CINXE.COM
Gruppo ortogonale - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="it" dir="ltr"> <head> <meta charset="UTF-8"> <title>Gruppo ortogonale - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )itwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","gennaio","febbraio","marzo","aprile","maggio","giugno","luglio","agosto","settembre","ottobre","novembre","dicembre"],"wgRequestId":"772f4d9f-de69-4bba-9568-5b02377e2ce1","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Gruppo_ortogonale","wgTitle":"Gruppo ortogonale","wgCurRevisionId":142078306,"wgRevisionId":142078306,"wgArticleId":401910,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Voci con modulo citazione e parametro pagina","P2812 letta da Wikidata","P7554 letta da Wikidata","Gruppi di Lie","Teoria dei gruppi"],"wgPageViewLanguage":"it","wgPageContentLanguage":"it","wgPageContentModel":"wikitext","wgRelevantPageName":"Gruppo_ortogonale","wgRelevantArticleId":401910,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"it","pageLanguageDir":"ltr","pageVariantFallbacks":"it"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":4000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1783179","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready", "user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.MainPageWikiList","ext.gadget.stru-commonsupload","ext.gadget.HiddenCat","ext.gadget.ReferenceTooltips","ext.gadget.TitoloErrato","ext.gadget.NewSection","ext.gadget.RichiediRevisioneBozza","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init", "ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=it&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=it&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.6"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Gruppo ortogonale - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//it.m.wikipedia.org/wiki/Gruppo_ortogonale"> <link rel="alternate" type="application/x-wiki" title="Modifica" href="/w/index.php?title=Gruppo_ortogonale&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (it)"> <link rel="EditURI" type="application/rsd+xml" href="//it.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://it.wikipedia.org/wiki/Gruppo_ortogonale"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it"> <link rel="alternate" type="application/atom+xml" title="Feed Atom di Wikipedia" href="/w/index.php?title=Speciale:UltimeModifiche&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Gruppo_ortogonale rootpage-Gruppo_ortogonale skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Vai al contenuto</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principale" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principale</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principale</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">nascondi</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigazione </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Pagina_principale" title="Visita la pagina principale [z]" accesskey="z"><span>Pagina principale</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speciale:UltimeModifiche" title="Elenco delle ultime modifiche del sito [r]" accesskey="r"><span>Ultime modifiche</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speciale:PaginaCasuale" title="Mostra una pagina a caso [x]" accesskey="x"><span>Una voce a caso</span></a></li><li id="n-nearby-pages-title" class="mw-list-item"><a href="/wiki/Speciale:NelleVicinanze"><span>Nelle vicinanze</span></a></li><li id="n-vetrina" class="mw-list-item"><a href="/wiki/Wikipedia:Vetrina"><span>Vetrina</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aiuto:Aiuto" title="Pagine di aiuto"><span>Aiuto</span></a></li><li id="n-Sportello-informazioni" class="mw-list-item"><a href="/wiki/Aiuto:Sportello_informazioni"><span>Sportello informazioni</span></a></li> </ul> </div> </div> <div id="p-Comunità" class="vector-menu mw-portlet mw-portlet-Comunità" > <div class="vector-menu-heading"> Comunità </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Portale:Comunit%C3%A0" title="Descrizione del progetto, cosa puoi fare, dove trovare le cose"><span>Portale Comunità</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:Bar"><span>Bar</span></a></li><li id="n-wikipediano" class="mw-list-item"><a href="/wiki/Wikipedia:Wikipediano"><span>Il Wikipediano</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="/wiki/Wikipedia:Contatti"><span>Contatti</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Pagina_principale" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="L'enciclopedia libera" src="/static/images/mobile/copyright/wikipedia-tagline-it.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speciale:Ricerca" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cerca in Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Ricerca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Cerca in Wikipedia" aria-label="Cerca in Wikipedia" autocapitalize="sentences" title="Cerca in Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciale:Ricerca"> </div> <button class="cdx-button cdx-search-input__end-button">Ricerca</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Strumenti personali"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifica la dimensione, la larghezza e il colore del testo" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspetto" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspetto</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=it.wikipedia.org&uselang=it" class=""><span>Fai una donazione</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:CreaUtenza&returnto=Gruppo+ortogonale" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio" class=""><span>registrati</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:Entra&returnto=Gruppo+ortogonale" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o" class=""><span>entra</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Altre opzioni" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti personali" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Strumenti personali</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utente" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=it.wikipedia.org&uselang=it"><span>Fai una donazione</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:CreaUtenza&returnto=Gruppo+ortogonale" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>registrati</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:Entra&returnto=Gruppo+ortogonale" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>entra</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pagine per utenti anonimi <a href="/wiki/Aiuto:Benvenuto" aria-label="Ulteriori informazioni sulla contribuzione"><span>ulteriori informazioni</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speciale:MieiContributi" title="Un elenco delle modifiche fatte da questo indirizzo IP [y]" accesskey="y"><span>contributi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speciale:MieDiscussioni" title="Discussioni sulle modifiche fatte da questo indirizzo IP [n]" accesskey="n"><span>discussioni</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Indice" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Indice</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">nascondi</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inizio</div> </a> </li> <li id="toc-Definizione" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definizione"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definizione</span> </div> </a> <ul id="toc-Definizione-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proprietà_basilari" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Proprietà_basilari"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Proprietà basilari</span> </div> </a> <ul id="toc-Proprietà_basilari-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Topologia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Topologia"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Topologia</span> </div> </a> <button aria-controls="toc-Topologia-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Attiva/disattiva la sottosezione Topologia</span> </button> <ul id="toc-Topologia-sublist" class="vector-toc-list"> <li id="toc-Dimensioni_basse" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dimensioni_basse"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Dimensioni basse</span> </div> </a> <ul id="toc-Dimensioni_basse-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gruppo_fondamentale" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gruppo_fondamentale"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Gruppo fondamentale</span> </div> </a> <ul id="toc-Gruppo_fondamentale-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Note" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Note"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Note</span> </div> </a> <ul id="toc-Note-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografia"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Bibliografia</span> </div> </a> <ul id="toc-Bibliografia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voci_correlate" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voci_correlate"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Voci correlate</span> </div> </a> <ul id="toc-Voci_correlate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Collegamenti_esterni" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Collegamenti_esterni"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Collegamenti esterni</span> </div> </a> <ul id="toc-Collegamenti_esterni-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Indice" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Mostra/Nascondi l'indice" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Mostra/Nascondi l'indice</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Gruppo ortogonale</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Vai a una voce in un'altra lingua. Disponibile in 20 lingue" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-20" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">20 lingue</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B2%D9%85%D8%B1%D8%A9_%D9%85%D8%AA%D8%B9%D8%A7%D9%85%D8%AF%D8%A9" title="زمرة متعامدة - arabo" lang="ar" hreflang="ar" data-title="زمرة متعامدة" data-language-autonym="العربية" data-language-local-name="arabo" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%90%D1%80%D1%82%D0%B0%D0%B3%D0%B0%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%B3%D1%80%D1%83%D0%BF%D0%B0" title="Артаганальная група - bielorusso" lang="be" hreflang="be" data-title="Артаганальная група" data-language-autonym="Беларуская" data-language-local-name="bielorusso" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Grup_ortogonal" title="Grup ortogonal - catalano" lang="ca" hreflang="ca" data-title="Grup ortogonal" data-language-autonym="Català" data-language-local-name="catalano" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Ortogon%C3%A1ln%C3%AD_grupa" title="Ortogonální grupa - ceco" lang="cs" hreflang="cs" data-title="Ortogonální grupa" data-language-autonym="Čeština" data-language-local-name="ceco" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Orthogonale_Gruppe" title="Orthogonale Gruppe - tedesco" lang="de" hreflang="de" data-title="Orthogonale Gruppe" data-language-autonym="Deutsch" data-language-local-name="tedesco" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Orthogonal_group" title="Orthogonal group - inglese" lang="en" hreflang="en" data-title="Orthogonal group" data-language-autonym="English" data-language-local-name="inglese" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Grupo_ortogonal" title="Grupo ortogonal - spagnolo" lang="es" hreflang="es" data-title="Grupo ortogonal" data-language-autonym="Español" data-language-local-name="spagnolo" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Groupe_orthogonal" title="Groupe orthogonal - francese" lang="fr" hreflang="fr" data-title="Groupe orthogonal" data-language-autonym="Français" data-language-local-name="francese" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gv mw-list-item"><a href="https://gv.wikipedia.org/wiki/Possan_cair-uillinagh" title="Possan cair-uillinagh - mannese" lang="gv" hreflang="gv" data-title="Possan cair-uillinagh" data-language-autonym="Gaelg" data-language-local-name="mannese" class="interlanguage-link-target"><span>Gaelg</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%9B%B4%E4%BA%A4%E7%BE%A4" title="直交群 - giapponese" lang="ja" hreflang="ja" data-title="直交群" data-language-autonym="日本語" data-language-local-name="giapponese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%A7%81%EA%B5%90%EA%B5%B0" title="직교군 - coreano" lang="ko" hreflang="ko" data-title="직교군" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Orthogonale_groep" title="Orthogonale groep - olandese" lang="nl" hreflang="nl" data-title="Orthogonale groep" data-language-autonym="Nederlands" data-language-local-name="olandese" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Grupo_ortogonal" title="Grupo ortogonal - portoghese" lang="pt" hreflang="pt" data-title="Grupo ortogonal" data-language-autonym="Português" data-language-local-name="portoghese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Grup_ortogonal" title="Grup ortogonal - rumeno" lang="ro" hreflang="ro" data-title="Grup ortogonal" data-language-autonym="Română" data-language-local-name="rumeno" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9E%D1%80%D1%82%D0%BE%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%B3%D1%80%D1%83%D0%BF%D0%BF%D0%B0" title="Ортогональная группа - russo" lang="ru" hreflang="ru" data-title="Ортогональная группа" data-language-autonym="Русский" data-language-local-name="russo" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ortogonalgrupp" title="Ortogonalgrupp - svedese" lang="sv" hreflang="sv" data-title="Ortogonalgrupp" data-language-autonym="Svenska" data-language-local-name="svedese" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AF%86%E0%AE%99%E0%AF%8D%E0%AE%95%E0%AF%81%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AF%81%E0%AE%95%E0%AF%8D_%E0%AE%95%E0%AF%81%E0%AE%B2%E0%AE%AE%E0%AF%8D" title="செங்குத்துக் குலம் - tamil" lang="ta" hreflang="ta" data-title="செங்குத்துக் குலம்" data-language-autonym="தமிழ்" data-language-local-name="tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9E%D1%80%D1%82%D0%BE%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0_%D0%B3%D1%80%D1%83%D0%BF%D0%B0" title="Ортогональна група - ucraino" lang="uk" hreflang="uk" data-title="Ортогональна група" data-language-autonym="Українська" data-language-local-name="ucraino" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Nh%C3%B3m_tr%E1%BB%B1c_giao" title="Nhóm trực giao - vietnamita" lang="vi" hreflang="vi" data-title="Nhóm trực giao" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamita" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%AD%A3%E4%BA%A4%E7%BE%A4" title="正交群 - cinese" lang="zh" hreflang="zh" data-title="正交群" data-language-autonym="中文" data-language-local-name="cinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1783179#sitelinks-wikipedia" title="Modifica collegamenti interlinguistici" class="wbc-editpage">Modifica collegamenti</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespace"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Gruppo_ortogonale" title="Vedi la voce [c]" accesskey="c"><span>Voce</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussione:Gruppo_ortogonale" rel="discussion" title="Vedi le discussioni relative a questa pagina [t]" accesskey="t"><span>Discussione</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambia versione linguistica" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">italiano</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visite"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Gruppo_ortogonale"><span>Leggi</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Gruppo_ortogonale&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Gruppo_ortogonale&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Gruppo_ortogonale&action=history" title="Versioni precedenti di questa pagina [h]" accesskey="h"><span>Cronologia</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Strumenti</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Strumenti</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">nascondi</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Altre opzioni" > <div class="vector-menu-heading"> Azioni </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Gruppo_ortogonale"><span>Leggi</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Gruppo_ortogonale&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Gruppo_ortogonale&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Gruppo_ortogonale&action=history"><span>Cronologia</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Generale </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speciale:PuntanoQui/Gruppo_ortogonale" title="Elenco di tutte le pagine che sono collegate a questa [j]" accesskey="j"><span>Puntano qui</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speciale:ModificheCorrelate/Gruppo_ortogonale" rel="nofollow" title="Elenco delle ultime modifiche alle pagine collegate a questa [k]" accesskey="k"><span>Modifiche correlate</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speciale:PagineSpeciali" title="Elenco di tutte le pagine speciali [q]" accesskey="q"><span>Pagine speciali</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Gruppo_ortogonale&oldid=142078306" title="Collegamento permanente a questa versione di questa pagina"><span>Link permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Gruppo_ortogonale&action=info" title="Ulteriori informazioni su questa pagina"><span>Informazioni pagina</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speciale:Cita&page=Gruppo_ortogonale&id=142078306&wpFormIdentifier=titleform" title="Informazioni su come citare questa pagina"><span>Cita questa voce</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speciale:UrlQ%C4%B1sald%C4%B1c%C4%B1s%C4%B1&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FGruppo_ortogonale"><span>Ottieni URL breve</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speciale:QrKodu&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FGruppo_ortogonale"><span>Scarica codice QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Stampa/esporta </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speciale:Libro&bookcmd=book_creator&referer=Gruppo+ortogonale"><span>Crea un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speciale:DownloadAsPdf&page=Gruppo_ortogonale&action=show-download-screen"><span>Scarica come PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Gruppo_ortogonale&printable=yes" title="Versione stampabile di questa pagina [p]" accesskey="p"><span>Versione stampabile</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In altri progetti </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1783179" title="Collegamento all'elemento connesso dell'archivio dati [g]" accesskey="g"><span>Elemento Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspetto</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">nascondi</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Da Wikipedia, l'enciclopedia libera.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="it" dir="ltr"><p>In <a href="/wiki/Matematica" title="Matematica">matematica</a>, il <b>gruppo ortogonale</b> di grado <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> su un <a href="/wiki/Campo_(matematica)" title="Campo (matematica)">campo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> è il gruppo delle <a href="/wiki/Matrice_ortogonale" title="Matrice ortogonale">matrici ortogonali</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span> a valori in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>. Si indica con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {O} (n,K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {O} (n,K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc16d0ff893530ff3e3cb30d6a35686f6b8eb072" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.112ex; height:2.843ex;" alt="{\displaystyle \mathrm {O} (n,K)}"></span> o, se il campo è chiaro dal contesto, semplicemente con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {O} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {O} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1471779b64c8868583dcd50e3c6381293f0dd67f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.012ex; height:2.843ex;" alt="{\displaystyle \mathrm {O} (n)}"></span>. </p><p>Quando <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> è il campo dei <a href="/wiki/Numeri_reali" class="mw-redirect" title="Numeri reali">numeri reali</a>, il gruppo può essere interpretato come il gruppo delle <a href="/wiki/Isometria" title="Isometria">isometrie</a> dello <a href="/wiki/Spazio_euclideo" title="Spazio euclideo">spazio euclideo</a> di <a href="/wiki/Dimensione_(spazio_vettoriale)" title="Dimensione (spazio vettoriale)">dimensione</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e59df02a9f67a5da3c220f1244c99a46cc4eb1c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:1.676ex;" alt="{\displaystyle n.}"></span> Le matrici aventi <a href="/wiki/Determinante_(algebra)" title="Determinante (algebra)">determinante</a> uguale a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d04cf05c67d41d9f39dabf6a90722ce860a76958" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle +1}"></span> formano un <a href="/wiki/Sottogruppo" title="Sottogruppo">sottogruppo</a>, che si indica con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SO} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {SO} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fa71842f19b6810b4bfa9eb282e92fbf285094e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.305ex; height:2.843ex;" alt="{\displaystyle \mathrm {SO} (n)}"></span>, detto <b>gruppo ortogonale speciale</b>. Il gruppo ortogonale speciale è il gruppo delle <a href="/wiki/Rotazione_(matematica)" title="Rotazione (matematica)">rotazioni</a> dello spazio. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definizione">Definizione</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gruppo_ortogonale&veaction=edit&section=1" title="Modifica la sezione Definizione" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Gruppo_ortogonale&action=edit&section=1" title="Edit section's source code: Definizione"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Il gruppo ortogonale è un sottogruppo del <a href="/wiki/Gruppo_generale_lineare" title="Gruppo generale lineare">gruppo generale lineare</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {GL} (n,K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">G</mi> <mi mathvariant="normal">L</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {GL} (n,K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19dd1d99f5551a5d11bde5049faf4a7fa4cbad7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.581ex; height:2.843ex;" alt="{\displaystyle \mathrm {GL} (n,K)}"></span> di tutte le <a href="/wiki/Matrice_invertibile" title="Matrice invertibile">matrici invertibili</a>, definito come segue: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{Q\in \mathrm {GL} (n,K)\ |\ Q^{T}Q=QQ^{T}=I\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>Q</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">G</mi> <mi mathvariant="normal">L</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext> </mtext> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mi>Q</mi> <mo>=</mo> <mi>Q</mi> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{Q\in \mathrm {GL} (n,K)\ |\ Q^{T}Q=QQ^{T}=I\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/349188f0ffc411e5dc0ccc2beb9991dc198bfc75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.54ex; height:3.176ex;" alt="{\displaystyle \{Q\in \mathrm {GL} (n,K)\ |\ Q^{T}Q=QQ^{T}=I\}.}"></span></dd></dl> <p>In altre parole, è il sottogruppo formato da tutte le <a href="/wiki/Matrice_ortogonale" title="Matrice ortogonale">matrici ortogonali</a><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup>. </p><p>Quando il campo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> non è menzionato, si sottintende che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> è il campo dei <a href="/wiki/Numeri_reali" class="mw-redirect" title="Numeri reali">numeri reali</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>. In questa voce, parleremo soltanto del caso <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=\mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=\mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6419d3aa99701ca996737b17a5e1174d53e6c9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.842ex; height:2.176ex;" alt="{\displaystyle K=\mathbb {R} }"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Proprietà_basilari"><span id="Propriet.C3.A0_basilari"></span>Proprietà basilari</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gruppo_ortogonale&veaction=edit&section=2" title="Modifica la sezione Proprietà basilari" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Gruppo_ortogonale&action=edit&section=2" title="Edit section's source code: Proprietà basilari"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Una matrice ortogonale ha determinante <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d04cf05c67d41d9f39dabf6a90722ce860a76958" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle +1}"></span> oppure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c1ae9e73ea72a95921a7fbeba221311687f1367" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.617ex; height:2.343ex;" alt="{\displaystyle -1.}"></span> Il sottoinsieme di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {O} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {O} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1471779b64c8868583dcd50e3c6381293f0dd67f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.012ex; height:2.843ex;" alt="{\displaystyle \mathrm {O} (n)}"></span> formato da tutte le matrici con determinante <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d04cf05c67d41d9f39dabf6a90722ce860a76958" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle +1}"></span> è a sua volta un sottogruppo, detto <b>gruppo ortogonale speciale</b>. Viene indicato con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SO} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {SO} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fa71842f19b6810b4bfa9eb282e92fbf285094e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.305ex; height:2.843ex;" alt="{\displaystyle \mathrm {SO} (n)}"></span>. Gli elementi di questo gruppo sono <a href="/wiki/Rotazione_(matematica)" title="Rotazione (matematica)">rotazioni</a>. </p><p>Il gruppo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {O} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {O} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1471779b64c8868583dcd50e3c6381293f0dd67f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.012ex; height:2.843ex;" alt="{\displaystyle \mathrm {O} (n)}"></span> è il gruppo delle <a href="/wiki/Isometria" title="Isometria">isometrie</a> della <a href="/wiki/Sfera" title="Sfera">sfera</a> di dimensione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6abe7e8ef775e730e29e170abf3f83a604df2ec6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.044ex; height:2.343ex;" alt="{\displaystyle n-1.}"></span> Il sottogruppo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SO} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {SO} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fa71842f19b6810b4bfa9eb282e92fbf285094e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.305ex; height:2.843ex;" alt="{\displaystyle \mathrm {SO} (n)}"></span> è dato da tutte le isometrie che preservano l'<a href="/wiki/Orientazione" title="Orientazione">orientazione</a> della sfera. </p> <div class="mw-heading mw-heading2"><h2 id="Topologia">Topologia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gruppo_ortogonale&veaction=edit&section=3" title="Modifica la sezione Topologia" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Gruppo_ortogonale&action=edit&section=3" title="Edit section's source code: Topologia"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Il gruppo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {O} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {O} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1471779b64c8868583dcd50e3c6381293f0dd67f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.012ex; height:2.843ex;" alt="{\displaystyle \mathrm {O} (n)}"></span> è una <a href="/wiki/Variet%C3%A0_differenziabile" title="Varietà differenziabile">varietà differenziabile</a>, e assieme alla sua struttura di gruppo forma un <a href="/wiki/Gruppo_di_Lie" title="Gruppo di Lie">gruppo di Lie</a> <a href="/wiki/Spazio_compatto" title="Spazio compatto">compatto</a>. Non è <a href="/wiki/Spazio_connesso" title="Spazio connesso">connesso</a>: ha infatti due componenti connesse, una delle quali è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SO} (n).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {SO} (n).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf5c13ba1e2ca87e62d9cb93f0642a300cd740a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.952ex; height:2.843ex;" alt="{\displaystyle \mathrm {SO} (n).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Dimensioni_basse">Dimensioni basse</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gruppo_ortogonale&veaction=edit&section=4" title="Modifica la sezione Dimensioni basse" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Gruppo_ortogonale&action=edit&section=4" title="Edit section's source code: Dimensioni basse"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=1}"></span>, il gruppo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {O} (1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {O} (1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f82f4d36c2b414286a6e8a9b15a9605e3e675b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.78ex; height:2.843ex;" alt="{\displaystyle \mathrm {O} (1)}"></span> consta di due elementi, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c1ae9e73ea72a95921a7fbeba221311687f1367" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.617ex; height:2.343ex;" alt="{\displaystyle -1.}"></span></li> <li>Per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a02c8bd752d2cc859747ca1f3a508281bdbc3b34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=2}"></span>, il gruppo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SO} (2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {SO} (2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f580f01b0e7df995ae24684960f9f4b3487ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.072ex; height:2.843ex;" alt="{\displaystyle \mathrm {SO} (2)}"></span> è <a href="/wiki/Isomorfismo" title="Isomorfismo">isomorfo</a> al <a href="/wiki/Gruppo_quoziente" title="Gruppo quoziente">gruppo quoziente</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} /\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} /\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f62160dc28538c41d74ffcfbca4a7b3c68693880" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.391ex; height:2.843ex;" alt="{\displaystyle \mathbb {R} /\mathbb {Z} }"></span> dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> è l'insieme dei numeri reali e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> il sottogruppo dei <a href="/wiki/Numeri_interi" class="mw-redirect" title="Numeri interi">numeri interi</a>. Questo gruppo è solitamente indicato con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60796c8d0c03cf575637d3202463b214d9635880" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.576ex; height:2.676ex;" alt="{\displaystyle S^{1}}"></span>, e topologicamente è una <a href="/wiki/Circonferenza" title="Circonferenza">circonferenza</a>.</li> <li>Per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c5a5a42ced00df920fad4ab2d4acdb960a4105b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=3}"></span>, il gruppo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SO} (3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {SO} (3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8366fc6e92660ba077b87b745b305a4176b1d1ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.072ex; height:2.843ex;" alt="{\displaystyle \mathrm {SO} (3)}"></span> è <a href="/wiki/Omeomorfo" class="mw-redirect" title="Omeomorfo">omeomorfo</a> allo <a href="/wiki/Spazio_proiettivo" title="Spazio proiettivo">spazio proiettivo</a> reale di dimensione 3, che si indica solitamente come <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {P} ^{3}(\mathbb {R} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {P} ^{3}(\mathbb {R} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f5ea9bdc7df9ead8e852c208b16ebdbb1a8f5ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.609ex; height:3.176ex;" alt="{\displaystyle \mathbb {P} ^{3}(\mathbb {R} ).}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Gruppo_fondamentale">Gruppo fondamentale</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gruppo_ortogonale&veaction=edit&section=5" title="Modifica la sezione Gruppo fondamentale" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Gruppo_ortogonale&action=edit&section=5" title="Edit section's source code: Gruppo fondamentale"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Il <a href="/wiki/Gruppo_fondamentale" title="Gruppo fondamentale">gruppo fondamentale</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SO} (2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {SO} (2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f580f01b0e7df995ae24684960f9f4b3487ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.072ex; height:2.843ex;" alt="{\displaystyle \mathrm {SO} (2)}"></span> è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3aa4cb112cbe4f94a3ff8569f869c31dce5fce4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.197ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} ,}"></span> il gruppo dei <a href="/wiki/Numeri_interi" class="mw-redirect" title="Numeri interi">numeri interi</a>. Per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n>2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n>2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44e71ac55b9fbf1e9f341b946cda63d61d3ef2cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n>2}"></span> il <a href="/wiki/Gruppo_fondamentale" title="Gruppo fondamentale">gruppo fondamentale</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SO} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {SO} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fa71842f19b6810b4bfa9eb282e92fbf285094e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.305ex; height:2.843ex;" alt="{\displaystyle \mathrm {SO} (n)}"></span> è invece <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /2\mathbb {Z} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /2\mathbb {Z} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49b068d1b3377be64785a60d11d0f135fe529631" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.072ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /2\mathbb {Z} ,}"></span> il <a href="/wiki/Gruppo_ciclico" title="Gruppo ciclico">gruppo ciclico</a> con due elementi. Ha quindi un <a href="/wiki/Rivestimento_universale" class="mw-redirect" title="Rivestimento universale">rivestimento universale</a> compatto, che viene indicato con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Spin} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Spin} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/715ebb906dd12ecfd51f9767398fdf9ed0d3cc7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.728ex; height:2.843ex;" alt="{\displaystyle \mathrm {Spin} (n)}"></span>, e che risulta anch'esso essere un gruppo di Lie. Il gruppo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Spin} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Spin} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/715ebb906dd12ecfd51f9767398fdf9ed0d3cc7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.728ex; height:2.843ex;" alt="{\displaystyle \mathrm {Spin} (n)}"></span> è chiamato <i>gruppo Spin</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Note">Note</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gruppo_ortogonale&veaction=edit&section=6" title="Modifica la sezione Note" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Gruppo_ortogonale&action=edit&section=6" title="Edit section's source code: Note"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><a href="#cite_ref-1"><b>^</b></a> <span class="reference-text"><cite class="citation libro" style="font-style:normal"> Edoardo Sernesi, <span style="font-style:italic;">Geometria 2</span>, 1ª ed., Torino, Bollati Boringhieri, 1994, p. 58, <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Speciale:RicercaISBN/88-339-5548-6" title="Speciale:RicercaISBN/88-339-5548-6">88-339-5548-6</a>.</cite></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliografia">Bibliografia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gruppo_ortogonale&veaction=edit&section=7" title="Modifica la sezione Bibliografia" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Gruppo_ortogonale&action=edit&section=7" title="Edit section's source code: Bibliografia"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite id="CITEREFknapp" class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Anthony Knapp, <span style="font-style:italic;">Lie Groups Beyond an Introduction</span>, Second Edition, Progress in Mathematics, vol. 140, Boston, Birkhäuser, 2002, <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Speciale:RicercaISBN/0-8176-4259-5" title="Speciale:RicercaISBN/0-8176-4259-5">0-8176-4259-5</a>.</cite></li> <li><cite class="citation libro" style="font-style:normal"> Edoardo Sernesi, <span style="font-style:italic;">Geometria 2</span>, 1ª ed., Torino, Bollati Boringhieri, 1994, <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Speciale:RicercaISBN/88-339-5548-6" title="Speciale:RicercaISBN/88-339-5548-6">88-339-5548-6</a>.</cite></li></ul> <div class="mw-heading mw-heading2"><h2 id="Voci_correlate">Voci correlate</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gruppo_ortogonale&veaction=edit&section=8" title="Modifica la sezione Voci correlate" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Gruppo_ortogonale&action=edit&section=8" title="Edit section's source code: Voci correlate"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Matrice_ortogonale" title="Matrice ortogonale">Matrice ortogonale</a></li> <li><a href="/wiki/Trasformazione_ortogonale" title="Trasformazione ortogonale">Trasformazione ortogonale</a></li> <li><a href="/wiki/Rotazione_(matematica)" title="Rotazione (matematica)">Rotazione (matematica)</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Collegamenti_esterni">Collegamenti esterni</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Gruppo_ortogonale&veaction=edit&section=9" title="Modifica la sezione Collegamenti esterni" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Gruppo_ortogonale&action=edit&section=9" title="Edit section's source code: Collegamenti esterni"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li class="mw-empty-elt"></li> <li><cite id="CITEREFMathWorld" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Eric W. Weisstein, <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/OrthogonalGroup.html"><span style="font-style:italic;">Orthogonal Group</span></a>, su <span style="font-style:italic;"><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></span>, Wolfram Research.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q1783179#P2812" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFSpringerEOM" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Orthogonal_group"><span style="font-style:italic;">Orthogonal group</span></a>, su <span style="font-style:italic;"><a href="/wiki/Encyclopaedia_of_Mathematics" title="Encyclopaedia of Mathematics">Encyclopaedia of Mathematics</a></span>, Springer e European Mathematical Society.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q1783179#P7554" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r141815314">.mw-parser-output .navbox{border:1px solid #aaa;clear:both;margin:auto;padding:2px;width:100%}.mw-parser-output .navbox th{padding-left:1em;padding-right:1em;text-align:center}.mw-parser-output .navbox>tbody>tr:first-child>th{background:#ccf;font-size:90%;width:100%;color:var(--color-base,black)}.mw-parser-output .navbox_navbar{float:left;margin:0;padding:0 10px 0 0;text-align:left;width:6em}.mw-parser-output .navbox_title{font-size:110%}.mw-parser-output .navbox_abovebelow{background:#ddf;font-size:90%;font-weight:normal}.mw-parser-output .navbox_group{background:#ddf;font-size:90%;padding:0 10px;white-space:nowrap}.mw-parser-output .navbox_list{font-size:90%;width:100%}.mw-parser-output .navbox_list a{white-space:nowrap}html:not(.vector-feature-night-mode-enabled) .mw-parser-output .navbox_odd{background:#fdfdfd;color:var(--color-base,black)}html:not(.vector-feature-night-mode-enabled) .mw-parser-output .navbox_even{background:#f7f7f7;color:var(--color-base,black)}.mw-parser-output .navbox a.mw-selflink{color:var(--color-base,black)}.mw-parser-output .navbox_center{text-align:center}.mw-parser-output .navbox .navbox_image{padding-left:7px;vertical-align:middle;width:0}.mw-parser-output .navbox+.navbox{margin-top:-1px}.mw-parser-output .navbox .mw-collapsible-toggle{font-weight:normal;text-align:right;width:7em}body.skin--responsive .mw-parser-output .navbox_image img{max-width:none!important}.mw-parser-output .subnavbox{margin:-3px;width:100%}.mw-parser-output .subnavbox_group{background:#e6e6ff;padding:0 10px}@media screen{html.skin-theme-clientpref-night .mw-parser-output .navbox>tbody>tr:first-child>th{background:var(--background-color-interactive)!important}html.skin-theme-clientpref-night .mw-parser-output .navbox th{color:var(--color-base)!important}html.skin-theme-clientpref-night .mw-parser-output .navbox_abovebelow,html.skin-theme-clientpref-night .mw-parser-output .navbox_group{background:var(--background-color-interactive-subtle)!important}html.skin-theme-clientpref-night .mw-parser-output .subnavbox_group{background:var(--background-color-neutral-subtle)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbox>tbody>tr:first-child>th{background:var(--background-color-interactive)!important}html.skin-theme-clientpref-os .mw-parser-output .navbox th{color:var(--color-base)!important}html.skin-theme-clientpref-os .mw-parser-output .navbox_abovebelow,html.skin-theme-clientpref-os .mw-parser-output .navbox_group{background:var(--background-color-interactive-subtle)!important}html.skin-theme-clientpref-os .mw-parser-output .subnavbox_group{background:var(--background-color-neutral-subtle)!important}}</style><table class="navbox mw-collapsible mw-collapsed noprint metadata" id="navbox-Algebra"><tbody><tr><th colspan="3" style="background:#ffc0cb;"><div class="navbox_navbar"><div class="noprint plainlinks" style="background-color:transparent; padding:0; font-size:xx-small; color:var(--color-base, #000000); white-space:nowrap;"><a href="/wiki/Template:Algebra" title="Template:Algebra"><span title="Vai alla pagina del template">V</span></a> · <a href="/w/index.php?title=Discussioni_template:Algebra&action=edit&redlink=1" class="new" title="Discussioni template:Algebra (la pagina non esiste)"><span title="Discuti del template">D</span></a> · <a class="external text" href="https://it.wikipedia.org/w/index.php?title=Template:Algebra&action=edit"><span title="Modifica il template. Usa l'anteprima prima di salvare">M</span></a></div></div><span class="navbox_title"><a href="/wiki/Algebra" title="Algebra">Algebra</a></span></th></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Numero" title="Numero">Numeri</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><a href="/wiki/Numero_naturale" title="Numero naturale">Naturali</a><b> ·</b> <a href="/wiki/Numero_intero" title="Numero intero">Interi</a><b> ·</b> <a href="/wiki/Numero_razionale" title="Numero razionale">Razionali</a><b> ·</b> <a href="/wiki/Numero_irrazionale" title="Numero irrazionale">Irrazionali</a><b> ·</b> <a href="/wiki/Numero_algebrico" title="Numero algebrico">Algebrici</a><b> ·</b> <a href="/wiki/Numero_trascendente" title="Numero trascendente">Trascendenti</a><b> ·</b> <a href="/wiki/Numero_reale" title="Numero reale">Reali</a><b> ·</b> <a href="/wiki/Numero_complesso" title="Numero complesso">Complessi</a><b> ·</b> <a href="/wiki/Numero_ipercomplesso" title="Numero ipercomplesso">Numero ipercomplesso</a><b> ·</b> <a href="/wiki/Numero_p-adico" title="Numero p-adico">Numero p-adico</a><b> ·</b> <a href="/wiki/Numero_duale" title="Numero duale">Duali</a><b> ·</b> <a href="/wiki/Numero_complesso_iperbolico" title="Numero complesso iperbolico">Complessi iperbolici</a></td><td rowspan="10" class="navbox_image"><figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics-p.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/58px-Nuvola_apps_edu_mathematics-p.svg.png" decoding="async" width="58" height="58" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/87px-Nuvola_apps_edu_mathematics-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/116px-Nuvola_apps_edu_mathematics-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a><figcaption></figcaption></figure></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">Principi fondamentali</th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><a href="/wiki/Principio_d%27induzione" title="Principio d'induzione">Principio d'induzione</a><b> ·</b> <a href="/wiki/Principio_del_buon_ordinamento" title="Principio del buon ordinamento">Principio del buon ordinamento</a><b> ·</b> <a href="/wiki/Relazione_di_equivalenza" title="Relazione di equivalenza">Relazione di equivalenza</a><b> ·</b> <a href="/wiki/Relazione_d%27ordine" title="Relazione d'ordine">Relazione d'ordine</a><b> ·</b> <a href="/wiki/Associativit%C3%A0_della_potenza" title="Associatività della potenza">Associatività della potenza</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Algebra_elementare" title="Algebra elementare">Algebra elementare</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><a href="/wiki/Equazione" title="Equazione">Equazione</a><b> ·</b> <a href="/wiki/Disequazione" title="Disequazione">Disequazione</a><b> ·</b> <a href="/wiki/Polinomio" title="Polinomio">Polinomio</a><b> ·</b> <a href="/wiki/Triangolo_di_Tartaglia" title="Triangolo di Tartaglia">Triangolo di Tartaglia</a><b> ·</b> <a href="/wiki/Teorema_binomiale" title="Teorema binomiale">Teorema binomiale</a><b> ·</b> <a href="/wiki/Teorema_del_resto" title="Teorema del resto">Teorema del resto</a><b> ·</b> <a href="/wiki/Lemma_di_Gauss_(polinomi)" title="Lemma di Gauss (polinomi)">Lemma di Gauss</a><b> ·</b> <a href="/wiki/Teorema_delle_radici_razionali" title="Teorema delle radici razionali">Teorema delle radici razionali</a><b> ·</b> <a href="/wiki/Regola_di_Ruffini" title="Regola di Ruffini">Regola di Ruffini</a><b> ·</b> <a href="/wiki/Criterio_di_Eisenstein" title="Criterio di Eisenstein">Criterio di Eisenstein</a><b> ·</b> <a href="/wiki/Criterio_di_Cartesio" title="Criterio di Cartesio">Criterio di Cartesio</a><b> ·</b> <a href="/wiki/Disequazione_con_il_valore_assoluto" title="Disequazione con il valore assoluto">Disequazione con il valore assoluto</a><b> ·</b> <a href="/wiki/Segno_(matematica)" title="Segno (matematica)">Segno</a><b> ·</b> <a href="/wiki/Metodo_di_Gauss-Seidel" title="Metodo di Gauss-Seidel">Metodo di Gauss-Seidel</a><b> ·</b> <a href="/wiki/Polinomio_simmetrico" title="Polinomio simmetrico">Polinomio simmetrico</a><b> ·</b> <a href="/wiki/Funzione_simmetrica" title="Funzione simmetrica">Funzione simmetrica</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">Elementi di <a href="/wiki/Calcolo_combinatorio" title="Calcolo combinatorio">Calcolo combinatorio</a></th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><a href="/wiki/Fattoriale" title="Fattoriale">Fattoriale</a><b> ·</b> <a href="/wiki/Permutazione" title="Permutazione">Permutazione</a><b> ·</b> <a href="/wiki/Disposizione" title="Disposizione">Disposizione</a><b> ·</b> <a href="/wiki/Combinazione" title="Combinazione">Combinazione</a><b> ·</b> <a href="/wiki/Dismutazione_(matematica)" title="Dismutazione (matematica)">Dismutazione</a><b> ·</b> <a href="/wiki/Principio_di_inclusione-esclusione" title="Principio di inclusione-esclusione">Principio di inclusione-esclusione</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">Concetti fondamentali di <a href="/wiki/Teoria_dei_numeri" title="Teoria dei numeri">Teoria dei numeri</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><table class="subnavbox"><tbody><tr><th class="subnavbox_group">Primi</th><td colspan="1"><a href="/wiki/Numero_primo" title="Numero primo">Numero primo</a><b> ·</b> <a href="/wiki/Teorema_dell%27infinit%C3%A0_dei_numeri_primi" title="Teorema dell'infinità dei numeri primi">Teorema dell'infinità dei numeri primi</a><b> ·</b> <a href="/wiki/Crivello_di_Eratostene" title="Crivello di Eratostene">Crivello di Eratostene</a><b> ·</b> <a href="/wiki/Crivello_di_Atkin" title="Crivello di Atkin">Crivello di Atkin</a><b> ·</b> <a href="/wiki/Test_di_primalit%C3%A0" title="Test di primalità">Test di primalità</a><b> ·</b> <a href="/wiki/Teorema_fondamentale_dell%27aritmetica" title="Teorema fondamentale dell'aritmetica">Teorema fondamentale dell'aritmetica</a></td></tr><tr><th class="subnavbox_group">Divisori</th><td colspan="1"><a href="/wiki/Interi_coprimi" title="Interi coprimi">Interi coprimi</a><b> ·</b> <a href="/wiki/Identit%C3%A0_di_B%C3%A9zout" title="Identità di Bézout">Identità di Bézout</a><b> ·</b> <a href="/wiki/Massimo_comun_divisore" title="Massimo comun divisore">MCD</a><b> ·</b> <a href="/wiki/Minimo_comune_multiplo" title="Minimo comune multiplo">mcm</a><b> ·</b> <a href="/wiki/Algoritmo_di_Euclide" title="Algoritmo di Euclide">Algoritmo di Euclide</a><b> ·</b> <a href="/wiki/Algoritmo_esteso_di_Euclide" title="Algoritmo esteso di Euclide">Algoritmo esteso di Euclide</a><b> ·</b> <a href="/wiki/Criteri_di_divisibilit%C3%A0" title="Criteri di divisibilità">Criteri di divisibilità</a><b> ·</b> <a href="/wiki/Divisore" title="Divisore">Divisore</a></td></tr><tr><th class="subnavbox_group"><a href="/wiki/Aritmetica_modulare" title="Aritmetica modulare">Aritmetica modulare</a></th><td colspan="1"><a href="/wiki/Teorema_cinese_del_resto" title="Teorema cinese del resto">Teorema cinese del resto</a><b> ·</b> <a href="/wiki/Piccolo_teorema_di_Fermat" title="Piccolo teorema di Fermat">Piccolo teorema di Fermat</a><b> ·</b> <a href="/wiki/Teorema_di_Eulero_(aritmetica_modulare)" title="Teorema di Eulero (aritmetica modulare)">Teorema di Eulero</a><b> ·</b> <a href="/wiki/Funzione_%CF%86_di_Eulero" title="Funzione φ di Eulero">Funzione φ di Eulero</a><b> ·</b> <a href="/wiki/Teorema_di_Wilson" title="Teorema di Wilson">Teorema di Wilson</a><b> ·</b> <a href="/wiki/Reciprocit%C3%A0_quadratica" title="Reciprocità quadratica">Reciprocità quadratica</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Teoria_dei_gruppi" title="Teoria dei gruppi">Teoria dei gruppi</a></th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><table class="subnavbox"><tbody><tr><th class="subnavbox_group">Gruppi</th><td colspan="1"><a href="/wiki/Gruppo_(matematica)" title="Gruppo (matematica)">Gruppo</a> (<a href="/wiki/Gruppo_finito" title="Gruppo finito">finito</a><b> ·</b> <a href="/wiki/Gruppo_ciclico" title="Gruppo ciclico">ciclico</a><b> ·</b> <a href="/wiki/Gruppo_abeliano" title="Gruppo abeliano">abeliano</a>)<b> ·</b> <a href="/wiki/Gruppo_primario" title="Gruppo primario">Gruppo primario</a><b> ·</b> <a href="/wiki/Gruppo_quoziente" title="Gruppo quoziente">Gruppo quoziente</a><b> ·</b> <a href="/wiki/Gruppo_nilpotente" title="Gruppo nilpotente">Gruppo nilpotente</a><b> ·</b> <a href="/wiki/Gruppo_risolubile" title="Gruppo risolubile">Gruppo risolubile</a><b> ·</b> <a href="/wiki/Gruppo_simmetrico" title="Gruppo simmetrico">Gruppo simmetrico</a><b> ·</b> <a href="/wiki/Gruppo_diedrale" title="Gruppo diedrale">Gruppo diedrale</a><b> ·</b> <a href="/wiki/Gruppo_semplice" title="Gruppo semplice">Gruppo semplice</a><b> ·</b> <a href="/wiki/Gruppo_sporadico" title="Gruppo sporadico">Gruppo sporadico</a><b> ·</b> <a href="/wiki/Gruppo_mostro" title="Gruppo mostro">Gruppo mostro</a><b> ·</b> <a href="/wiki/Gruppo_di_Klein" title="Gruppo di Klein">Gruppo di Klein</a><b> ·</b> <a href="/wiki/Gruppo_dei_quaternioni" title="Gruppo dei quaternioni">Gruppo dei quaternioni</a><b> ·</b> <a href="/wiki/Gruppo_generale_lineare" title="Gruppo generale lineare">Gruppo generale lineare</a><b> ·</b> <a class="mw-selflink selflink">Gruppo ortogonale</a><b> ·</b> <a href="/wiki/Gruppo_unitario" title="Gruppo unitario">Gruppo unitario</a><b> ·</b> <a href="/wiki/Gruppo_unitario_speciale" title="Gruppo unitario speciale">Gruppo unitario speciale</a><b> ·</b> <a href="/wiki/Gruppo_residualmente_finito" title="Gruppo residualmente finito">Gruppo residualmente finito</a><b> ·</b> <a href="/wiki/Gruppo_spaziale" title="Gruppo spaziale">Gruppo spaziale</a><b> ·</b> <a href="/wiki/Gruppo_profinito" title="Gruppo profinito">Gruppo profinito</a><b> ·</b> <a href="/wiki/Out(Fn)" title="Out(Fn)">Out(F<sub>n</sub>)</a><b> ·</b> <a href="/wiki/Parola_(teoria_dei_gruppi)" title="Parola (teoria dei gruppi)">Parola</a><b> ·</b> <a href="/wiki/Prodotto_diretto" title="Prodotto diretto">Prodotto diretto</a><b> ·</b> <a href="/wiki/Prodotto_semidiretto" title="Prodotto semidiretto">Prodotto semidiretto</a><b> ·</b> <a href="/wiki/Prodotto_intrecciato" title="Prodotto intrecciato">Prodotto intrecciato</a></td></tr><tr><th class="subnavbox_group">Teoremi</th><td colspan="1"><a href="/wiki/Alternativa_di_Tits" title="Alternativa di Tits">Alternativa di Tits</a><b> ·</b> <a href="/wiki/Teorema_di_isomorfismo" title="Teorema di isomorfismo">Teorema di isomorfismo</a><b> ·</b> <a href="/wiki/Teorema_di_Lagrange_(teoria_dei_gruppi)" title="Teorema di Lagrange (teoria dei gruppi)">Teorema di Lagrange</a><b> ·</b> <a href="/wiki/Teorema_di_Cauchy_(teoria_dei_gruppi)" title="Teorema di Cauchy (teoria dei gruppi)">Teorema di Cauchy</a><b> ·</b> <a href="/wiki/Teoremi_di_Sylow" title="Teoremi di Sylow">Teoremi di Sylow</a><b> ·</b> <a href="/wiki/Teorema_di_Cayley" title="Teorema di Cayley">Teorema di Cayley</a><b> ·</b> <a href="/wiki/Gruppo_abeliano#Classificazione" title="Gruppo abeliano">Teorema di struttura dei gruppi abeliani finiti</a><b> ·</b> <a href="/wiki/Lemma_della_farfalla" title="Lemma della farfalla">Lemma della farfalla</a><b> ·</b> <a href="/wiki/Lemma_del_ping-pong" title="Lemma del ping-pong">Lemma del ping-pong</a><b> ·</b> <a href="/wiki/Classificazione_dei_gruppi_semplici_finiti" title="Classificazione dei gruppi semplici finiti">Classificazione dei gruppi semplici finiti</a></td></tr><tr><th class="subnavbox_group">Sottoinsiemi</th><td colspan="1"><a href="/wiki/Sottogruppo" title="Sottogruppo">Sottogruppo</a><b> ·</b> <a href="/wiki/Sottogruppo_normale" title="Sottogruppo normale">Sottogruppo normale</a><b> ·</b> <a href="/wiki/Sottogruppo_caratteristico" title="Sottogruppo caratteristico">Sottogruppo caratteristico</a><b> ·</b> <a href="/wiki/Sottogruppo_di_Frattini" title="Sottogruppo di Frattini">Sottogruppo di Frattini</a><b> ·</b> <a href="/wiki/Sottogruppo_di_torsione" title="Sottogruppo di torsione">Sottogruppo di torsione</a><b> ·</b> <a href="/wiki/Classe_laterale" title="Classe laterale">Classe laterale</a><b> ·</b> <a href="/wiki/Classe_di_coniugio" title="Classe di coniugio">Classe di coniugio</a><b> ·</b> <a href="/wiki/Serie_di_composizione" title="Serie di composizione">Serie di composizione</a></td></tr><tr><td colspan="2" class="navbox_center"><a href="/wiki/Omomorfismo_di_gruppi" title="Omomorfismo di gruppi">Omomorfismo</a><b> ·</b> <a href="/wiki/Isomorfismo_tra_gruppi" title="Isomorfismo tra gruppi">Isomorfismo</a><b> ·</b> <a href="/wiki/Automorfismo_interno" title="Automorfismo interno">Automorfismo interno</a><b> ·</b> <a href="/wiki/Automorfismo_esterno" title="Automorfismo esterno">Automorfismo esterno</a><b> ·</b> <a href="/wiki/Permutazione" title="Permutazione">Permutazione</a><b> ·</b> <a href="/wiki/Presentazione_di_un_gruppo" title="Presentazione di un gruppo">Presentazione di un gruppo</a><b> ·</b> <a href="/wiki/Azione_di_gruppo" title="Azione di gruppo">Azione di gruppo</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Teoria_degli_anelli" title="Teoria degli anelli">Teoria degli anelli</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><a href="/wiki/Anello_(algebra)" title="Anello (algebra)">Anello</a> (<a href="/wiki/Anello_artiniano" title="Anello artiniano">artiniano</a><b> ·</b> <a href="/wiki/Anello_noetheriano" title="Anello noetheriano">noetheriano</a><b> ·</b> <a href="/wiki/Anello_locale" title="Anello locale">locale</a>)<b> ·</b> <a href="/wiki/Caratteristica_(algebra)" title="Caratteristica (algebra)">Caratteristica</a><b> ·</b> <a href="/wiki/Ideale_(matematica)" title="Ideale (matematica)">Ideale</a> (<a href="/wiki/Ideale_primo" title="Ideale primo">primo</a><b> ·</b> <a href="/wiki/Ideale_massimale" title="Ideale massimale">massimale</a>)<b> ·</b> <a href="/wiki/Dominio_d%27integrit%C3%A0" title="Dominio d'integrità">Dominio</a> (<a href="/wiki/Dominio_a_fattorizzazione_unica" title="Dominio a fattorizzazione unica">a fattorizzazione unica</a><b> ·</b> <a href="/wiki/Dominio_ad_ideali_principali" title="Dominio ad ideali principali">a ideali principali</a><b> ·</b> <a href="/wiki/Dominio_euclideo" title="Dominio euclideo">euclideo</a>)<b> ·</b> <a href="/wiki/Matrice" title="Matrice">Matrice</a><b> ·</b> <a href="/wiki/Anello_semplice" title="Anello semplice">Anello semplice</a><b> ·</b> <a href="/wiki/Anello_degli_endomorfismi" title="Anello degli endomorfismi">Anello degli endomorfismi</a><b> ·</b> <a href="/wiki/Teorema_di_Artin-Wedderburn" title="Teorema di Artin-Wedderburn">Teorema di Artin-Wedderburn</a><b> ·</b> <a href="/wiki/Modulo_(algebra)" title="Modulo (algebra)">Modulo</a><b> ·</b> <a href="/wiki/Dominio_di_Dedekind" title="Dominio di Dedekind">Dominio di Dedekind</a><b> ·</b> <a href="/wiki/Estensione_di_anelli" title="Estensione di anelli">Estensione di anelli</a><b> ·</b> <a href="/wiki/Teorema_della_base_di_Hilbert" title="Teorema della base di Hilbert">Teorema della base di Hilbert</a><b> ·</b> <a href="/wiki/Anello_di_Gorenstein" title="Anello di Gorenstein">Anello di Gorenstein</a><b> ·</b> <a href="/wiki/Base_di_Gr%C3%B6bner" title="Base di Gröbner">Base di Gröbner</a><b> ·</b> <a href="/wiki/Prodotto_tensoriale" title="Prodotto tensoriale">Prodotto tensoriale</a><b> ·</b> <a href="/wiki/Primo_associato" title="Primo associato">Primo associato</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;"><a href="/wiki/Teoria_dei_campi_(matematica)" class="mw-redirect" title="Teoria dei campi (matematica)">Teoria dei campi</a></th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><table class="subnavbox"><tbody><tr><td colspan="2" class="navbox_center"><a href="/wiki/Campo_(matematica)" title="Campo (matematica)">Campo</a><b> ·</b> <a href="/wiki/Polinomio_irriducibile" title="Polinomio irriducibile">Polinomio irriducibile</a><b> ·</b> <a href="/wiki/Polinomio_ciclotomico" title="Polinomio ciclotomico">Polinomio ciclotomico</a><b> ·</b> <a href="/wiki/Teorema_fondamentale_dell%27algebra" title="Teorema fondamentale dell'algebra">Teorema fondamentale dell'algebra</a><b> ·</b> <a href="/wiki/Campo_finito" title="Campo finito">Campo finito</a><b> ·</b> <a href="/wiki/Automorfismo" title="Automorfismo">Automorfismo</a><b> ·</b> <a href="/wiki/Endomorfismo_di_Frobenius" title="Endomorfismo di Frobenius">Endomorfismo di Frobenius</a></td></tr><tr><th class="subnavbox_group">Estensioni</th><td colspan="1"><a href="/wiki/Campo_di_spezzamento" title="Campo di spezzamento">Campo di spezzamento</a><b> ·</b> <a href="/wiki/Estensione_di_campi" title="Estensione di campi">Estensione di campi</a><b> ·</b> <a href="/wiki/Estensione_algebrica" title="Estensione algebrica">Estensione algebrica</a><b> ·</b> <a href="/wiki/Estensione_separabile" title="Estensione separabile">Estensione separabile</a><b> ·</b> <a href="/wiki/Chiusura_algebrica" title="Chiusura algebrica">Chiusura algebrica</a><b> ·</b> <a href="/wiki/Campo_di_numeri" title="Campo di numeri">Campo di numeri</a><b> ·</b> <a href="/wiki/Estensione_normale" title="Estensione normale">Estensione normale</a><b> ·</b> <a href="/wiki/Estensione_di_Galois" title="Estensione di Galois">Estensione di Galois</a><b> ·</b> <a href="/wiki/Estensione_abeliana" title="Estensione abeliana">Estensione abeliana</a><b> ·</b> <a href="/wiki/Estensione_ciclotomica" title="Estensione ciclotomica">Estensione ciclotomica</a><b> ·</b> <a href="/wiki/Teoria_di_Kummer" title="Teoria di Kummer">Teoria di Kummer</a></td></tr><tr><th class="subnavbox_group">Teoria di Galois</th><td colspan="1"><a href="/wiki/Gruppo_di_Galois" title="Gruppo di Galois">Gruppo di Galois</a><b> ·</b> <a href="/wiki/Teoria_di_Galois" title="Teoria di Galois">Teoria di Galois</a><b> ·</b> <a href="/wiki/Teorema_fondamentale_della_teoria_di_Galois" title="Teorema fondamentale della teoria di Galois">Teorema fondamentale della teoria di Galois</a><b> ·</b> <a href="/wiki/Teorema_di_Abel-Ruffini" title="Teorema di Abel-Ruffini">Teorema di Abel-Ruffini</a><b> ·</b> <a href="/wiki/Costruzioni_con_riga_e_compasso" title="Costruzioni con riga e compasso">Costruzioni con riga e compasso</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">Altre <a href="/wiki/Struttura_algebrica" title="Struttura algebrica">strutture algebriche</a></th><td colspan="1" class="navbox_list navbox_odd" style="text-align:left;"><a href="/wiki/Magma_(matematica)" title="Magma (matematica)">Magma</a><b> ·</b> <a href="/wiki/Semigruppo" title="Semigruppo">Semigruppo</a><b> ·</b> <a href="/wiki/Corpo_(matematica)" title="Corpo (matematica)">Corpo</a><b> ·</b> <a href="/wiki/Spazio_vettoriale" title="Spazio vettoriale">Spazio vettoriale</a><b> ·</b> <a href="/wiki/Algebra_su_campo" title="Algebra su campo">Algebra su campo</a><b> ·</b> <a href="/wiki/Algebra_di_Lie" title="Algebra di Lie">Algebra di Lie</a><b> ·</b> <a href="/wiki/Algebra_differenziale" title="Algebra differenziale">Algebra differenziale</a><b> ·</b> <a href="/wiki/Algebra_di_Clifford" title="Algebra di Clifford">Algebra di Clifford</a><b> ·</b> <a href="/wiki/Gruppo_topologico" title="Gruppo topologico">Gruppo topologico</a><b> ·</b> <a href="/wiki/Gruppo_ordinato" title="Gruppo ordinato">Gruppo ordinato</a><b> ·</b> <a href="/wiki/Quasi-anello" title="Quasi-anello">Quasi-anello</a><b> ·</b> <a href="/wiki/Algebra_di_Boole" title="Algebra di Boole">Algebra di Boole</a></td></tr><tr><th colspan="1" class="navbox_group" style="background:#FFE0E0; text-align:right;">argomenti</th><td colspan="1" class="navbox_list navbox_even" style="text-align:left;"><a href="/wiki/Teoria_delle_categorie" title="Teoria delle categorie">Teoria delle categorie</a><b> ·</b> <a href="/wiki/Algebra_lineare" title="Algebra lineare">Algebra lineare</a><b> ·</b> <a href="/wiki/Algebra_commutativa" title="Algebra commutativa">Algebra commutativa</a><b> ·</b> <a href="/wiki/Algebra_omologica" title="Algebra omologica">Algebra omologica</a><b> ·</b> <a href="/wiki/Algebra_astratta" title="Algebra astratta">Algebra astratta</a><b> ·</b> <a href="/wiki/Algebra_computazionale" class="mw-redirect" title="Algebra computazionale">Algebra computazionale</a><b> ·</b> <a href="/wiki/Algebra_differenziale" title="Algebra differenziale">Algebra differenziale</a><b> ·</b> <a href="/wiki/Algebra_universale" title="Algebra universale">Algebra universale</a></td></tr></tbody></table> <div class="noprint" style="width:100%; padding: 3px 0; display: flex; flex-wrap: wrap; row-gap: 4px; column-gap: 8px; box-sizing: border-box;"><div style="flex-grow: 1"><style data-mw-deduplicate="TemplateStyles:r140555418">.mw-parser-output .itwiki-template-occhiello{width:100%;line-height:25px;border:1px solid #CCF;background-color:#F0EEFF;box-sizing:border-box}.mw-parser-output .itwiki-template-occhiello-progetto{background-color:#FAFAFA}@media screen{html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}</style><div class="itwiki-template-occhiello"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal128-kmplot.svg" class="mw-file-description" title="Matematica"><img alt=" " src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/25px-Crystal128-kmplot.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/38px-Crystal128-kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/50px-Crystal128-kmplot.svg.png 2x" data-file-width="245" data-file-height="244" /></a></span> <b><a href="/wiki/Portale:Matematica" title="Portale:Matematica">Portale Matematica</a></b>: accedi alle voci di Wikipedia che trattano di matematica</div></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐d948c7fb8‐rm7tp Cached time: 20241208151641 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.268 seconds Real time usage: 0.507 seconds Preprocessor visited node count: 1963/1000000 Post‐expand include size: 50487/2097152 bytes Template argument size: 214/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 1/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 5973/5000000 bytes Lua time usage: 0.147/10.000 seconds Lua memory usage: 4985323/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 313.447 1 -total 55.72% 174.658 1 Template:Collegamenti_esterni 20.11% 63.048 1 Template:Algebra 18.76% 58.815 1 Template:Navbox 14.07% 44.091 3 Template:Cita_libro 9.27% 29.065 1 Template:Portale 4.37% 13.709 1 Template:Icona_argomento 4.16% 13.036 3 Template:Navbox_subgroup 1.62% 5.067 157 Template:· --> <!-- Saved in parser cache with key itwiki:pcache:401910:|#|:idhash:canonical and timestamp 20241208151641 and revision id 142078306. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Estratto da "<a dir="ltr" href="https://it.wikipedia.org/w/index.php?title=Gruppo_ortogonale&oldid=142078306">https://it.wikipedia.org/w/index.php?title=Gruppo_ortogonale&oldid=142078306</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Categoria:Categorie" title="Categoria:Categorie">Categorie</a>: <ul><li><a href="/wiki/Categoria:Gruppi_di_Lie" title="Categoria:Gruppi di Lie">Gruppi di Lie</a></li><li><a href="/wiki/Categoria:Teoria_dei_gruppi" title="Categoria:Teoria dei gruppi">Teoria dei gruppi</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categorie nascoste: <ul><li><a href="/wiki/Categoria:Voci_con_modulo_citazione_e_parametro_pagina" title="Categoria:Voci con modulo citazione e parametro pagina">Voci con modulo citazione e parametro pagina</a></li><li><a href="/wiki/Categoria:P2812_letta_da_Wikidata" title="Categoria:P2812 letta da Wikidata">P2812 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P7554_letta_da_Wikidata" title="Categoria:P7554 letta da Wikidata">P7554 letta da Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Questa pagina è stata modificata per l'ultima volta l'8 nov 2024 alle 21:05.</li> <li id="footer-info-copyright">Il testo è disponibile secondo la <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it">licenza Creative Commons Attribuzione-Condividi allo stesso modo</a>; possono applicarsi condizioni ulteriori. Vedi le <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/it">condizioni d'uso</a> per i dettagli.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/it">Informativa sulla privacy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Sala_stampa/Wikipedia">Informazioni su Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Avvertenze_generali">Avvertenze</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Codice di condotta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Sviluppatori</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/it.wikipedia.org">Statistiche</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Dichiarazione sui cookie</a></li> <li id="footer-places-mobileview"><a href="//it.m.wikipedia.org/w/index.php?title=Gruppo_ortogonale&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versione mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-7959fbf7c4-kjrwh","wgBackendResponseTime":134,"wgPageParseReport":{"limitreport":{"cputime":"0.268","walltime":"0.507","ppvisitednodes":{"value":1963,"limit":1000000},"postexpandincludesize":{"value":50487,"limit":2097152},"templateargumentsize":{"value":214,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":5973,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 313.447 1 -total"," 55.72% 174.658 1 Template:Collegamenti_esterni"," 20.11% 63.048 1 Template:Algebra"," 18.76% 58.815 1 Template:Navbox"," 14.07% 44.091 3 Template:Cita_libro"," 9.27% 29.065 1 Template:Portale"," 4.37% 13.709 1 Template:Icona_argomento"," 4.16% 13.036 3 Template:Navbox_subgroup"," 1.62% 5.067 157 Template:·"]},"scribunto":{"limitreport-timeusage":{"value":"0.147","limit":"10.000"},"limitreport-memusage":{"value":4985323,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-d948c7fb8-rm7tp","timestamp":"20241208151641","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Gruppo ortogonale","url":"https:\/\/it.wikipedia.org\/wiki\/Gruppo_ortogonale","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1783179","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1783179","author":{"@type":"Organization","name":"Contributori ai progetti Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-04-24T22:06:50Z","dateModified":"2024-11-08T20:05:47Z"}</script> </body> </html>