CINXE.COM
Search results for: ankle
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ankle</title> <meta name="description" content="Search results for: ankle"> <meta name="keywords" content="ankle"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ankle" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ankle"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 102</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ankle</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Comparison of the Effect of Semi-Rigid Ankle Bracing Performance among Ankle Injured Versus Non-Injured Adolescent Female Hockey Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Ellapen">T. J. Ellapen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Acampora"> N. Acampora</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dawson"> S. Dawson</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Arling"> J. Arling</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Van%20Niekerk"> C. Van Niekerk</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Van%20Heerden"> H. J. Van Heerden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: To determine the comparative proprioceptive performance of injured versus non-injured adolescent female hockey players when wearing an ankle brace. Methods: Data were collected from 100 high school players who belonged to the Highway Secondary School KZN Hockey league via voluntary parental informed consent and player assent. Players completed an injury questionnaire probing the prevalence and nature of hockey injuries (March-August 2013). Subsequently players completed a Biodex proprioceptive test with and without an ankle brace. Probability was set at p≤ 0.05. Results: Twenty-two players sustained ankle injuries within the six months (p<0.001). Injured players performed similarly without bracing Right Anterior Posterior Index (RAPI): 2.8±0.9; Right Medial Lateral Index (RMLI): 1.9±0.7; Left Anterior Posterior Index (LAPI) LAPI: 2.7; Left Medial Lateral Index (LMLI): 1.7±0.6) as compared to bracing (RAPI: 2.7±1.4; RMLI: 1.8±0.6; LAPI: 2.6±1.0; LMLI: 1.5±0.6) (p>0.05). However, bracing (RAPI: 2.2±0.8; RMLI: 1.5±0.5; LAPI: 2.4±0.9; MLI: 1.5±0.5) improved the ankle stability of the non-injured group as compared to their unbraced performance (RAPI: 2.5±1.0; RMLI: 1.8±0.8; LAPI: 2.8±1.1; LMLI: 1.8±0.6) (p<0.05). Conclusion: Ankle bracing did not enhance the stability of injured ankles. However ankle bracing has an ergogenic effect enhancing the stability of healthy ankles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hockey" title="hockey">hockey</a>, <a href="https://publications.waset.org/abstracts/search?q=proprioception" title=" proprioception"> proprioception</a>, <a href="https://publications.waset.org/abstracts/search?q=ankle" title=" ankle"> ankle</a>, <a href="https://publications.waset.org/abstracts/search?q=bracing" title=" bracing"> bracing</a> </p> <a href="https://publications.waset.org/abstracts/7291/comparison-of-the-effect-of-semi-rigid-ankle-bracing-performance-among-ankle-injured-versus-non-injured-adolescent-female-hockey-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Audit on Compliance with Ottawa Ankle Rules in Ankle Radiograph Requests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daud%20Muhammad">Daud Muhammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Ankle radiographs are frequently requested in Emergency Departments (ED) for patients presenting with traumatic ankle pain. The Ottawa Ankle Rules (OAR) serve as a clinical guideline to determine the necessity of these radiographs, aiming to reduce unnecessary imaging. This audit was conducted to evaluate the adequacy of clinical information provided in radiograph requests in relation to the OAR. Methods: A retrospective analysis was performed on 50 consecutive ankle radiograph requests under ED clinicians' names for patients aged above 5 years, specifically excluding follow-up radiographs for known fractures. The study assessed whether the provided clinical information met the criteria outlined by the OAR. Results: The audit revealed that none of the 50 radiograph requests contained sufficient information to satisfy the Ottawa Ankle Rules. Furthermore, 10 out of the 50 radiographs (20%) identified fractures. Discussion: The findings indicate a significant lack of adherence to the OAR, suggesting potential overuse of radiography and unnecessary patient exposure to radiation. This non-compliance may also contribute to increased healthcare costs and resource utilization, as well as possible delays in diagnosis and treatment. Recommendations: To address these issues, the following recommendations are proposed: (1) Education and Training: Enhance awareness and training among ED clinicians regarding the OAR. (2) Standardised Request Forms: Implement changes to imaging request forms to mandate relevant information according to the OAR. (3) Scan Vetting: Promote awareness among radiographers to discuss the appropriateness of scan requests with clinicians. (4) Regular re-audits should be conducted to monitor improvements in compliance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ottawa%20ankle%20rules" title="Ottawa ankle rules">Ottawa ankle rules</a>, <a href="https://publications.waset.org/abstracts/search?q=ankle%20radiographs" title=" ankle radiographs"> ankle radiographs</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20department" title=" emergency department"> emergency department</a>, <a href="https://publications.waset.org/abstracts/search?q=traumatic%20pain" title=" traumatic pain"> traumatic pain</a> </p> <a href="https://publications.waset.org/abstracts/186879/audit-on-compliance-with-ottawa-ankle-rules-in-ankle-radiograph-requests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Force Distribution and Muscles Activation for Ankle Instability Patients with Rigid and Kinesiotape while Standing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norazlin%20Mohamad">Norazlin Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Saiful%20Adli%20Bukry"> Saiful Adli Bukry</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarina%20Zahari"> Zarina Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Haidzir%20Manaf"> Haidzir Manaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanafi%20Sawalludin"> Hanafi Sawalludin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Deficit in neuromuscular recruitment and decrease force distribution were the common problems among ankle instability patients due to altered joint kinematics that lead to recurrent ankle injuries. Rigid Tape and KT Tape had widely been used as therapeutic and performance enhancement tools in ankle stability. However the difference effect between this two tapes is still controversial. Objective: To investigate the different effect between Rigid Tape and KT Tape on force distribution and muscle activation among ankle instability patients while standing. Study design: Crossover trial. Participants: 27 patients, age between 18 to 30 years old participated in this study. All the subjects were applied with KT Tape & Rigid Tape on their affected ankle with 3 days of interval for each intervention. The subjects were tested with their barefoot (without tape) first to act as a baseline before proceeding with KT Tape, and then with Rigid Tape. Result: There were no significant difference on force distribution at forefoot and back-foot for both tapes while standing. However the mean data shows that Rigid Tape has the highest force distribution at back-foot rather than forefoot when compared with KT Tape that had more force distribution at forefoot while standing. Regarding muscle activation (Peroneus Longus), results showed significant difference between Rigid Tape and KT Tape (p= 0.048). However, there was no significant difference on Tibialis Anterior muscle activation between both tapes while standing. Conclusion: The results indicated that Peroneus longus muscle was more active when applied Rigid Tape rather than KT Tape in ankle instability patients while standing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20instability" title="ankle instability">ankle instability</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic" title=" kinematic"> kinematic</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20activation" title=" muscle activation"> muscle activation</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20distribution" title=" force distribution"> force distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Rigid%20Tape" title=" Rigid Tape"> Rigid Tape</a>, <a href="https://publications.waset.org/abstracts/search?q=KT%20tape" title=" KT tape"> KT tape</a> </p> <a href="https://publications.waset.org/abstracts/11715/force-distribution-and-muscles-activation-for-ankle-instability-patients-with-rigid-and-kinesiotape-while-standing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Effect of Fatiguing Hip Muscles on Dynamic Posture Control in Recurrent Ankle Sprain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radwa%20El%20Shorbagy">Radwa El Shorbagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20El%20Din%20Balbaa"> Alaa El Din Balbaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Ayad"> Khaled Ayad</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Reda"> Waleed Reda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated.Objective: to determine the contribution of proximal hip strategy to dynamic posture control in patients with recurrent ankle sprain. Methods:Fifteen subjects with recurrent ankle sprain (Group A) and fifteen healthy control subjects (Group B) participated in this study. Abductor-adductor as well as flexor-extensor hip musculature control was abolished by fatigue using the Biodex Isokinatic System. Dynamic posture control was measured before and after fatigue by the Biodex Balance System. Results: Repeated measures MANOVA was used to compare within group differences. In group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) lowered overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p=0.00) whereas; in group B fatiguing of hip flexors-extensors lowered significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Conclusion: fatiguing of hip muscles has a significant deleterious effect on dynamic posture control in patient with recurrent ankle sprain indicating their increased dependence on hip strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20sprain" title="ankle sprain">ankle sprain</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20hip%20muscles" title=" fatigue hip muscles"> fatigue hip muscles</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20balance" title=" dynamic balance"> dynamic balance</a>, <a href="https://publications.waset.org/abstracts/search?q=ankle%20sprain" title=" ankle sprain"> ankle sprain</a> </p> <a href="https://publications.waset.org/abstracts/22938/effect-of-fatiguing-hip-muscles-on-dynamic-posture-control-in-recurrent-ankle-sprain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Neuromuscular Control and Performance during Sudden Acceleration in Subjects with and without Unilateral Acute Ankle Sprains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Qorbani">M. Qorbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuromuscular control of posture as understood through studies of responses to mechanical sudden acceleration automatically has been previously demonstrated in individuals with chronic ankle instability (CAI), but the presence of acute condition has not been previously explored specially in a sudden acceleration. The aim of this study was to determine neuromuscular control pattern in those with and without unilateral acute ankle sprains. Design: Case - control. Setting: University research laboratory. The sinker–card protocol with surface translation was be used as a sudden acceleration protocol with study of EMG upon 4 posture stabilizer muscles in two sides of the body in response to sudden acceleration in forward and backward directions. 20 young adult women in two groups (10 LAS; 23.9 ± 2.03 yrs and 10 normal; 26.4 ± 3.2 yrs). The data of EMG were assessed by using multivariate test and one-way repeated measures 2×2×4 ANOVA (P< 0.05). The results showed a significant muscle by direction interaction. Higher TA activity of left and right side in LAS group than normal group in forward direction significantly be showed. Higher MGR activity in normal group than LAS group in backward direction significantly showed. These findings suggest that compared two sides of the body in two directions for 4 muscles EMG activities between and within group for neuromuscular control of posture in avoiding fall. EMG activations of two sides of the body in lateral ankle sprain (LAS) patients were symmetric significantly. Acute ankle instability following once ankle sprains caused to coordinated temporal spatial patterns and strategy selection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response" title="neuromuscular response">neuromuscular response</a>, <a href="https://publications.waset.org/abstracts/search?q=sEMG" title=" sEMG"> sEMG</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20ankle%20sprain" title=" lateral ankle sprain"> lateral ankle sprain</a>, <a href="https://publications.waset.org/abstracts/search?q=posture." title=" posture."> posture.</a> </p> <a href="https://publications.waset.org/abstracts/12454/neuromuscular-control-and-performance-during-sudden-acceleration-in-subjects-with-and-without-unilateral-acute-ankle-sprains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> The Contribution of Hip Strategy in Dynamic Balance in Recurrent Ankle Sprain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radwa%20Talaat%20Mohammed%20El-Shorbagy">Radwa Talaat Mohammed El-Shorbagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20El-Din%20Balbaa"> Alaa El-Din Balbaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Ayad"> Khaled Ayad</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Red"> Waleed Red</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: To determine the contribution of proximal hip strategy to dynamic balance control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic system. Dynamic balance was measured before and after fatigue by the Biodex Balance system Results: Repeated measures MANOVA was used to compare between and within group differences. In group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p=0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p=0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to relay more on the hip strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20sprain" title="ankle sprain">ankle sprain</a>, <a href="https://publications.waset.org/abstracts/search?q=hip%20muscles%20fatigue" title=" hip muscles fatigue"> hip muscles fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20balance" title=" dynamic balance"> dynamic balance</a> </p> <a href="https://publications.waset.org/abstracts/23132/the-contribution-of-hip-strategy-in-dynamic-balance-in-recurrent-ankle-sprain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Comparison between High Resolution Ultrasonography and Magnetic Resonance Imaging in Assessment of Musculoskeletal Disorders Causing Ankle Pain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Engy%20S.%20El-Kayal">Engy S. El-Kayal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20S.%20Arafa"> Mohamed M. S. Arafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are various causes of ankle pain including traumatic and non-traumatic causes. Various imaging techniques are available for assessment of AP. MRI is considered to be the imaging modality of choice for ankle joint evaluation with an advantage of its high spatial resolution, multiplanar capability, hence its ability to visualize small complex anatomical structures around the ankle. However, the high costs and the relatively limited availability of MRI systems, as well as the relatively long duration of the examination all are considered disadvantages of MRI examination. Therefore there is a need for a more rapid and less expensive examination modality with good diagnostic accuracy to fulfill this gap. HRU has become increasingly important in the assessment of ankle disorders, with advantages of being fast, reliable, of low cost and readily available. US can visualize detailed anatomical structures and assess tendinous and ligamentous integrity. The aim of this study was to compare the diagnostic accuracy of HRU with MRI in the assessment of patients with AP. We included forty patients complaining of AP. All patients were subjected to real-time HRU and MRI of the affected ankle. Results of both techniques were compared to surgical and arthroscopic findings. All patients were examined according to a defined protocol that includes imaging the tendon tears or tendinitis, muscle tears, masses, or fluid collection, ligament sprain or tears, inflammation or fluid effusion within the joint or bursa, bone and cartilage lesions, erosions and osteophytes. Analysis of the results showed that the mean age of patients was 38 years. The study comprised of 24 women (60%) and 16 men (40%). The accuracy of HRU in detecting causes of AP was 85%, while the accuracy of MRI in the detection of causes of AP was 87.5%. In conclusions: HRU and MRI are two complementary tools of investigation with the former will be used as a primary tool of investigation and the latter will be used to confirm the diagnosis and the extent of the lesion especially when surgical interference is planned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20pain%20%28AP%29" title="ankle pain (AP)">ankle pain (AP)</a>, <a href="https://publications.waset.org/abstracts/search?q=high-resolution%20ultrasound%20%28HRU%29" title=" high-resolution ultrasound (HRU)"> high-resolution ultrasound (HRU)</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging%20%28MRI%29%20ultrasonography%20%28US%29" title=" magnetic resonance imaging (MRI) ultrasonography (US)"> magnetic resonance imaging (MRI) ultrasonography (US)</a> </p> <a href="https://publications.waset.org/abstracts/75793/comparison-between-high-resolution-ultrasonography-and-magnetic-resonance-imaging-in-assessment-of-musculoskeletal-disorders-causing-ankle-pain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Hip Strategy in Dynamic Postural Control in Recurrent Ankle Sprain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radwa%20Elshorbagy">Radwa Elshorbagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Elden%20Balbaa"> Alaa Elden Balbaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Ayad"> Khaled Ayad</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Reda"> Waleed Reda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: to determine the contribution of proximal hip strategy to dynamic postural control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic System. Dynamic postural control was measured before and after fatigue by the Biodex Balance System. Results: Repeated measures MANOVA was used to compare between and within group differences, in group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p=0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p= 0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to rely more on the hip strategy. This means that those patients depend on a top to down instead of down to top strategy clinical relevance: patients with recurrent ankle sprain less efficient in maintaining the dynamic postural control due to the change in motor strategies. Indicating that health care providers and rehabilitation specialists should treat CAI as a global/central and not just as a simple local or peripheral injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hip%20strategy" title="hip strategy">hip strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=ankle%20strategy" title=" ankle strategy"> ankle strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20control" title=" postural control"> postural control</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20balance" title=" dynamic balance"> dynamic balance</a> </p> <a href="https://publications.waset.org/abstracts/49734/hip-strategy-in-dynamic-postural-control-in-recurrent-ankle-sprain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> The Contribution of Hip Strategy in Dynamic Postural Control in Recurrent Ankle Sprain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radwa%20El%20Shorbagy">Radwa El Shorbagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20El%20Din%20Balbaa"> Alaa El Din Balbaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Ayad"> Khaled Ayad</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Reda"> Waleed Reda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: to determine the contribution of proximal hip strategy to dynamic postural control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic System. Dynamic postural control was measured before and after fatigue by the Biodex Balance System Results: Repeated measures MANOVA was used to compare between and within group differences, In group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p= 0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p= 0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to relay more on the hip strategy. This means that those patients depend on a top to down instead of down to top strategy clinical relevance: patients with recurrent ankle sprain less efficient in maintaining the dynamic postural control due to the change in motor strategies. Indicating that health care providers and rehabilitation specialists should treat CAI as a global/central and not just as a simple local or peripheral injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20sprain" title="ankle sprain">ankle sprain</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20hip%20muscles" title=" fatigue hip muscles"> fatigue hip muscles</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20balance" title=" dynamic balance"> dynamic balance</a> </p> <a href="https://publications.waset.org/abstracts/22951/the-contribution-of-hip-strategy-in-dynamic-postural-control-in-recurrent-ankle-sprain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Ankle Arthroscopy: Indications, Patterns of Admissions, Surgical Outcomes, and Associated Complications Among Saudi Patients at King Abdul-Aziz Medical City in Riyadh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abdullah%20Almalki">Mohammad Abdullah Almalki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Despite the frequent usage of ankle arthroscopy, there is limited medical literature regarding its indications, patterns of admissions, surgical outcomes, and associated complicated at Saudi Arabia. Hence, this study would highlight the surgical outcomes of such surgical approach that will assist orthopedic surgeons to detect which surgical procedure needs to be done as well as to help them regarding their diagnostic workups. Methods: At the Orthopedic Division of King Abdul‑Aziz Medical City in Riyadh and through a cross‑sectional design and convenient sampling techniques, the present study had recruited 20 subjects who fulfill the inclusion and exclusion criteria between 2016 and 2018. Data collection was carried out by a questionnaire designed and revised by an expert panel of health professionals. Results: Twenty patients were reviewed (11M and 9F) with an average age of 40.1 ± 12.2. Only 30% of the patients (5M, 1F) have no comorbidity, but 70% of patients (7M, 8F) were having at least one comorbidity. The most common indications were osteochondritis dissecans (n = 7, 35%), ankle fracture without dislocation (n = 4, 20%), and tibiotalar impingement (n = 3, 15%). Patients recorded pain in all cases (100%). The top four symptoms after pain were instability (30%, n = 6), muscle weakness (15%, n = 3) swelling (15%, n = 3), and stiffness (5%, n = 1). Two‑third of cases reached to their full healthy status and toe‑touch weight‑bearing was seen in two patients (10%). Conclusion: Ankle arthroscopy improved the rehabilitation rates in our tertiary care center. In addition, the surgical outcomes are favorable in our hospital since it has a very short length of stay, unexpended surgery, and fewest physiotherapy sessions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle" title="ankle">ankle</a>, <a href="https://publications.waset.org/abstracts/search?q=arthroscopy" title=" arthroscopy"> arthroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=indications" title=" indications"> indications</a>, <a href="https://publications.waset.org/abstracts/search?q=patterns" title=" patterns"> patterns</a> </p> <a href="https://publications.waset.org/abstracts/170996/ankle-arthroscopy-indications-patterns-of-admissions-surgical-outcomes-and-associated-complications-among-saudi-patients-at-king-abdul-aziz-medical-city-in-riyadh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Reliability of 2D Motion Analysis System for Sagittal Plane Lower Limb Kinematics during Running</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hamed%20Mousavi">Seyed Hamed Mousavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Juha%20M.%20Hijmans"> Juha M. Hijmans</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Rajabi"> Reza Rajabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ron%20Diercks"> Ron Diercks</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Zwerver"> Johannes Zwerver</a>, <a href="https://publications.waset.org/abstracts/search?q=Henk%20van%20der%20Worp"> Henk van der Worp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Running is one of the most popular sports activity among people. Improper sagittal plane ankle, knee and hip kinematics are considered to be associated with the increase of injury risk in runners. Motion assessing smart-phone applications are increasingly used to measure kinematics both in the field and laboratory setting, as they are cheaper, more portable, accessible, and easier to use relative to 3D motion analysis system. The aims of this study are 1) to compare the results of 3D gait analysis system and CE; 2) to evaluate the test-retest and intra-rater reliability of coach’s eye (CE) app for the sagittal plane hip, knee, and ankle angles in the touchdown and toe-off while running. Method: Twenty subjects participated in this study. Sixteen reflective markers and cluster markers were attached to the subject’s body. Subjects were asked to run at a self-selected speed on a treadmill. Twenty-five seconds of running were collected for analyzing kinematics of interest. To measure sagittal plane hip, knee and ankle joint angles at touchdown (TD) and toe off (TO), the mean of first ten acceptable consecutive strides was calculated for each angle. A smartphone (Samsung Note5, android) was placed on the right side of the subject so that whole body was simultaneously filmed with 3D gait system during running. All subjects repeated the task with the same running speed after a short interval of 5 minutes in between. The CE app, installed on the smartphone, was used to measure the sagittal plane hip, knee and ankle joint angles at touchdown and toe off the stance phase. Results: Intraclass correlation coefficient (ICC) was used to assess test-retest and intra-rater reliability. To analyze the agreement between 3D and 2D outcomes, the Bland and Altman plot was used. The values of ICC were for Ankle at TD (TRR=0.8,IRR=0.94), ankle at TO (TRR=0.9,IRR=0.97), knee at TD (TRR=0.78,IRR=0.98), knee at TO (TRR=0.9,IRR=0.96), hip at TD (TRR=0.75,IRR=0.97), hip at TO (TRR=0.87,IRR=0.98). The Bland and Altman plots displaying a mean difference (MD) and ±2 standard deviation of MD (2SDMD) of 3D and 2D outcomes were for Ankle at TD (MD=3.71,+2SDMD=8.19, -2SDMD=-0.77), ankle at TO (MD=-1.27, +2SDMD=6.22, -2SDMD=-8.76), knee at TD (MD=1.48, +2SDMD=8.21, -2SDMD=-5.25), knee at TO (MD=-6.63, +2SDMD=3.94, -2SDMD=-17.19), hip at TD (MD=1.51, +2SDMD=9.05, -2SDMD=-6.03), hip at TO (MD=-0.18, +2SDMD=12.22, -2SDMD=-12.59). Discussion: The ability that the measurements are accurately reproduced is valuable in the performance and clinical assessment of outcomes of joint angles. The results of this study showed that the intra-rater and test-retest reliability of CE app for all kinematics measured are excellent (ICC ≥ 0.75). The Bland and Altman plots display that there are high differences of values for ankle at TD and knee at TO. Measuring ankle at TD by 2D gait analysis depends on the plane of movement. Since ankle at TD mostly occurs in the none-sagittal plane, the measurements can be different as foot progression angle at TD increases during running. The difference in values of the knee at TD can depend on how 3D and the rater detect the TO during the stance phase of running. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=running" title=" running"> running</a>, <a href="https://publications.waset.org/abstracts/search?q=sagittal%20plane" title=" sagittal plane"> sagittal plane</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20dimensional" title=" two dimensional"> two dimensional</a> </p> <a href="https://publications.waset.org/abstracts/97575/reliability-of-2d-motion-analysis-system-for-sagittal-plane-lower-limb-kinematics-during-running" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Effect of Different Knee-Joint Positions on Passive Stiffness of Medial Gastrocnemius Muscle and Aponeuroses during Passive Ankle Motion </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiyao%20Shan">Xiyao Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavlos%20Evangelidis"> Pavlos Evangelidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Kositsky"> Adam Kositsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoki%20Ikeda"> Naoki Ikeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuo%20Kawakami"> Yasuo Kawakami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human triceps surae (two bi-articular gastrocnemii and one mono-articular soleus) have aponeuroses in the posterior and anterior aspects of each muscle, where the anterior aponeuroses of the gastrocnemii adjoin the posterior aponeurosis of the soleus, possibly contributing to the intermuscular force transmission between gastrocnemii and soleus. Since the mechanical behavior of these aponeuroses at different knee- and ankle-joint positions remains unclear, the purpose of this study was to clarify this through observations of the localized changes in passive stiffness of the posterior aponeuroses, muscle belly and adjoining aponeuroses of the medial gastrocnemius (MG) induced by different knee and ankle angles. Eleven healthy young males (25 ± 2 yr, 176.7 ± 4.7 cm, 71.1 ± 11.1 kg) participated in this study. Each subject took either a prone position on an isokinetic dynamometer while the knee joint was fully extended (K180) or a kneeling position while the knee joint was 90° flexed (K90), in a randomized and counterbalanced order. The ankle joint was then passively moved through a 50° range of motion (ROM) by the dynamometer from 30° of plantar flexion (PF) to 20° of dorsiflexion (DF) at 2°/s and the ultrasound shear-wave velocity was measured to obtain shear moduli of the posterior aponeurosis, MG belly, and adjoining aponeuroses. The main findings were: 1) shear modulus in K180 was significantly higher (p < 0.05) than K90 for the posterior aponeurosis (across all ankle angles, 10.2 ± 5.7 kPa-59.4 ± 28.7 kPa vs. 5.4 ± 2.2 kPa-11.6 ± 4.1 kPa), MG belly (from PF10° to DF20°, 9.7 ± 2.2 kPa-53.6 ± 18.6 kPa vs. 8.0 ± 2.7 kPa-9.5 ± 3.7 kPa), and adjoining aponeuroses (across all ankle angles, 17.3 ± 7.8 kPa-80 ± 25.7 kPa vs. 12.2 ± 4.5 kPa-52.4 ± 23.0 kPa); 2) shear modulus of the posterior aponeuroses significantly increased (p < 0.05) from PF10° to PF20° in K180, while shear modulus of MG belly significantly increased (p < 0.05) from 0° to PF20° only in K180 and shear modulus of adjoining aponeuroses significantly increased (p < 0.05) across the whole ROM of ankle both in K180 and K90. These results suggest that different knee-joint positions can affect not only the bi-articular gastrocnemius but also influence the mechanical behavior of aponeuroses. In addition, compared to the gradual stiffening of the adjoining aponeuroses across the whole ROM of ankle, the posterior aponeurosis became slack in the plantar flexed positions and then was stiffened gradually as the knee was fully extended. This suggests distinct stiffening for the posterior and adjoining aponeuroses which is joint position-dependent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aponeurosis" title="aponeurosis">aponeurosis</a>, <a href="https://publications.waset.org/abstracts/search?q=plantar%20flexion%20and%20dorsiflexion" title=" plantar flexion and dorsiflexion"> plantar flexion and dorsiflexion</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography" title=" shear wave elastography"> shear wave elastography</a> </p> <a href="https://publications.waset.org/abstracts/104429/effect-of-different-knee-joint-positions-on-passive-stiffness-of-medial-gastrocnemius-muscle-and-aponeuroses-during-passive-ankle-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Orthosis and Finite Elements: A Study for Development of New Designs through Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Volpini">M. Volpini</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Alves"> D. Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Horta"> A. Horta</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Borges"> M. Borges</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Reis"> P. Reis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in an efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacture" title="additive manufacture">additive manufacture</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20designs" title=" new designs"> new designs</a>, <a href="https://publications.waset.org/abstracts/search?q=orthoses" title=" orthoses"> orthoses</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a> </p> <a href="https://publications.waset.org/abstracts/79368/orthosis-and-finite-elements-a-study-for-development-of-new-designs-through-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Altered Lower Extremity Biomechanical Risk Factor Related to Anterior Cruciate Ligament Injury in Athlete with Functional Ankle Instability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Karimizadehardakani">Mohammad Karimizadehardakani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hooman%20Minoonejad"> Hooman Minoonejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Rajabi"> Reza Rajabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Sharifnejad"> Ali Sharifnejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Ankle sprain is one of the most important risk factor of anterior cruciate ligament (ACL) injury. Also, functional ankle instability (FAI) population has alterations in lower extremity sagittal plane biomechanics during landing task. We want to examine whether biomechanical alterations demonstrated by FAI patients are associated with the mechanism of ACL injury during high risk and sport related tasks. Methods: Sixteen basketball player with FAI and 16 non-injured control performed a single-leg cross drop landing. Knee sagittal and frontal (ATSF) was calculated. Independent t-tests, multiple linear regression, and Pearson correlation were used for analysis data. Result: Subject with FAI showed more peak ATFS, posterior ground reaction force (GRF) and less knee flexion, compared to the controls (P= 0.001, P= 0.004, P= 0.011). Knee flexion (r= −0.824, P = 0.011) and posterior GRF (r= 0.901, P = .001) were correlated with ATSF; Posterior GRF was factor that most explained the variance in ATSF (R2= 0.645; P = .001) in the FAI group. Conclusions: Result of our study showed there is a potential biomechanical relationship between the presence of FAI and risk factors associated with ACL injury mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20ankle%20instability" title="functional ankle instability">functional ankle instability</a>, <a href="https://publications.waset.org/abstracts/search?q=anterior%20cruciate%20ligament" title=" anterior cruciate ligament"> anterior cruciate ligament</a>, <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title=" biomechanics"> biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factor" title=" risk factor"> risk factor</a> </p> <a href="https://publications.waset.org/abstracts/71484/altered-lower-extremity-biomechanical-risk-factor-related-to-anterior-cruciate-ligament-injury-in-athlete-with-functional-ankle-instability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Percentage Contribution of Lower Limb Moments to Vertical Ground Reaction Force in Normal Walking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20M.%20Elhafez">Salam M. Elhafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Ashour"> Ahmed A. Ashour</a>, <a href="https://publications.waset.org/abstracts/search?q=Naglaa%20M.%20Elhafez"> Naglaa M. Elhafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20M.%20Elhafez"> Ghada M. Elhafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20M.%20Abdelmohsen"> Azza M. Abdelmohsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Patients suffering from gait disturbances are referred by having muscle group dysfunctions. There is a need for more studies investigating the contribution of muscle moments of the lower limb to the vertical ground reaction force using 3D gait analysis system. The purpose of this study was to investigate how the hip, knee and ankle moments in the sagittal plane contribute to the vertical ground reaction force in healthy subjects during normal speed of walking. Forty healthy male individuals volunteered to participate in this study. They were filmed using six high speed (120 Hz) Pro-Reflex Infrared cameras (Qualisys) while walking on an AMTI force platform. The data collected were the percentage contribution of the moments of the hip, knee and ankle joints in the sagittal plane at the instant of occurrence of the first peak, second peak, and the trough of the vertical ground reaction force. The results revealed that at the first peak of the ground reaction force (loading response), the highest contribution was generated from the knee extension moment, followed by the hip extension moment. Knee flexion and ankle plantar flexion moments produced high contribution to the trough of the ground reaction force (midstance) with approximately equal values. The second peak of the ground reaction force was mainly produced by the ankle plantar flexion moment. Conclusion: Hip and knee flexion and extension moments and ankle plantar flexion moment play important roles in the supporting phase of normal walking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gait%20analysis" title="gait analysis">gait analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20reaction%20force" title=" ground reaction force"> ground reaction force</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20contribution" title=" moment contribution"> moment contribution</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20walking" title=" normal walking"> normal walking</a> </p> <a href="https://publications.waset.org/abstracts/76697/percentage-contribution-of-lower-limb-moments-to-vertical-ground-reaction-force-in-normal-walking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> The Associations between Ankle and Brachial Systolic Blood Pressures with Obesity Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matei%20Tudor%20Berceanu">Matei Tudor Berceanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hema%20Viswambharan"> Hema Viswambharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirti%20Kain"> Kirti Kain</a>, <a href="https://publications.waset.org/abstracts/search?q=Chew%20Weng%20Cheng"> Chew Weng Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background - Obesity parameters, particularly visceral obesity as measured by the waist-to-height ratio (WHtR), correlate with insulin resistance. The metabolic microvascular changes associated with insulin resistance causes increased peripheral arteriolar resistance primarily to the lower limb vessels. We hypothesize that ankle systolic blood pressures (SBPs) are more significantly associated with visceral obesity than brachial SBPs. Methods - 1098 adults enriched in south Asians or Europeans with diabetes (T2DM) were recruited from a primary care practice in West Yorkshire. Their medical histories, including T2DM and cardiovascular disease (CVD) status, were gathered from an electronic database. The brachial, dorsalis pedis, and posterior tibial SBPs were measured using a Doppler machine. Their body mass index (BMI) and WHtR were calculated after measuring their weight, height, and waist circumference. Linear regressions were performed between the 6 SBPs and both obesity parameters, after adjusting for covariates. Results - Generally, the left posterior tibial SBP (P=4.559*10⁻¹⁵) and right posterior tibial SBP (P=1.114* 10⁻¹³ ) are the pressures most significantly associated with the BMI, as well as in south Asians (P < 0.001) and Europeans (P < 0.001) specifically. In South Asians, although the left (P=0.032) and right brachial SBP (P=0.045) were associated to the WHtR, the left posterior tibial SBP (P=0.023) showed the strongest association. Conclusion - Regardless of ethnicity, ankle SBPs are more significantly associated with generalized obesity than brachial SBPs, suggesting their screening potential for screening for early detection of T2DM and CVD. A combination of ankle SBPs with WHtR is proposed in south Asians. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20blood%20pressures" title="ankle blood pressures">ankle blood pressures</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=waist-to-height-ratio" title=" waist-to-height-ratio"> waist-to-height-ratio</a> </p> <a href="https://publications.waset.org/abstracts/137785/the-associations-between-ankle-and-brachial-systolic-blood-pressures-with-obesity-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Efficacy of Ergonomics Ankle Support on Squatting Pushing Skills during the Second Stage of Labor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Lin">Yu-Ching Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Meei-Ling%20Gau"> Meei-Ling Gau</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghi-Hwei%20Kao"> Ghi-Hwei Kao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Chang%20Lee"> Hung-Chang Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To compare the pushing experiences and birth outcomes of three different pushing positions during the second stage of labor. The three positions were: semi-recumbent, squatting, and squatting with the aid of ergonomically designed ankle supports. Methods: A randomized controlled trial was conducted at a regional teaching hospital in northern Taiwan. Data were collected from 168 primiparous women in their 38th to 42nd gestational week. None of the participants received epidural analgesia during labor and all were free of pregnancy and labor-related complications. Intervention: During labor, after full cervical dilation and when the fetal head had descended to at least the +1 station and had turned to the occiput anterior position, the experimental group was asked to push in the squatting position while wearing the ergonomically designed ankle supports; comparison group A was asked to push in the squatting position without the use of these supports; and comparison group B was asked to push in a standard semi-recumbent position. Measures: The participants completed a demographic and obstetrics datasheet, the Short Form McGill Pain Questionnaire (MPQ-SF), and the Labor Pushing Experience scale within 4-hours postpartum. Conclusion: In terms of delivery time, the duration between the start of pushing to crowning for the experimental group (squatting with ankle supports) averaged 25.52 minutes less (F =6.02, p< .05) than the time for comparison group B (semi-recumbent). Furthermore, the duration between the start of pushing to infant birth averaged 25.21 minutes less for the experimental group than for comparison group B (F =6.14, p< .05). Moreover, the experimental group had a lower average VAS pain score (5.05±3.22) than comparison group B and the average McGill pain score for the experimental group was lower than both comparison groups (F=18.12, p< .001). In summary, the participants in the group that delivered from a squatting position with ankle supports had better labor pushing experiences than their peers in the comparison groups. Results: In comparison to both unsupported squatting and semi-recumbent pushing, squatting with the aid of ergonomically designed ankle supports reduced pushing times, ameliorated labor pain, and improved the pushing experience. Clinical application and suggestion: The squatting with ankle-support intervention introduced in the present study may significantly reduce tiredness and difficulties in maintaining balance as well as increase pushing efficiency. Thus, this intervention may reduce the caring needs of women during the second stage of labor. This intervention may be introduced in midwifery education programs and in clinical practice as a method to improve the care of women during the second stage of labor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=second%20stage%20of%20labor" title="second stage of labor">second stage of labor</a>, <a href="https://publications.waset.org/abstracts/search?q=pushing" title=" pushing"> pushing</a>, <a href="https://publications.waset.org/abstracts/search?q=squatting%20with%20ankle%20supports" title=" squatting with ankle supports"> squatting with ankle supports</a>, <a href="https://publications.waset.org/abstracts/search?q=squatting" title=" squatting"> squatting</a> </p> <a href="https://publications.waset.org/abstracts/41133/efficacy-of-ergonomics-ankle-support-on-squatting-pushing-skills-during-the-second-stage-of-labor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Bone Marrow Edema Syndrome in the Foot and Ankle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Alireza%20Mirghasemi">S. Alireza Mirghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Elly%20Trepman"> Elly Trepman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saleh%20Sadeghi"> Mohammad Saleh Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Rahimi%20Gabaran"> Narges Rahimi Gabaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Shervin%20Rashidinia"> Shervin Rashidinia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bone marrow edema syndrome (BMES) is an uncommon and self-limited syndrome characterized by atraumatic extremity pain with unknown of etiology. Symptom onset may include sudden or gradual swelling and pain at rest or during activity, usually at night. This syndrome mostly affects middle-aged men and younger women who have pain in the lower extremities. The most common sites involved with BMES, in decreasing order of frequency, are the bones about the hip, knee, ankle, and foot. The diagnosis of BMES is made with magnetic resonance imaging to exclude other causes of bone marrow edema. The correct diagnosis often is delayed because of the low prevalence and nonspecific signs in the foot and ankle. This delay may intensify bone pain and impair patient function and quality of life. The goal of BMES treatment is to relieve pain and shorten disease duration. Treatment options are limited and may include symptomatic treatment, pharmacologic treatment, and surgery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transient%20osteoporosis" title="transient osteoporosis">transient osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20marrow%20edema%20syndrome" title=" bone marrow edema syndrome"> bone marrow edema syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=iloprost" title=" iloprost"> iloprost</a>, <a href="https://publications.waset.org/abstracts/search?q=bisphosphonates" title=" bisphosphonates"> bisphosphonates</a> </p> <a href="https://publications.waset.org/abstracts/34783/bone-marrow-edema-syndrome-in-the-foot-and-ankle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Cloud Points to Create an Innovative and Custom Ankle Foot Orthosis in CAD Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Benabid">Y. Benabid</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Benfriha"> K. Benfriha</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Rieuf"> V. Rieuf</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20Omhover"> J. F. Omhover </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an approach to create custom concepts for innovative products; this approach describes relations between innovation tools and Computer Aided Design environment (use creativity session and design tools). A model for the design process is proposed and explored in order to describe the power tool used to create and ameliorate an innovative product all based upon a range of data (cloud points) in this study. Comparison between traditional method and innovative method we help to generate and put forward a new model of the design process in order to create a custom Ankle Foot Orthosis (AFO) in a CAD environment in order to ameliorate and controlling the motion. The custom concept needs big development in different environments; the relation between these environments is described. The results can help the surgeons in the upstream treatment phases. CAD models can be applied and accepted by professionals in the design and manufacture systems. This development is based on the anatomy of the population of North Africa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20foot%20orthosis" title="ankle foot orthosis">ankle foot orthosis</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD" title=" CAD"> CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20engineering" title=" reverse engineering"> reverse engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=sketch" title=" sketch"> sketch</a> </p> <a href="https://publications.waset.org/abstracts/20958/cloud-points-to-create-an-innovative-and-custom-ankle-foot-orthosis-in-cad-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> 2-Dimensional Kinematic Analysis on Sprint Start with Sprinting Performance of Novice Athletes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satpal%20Yadav">Satpal Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajit%20Basumatary"> Biswajit Basumatary</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20S.%20Sajwan"> Arvind S. Sajwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Chakravarty"> Ranjan Chakravarty </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the study was to assess the effect of 2D kinematical selected variables on sprint start with sprinting performance of novice athletes. Six (3 National and 3 State level) athletes of sports authority of India, Guwahati has been selected for this study. The mean (M) and standard deviation (SD) of sprinters were age (17.44, 1.55), height (1.74m, .84m), weight (62.25 kg, 4.55), arm length (65.00 cm, 3.72) and leg length (96.35 cm, 2.71). Biokin-2D motion analysis system V4.5 can be used for acquiring two-dimensional kinematical data/variables on sprint start with Sprinting Performance. For the purpose of kinematic analysis a standard motion driven camera which frequency of the camera was 60 frame/ second i.e. handy camera of Sony Company were used. The sequence of photographic was taken under controlled condition. The distance of the camera from the athletes was 12 mts away and was fixed at 1.2-meter height. The result was found that National and State level athletes significant difference in there, trajectory knee, trajectory ankle, displacement knee, displacement ankle, linear velocity knee, linear velocity ankle, and linear acceleration ankle whereas insignificant difference was found between National and State level athletes in their linear acceleration knee joint on sprint start with sprinting performance. For all the Statistical test the level of significance was set at p<0.05. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20kinematic%20analysis" title="2D kinematic analysis">2D kinematic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sprinting%20performance" title=" sprinting performance"> sprinting performance</a>, <a href="https://publications.waset.org/abstracts/search?q=novice%20athletes" title=" novice athletes"> novice athletes</a>, <a href="https://publications.waset.org/abstracts/search?q=sprint%20start" title=" sprint start"> sprint start</a> </p> <a href="https://publications.waset.org/abstracts/44829/2-dimensional-kinematic-analysis-on-sprint-start-with-sprinting-performance-of-novice-athletes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Effectiveness of Impairment Specified Muscle Strengthening Programme in a Group of Disabled Athletes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20I.%20Prasanna">A. L. I. Prasanna</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Liyanage"> E. Liyanage</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Rajaratne"> S. A. Rajaratne</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20A.%20P.%20Kariyawasam"> K. P. A. P. Kariyawasam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20J.%20Rajaratne"> A. A. J. Rajaratne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maintaining or improving the muscle strength of the injured body part is essential to optimize performance among disabled athletes. General conditioning and strengthening exercises might be ineffective if not sufficiently intense enough or targeted for each participant’s specific impairment. Specific strengthening programme, targeted to the affected body part, are essential to improve the strength of impaired muscles and increase in strength will help reducing the impact of disability. Methods: The muscle strength of hip, knee and ankle joints was assessed in a group of randomly selected disabled athletes, using the Medical Research Council (MRC) grading. Those having muscle strength of grade 4 or less were selected for this study (24 in number) and were given and a custom made exercise program designed to strengthen their hip, knee or ankle joint musculature, according to the muscle or group of muscles affected. Effectiveness of the strengthening program was assessed after a period of 3 months. Results: Statistical analysis was done using the Minitab 16 statistical software. A Mann-Whitney U test was used to compare the strength of muscle group before and after exercise programme. A significant difference was observed after the three month strengthening program for knee flexors (Left and Right) (P =0.0889, 0.0312) hip flexors (left and right) (P=0.0312, 0.0466), hip extensors (Left and Right) (P=0.0478, 0.0513), ankle plantar flexors (Left and Right) (P=0.0466, 0.0423) and right ankle dorsiflexors (P= 0.0337). No significant difference of strength was observed after the strengthening program in the knee extensors (left and right), hip abductors (left and right) and left ankle dorsiflexors. Conclusion: Impairment specific exercise programme appear to be beneficial for disabled athletes to significantly improve the muscle strength of the affected joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme" title="muscle strengthening programme">muscle strengthening programme</a>, <a href="https://publications.waset.org/abstracts/search?q=disabled%20athletes" title=" disabled athletes"> disabled athletes</a>, <a href="https://publications.waset.org/abstracts/search?q=physiotherapy" title=" physiotherapy"> physiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation%20sciences" title=" rehabilitation sciences"> rehabilitation sciences</a> </p> <a href="https://publications.waset.org/abstracts/1783/effectiveness-of-impairment-specified-muscle-strengthening-programme-in-a-group-of-disabled-athletes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Association of Ankle Brachial Index with Diabetic Score Neuropathy Examination in Type 2 Diabetes Melitus Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Putri">A. K. Putri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Fitri"> A.Fitri</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Batubara"> C. A. Batubara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes Mellitus (DM) is a chronic disease that could cause complications. The complication can be Peripheral Arterial Disease (PAD) or Diabetic Neuropathy (DN). Peripheral Arterial Disease is checked by Ankle Brachial Index (ABI), DN is checked by Diabetic Neuropathy Examination (DNE) score. To determine the association of ABI and DNE score in DM type 2. This study uses a cross-sectional design. The subjects were DM patients at the neurology and endocrinology polyclinic at Haji Adam Malik Hospital Medan and its network hospital and this study subjects were examined for ABI and DNE scores. The data were analysed using the Fisher Exact statistics test. Demographics characteristic showed most of subject are female (51,6%), age range ≥ 60 (45.2% ; average 57,6 ± 9,8 years ), and history of DM 5-10 years (45,2%). The most patient ABI characteristics were mild PAD (42%) and moderate PAD (29%). The most patient DNE Score characteristics were≥ 3 (51,6%). There’s a significant relationship between ABI and DNE score in DM type 2 (p =0.016). Conclusion: There is a significant association between ABI and DNE scores in DM type 2 patients <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20neuropathy" title="diabetic neuropathy">diabetic neuropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=ankle-brachial%20index" title=" ankle-brachial index"> ankle-brachial index</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20neuropathy%20examination" title=" diabetic neuropathy examination"> diabetic neuropathy examination</a> </p> <a href="https://publications.waset.org/abstracts/147299/association-of-ankle-brachial-index-with-diabetic-score-neuropathy-examination-in-type-2-diabetes-melitus-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Effect of Nitrogen-Based Cryotherapy on the Calf Muscle Spasticity in Stroke Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Engi%20E.%20I.%20Sarhan">Engi E. I. Sarhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Usama%20M.%20Rashad"> Usama M. Rashad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20I.%20Hamoda"> Ibrahim M. I. Hamoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20K.%20Mohamed"> Mohammed K. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: This study aimed to know the effect of nitrogen-based cryotherapy on the spasticity of calf muscle in stroke patients. Patients were selected from the outpatient clinic of Neurology, Al-Mansoura general hospital, Al-Mansoura University. Subjects and methods: Thirty Stroke Patients of both sexes ranged from 45 to 60 years old were divided randomly into two equal groups, a study group (A) received a nitrogen-based cryotherapy, a selective physical therapy program and ankle foot orthosis (AFO), while as patients in control group (B) received the same program and AFO only. The treatment duration was three times per week for four weeks for both groups. We assessed spasticity of calf muscle before and after treatment subjectively using modified Ashworth scale (MAS) and objectively via measuring H / M ratio on electromyography machine. We also assessed ankle dorsiflexion ROM objectively using two dimensions motion analysis (2D). Results: After treatment, there was a highly significant improvement in the study group compared to the control group regarding the score of MAS, no significant difference in the study group compared to the control group regarding the readings of H / M ratio, highly significant improvement in the study group compared to the control group regarding the 2D motion analysis findings. Conclusion: This modality considers effective in reducing spasticity in the calf muscle and improving ankle dorsiflexion of the affected limb. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20foot%20orthosis" title="ankle foot orthosis">ankle foot orthosis</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen-based%20cryotherapy" title=" nitrogen-based cryotherapy"> nitrogen-based cryotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=spasticity" title=" spasticity"> spasticity</a> </p> <a href="https://publications.waset.org/abstracts/64603/effect-of-nitrogen-based-cryotherapy-on-the-calf-muscle-spasticity-in-stroke-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Investigating the Effects of Two Functional and Extra-Functional Stretching Methods of the Leg Muscles on a Selection of Kinematical and Kinetic Indicators in Women with Ankle Instability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Malhami">Parvin Malhami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study was to investigate the effects of two functional and functional stretching methods of the leg muscles on a selection of kinematical and kinetic indicators among women with ankle instability. Twenty-four persons were targeted and randomly divided into the functional exercise (8 persons), extra-functional exercise (8 persons) and control (8 persons) groups on the basis of inclusion and exclusion criteria. The experimental groups received stretching for eight weeks, 3 sessions each week, and the control group merely performed its daily activities. Then, in order to measure the pre -test and post -test variables, the dorsi flexion, Plantar flexion and ground reaction force were investigated and measured. Data were analyzed using paired T-test and independent T-tests at a significant level of 0.05. All statistical analyses were conducted using SPSS 25 software. The results of the T-test showed the significant effect of eight weeks of functional and Extra functional exercises on dorsi Flexion, Plantar Flexion and ground reaction force. (P≤ 0/001). The results of this study showed that the implementation of the functional and Extra-functional exercise protocol had an impact on the amount of Ankle dorsi Flexion and the Plantar felxion of women with an ankle instability. It was also found that muscle flexibility following the stretch ability of the gastrocnemius muscles facilitates the walking of the wrist installation by affecting the amount of wrist flexion, so these people are recommended to use the functional and extra-functional exercise protocol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20stretching" title="functional stretching">functional stretching</a>, <a href="https://publications.waset.org/abstracts/search?q=extra%20functional%20stretching" title=" extra functional stretching"> extra functional stretching</a>, <a href="https://publications.waset.org/abstracts/search?q=dorsi%20flexion" title=" dorsi flexion"> dorsi flexion</a>, <a href="https://publications.waset.org/abstracts/search?q=plantar%20flexion" title=" plantar flexion"> plantar flexion</a> </p> <a href="https://publications.waset.org/abstracts/171396/investigating-the-effects-of-two-functional-and-extra-functional-stretching-methods-of-the-leg-muscles-on-a-selection-of-kinematical-and-kinetic-indicators-in-women-with-ankle-instability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Improving Diagnostic Accuracy of Ankle Syndesmosis Injuries: A Comparison of Traditional Radiographic Measurements and Computed Tomography-Based Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasar%20Samet%20Gokceoglu">Yasar Samet Gokceoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Nur%20Incesu"> Ayse Nur Incesu</a>, <a href="https://publications.waset.org/abstracts/search?q=Furkan%20Okatar"> Furkan Okatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Berk%20Nimetoglu"> Berk Nimetoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Bayram"> Serkan Bayram</a>, <a href="https://publications.waset.org/abstracts/search?q=Turgut%20Akgul"> Turgut Akgul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ankle syndesmosis injuries pose a significant challenge in orthopedic practice due to their potential for prolonged recovery and chronic ankle dysfunction. Accurate diagnosis and management of these injuries are essential for achieving optimal patient outcomes. The use of radiological methods, such as X-ray, computed tomography (CT), and magnetic resonance imaging (MRI), plays a vital role in the accurate diagnosis of syndesmosis injuries in the context of ankle fractures. Treatment options for ankle syndesmosis injuries vary, with surgical interventions such as screw fixation and suture-button implantation being commonly employed. The choice of treatment is influenced by the severity of the injury and the presence of associated fractures. Additionally, the mechanism of injury, such as pure syndesmosis injury or specific fracture types, can impact the stability and management of syndesmosis injuries. Ankle fractures with syndesmosis injury present a complex clinical scenario, requiring accurate diagnosis, appropriate reduction, and tailored management strategies. The interplay between the mechanism of injury, associated fractures, and treatment modalities significantly influences the outcomes of these challenging injuries. The long-term outcomes and patient satisfaction following ankle fractures with syndesmosis injury are crucial considerations in the field of orthopedics. Patient-reported outcome measures, such as the Foot and Ankle Outcome Score (FAOS), provide essential information about functional recovery and quality of life after these injuries. When diagnosing syndesmosis injuries, standard measurements, such as the medial clear space, tibiofibular overlap, tibiofibular clear space, anterior tibiofibular ratio (ATFR), and the anterior-posterior tibiofibular ratio (APTF), are assessed through radiographs and computed tomography (CT) scans. These parameters are critical in evaluating the presence and severity of syndesmosis injuries, enabling clinicians to choose the most appropriate treatment approach. Despite advancements in diagnostic imaging, challenges remain in accurately diagnosing and treating ankle syndesmosis injuries. Traditional diagnostic parameters, while beneficial, may not capture the full extent of the injury or provide sufficient information to guide therapeutic decisions. This gap highlights the need for exploring additional diagnostic parameters that could enhance the accuracy of syndesmosis injury diagnoses and inform treatment strategies more effectively. The primary goal of this research is to evaluate the usefulness of traditional radiographic measurements in comparison to new CT-based measurements for diagnosing ankle syndesmosis injuries. Specifically, this study aims to assess the accuracy of conventional parameters, including medial clear space, tibiofibular overlap, tibiofibular clear space, ATFR, and APTF, in contrast with the recently proposed CT-based measurements such as the delta and gamma angles. Moreover, the study intends to explore the relationship between these diagnostic parameters and functional outcomes, as measured by the Foot and Ankle Outcome Score (FAOS). Establishing a correlation between specific diagnostic measurements and FAOS scores will enable us to identify the most reliable predictors of functional recovery following syndesmosis injuries. This comparative analysis will provide valuable insights into the accuracy and dependability of CT-based measurements in diagnosing ankle syndesmosis injuries and their potential impact on predicting patient outcomes. The results of this study could greatly influence clinical practices by refining diagnostic criteria and optimizing treatment planning for patients with ankle syndesmosis injuries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20syndesmosis%20injury" title="ankle syndesmosis injury">ankle syndesmosis injury</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20accuracy" title=" diagnostic accuracy"> diagnostic accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=radiographic%20measurements" title=" radiographic measurements"> radiographic measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=Tibiofibular%20syndesmosis%20distance" title=" Tibiofibular syndesmosis distance"> Tibiofibular syndesmosis distance</a> </p> <a href="https://publications.waset.org/abstracts/183462/improving-diagnostic-accuracy-of-ankle-syndesmosis-injuries-a-comparison-of-traditional-radiographic-measurements-and-computed-tomography-based-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> The Effect of Isokinetic Fatigue of Ankle, Knee, and Hip Muscles on the Dynamic Postural Stability Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Shojaei">Masoumeh Shojaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalie%20Gedayloo"> Natalie Gedayloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Sarshin"> Amir Sarshin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study was to investigate the effect of Isokinetic fatigue of muscles around the ankle, knee, and hip on the indicators of dynamic postural stability. Therefore, 15 female university students (age 19.7± 0.6 years old, weight 54.6± 9.4 kg, and height 163.9± 5.6 cm) participated in within-subjects design for 5 different days. In the first session, the postural stability indices (time to stabilization after jump-landing) without fatigue were assessed by force plate and in each next sessions, one of muscle groups of the lower limb including the muscles around ankles, knees, and hip was randomly exhausted by Biodex Isokinetic dynamometer and the indices were assessed immediately after the fatigue of each muscle group. The method involved landing on a force plate from a dynamic state, and transitioning balance into a static state. Results of ANOVA with repeated measures indicated that there was no significant difference between the time to stabilization (TTS) before and after Isokinetic fatigue of the muscles around the ankle, knee and hip in medial – lateral direction (p > 0.05), but in the anterior – posterior (AP) direction, the difference was statistically significant (p < 0.05). Least Significant Difference (LSD) post hoc test results also showed that there was significant difference between TTS in knee and hip muscles before and after isokinetic fatigue in AP direction. In the other hand knee and hip muscles group were affected by isokinetic fatigue only in AP surface (p < 0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20balance" title="dynamic balance">dynamic balance</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20limb%20muscles" title=" lower limb muscles"> lower limb muscles</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20control" title=" postural control"> postural control</a> </p> <a href="https://publications.waset.org/abstracts/72339/the-effect-of-isokinetic-fatigue-of-ankle-knee-and-hip-muscles-on-the-dynamic-postural-stability-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> A Clinical Study on the Versatility of Lateral Supra Malleolar Flap in Lower Limb Wound Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Animesh%20Gupta">Animesh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The purpose of this study is to evaluate the versatility and outcome of lateral supra malleolar flap (LSMF) in soft tissue reconstruction of the regions including the distal leg, ankle, dorsal foot and heel. Methods: From March 2021 to April 2023, 18 patients with soft tissue defects in the regions, including the distal leg, ankle, dorsal foot and heel, who underwent LSMF repair for lower limb wound reconstruction were analyzed. The location, size of the defects, etiology, outcome, complications, and other alternative options were studied and presented. Results: The follow-up period of the cases was 3-6 months after surgery. All flaps were successful; however, one flap was complicated by venous congestion and was managed by loosening a few sutures and the patient was required to elevate the affected limb to resolve the issue. Conclusion: The LSMF has numerous advantages in repairing soft tissue defects in areas involving the ankle, distal leg, heel and dorsum of the foot. In comparison to reverse sural flaps for repairing defects in the heel and lower leg, LSMF offers shorter operation time, shorter hospitalization, lower cost, and fewer postoperative complications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20supra%20malleolar%20flap" title="lateral supra malleolar flap">lateral supra malleolar flap</a>, <a href="https://publications.waset.org/abstracts/search?q=LSMF" title=" LSMF"> LSMF</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20tissue%20reconstruction" title=" soft tissue reconstruction"> soft tissue reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20leg%20defect" title=" lower leg defect"> lower leg defect</a> </p> <a href="https://publications.waset.org/abstracts/170516/a-clinical-study-on-the-versatility-of-lateral-supra-malleolar-flap-in-lower-limb-wound-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Ankle Fracture Management: A Unique Cross Departmental Quality Improvement Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Langhit%20Kurar">Langhit Kurar</a>, <a href="https://publications.waset.org/abstracts/search?q=Loren%20Charles"> Loren Charles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In light of recent BOAST 12 (August 2016) published guidance on management of ankle fractures, the project aimed to highlight key discrepancies throughout the care trajectory from admission to point of discharge at a district general hospital. Wide breadth of data covering three key domains: accident and emergency, radiology, and orthopaedic surgery were subsequently stratified and recommendations on note documentation, and outpatient follow up were made. Methods: A retrospective twelve month audit was conducted reviewing results of ankle fracture management in 37 patients. Inclusion criterion involved all patients seen at Darent Valley Hospital (DVH) emergency department with radiographic evidence of an ankle fracture. Exclusion criterion involved all patients managed solely by nursing staff or having sustained purely ligamentous injury. Medical notes, including discharge summaries and the PACS online radiographic tool were used for data extraction. Results: Cross-examination of the A & E domain revealed limited awareness of the BOAST 12 recent publication including requirements to document skin integrity and neurovascular assessment. This had direct implications as this would have changed the surgical plan for acutely compromised patients. The majority of results obtained from the radiographic domain were satisfactory with appropriate X-rays taken in over 95% of cases. However, due to time pressures within A & E, patients were often left without a post manipulation XRAY in a backslab. Poorly reduced fractures were subsequently left for a long period resulting in swollen ankles and a time-dependent lag to surgical intervention. This had knocked on implications for prolonged inpatient stay resulting in hospital-acquired co-morbidity including pressure sores. Discussion: The audit has highlighted several areas of improvement throughout the disease trajectory from review in the emergency department to follow up as an outpatient. This has prompted the creation of an algorithm to ensure patients with significant fractures presenting to the emergency department are seen promptly and treatment expedited as per recent guidance. This includes timing for X-rays taken in A & E. Re-audit has shown significant improvement in both documentation at time of presentation and appropriate follow-up strategies. Within the orthopedic domain, we are in the process of creating an ankle fracture pathway to ensure imaging and weight bearing status are made clear to the consulting clinicians in an outpatient setting. Significance/Clinical Relevance: As a result of the ankle fracture algorithm we have adapted the BOAST 12 guidance to shape an intrinsic pathway to not only improve patient management within the emergency department but also create a standardised format for follow up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle" title="ankle">ankle</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=BOAST" title=" BOAST"> BOAST</a>, <a href="https://publications.waset.org/abstracts/search?q=radiology" title=" radiology"> radiology</a> </p> <a href="https://publications.waset.org/abstracts/85692/ankle-fracture-management-a-unique-cross-departmental-quality-improvement-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Carotid Intima-Media Thickness and Ankle-Brachial Index as Predictors of the Severity of Coronary Artery Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kassem">Ali Kassem</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Kamal"> Yaser Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdel%20Wahab"> Mohamed Abdel Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hussen"> Mohamed Hussen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Atherosclerosis is one of the leading causes of death all over the world. Recently, there is an increasing interest in Carotid Intima-Medial Thickness (CIMT) and Ankle Brachial Index (ABI) as non-invasive tools for identifying subclinical atherosclerosis. We aim to examine the role of CIMT and ABI as predictors of the severity of angiographically documented coronary artery disease (CAD). Methods: A cross-sectional study conducted on 60 patients who were investigated by coronary angiography at Sohag University Hospital, Egypt. CIMT: After the carotid arteries were located by transverse scans, the probe was rotated 90 ° to obtain and record longitudinal images of bilateral carotid arteries ABI: Each patient was evaluated in the supine position after resting for 5 min. ABI was measured in each leg using a Doppler Ultrasound while the patient remained in the same position. The lowest ABI obtained for either leg was taken as the ABI measurement for the patient. Results: Patients with carotid mean IMT ≥ 0.9 mm had significantly more severe coronary artery disease than patients without thickening (mean IMT > 0.9 mm). Similarly, patients with low ABI (< 0.9) had significantly more severe coronary artery disease than patients with ABI ≥ 0.9. When the patients were divided into 4 groups (group A, n = 15, mean IMT < 0.9 mm, ABI ≥ 0.9; group B, n = 25, mean IMT < 0.9 mm, low ABI; group C, n = 5, mean IMT ≥ 0.9 mm, ABI ≥ 0.9; group D, n = 19, mean IMT ≤ 0.9 mm, low ABI), the presence of significant coronary stenosis (> 50%) of the groups were significantly different (group A, n = 5: (33.3%); group B, n = 11: (52.4%); group C, n = 4: (60%); group D, n=15, (78.9%), P = 0.001). Conclusion: CIMT and ABI provide useful information on the severity of CAD. Early and aggressive intervention should be considered in patients with CAD and abnormalities in one or both of these non-invasive modalities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20brachial%20index" title="ankle brachial index">ankle brachial index</a>, <a href="https://publications.waset.org/abstracts/search?q=carotid%20intima%20media%20thickness" title=" carotid intima media thickness"> carotid intima media thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=coronary%20artery%20disease" title=" coronary artery disease"> coronary artery disease</a>, <a href="https://publications.waset.org/abstracts/search?q=predictors%20of%20severity" title=" predictors of severity"> predictors of severity</a> </p> <a href="https://publications.waset.org/abstracts/94691/carotid-intima-media-thickness-and-ankle-brachial-index-as-predictors-of-the-severity-of-coronary-artery-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Effects of Gender on Kinematics Kicking in Soccer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdolrasoul%20Daneshjoo">Abdolrasoul Daneshjoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soccer is a game which draws more attention in different countries especially in Brazil. Kicking among different skills in soccer and soccer players is an excellent role for the success and preference of a team. The way of point gaining in this game is passing the ball over the goal lines which are gained by shoot skill in attack time and or during the penalty kicks.Regarding the above assumption, identifying the effective factors in instep kicking in different distances shoot with maximum force and high accuracy or pass and penalty kick, may assist the coaches and players in raising qualitative level of performing the skill.The aim of the present study was to study of a few kinematical parameters in instep kicking from 5 and 7 meter distance among the male and female elite soccer players.24 right dominant lower limb subjects (12 males and 12 females) among Tehran elite soccer players with average and the standard deviation (22.5 ± 1.5) & (22.08± 1.31) years, height of (179.5 ± 5.81) & (164.3 ± 4.09) cm, weight of (69.66 ± 4.09) & (53.16 ± 3.51) kg, %BMI (21.06 ± .731) & (19.67 ± .709), having playing history of (4 ± .73) & (3.08 ± .66) years respectively participated in this study. They had at least two years of continuous playing experience in Tehran soccer league.For sampling player's kick; Kinemetrix Motion analysis with three cameras with 1000 Hz was used. Five reflective markers were placed laterally on the kicking leg over anatomical points (the iliac crest, major trochanter, lateral epicondyle of femur, lateral malleolus, and lateral aspect of distal head of the fifth metatarsus). Instep kick was filmed, with one step approach and 30 to 45 degrees angle from stationary ball. Three kicks were filmed, one kick selected for further analyses. Using Kinemetrix 3D motion analysis software, the position of the markers was analyzed. Descriptive statistics were used to describe the mean and standard deviation, while the analysis of variance, and independent t-test (P < 0.05) were used to compare the kinematic parameters between two genders.Among the evaluated parameters, the knee acceleration, the thigh angular velocity, the angle of knee proportionately showed significant relationship with consequence of kick. While company performance on 5m in 2 genders, significant differences were observed in internal – external displacement of toe, ankle, hip and the velocity of toe, ankle and the acceleration of toe and the angular velocity of pelvic, thigh and before time contact . Significant differences showed the internal – external displacement of toe, the ankle, the knee and the hip, the iliac crest and the velocity of toe, the ankle and acceleration of ankle and angular velocity of the pelvic and the knee. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title="biomechanics">biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematics" title=" kinematics"> kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=instep%20kicking" title=" instep kicking"> instep kicking</a>, <a href="https://publications.waset.org/abstracts/search?q=soccer" title=" soccer"> soccer</a> </p> <a href="https://publications.waset.org/abstracts/30267/effects-of-gender-on-kinematics-kicking-in-soccer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ankle&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ankle&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ankle&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ankle&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>