CINXE.COM

Search results for: Sally C. Reynolds

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Sally C. Reynolds</title> <meta name="description" content="Search results for: Sally C. Reynolds"> <meta name="keywords" content="Sally C. Reynolds"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Sally C. Reynolds" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Sally C. Reynolds"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 442</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Sally C. Reynolds</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">442</span> Study the Effect of Roughness on the Higher Order Moment to Extract Information about the Turbulent Flow Structure in an Open Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Abdullah%20Al%20Faruque">Md Abdullah Al Faruque</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Balachandar"> Ram Balachandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out to understand the extent of effect of roughness and Reynolds number in open channel flow (OCF). To this extent, four different types of bed surface conditions consisting smooth, distributed roughness, continuous roughness, natural sand bed and two different Reynolds number for each bed surfaces were adopted in this study. Particular attention was given on mean velocity, turbulence intensity, Reynolds shear stress, correlation, higher order moments and quadrant analysis. Further, the extent of influence of roughness and Reynolds number in the depth-wise direction also studied. Increasing Reynolds shear stress near rough beds are noticed due to arrays of discrete roughness elements and flow over these elements generating a series of wakes which contributes to the generation of significantly higher Reynolds shear stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed%20roughness" title="bed roughness">bed roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=ejection%20and%20sweep" title=" ejection and sweep"> ejection and sweep</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title=" open channel flow"> open channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20shear%20stress" title=" Reynolds shear stress"> Reynolds shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20boundary%20layer" title=" turbulent boundary layer"> turbulent boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20triple%20product" title=" velocity triple product"> velocity triple product</a> </p> <a href="https://publications.waset.org/abstracts/45772/study-the-effect-of-roughness-on-the-higher-order-moment-to-extract-information-about-the-turbulent-flow-structure-in-an-open-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">441</span> Numerical Investigation of Heat Transfer in a Channel with Delta Winglet Vortex Generators at Different Reynolds Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Singh">N. K. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the augmentation of heat transfer in a rectangular channel with triangular vortex generators is evaluated. The span wise averaged Nusselt number, mean temperature and total heat flux are compared with and without vortex generators in the channel at a blade angle of 30° for Reynolds numbers 800, 1200, 1600, and 2000. The use of vortex generators increases the span wise averaged Nusselt number compared to the case without vortex generators considerably. At a particular blade angle, increasing the Reynolds number results in an enhancement in the overall performance and span wise averaged Nusselt number was found to be greater at particular location for larger Reynolds number. The total heat flux from the bottom wall with vortex generators was found to be greater than that without vortex generators and the difference increases with increase in Reynolds number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20with%20vortex%20generators" title=" channel with vortex generators"> channel with vortex generators</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20Reynolds%20number%20on%20heat%20transfer" title=" effect of Reynolds number on heat transfer"> effect of Reynolds number on heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/3475/numerical-investigation-of-heat-transfer-in-a-channel-with-delta-winglet-vortex-generators-at-different-reynolds-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">440</span> Effect of Inclination Angle on Productivity of a Direct Contact Membrane Distillation (Dcmd) Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Alhathal%20Alanezi">Adnan Alhathal Alanezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alanood%20A.%20Alsarayreh"> Alanood A. Alsarayreh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A direct contact membrane distillation (DCMD) system was modeled using various angles for the membrane unit and a Reynolds number range of 500 to 2000 in this numerical analysis. The Navier-Stokes, energy, and species transport equations were used to create a two-dimensional model. The finite volume method was used to solve the governing equations (FVM). The results showed that as the Reynolds number grows up to 1500, the heat transfer coefficient increases for all membrane angles except the 60ᵒ inclination angle. Additionally, increasing the membrane angle to 90ᵒreduces the exit influence while increasing heat transfer. According to these data, a membrane with a 90o inclination angle (also known as a vertical membrane) and a Reynolds number of 2000 might have the smallest temperature differential. Similarly, decreasing the inclination angle of the membrane keeps the temperature difference constant between Reynolds numbers 1000 and 2000; however, between Reynolds numbers 500 and 1000, the temperature difference decreases dramatically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20contact%20membrane%20distillation" title="direct contact membrane distillation">direct contact membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20inclination%20angle" title=" membrane inclination angle"> membrane inclination angle</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=reynolds%20number" title=" reynolds number"> reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/151283/effect-of-inclination-angle-on-productivity-of-a-direct-contact-membrane-distillation-dcmd-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">439</span> Three-Dimensional Numerical Simulation of Drops Suspended in Poiseuille Flow: Effect of Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Nourbakhsh">A. Nourbakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A finite difference/front tracking method is used to study the motion of three-dimensional deformable drops suspended in plane Poiseuille flow at non-zero Reynolds numbers. A parallel version of the code was used to study the behavior of suspension on a reasonable grid resolution (grids). The viscosity and density of drops are assumed to be equal to that of the suspending medium. The effect of the Reynolds number is studied in detail. It is found that drops with small deformation behave like rigid particles and migrate to an equilibrium position about half way between the wall and the center line (the Segre-Silberberg effect). However, for highly deformable drops there is a tendency for drops to migrate to the middle of the channel, and the maximum concentration occurs at the center line. The effective viscosity of suspension and the fluctuation energy of the flow across the channel increases with the Reynolds number of the flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=suspensions" title="suspensions">suspensions</a>, <a href="https://publications.waset.org/abstracts/search?q=Poiseuille%20flow" title=" Poiseuille flow"> Poiseuille flow</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20viscosity" title=" effective viscosity"> effective viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number "> Reynolds number </a> </p> <a href="https://publications.waset.org/abstracts/11946/three-dimensional-numerical-simulation-of-drops-suspended-in-poiseuille-flow-effect-of-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">438</span> Behaviours of Energy Spectrum at Low Reynolds Numbers in Grid Turbulence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Kamruzzaman">Md Kamruzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyazid%20Djenidi"> Lyazid Djenidi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Antonia"> R. A. Antonia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports an experimental investigation of the energy spectrum of turbulent velocity fields at low Reynolds numbers ( Rλ ) in grid turbulence. Hot wire measurements are carried out in grid turbulence with subjected to a 1.36:1 contraction of the wind tunnel. Three different grids are used: (i) large square perforated grid (mesh size 43.75 mm), (ii) small square perforated grid (mesh size 14 and (iii) woven mesh grid (mesh size 5mm). The results indicate that the energy spectrum at small Rλ does not follow Kolmogorov’s universal scaling. It is further found that the critical Reynolds number,Rλ,ϲ below which the scaling breaks down is around 25. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20spectrum" title="energy spectrum">energy spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%20microscale" title=" Taylor microscale"> Taylor microscale</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20kinetic%20energy" title=" turbulent kinetic energy"> turbulent kinetic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=decay%20exponent" title=" decay exponent "> decay exponent </a> </p> <a href="https://publications.waset.org/abstracts/1417/behaviours-of-energy-spectrum-at-low-reynolds-numbers-in-grid-turbulence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">437</span> An investigation of Leading Edge and Trailing Edge Corrugation for Low Reynolds Number Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Hassan%20Raza%20Shah">Syed Hassan Raza Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mohammad%20Ali"> Mohammad Mohammad Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow over a smoothly profiled airfoil at a low Reynolds number is highly susceptible to separate even at a very low angle of attack. An investigation was made to study the effect of leading-edge and trailing-edge corrugation with the spanwise change in the ridges resulted due to the change in the chord length for an infinite wing. The wind tunnel results using NACA0018 wings revealed that leading and trailing edge corrugation did not have any benefit in terms of aerodynamic efficiency or delayed stall. The leading edge and trailing edge corrugation didn't change the lift curve slope, with the leading edge corrugation wing stalling first in the range of Reynolds number of 50,000 to 125,000. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leading%20and%20trailing%20edge%20corrugations" title="leading and trailing edge corrugations">leading and trailing edge corrugations</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20reynolds%20number" title=" low reynolds number"> low reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20testing" title=" wind tunnel testing"> wind tunnel testing</a>, <a href="https://publications.waset.org/abstracts/search?q=NACA0018" title=" NACA0018"> NACA0018</a> </p> <a href="https://publications.waset.org/abstracts/141121/an-investigation-of-leading-edge-and-trailing-edge-corrugation-for-low-reynolds-number-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Gritskevich">Mikhail Gritskevich</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Hohenstein"> Sebastian Hohenstein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20holes%20film%20cooling" title="discrete holes film cooling">discrete holes film cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20Averaged%20Navier-Stokes%20%28RANS%29" title=" Reynolds Averaged Navier-Stokes (RANS)"> Reynolds Averaged Navier-Stokes (RANS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20stress%20tensor%20anisotropy" title=" Reynolds stress tensor anisotropy"> Reynolds stress tensor anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20heat%20transfer" title=" turbulent heat transfer"> turbulent heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/60051/assessment-of-modern-rans-models-for-the-c3x-vane-film-cooling-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">435</span> Numerical Investigation of the Effect of Geometrical Shape of Plate Heat Exchangers on Heat Transfer Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Sanei">Hamed Sanei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Bagher%20Ayani"> Mohammad Bagher Ayani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimizations of Plate Heat Exchangers (PHS) have received great attention in the past decade. In this study, heat transfer and pressure drop coefficients are compared for rectangular and circular PHS employing numerical simulations. Plates are designed to have equivalent areas. Simulations were implemented to investigate the efficiency of PHSs considering heat transfer, friction factor and pressure drop. Amount of heat transfer and pressure drop was obtained for different range of Reynolds numbers. These two parameters were compared with aim of <em>F</em> &quot;weighting factor correlation&quot;. In this comparison, the minimum amount of F indicates higher efficiency. Results reveal that the <em>F</em> value for rectangular shape is less than circular plate, and hence using rectangular shape of PHS is more efficient than circular one. It was observed that, the amount of friction factor is correlated to the Reynolds numbers, such that friction factor decreased in both rectangular and circular plates with an increase in Reynolds number. Furthermore, such simulations revealed that the amount of heat transfer in rectangular plate is more than circular plate for different range of Reynolds numbers. The difference is more distinct for higher Reynolds number. However, amount of pressure drop in circular plate is less than rectangular plate for the same range of Reynolds numbers which is considered as a negative point for rectangular plate efficiency. It can be concluded that, while rectangular PHSs occupy more space than circular plate, the efficiency of rectangular plate is higher. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chevron%20corrugated%20plate%20heat%20exchanger" title="Chevron corrugated plate heat exchanger">Chevron corrugated plate heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20factor" title=" friction factor"> friction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20numbers" title=" Reynolds numbers"> Reynolds numbers</a> </p> <a href="https://publications.waset.org/abstracts/47194/numerical-investigation-of-the-effect-of-geometrical-shape-of-plate-heat-exchangers-on-heat-transfer-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">434</span> Efficient Numerical Simulation for LDC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badr%20Alkahtani">Badr Alkahtani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this poster, numerical solutions of two-dimensional and three-dimensional lid driven cavity are presented by solving the steady Navier-Stokes equations at high Reynolds numbers where it becomes difficult. Lid driven cavity is where the a fluid contained in a cube and the upper wall is moving. In two dimensions, we use the streamfunction-vorticity formulation to solve the problem in a square domain. A numerical method is employed to discretize the problem in the x and y directions with a spectral collocation method. The problem is coded in the MATLAB programming environment. Solutions at high Reynolds numbers are obtained up to Re=20000 on a fine grid of 131 * 131. Also in this presentation, the numerical solutions for the three-dimensional lid-driven cavity problem are obtained by solving the velocity-vorticity formulation of the Navier-Stokes equations (which is the first time that this has been simulated with special boundary conditions) for various Reynolds numbers. A spectral collocation method is employed to discretize the y and z directions and a finite difference method is used to discretize the x direction. Numerical solutions are obtained for Reynolds number up to 200. , The work prepared here is to show the efficiency of methods used to simulate the physical problem where accurate simulations of lid driven cavity are obtained at high Reynolds number as mentioned above. The result for the two dimensional problem is far from the previous researcher result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lid%20driven%20cavity" title="lid driven cavity">lid driven cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=navier-stokes" title=" navier-stokes"> navier-stokes</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/20652/efficient-numerical-simulation-for-ldc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">715</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">433</span> Experimental Study of Heat Transfer in Pulsation Mist Flow in Rectanglar Duct Partially Filled with a Porous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hosein%20Shokoohmand">Hosein Shokoohmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Esmaeil%20Jomeh"> Mohamad Esmaeil Jomeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present thesis studies the effect of different factors such as frequency of oscillatory flow, change in constant wall heat flux and two-phase current state, on heat transfer in a pipe in presence of porous medium. In this experimental study is conducted for Reynolds numbers in a range of Re=850 to Re=10000 and oscillatory frequencies of 5, 20, 10, 30 and 40 Hz with constant heat flux of 585 w/m2 and 819 w/m2. The results indicate that increase in oscillation frequency in higher frequencies for heat flux of 585 w/m2 leads to an increase in heat transfer; however, in the rest of tests it results in a heat transfer decrease. Increasing Reynolds number in a pulsation mist flow causes an increase in average Nusselt number values. The effect of oscillation frequencies in a pulsation mist flow for different Reynolds numbers has revealed different results, in a way that for some Reynolds numbers an increase of frequency has led to a heat transfer decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20numbers" title="Reynolds numbers">Reynolds numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20of%20oscillatory%20flow" title=" frequency of oscillatory flow"> frequency of oscillatory flow</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20heat%20flux" title=" constant heat flux"> constant heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=mist%20flow" title=" mist flow "> mist flow </a> </p> <a href="https://publications.waset.org/abstracts/31780/experimental-study-of-heat-transfer-in-pulsation-mist-flow-in-rectanglar-duct-partially-filled-with-a-porous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Laminar Separation Bubble Prediction over an Airfoil Using Transition SST Turbulence Model on Moderate Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Younes%20El%20Khchine">Younes El Khchine</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Sriti"> Mohammed Sriti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A parametric study has been conducted to analyse the flow around S809 airfoil of a wind turbine in order to better understand the characteristics and effects of laminar separation bubble (LSB) on aerodynamic design for maximizing wind turbine efficiency. Numerical simulations were performed at low Reynolds numbers by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations based on C-type structural mesh and using the γ-Reθt turbulence model. A two-dimensional study was conducted for the chord Reynolds number of 1×10⁵ and angles of attack (AoA) between 0 and 20.15 degrees. The simulation results obtained for the aerodynamic coefficients at various angles of attack (AoA) were compared with XFoil results. A sensitivity study was performed to examine the effects of Reynolds number and free-stream turbulence intensity on the location and length of the laminar separation bubble and the aerodynamic performances of wind turbines. The results show that increasing the Reynolds number leads to a delay in the laminar separation on the upper surface of the airfoil. The increase in Reynolds number leads to an accelerated transition process, and the turbulent reattachment point moves closer to the leading edge owing to an earlier reattachment of the turbulent shear layer. This leads to a considerable reduction in the length of the separation bubble as the Reynolds number is increased. The increase in the level of free-stream turbulence intensity leads to a decrease in separation bubble length and an increase in the lift coefficient while having negligible effects on the stall angle. When the AoA increased, the bubble on the suction airfoil surface was found to move upstream to the leading edge of the airfoil, that causes earlier laminar separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminar%20separation%20bubble" title="laminar separation bubble">laminar separation bubble</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20intensity" title=" turbulence intensity"> turbulence intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=S809%20airfoil" title=" S809 airfoil"> S809 airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20model" title=" transition model"> transition model</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/179140/laminar-separation-bubble-prediction-over-an-airfoil-using-transition-sst-turbulence-model-on-moderate-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Experimental Investigation of Boundary Layer Transition on Rotating Cones in Axial Flow in 0 and 35 Degrees Angle of Attack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kargar">Ali Kargar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamyar%20Mansour"> Kamyar Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, experimental results of using hot wire anemometer and smoke visualization are presented. The results obtained on the hot wire anemometer for critical Reynolds number and transitional Reynolds number are compared by previous results. Excellent agreement is found for the transitional Reynolds number. The results for the transitional Reynolds number are also compared by previous linear stability results. The results of the smoke visualization clearly show the cross flow vortices which arise in the transition process from a laminar to a turbulent flow. A non-zero angle of attack is also considered. We compare our results by linear stability theory which was done by Garret et. Al (2007). We just emphasis, Also the visualization and hot wire anemometer results have been compared graphically. The goal in this paper is to check reliability of using hot wire anemometer and smoke visualization in transition problems and check reliability of linear stability theory for this case and compare our results with some trusty experimental works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transitional%20reynolds%20number" title="transitional reynolds number">transitional reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20cone" title=" rotating cone"> rotating cone</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20visualization" title=" smoke visualization"> smoke visualization</a> </p> <a href="https://publications.waset.org/abstracts/34675/experimental-investigation-of-boundary-layer-transition-on-rotating-cones-in-axial-flow-in-0-and-35-degrees-angle-of-attack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Turbulence Measurement Over Rough and Smooth Bed in Open Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirti%20Singh">Kirti Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kesheo%20Prasad"> Kesheo Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 3D Acoustic Doppler velocimeter was used in the current investigation to quantify the mean and turbulence characteristics in non-uniform open-channel flows. Results are obtained from studies done in the laboratory, analysing the behavior of sand particles under turbulent open channel flow conditions flowing through rough, porous beds. Data obtained from ADV is used to calculate turbulent flow characteristics, Reynolds stresses and turbulent kinetic energy. Theoretical formulations for the distribution of Reynolds stress and the vertical velocity have been constructed using the Reynolds equation and the continuity equation of 2D open-channel flow. The measured Reynolds stress profile and the vertical velocity are comparable with the derived expressions. This study uses the Navier-Stokes equations for analysing the behavior of the vertical velocity profile in the dominant region of full-fledged turbulent flows in open channels, and it gives a new origination of the profile. For both wide and narrow open channels, this origination can estimate the time-averaged primary velocity in the turbulent boundary layer's outer region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulence" title="turbulence">turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20roughness" title=" bed roughness"> bed roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=logarithmic%20law" title=" logarithmic law"> logarithmic law</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress%20correlations" title=" shear stress correlations"> shear stress correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=ADV" title=" ADV"> ADV</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20shear%20stress" title=" Reynolds shear stress"> Reynolds shear stress</a> </p> <a href="https://publications.waset.org/abstracts/159300/turbulence-measurement-over-rough-and-smooth-bed-in-open-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Numerical Study of Laminar Separation Bubble Over an Airfoil Using γ-ReθT SST Turbulence Model on Moderate Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Younes%20El%20Khchine">Younes El Khchine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A parametric study has been conducted to analyse the flow around S809 airfoil of a wind turbine in order to better understand the characteristics and effects of laminar separation bubble (LSB) on aerodynamic design for maximizing wind turbine efficiency. Numerical simulations were performed at low Reynolds numbers by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations based on C-type structural mesh and using the γ-Reθt turbulence model. A two-dimensional study was conducted for the chord Reynolds number of 1×105 and angles of attack (AoA) between 0 and 20.15 degrees. The simulation results obtained for the aerodynamic coefficients at various angles of attack (AoA) were compared with XFoil results. A sensitivity study was performed to examine the effects of Reynolds number and free-stream turbulence intensity on the location and length of the laminar separation bubble and the aerodynamic performances of wind turbines. The results show that increasing the Reynolds number leads to a delay in the laminar separation on the upper surface of the airfoil. The increase in Reynolds number leads to an accelerated transition process, and the turbulent reattachment point moves closer to the leading edge owing to an earlier reattachment of the turbulent shear layer. This leads to a considerable reduction in the length of the separation bubble as the Reynolds number is increased. The increase in the level of free-stream turbulence intensity leads to a decrease in separation bubble length and an increase in the lift coefficient while having negligible effects on the stall angle. When the AoA increased, the bubble on the suction airfoil surface was found to move upstream to the leading edge of the airfoil, causing earlier laminar separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminar%20separation%20bubble" title="laminar separation bubble">laminar separation bubble</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20intensity" title=" turbulence intensity"> turbulence intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=s809%20airfoil" title=" s809 airfoil"> s809 airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20model" title=" transition model"> transition model</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/177425/numerical-study-of-laminar-separation-bubble-over-an-airfoil-using-gh-retht-sst-turbulence-model-on-moderate-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Hominin Niche in the Times of Climate Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emilia%20Hunt">Emilia Hunt</a>, <a href="https://publications.waset.org/abstracts/search?q=Sally%20C.%20Reynolds"> Sally C. Reynolds</a>, <a href="https://publications.waset.org/abstracts/search?q=Fiona%20Coward"> Fiona Coward</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Parracho%20Silva"> Fabio Parracho Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20Hopley"> Philip Hopley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ecological niche modeling is widely used in conservation studies, but application to the extinct hominin species is a relatively new approach. Being able to understand what ecological niches were occupied by respective hominin species provides a new perspective into influences on evolutionary processes. Niche separation or overlap can tell us more about specific requirements of the species within the given timeframe. Many of the ancestral species lived through enormous climate changes: glacial and interglacial periods, changes in rainfall, leading to desertification or flooding of regions and displayed impressive levels of adaptation necessary for their survival. This paper reviews niche modeling methodologies and their application to hominin studies. Traditional conservation methods might not be directly applicable to extinct species and are not comparable to hominins. Hominin niche also includes aspects of technologies, use of fire and extended communication, which are not traditionally used in building conservation models. Future perspectives on how to improve niche modeling for extinct hominin species will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hominin%20niche" title="hominin niche">hominin niche</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution" title=" evolution"> evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation" title=" adaptation"> adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20niche%20modelling" title=" ecological niche modelling"> ecological niche modelling</a> </p> <a href="https://publications.waset.org/abstracts/140489/hominin-niche-in-the-times-of-climate-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> Numerical Study of Laminar Separation Bubble Over an Airfoil Using γ-ReθT SST Turbulence Model on Moderate Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Younes%20El%20Khchine">Younes El Khchine</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Sriti"> Mohammed Sriti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A parametric study has been conducted to analyse the flow around S809 airfoil of wind turbine in order to better understand the characteristics and effects of laminar separation bubble (LSB) on aerodynamic design for maximizing wind turbine efficiency. Numerical simulations were performed at low Reynolds number by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations based on C-type structural mesh and using γ-Reθt turbulence model. Two-dimensional study was conducted for the chord Reynolds number of 1×105 and angles of attack (AoA) between 0 and 20.15 degrees. The simulation results obtained for the aerodynamic coefficients at various angles of attack (AoA) were compared with XFoil results. A sensitivity study was performed to examine the effects of Reynolds number and free-stream turbulence intensity on the location and length of laminar separation bubble and aerodynamic performances of wind turbine. The results show that increasing the Reynolds number leads to a delay in the laminar separation on the upper surface of the airfoil. The increase in Reynolds number leads to an accelerate transition process and the turbulent reattachment point move closer to the leading edge owing to an earlier reattachment of the turbulent shear layer. This leads to a considerable reduction in the length of the separation bubble as the Reynolds number is increased. The increase of the level of free-stream turbulence intensity leads to a decrease in separation bubble length and an increase the lift coefficient while having negligible effects on the stall angle. When the AoA increased, the bubble on the suction airfoil surface was found to moves upstream to leading edge of the airfoil that causes earlier laminar separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminar%20separation%20bubble" title="laminar separation bubble">laminar separation bubble</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20intensity" title=" turbulence intensity"> turbulence intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=S809%20airfoil" title=" S809 airfoil"> S809 airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20model" title=" transition model"> transition model</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/178912/numerical-study-of-laminar-separation-bubble-over-an-airfoil-using-gh-retht-sst-turbulence-model-on-moderate-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Effect of Reynolds Number on Wall-normal Turbulence Intensity in a Smooth and Rough Open Channel Using both Outer and Inner Scaling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Abdullah%20Al%20Faruque">Md Abdullah Al Faruque</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Balachandar"> Ram Balachandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sudden change of bed condition is frequent in open channel flow. Change of bed condition affects the turbulence characteristics in both streamwise and wall-normal direction. Understanding the turbulence intensity in open channel flow is of vital importance to the modeling of sediment transport and resuspension, bed formation, entrainment, and the exchange of energy and momentum. A comprehensive study was carried out to understand the extent of the effect of Reynolds number and bed roughness on different turbulence characteristics in an open channel flow. Four different bed conditions (impervious smooth bed, impervious continuous rough bed, pervious rough sand bed, and impervious distributed roughness) and two different Reynolds numbers were adopted for this cause. The effect of bed roughness on different turbulence characteristics is seen to be prevalent for most of the flow depth. Effect of Reynolds number on different turbulence characteristics is also evident for flow over different bed, but the extent varies on bed condition. Although the same sand grain is used to create the different rough bed conditions, the difference in turbulence characteristics is an indication that specific geometry of the roughness has an influence on turbulence characteristics. Roughness increases the contribution of the extreme turbulent events which produces very large instantaneous Reynolds shear stress and can potentially influence the sediment transport, resuspension of pollutant from bed and alter the nutrient composition, which eventually affect the sustainability of benthic organisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title="open channel flow">open channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20Number" title=" Reynolds Number"> Reynolds Number</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/54441/effect-of-reynolds-number-on-wall-normal-turbulence-intensity-in-a-smooth-and-rough-open-channel-using-both-outer-and-inner-scaling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> Experimental Investigation of S822 and S823 Wind Turbine Airfoils Wake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20B.%20Khoshnevis">Amir B. Khoshnevis</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mirhosseini"> Morteza Mirhosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with a sub-part of an extensive research program on the wake survey method in various Reynolds numbers and angles of attack. This research experimentally investigates the wake flow characteristics behind S823 and S822 airfoils in which designed for small wind turbines. Velocity measurements determined by using hot-wire anemometer. Data acquired in the wake of the airfoil at locations(c is the chord length): 0.01c - 3c. Reynolds number increased due to increase of free stream velocity. Results showed that mean velocity profiles depend on the angle of attack and location of data collections. Data acquired at the low Reynolds numbers (smaller than 10^5). Effects of Reynolds numbers on the mean velocity profiles are more significant in near locations the trailing edge and these effects decrease by taking distance from trailing edge toward downstream. Mean velocity profiles region increased by increasing the angle of attack, except for 7°, and also the maximum velocity deficit (velocity defect) increased. The difference of mean velocity in and out of the wake decreased by taking distance from trailing edge, and mean velocity profile become wider and more uniform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20attack" title="angle of attack">angle of attack</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20deficit" title=" velocity deficit"> velocity deficit</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/36863/experimental-investigation-of-s822-and-s823-wind-turbine-airfoils-wake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Simulations of Laminar Liquid Flows through Superhydrophobic Micro-Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20E.%20Eleshaky">Mohamed E. Eleshaky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the dynamic behavior of laminar water flows inside superhydrophobic micro-pipes patterned with square micro-posts features under different operating conditions. It also investigates the effects of air fraction and Reynolds number on the frictional performance of these pipes. Rather than modeling the air-water interfaces of superhydrophobic as a flat inflexible surface, a transient, incompressible, three-dimensional, volume-of-fluid (VOF) methodology has been employed to continuously track the air&ndash;water interface shape inside micro-pipes. Also, the entrance effects on the flow field have been taken into consideration. The results revealed the strong dependency of the frictional performance on the air fractions and Reynolds number. The frictional resistance reduction becomes increasingly more significant at large air fractions and low Reynolds numbers. Increasing Reynolds number has an adverse effect on the frictional resistance reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag%20reduction" title="drag reduction">drag reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow%20in%20micropipes" title=" laminar flow in micropipes"> laminar flow in micropipes</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=superhyrophobic%20surfaces" title=" superhyrophobic surfaces"> superhyrophobic surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=microposts" title=" microposts"> microposts</a> </p> <a href="https://publications.waset.org/abstracts/48306/simulations-of-laminar-liquid-flows-through-superhydrophobic-micro-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Mixed Convective Heat Transfer in Water-Based Al2O3 Nanofluid in Horizontal Rectangular Duct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Irmawati">Nur Irmawati</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Mohammed"> H. A. Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, mixed convection in a horizontal rectangular duct using Al2O3 is numerically investigated. The effects of different Rayleigh number, Reynolds number and radiation on flow and heat transfer characteristics were studied in detail. This study covers Rayleigh number in the range of 2×106≤Ra≤2×107 and Reynolds number in the range of 100≤Re≤1100. Results reveal that the Nusselt number increases as Reynolds and Rayleigh numbers increase. It was also found that the dimensionless temperature distribution increases as Rayleigh number increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20rectangular%20duct" title=" horizontal rectangular duct"> horizontal rectangular duct</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title=" nanofluids"> nanofluids</a> </p> <a href="https://publications.waset.org/abstracts/17914/mixed-convective-heat-transfer-in-water-based-al2o3-nanofluid-in-horizontal-rectangular-duct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Observation of Laminar to Turbulent Transition in Micro-Propellers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dake%20Wang">Dake Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ellis%20Edinkrah"> Ellis Edinkrah</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20Wang"> Brian Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-propellers can operate in regimes of small Reynolds numbers where the effect of viscous friction becomes important. In this work, the transition from laminar to turbulent regime in micro-propellers driven by electric motors was observed. The analysis revealed that the lift force was linearly proportional to propeller output power when systems operate in the laminar/viscous regime, while a sublinear relation between the force and the output power was observed in the turbulent/inertial regime. These behaviors appeared to be independent of motor-propeller specifications. The Reynolds number that marks the regime transition was found to be at around 10000. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UAV" title="UAV">UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-propeller" title=" micro-propeller"> micro-propeller</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar-turbulent" title=" laminar-turbulent"> laminar-turbulent</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/168546/observation-of-laminar-to-turbulent-transition-in-micro-propellers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> Numerical Simulation of External Flow Around D-Shaped Cylinders </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouldouz%20Nourani%20Zonouz">Ouldouz Nourani Zonouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Salmanpour"> Mehdi Salmanpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation and analysis of flow behavior around different shapes bluff bodies is one of the reputed topics for several years. The importance of these researches is about the unwanted phenomena called flow separation. The location of separation and the size of the wake region should be considered in different industrial designs. In this research a bluff body with D-shaped cross section has been analyzed. In circular cylinder flow separation point changes with Reynolds number but in D-Shaped cylinder there is fix flow separation point. So there is more wake steadiness in D-Shaped cylinder as compared to Circular cylinder and drag reduction because of wake steadiness. In the present work CFD simulation is carried out for flow past a D-Shaped cylinder to see the wake behavior. The Reynolds number regime currently studied corresponds to low Reynolds number and nominally two-dimensional wake. Also the effect of D-Shaped cylinders on the rate of heat transfer has been considered. Various results such as velocity, pressure and temperature contours and also some dimensionless numbers like drag coefficient, pressure coefficient and Nusselt number calculated for different cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D-shaped" title="D-shaped">D-shaped</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow" title=" external flow"> external flow</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20Reynolds%20number" title=" low Reynolds number"> low Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20cylinder" title=" square cylinder"> square cylinder</a> </p> <a href="https://publications.waset.org/abstracts/20748/numerical-simulation-of-external-flow-around-d-shaped-cylinders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Effect of Prandtl Number on Flow and Heat Transfer Across a Confined Equilateral Triangular Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Rasool">Tanveer Rasool</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Dhiman"> A. K. Dhiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper reports 2-D numerical study used to investigate the effect of changing working fluids with Prandtl numbers 0.71, 10 and 50 on the flow and convective heat transfer across an equilateral triangular cylinder placed in a horizontal channel with its apex facing the flow. Numerical results have been generated for fixed blockage ratio of 50% and for three Reynolds numbers of 50, 75, and 100 for each Prandtl numbers respectively. The studies show that for above range of Reynolds numbers, the overall drag coefficient is insensitive to the Prandtl number changes while as the heat transfer characteristics change drastically with changing Prandtl number of the working fluid. The results generated are in complete agreement with the previous literature available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prandtl%20number" title="Prandtl number">Prandtl number</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20and%20isothermal%20patterns" title=" flow and isothermal patterns"> flow and isothermal patterns</a> </p> <a href="https://publications.waset.org/abstracts/17972/effect-of-prandtl-number-on-flow-and-heat-transfer-across-a-confined-equilateral-triangular-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Multiscale Structures and Their Evolution in a Screen Cylinder Wake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azlin%20Mohd%20Azmi">Azlin Mohd Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tongming%20Zhou"> Tongming Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Akira%20Rinoshika"> Akira Rinoshika</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng"> Liang Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been reduced to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multi-resolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequency f0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d > 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses at x/d =10 before being taken over by the large-scale structures (f0) further downstream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulent%20structure" title="turbulent structure">turbulent structure</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20cylinder" title=" screen cylinder"> screen cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20multi-resolution%20analysis" title=" wavelet multi-resolution analysis"> wavelet multi-resolution analysis</a> </p> <a href="https://publications.waset.org/abstracts/2815/multiscale-structures-and-their-evolution-in-a-screen-cylinder-wake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> Computational Analysis of the Scaling Effects on the Performance of an Axial Compressor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junting%20Xiang">Junting Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Uwe%20Schl%C3%BCter"> Jörg Uwe Schlüter</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Duan"> Fei Duan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The miniaturization of gas turbines promises many advantages. Miniature gas turbines can be used for local power generation or the propulsion of small aircraft, such as UAV and MAV. However, experience shows that the miniaturization of conventional gas turbines, which are optimized at their current large size, leads to a substantial loss of efficiency and performance at smaller scales. This may be due to a number of factors, such as the Reynolds-number effect, the increased heat transfer, and manufacturing tolerances. In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its size change. The NASA stage 35 compressors are selected as the configuration in this study and Computational Fluid Dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20compressor" title="axial compressor">axial compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=miniature%20gas%20turbines" title=" miniature gas turbines"> miniature gas turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/8191/computational-analysis-of-the-scaling-effects-on-the-performance-of-an-axial-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> Numerical Investigation of Flow Behaviour Across a Trapezoidal Bluff Body at Low Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaaraoui%20Abdelkader">Zaaraoui Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerfah%20Rabeh"> Kerfah Rabeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Noura%20Belkheir"> Noura Belkheir</a>, <a href="https://publications.waset.org/abstracts/search?q=Matene%20Elhacene"> Matene Elhacene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The trapezoidal bluff body is a typical configuration of vortex shedding bodies. The aim of this work is to study flow behaviour over a trapezoidal cylinder at low Reynolds number. The geometry was constructed from a prototype device for measuring the volumetric flow-rate by counting vortices. Simulations were run for this geometry under steady and unsteady flow conditions using finite volume discretization. Laminar flow was investigated in this model with rigid walls and homogeneous incompressible Newtonian fluid. Calculations were performed for Reynolds number range 5 ≤ Re ≤ 180 and several flow parameters were documented. The present computations are in good agreement with the experimental observations and the numerical calculations by several investigators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bluff%20body" title="bluff body">bluff body</a>, <a href="https://publications.waset.org/abstracts/search?q=confined%20flow" title=" confined flow"> confined flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20calculations" title=" numerical calculations"> numerical calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20and%20unsteady%20flow" title=" steady and unsteady flow"> steady and unsteady flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding%20flow%20meter" title=" vortex shedding flow meter"> vortex shedding flow meter</a> </p> <a href="https://publications.waset.org/abstracts/54144/numerical-investigation-of-flow-behaviour-across-a-trapezoidal-bluff-body-at-low-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Comparative Analysis of High Lift Airfoils for Motorsports Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Fozan%20Ur%20Rab">M. Fozan Ur Rab</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahrukh"> Mahrukh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Alam"> M. Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Sheikh"> N. Sheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to analyze various high lift low Reynolds number airfoils using two-dimensional Computational Fluid Dynamics (CFD) code in the isolated flow field and select optimum airfoil to suit the motorsports application. The airfoil is selected after comparing the stall behavior, transition location, pressure recovery, pressure distribution and boundary layer characteristics of various airfoils. The prime consideration while selecting airfoil is highest Cl while achieving the sustainable performance over a range of Reynolds numbers encountered on the race track. The increase in Cl is always accompanied by the increase in Cd but this must be compromised since the main goal is to increase an aerodynamic grip. It is always desirable to increase the down-force in Formula One (F1)/Formula Student (FS) to gain reduction in lap time. This paper establishes the criteria for selection of high lift low Reynolds number airfoil while considering various parameters which affect the performance of airfoils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=airfoil" title=" airfoil"> airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=downforce" title=" downforce"> downforce</a>, <a href="https://publications.waset.org/abstracts/search?q=formula%20student" title=" formula student"> formula student</a>, <a href="https://publications.waset.org/abstracts/search?q=lap%20time" title=" lap time"> lap time</a> </p> <a href="https://publications.waset.org/abstracts/93779/comparative-analysis-of-high-lift-airfoils-for-motorsports-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> Unsteady Forced Convection Flow and Heat Transfer Past a Blunt Headed Semi-Circular Cylinder at Low Reynolds Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20El%20Khchine">Y. El Khchine</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sriti"> M. Sriti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, the forced convection heat transfer and fluid flow past an unconfined semi-circular cylinder is investigated. The two-dimensional simulation is employed for Reynolds numbers ranging from 10 ≤ Re ≤ 200, employing air (Pr = 0.71) as an operating fluid with Newtonian constant physics property. Continuity, momentum, and energy equations with appropriate boundary conditions are solved using the Computational Fluid Dynamics (CFD) solver Ansys Fluent. Various parameters flow such as lift, drag, pressure, skin friction coefficients, Nusselt number, Strouhal number, and vortex strength are calculated. The transition from steady to time-periodic flow occurs between Re=60 and 80. The effect of the Reynolds number on heat transfer is discussed. Finally, a developed correlation of Nusselt and Strouhal numbers is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title="forced convection">forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-circular%20cylinder" title=" semi-circular cylinder"> semi-circular cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=Prandtl%20number" title=" Prandtl number"> Prandtl number</a> </p> <a href="https://publications.waset.org/abstracts/150301/unsteady-forced-convection-flow-and-heat-transfer-past-a-blunt-headed-semi-circular-cylinder-at-low-reynolds-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdullah%20Al%20Faruque">M. Abdullah Al Faruque</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Balachandar"> Ram Balachandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, the correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title="open channel flow">open channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=smooth%20and%20rough%20bed" title=" smooth and rough bed"> smooth and rough bed</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/34228/variation-of-streamwise-and-vertical-turbulence-intensity-in-a-smooth-and-rough-bed-open-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> CFD Investigation on Heat Transfer and Friction Characteristics of Rib Roughened Evacuated Tube Collector Solar Air Heater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohit%20Singla">Mohit Singla</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishavjeet%20Singh%20Hans"> Vishavjeet Singh Hans</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhmeet%20Singh"> Sukhmeet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer and friction characteristics of evacuated tube collector solar air heater artificially roughened with periodic circular rib of uniform cross-section were investigated. The present investigation was carried out in ANSYS Fluent 15.0 to study the impact of roughness geometry parameters, i.e. relative roughness pitch (P/e) of 8 and relative roughness height (e/Dh) of 0.064 and flow parameters, i.e. Reynolds number range of 2500-8000 on Nusselt number and friction factor. RNG k-ε with enhanced wall treatment turbulence model was selected for analysis. The results obtained for roughened evacuated tube collector has been compared with smooth evacuated tube collector for the similar flow conditions. With the increment in Reynolds number from 2500 to 8000, Nusselt number augments while friction factor decreases. Maximum enhancement ratio of Nusselt number and friction factor was 1.71 and 2.7 respectively, obtained at Reynolds number value of 8000. The value of thermo-hydraulic performance parameter was varied between 1.18 - 1.23 for the entire range of Reynolds number, indicates the advantage to use the roughened evacuated tube collector over smooth evacuated tube collector in solar air heater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20roughness" title="artificial roughness">artificial roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=evacuated%20tube%20collector" title=" evacuated tube collector"> evacuated tube collector</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20factor" title=" friction factor"> friction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a> </p> <a href="https://publications.waset.org/abstracts/124728/cfd-investigation-on-heat-transfer-and-friction-characteristics-of-rib-roughened-evacuated-tube-collector-solar-air-heater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sally%20C.%20Reynolds&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sally%20C.%20Reynolds&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sally%20C.%20Reynolds&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sally%20C.%20Reynolds&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sally%20C.%20Reynolds&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sally%20C.%20Reynolds&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sally%20C.%20Reynolds&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sally%20C.%20Reynolds&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sally%20C.%20Reynolds&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sally%20C.%20Reynolds&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sally%20C.%20Reynolds&amp;page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sally%20C.%20Reynolds&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10