination (VTEC-RPLA) test; and molecular identification of the <em>mecA</em> and <em>nuc</em> genes in <em>S. aureus</em>. Detection of the <em>mecA</em> and <em>nuc</em> genes were carried out using the protocol by the Danish Technical University (DTU) using the following primers <em>mecA</em>-1:5'-GGGATCATAGCGTCATTATTC-3', <em>mecA</em>-2: 5'-AACGATTGTGACACGATAGCC-3', <em>nuc</em>-1: 5'-TCAGCAAATGCATCACAAACAG-3', <em>nuc</em>-2: 5'-CGTAAATGCACTTGCTTCAGG-3' for the <em>mecA</em> and <em>nuc</em> genes, respectively. The <em>nuc</em> genes confirm the <em>S. aureus</em> isolates and the <em>mecA</em> genes as being methicillin-resistant and so pathogenic to man. The fluoroquinolones used in the antibiotic resistance testing were norfloxacin (10 µg) and ciprofloxacin (5 µg) in the <em>E. coli </em>O157:H7 isolates and ciprofloxacin (5 µg) in the <em>S. aureus </em>isolates. Susceptibility was tested using the disk diffusion method on Muller-Hinton agar. Fluoroquinolone resistance was not detected from isolates of <em>E. coli </em>O157:H7 from cattle. However, 44% (4/9) of the <em>S. aureus</em> were resistant to ciprofloxacin. Resistance of up to 44% in isolates of <em>mecA</em> and <em>nuc</em> genes harbouring <em>S. aureus</em> is a compelling evidence for the rapid spread of antibiotic resistance from bacteria in food animals from Nigeria. Ciprofloxacin is the drug of choice for the treatment of Typhoid fever, therefore widespread resistance to it in pathogenic bacteria is of great public health significance. The study concludes that antibiotic resistance in bacteria from food animals is on the increase in Nigeria. The National Food and Drug Administration and Control (NAFDAC) agency in Nigeria should implement the World Health Organization (WHO) global action plan on antimicrobial resistance. A good starting point can be coordinating the WHO, Office of International Epizootics (OIE), Food and Agricultural Organization (FAO) tripartite draft antimicrobial resistance monitoring and evaluation (M&E) framework in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fluoroquinolone" title="Fluoroquinolone">Fluoroquinolone</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/80778/emergence-of-fluoroquinolone-resistance-in-pigs-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3435</span> Determination of Multidrug-Resistant Livestock Associated Bacteria from Goats, Cows, and Buffaloes in Pokhara Kaski</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganga%20Sagar%20Bhattarai">Ganga Sagar Bhattarai</a>, <a href="https://publications.waset.org/abstracts/search?q=Swastika%20Gurung"> Swastika Gurung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibiotics were being misused in both humans and animals, which led to the development of multidrug-resistant microorganisms. Antibiotic abuse is likely rampant among goats, cows, and buffaloes in order to boost growth and reduce production losses. The aim of this study is to know the multidrug resistance (MDR) bacteria in goats, cows, and buffaloes. Out of 68 samples that were examined, S. aureus, Bacillus spp., E. coli, Shigella spp., Klebsiella spp., S. epidremidis, and Salmonella spp. were isolated. S. aureus was the highest isolated bacteria (91.17%), Bacillus spp. (61.76%), E. coli (48.52%), Shigella spp. (22.05%), Klebsiella spp. (17.64%), S. epidermidis (13.23%), and the Salmonella spp. (7.35%). Salmonella spp. and E. coli showed multidrug resistance to at least four antibiotics, including Amoxicillin, Tetracycline, Piperacillin, and Ciprofloxacin, in Salmonella and to at least three antibiotics, including Amoxicillin, Tetracycline, and Nalidic acid. The highest resistance bacteria Salmonella spp. showed (57.14%) E. coli and Bacillus spp. showed (42.85%) S. aureus, S. epidermidis, and Shigella spp. showed (28.57%), and Klebsiella spp. showed (14.28%). This study showed that antibiotic-resistant bacteria with high levels of Amoxicillin, Penicillin, and Tetracycline resistance are present in healthy farm animals such as goats, cows, and buffaloes. Options for antibiotic therapy in both humans and animals will likely be limited as a result. The use, distribution, storage, and sale of antibiotics in veterinary practices must consequently be under strict control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multidrug%20resistance" title="multidrug resistance">multidrug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug%20resistance%20bacteria" title=" multidrug resistance bacteria"> multidrug resistance bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=susceptibility%20testing" title=" susceptibility testing"> susceptibility testing</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20infections" title=" bacterial infections"> bacterial infections</a> </p> <a href="https://publications.waset.org/abstracts/169059/determination-of-multidrug-resistant-livestock-associated-bacteria-from-goats-cows-and-buffaloes-in-pokhara-kaski" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3434</span> Surpassing Antibiotic Resistance through Synergistic Effects of Polyethyleneimine-Silver Nanoparticle Complex Coated Mesoporous Silica Trio-Nanoconstructs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranjith%20Kumar%20Kankala">Ranjith Kumar Kankala</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Zhi%20Lin"> Wei-Zhi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Hung%20Lee"> Chia-Hung Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibiotic resistance in bacteria has become an emergency situation clinically. To improve the efficacy of antibiotics in resistant strains, advancement of nanoparticles is inevitable than ever. Herewith, we demonstrate a design by immobilizing tetracycline (TET) in copper substituted mesoporous silica nanoparticles (Cu-MSNs) through a pH-sensitive coordination link, enabling its release in the acidic environment. Subsequently, MSNs are coated with silver nanoparticles stabilized polyethyleneimine (PEI-SNP) to act against drug-resistant (MDR) bacterial strains. Silver ions released from SNP are capable of sensitizing the resistant strains and facilitate the generation of free radicals capable of damaging the cell components. In addition, copper ions in the framework are also capable of generating free radicals through Fenton-like reaction. Furthermore, the nanoparticles are well-characterized physically, and various antibacterial efficacious tests against isolated multidrug resistant bacterial strain were highly commendable. However, this formulation has no significant toxic effect on normal mammalian fibroblast cells accounting its high biocompatibility. These MSN trio-hybrids, i.e., SNP, tetracycline, and copper ions result in synergistic effects, and their advancement could bypass resistance and allow synergism for effective treatment of antibiotic clinically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20silica%20nanoparticles" title=" mesoporous silica nanoparticles"> mesoporous silica nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Ph-sensitive%20release" title=" Ph-sensitive release"> Ph-sensitive release</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethyleneimine" title=" polyethyleneimine"> polyethyleneimine</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver"> silver</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracycline" title=" tetracycline"> tetracycline</a> </p> <a href="https://publications.waset.org/abstracts/73491/surpassing-antibiotic-resistance-through-synergistic-effects-of-polyethyleneimine-silver-nanoparticle-complex-coated-mesoporous-silica-trio-nanoconstructs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3433</span> Phylogenetic Diversity and Antibiotic Resistance in Sediments of Aegean Sea </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilknur%20Tuncer">Ilknur Tuncer</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihayet%20Bizsel"> Nihayet Bizsel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The studies in bacterial diversity and antimicrobial resistance in coastal areas are important to understand the variability in the community structures and metabolic activities. In the present study, antimicrobial susceptibility and phylogenetic analysis of bacteria isolated from stations with different depths and influenced by terrestrial and marine fluxes in eastern Aegean Sea were illustrated. 51% of the isolates were found as resistant and 14% showed high MAR index indicating the high-risk sources of contamination in the environment. The resistance and the intermediate levels and high MAR index of the study area were 38–60%, 11–38% and 0–40%, respectively. According to 16S rRNA gene analysis, it was found that the isolates belonged to two phyla Firmicutes and Gammaproteobacteria with the genera Bacillus, Halomonas, Oceanobacillus, Photobacterium, Pseudoalteromonas, Psychrobacter, and Vibrio. 47% of Bacillus strains which were dominant among all isolates were resistant. In addition to phylogenetically diverse bacteria, the variability in resistance, intermediate and high MAR index levels of the study area indicated the effect of geographical differences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20diversity" title="bacterial diversity">bacterial diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20antibiotic%20resistance" title=" multiple antibiotic resistance"> multiple antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rRNA%20genes" title=" 16S rRNA genes"> 16S rRNA genes</a>, <a href="https://publications.waset.org/abstracts/search?q=Aegean%20Sea" title=" Aegean Sea"> Aegean Sea</a> </p> <a href="https://publications.waset.org/abstracts/9844/phylogenetic-diversity-and-antibiotic-resistance-in-sediments-of-aegean-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3432</span> Progress in Replacing Antibiotics in Farm Animal Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debabrata%20Biswas">Debabrata Biswas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current trend in the development of antibiotic resistance by multiple bacterial pathogens has resulted in a troubling loss of effective antibiotic options for human. The emergence of multi-drug-resistant pathogens has necessitated higher dosages and combinations of multiple antibiotics, further exacerbating the problem of antibiotic resistance. Zoonotic bacterial pathogens, such as Salmonella, Campylobacter, Shiga toxin-producing Escherichia coli (such as enterohaemorrhagic E. coli or EHEC), and Listeria are the most common and predominant foodborne enteric infectious agents. It was observed that these pathogens gained/developed their ability to survive in the presence of antibiotics either in farm animal gut or farm environment and researchers believe that therapeutic and sub-therapeutic antibiotic use in farm animal production might play an important role in it. The mechanism of action of antimicrobial components used in farm animal production in genomic interplay in the gut and farm environment, has not been fully characterized. Even the risk of promoting the exchange of mobile genetic elements between microbes specifically pathogens needs to be evaluated in depth, to ensure sustainable farm animal production, safety of our food and to mitigate/limit the enteric infection with multiple antibiotic resistant bacterial pathogens. Due to the consumer’s demand and considering the current emerging situation, many countries are in process to withdraw antibiotic use in farm animal production. Before withdrawing use of the sub-therapeutic antibiotic or restricting the use of therapeutic antibiotics in farm animal production, it is essential to find alternative natural antimicrobials for promoting the growth of farm animal and/or treating animal diseases. Further, it is also necessary to consider whether that compound(s) has the potential to trigger the acquisition or loss of genetic materials in zoonotic and any other bacterial pathogens. Development of alternative therapeutic and sub-therapeutic antimicrobials for farm animal production and food processing and preservation and their effective implementation for sustainable strategies for farm animal production as well as the possible risk for horizontal gene transfer in major enteric pathogens will be focus in the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title="food safety">food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20antimicrobial" title=" natural antimicrobial"> natural antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20farming" title=" sustainable farming"> sustainable farming</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title=" antibiotic resistance"> antibiotic resistance</a> </p> <a href="https://publications.waset.org/abstracts/70588/progress-in-replacing-antibiotics-in-farm-animal-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3431</span> Identification and Antibiotic Resistance Rates of Acinetobacter baumannii Strains Isolated from the Respiratory Tract Samples, Obtained from the Different Intensive Care Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Recep%20Kesli">Recep Kesli</a>, <a href="https://publications.waset.org/abstracts/search?q=Gul%C5%9Fah%20Asik"> Gulşah Asik</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20Demir"> Cengiz Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20Turkyilmaz"> Onur Turkyilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Acinetobacter baumannii (A. baumannii) can cause health-care associated infections, such as bacteremia, urinary tract and wound infections, endocarditis, meningitis, and pneumonia, particularly in intensive care unit patients. In this study, we aimed to evaluate A. baumannii production in sputum and bronchoalveolar lavage and susceptibilities for antibiotics in a 24 months period. Methods: Between October 2013 and September 2015, Acinetobacter baumannii isolated from respiratory tract speciments were evaluated retrospectively. The strains were isolated from the different intensive care units patients. A. baumannii strains were identified by both the conventional methods and aoutomated identification system -VITEK 2 (bio-Merieux, Marcy l’etoile, France). Antibiotic resistance testing was performed by Kirby-Bauer disc diffusion method according to CLSI criteria. Results: All the ninety isolates included in the study were from respiratory tract specimens. While of all the isolated 90 Acinetobacter baumannii strains were found to be resistant (100%), against ceftriaxone, ceftazidime, ciprofloxacin and piperacillin/ tazobactam, resistance rates against other tested antibiotics found as follows; meropenem 77, 86%, imipenem 75, 83%, trimethoprim-sulfamethoxazole (TMP-STX) 69, 76,6%, gentamicin 51, 56,6% and amikacin 48, 53,3%. Colistin was found as the most effective antibiotic against Acinetobacter baumannii, and there were not found any resistant (0%) strain against colistin. Conclusion: This study demonstrated that the no resistance was found in Acinetobacter baumannii against to colistin. High rates of resistance to carbapenems (imipenem and meropenem) and other tested antibiotics (ceftiaxone, ceftazidime, ciprofloxacine, piperacilline-tazobactam, TMP-STX gentamicin and amikacin) also have remarkable resistance rates. There was a significant relationship between demographic features of patients such as age, undergoing mechanical ventilation, length of hospital stay with resistance rates. High resistance rates against antibiotics require implementation of the infection control program and rational use of antibiotics. In the present study, while there were not found colistin resistance, panresistance were found against to ceftriaxone, ceftazidime, ciprofloxacin and piperacillin/ tazobactam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acinetobacter%20baumannii" title="acinetobacter baumannii">acinetobacter baumannii</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title=" antibiotic resistance"> antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20drug%20resistance" title=" multi drug resistance"> multi drug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=intensive%20care%20unit" title=" intensive care unit"> intensive care unit</a> </p> <a href="https://publications.waset.org/abstracts/49740/identification-and-antibiotic-resistance-rates-of-acinetobacter-baumannii-strains-isolated-from-the-respiratory-tract-samples-obtained-from-the-different-intensive-care-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3430</span> Detection of Tetracycline Resistance Genes in Lactococcus garvieae Strains Isolated from Rainbow Trout</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Raissy">M. Raissy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shahrani"> M. Shahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was done to evaluate the presence of tetracycline resistance genes in Lactococcus garvieae isolated from cultured rainbow trout, West Iran. The isolates were examined for antimicrobial resistance using disc diffusion method. Of the 49 strains tested, 19 were resistant to tetracycline (38.7%), 32 to enrofloxacin (65.3%), 21 to erythromycin (42.8%), 20 to chloramphenicol and trimetoprim-sulfamethoxazole (40.8%). The strains were then characterized for their genotypic resistance profiles. The results revealed that all 49 isolates contained at least one of the tetracycline resistance genes. Tet (A) was found in 89.4% of tetracycline resistant isolates and the frequency of other gene were as follow: tet (E) 42.1%, tet (B) 47.3%, tet (D) 15.7%, tet (L) 26.3%, tet (K) 52.6%, tet (G) 36.8%, tet (34) 21%, tet (S) 63.1%, tet (C) 57.8%, tet (M) 73.6%, tet (O) 42.1%. The results revealed high levels of antibiotic resistance in L. garvieae strains which is a potential danger for trout culture as well as for public health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lactococcus%20garvieae" title="Lactococcus garvieae">Lactococcus garvieae</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracycline%20resistance%20genes" title=" tetracycline resistance genes"> tetracycline resistance genes</a>, <a href="https://publications.waset.org/abstracts/search?q=rainbow%20trout" title=" rainbow trout"> rainbow trout</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title=" antimicrobial resistance "> antimicrobial resistance </a> </p> <a href="https://publications.waset.org/abstracts/21002/detection-of-tetracycline-resistance-genes-in-lactococcus-garvieae-strains-isolated-from-rainbow-trout" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance&page=115">115</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance&page=116">116</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>