CINXE.COM

卷积 - 维基百科,自由的百科全书

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="zh" dir="ltr"> <head> <meta charset="UTF-8"> <title>卷积 - 维基百科,自由的百科全书</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )zhwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"zh", "wgMonthNames":["","1月","2月","3月","4月","5月","6月","7月","8月","9月","10月","11月","12月"],"wgRequestId":"c2943471-800f-4d37-9a38-79aef2274c78","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"卷积","wgTitle":"卷积","wgCurRevisionId":81235299,"wgRevisionId":81235299,"wgArticleId":87090,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1英语来源 (en)","使用多个图像且自动缩放的页面","含有內容需登入查看的頁面","维基共享资源分类链接使用了维基数据上的匹配项","泛函分析","信号处理","二元運算","双线性算子","特征检测 (计算机视觉)"],"wgPageViewLanguage":"zh","wgPageContentLanguage":"zh","wgPageContentModel":"wikitext","wgRelevantPageName":"卷积","wgRelevantArticleId":87090,"wgUserVariant":"zh","wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[], "wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"zh","pageLanguageDir":"ltr","pageVariantFallbacks":["zh-hans","zh-hant","zh-cn","zh-tw","zh-hk","zh-sg","zh-mo","zh-my"]},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q210857","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.large-font":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","mediawiki.page.gallery.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.edit0","ext.gadget.WikiMiniAtlas", "ext.gadget.UnihanTooltips","ext.gadget.Difflink","ext.gadget.pseudonamespace-UI","ext.gadget.SpecialWikitext","ext.gadget.switcher","ext.gadget.VariantAlly","ext.gadget.AdvancedSiteNotices","ext.gadget.hideConversionTab","ext.gadget.internalLinkHelper-altcolor","ext.gadget.noteTA","ext.gadget.NavFrame","ext.gadget.collapsibleTables","ext.gadget.scrollUpButton","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=zh&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=ext.gadget.large-font&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Comparison_convolution_correlation.svg/1200px-Comparison_convolution_correlation.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="900"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Comparison_convolution_correlation.svg/800px-Comparison_convolution_correlation.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Comparison_convolution_correlation.svg/640px-Comparison_convolution_correlation.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="480"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="卷积 - 维基百科,自由的百科全书"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//zh.m.wikipedia.org/wiki/%E5%8D%B7%E7%A7%AF"> <link rel="alternate" type="application/x-wiki" title="编辑本页" href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (zh)"> <link rel="EditURI" type="application/rsd+xml" href="//zh.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://zh.wikipedia.org/wiki/%E5%8D%B7%E7%A7%AF"> <link rel="alternate" hreflang="zh" href="https://zh.wikipedia.org/wiki/%E5%8D%B7%E7%A7%AF"> <link rel="alternate" hreflang="zh-Hans" href="https://zh.wikipedia.org/zh-hans/%E5%8D%B7%E7%A7%AF"> <link rel="alternate" hreflang="zh-Hans-CN" href="https://zh.wikipedia.org/zh-cn/%E5%8D%B7%E7%A7%AF"> <link rel="alternate" hreflang="zh-Hans-MY" href="https://zh.wikipedia.org/zh-my/%E5%8D%B7%E7%A7%AF"> <link rel="alternate" hreflang="zh-Hans-SG" href="https://zh.wikipedia.org/zh-sg/%E5%8D%B7%E7%A7%AF"> <link rel="alternate" hreflang="zh-Hant" href="https://zh.wikipedia.org/zh-hant/%E5%8D%B7%E7%A7%AF"> <link rel="alternate" hreflang="zh-Hant-HK" href="https://zh.wikipedia.org/zh-hk/%E5%8D%B7%E7%A7%AF"> <link rel="alternate" hreflang="zh-Hant-MO" href="https://zh.wikipedia.org/zh-mo/%E5%8D%B7%E7%A7%AF"> <link rel="alternate" hreflang="zh-Hant-TW" href="https://zh.wikipedia.org/zh-tw/%E5%8D%B7%E7%A7%AF"> <link rel="alternate" hreflang="x-default" href="https://zh.wikipedia.org/wiki/%E5%8D%B7%E7%A7%AF"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.zh"> <link rel="alternate" type="application/atom+xml" title="Wikipedia的Atom feed" href="/w/index.php?title=Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-卷积 rootpage-卷积 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">跳转到内容</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="主菜单" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">主菜单</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">主菜单</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">隐藏</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 导航 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" title="访问首页[z]" accesskey="z"><span>首页</span></a></li><li id="n-indexpage" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%88%86%E7%B1%BB%E7%B4%A2%E5%BC%95" title="以分类索引搜寻中文维基百科"><span>分类索引</span></a></li><li id="n-Featured_content" class="mw-list-item"><a href="/wiki/Portal:%E7%89%B9%E8%89%B2%E5%85%A7%E5%AE%B9" title="查看中文维基百科的特色内容"><span>特色内容</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:%E6%96%B0%E8%81%9E%E5%8B%95%E6%85%8B" title="提供当前新闻事件的背景资料"><span>新闻动态</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9" title="列出维基百科中的最近修改[r]" accesskey="r"><span>最近更改</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:%E9%9A%8F%E6%9C%BA%E9%A1%B5%E9%9D%A2" title="随机载入一个页面[x]" accesskey="x"><span>随机条目</span></a></li> </ul> </div> </div> <div id="p-help" class="vector-menu mw-portlet mw-portlet-help" > <div class="vector-menu-heading"> 帮助 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:%E7%9B%AE%E5%BD%95" title="寻求帮助"><span>帮助</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%A4%BE%E7%BE%A4%E9%A6%96%E9%A1%B5" title="关于本计划、你可以做什么、应该如何做"><span>维基社群</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/Wikipedia:%E6%96%B9%E9%87%9D%E8%88%87%E6%8C%87%E5%BC%95" title="查看维基百科的方针和指引"><span>方针与指引</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:%E4%BA%92%E5%8A%A9%E5%AE%A2%E6%A0%88" title="参与维基百科社群的讨论"><span>互助客栈</span></a></li><li id="n-Information_desk" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%9F%A5%E8%AF%86%E9%97%AE%E7%AD%94" title="解答任何与维基百科无关的问题的地方"><span>知识问答</span></a></li><li id="n-conversion" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%AD%97%E8%AF%8D%E8%BD%AC%E6%8D%A2" title="提出字词转换请求"><span>字词转换</span></a></li><li id="n-IRC" class="mw-list-item"><a href="/wiki/Wikipedia:IRC%E8%81%8A%E5%A4%A9%E9%A2%91%E9%81%93"><span>IRC即时聊天</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:%E8%81%94%E7%BB%9C%E6%88%91%E4%BB%AC" title="如何联络维基百科"><span>联络我们</span></a></li><li id="n-about" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E" title="查看维基百科的简介"><span>关于维基百科</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="维基百科" src="/static/images/mobile/copyright/wikipedia-wordmark-zh.svg" style="width: 6.5625em; height: 1.375em;"> <img class="mw-logo-tagline" alt="自由的百科全书" src="/static/images/mobile/copyright/wikipedia-tagline-zh.svg" width="103" height="14" style="width: 6.4375em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:%E6%90%9C%E7%B4%A2" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="搜索维基百科[f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>搜索</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="搜索维基百科" aria-label="搜索维基百科" autocapitalize="sentences" title="搜索维基百科[f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:搜索"> </div> <button class="cdx-button cdx-search-input__end-button">搜索</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="个人工具"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="更改页面字体大小、宽度和颜色的外观" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="外观" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">外观</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=spontaneous&amp;uselang=zh-hans" class=""><span>资助维基百科</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&amp;returnto=%E5%8D%B7%E7%A7%AF" title="我们推荐您创建账号并登录,但这不是强制性的" class=""><span>创建账号</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&amp;returnto=%E5%8D%B7%E7%A7%AF" title="建议你登录,尽管并非必须。[o]" accesskey="o" class=""><span>登录</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="更多选项" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="个人工具" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">个人工具</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="用户菜单" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=spontaneous&amp;uselang=zh-hans"><span>资助维基百科</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&amp;returnto=%E5%8D%B7%E7%A7%AF" title="我们推荐您创建账号并登录,但这不是强制性的"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>创建账号</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&amp;returnto=%E5%8D%B7%E7%A7%AF" title="建议你登录,尽管并非必须。[o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>登录</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 未登录编辑者的页面 <a href="/wiki/Help:%E6%96%B0%E6%89%8B%E5%85%A5%E9%97%A8" aria-label="了解有关编辑的更多信息"><span>了解详情</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%B4%A1%E7%8C%AE" title="来自此IP地址的编辑列表[y]" accesskey="y"><span>贡献</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%AE%A8%E8%AE%BA%E9%A1%B5" title="对于来自此IP地址编辑的讨论[n]" accesskey="n"><span>讨论</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="目录" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">目录</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">隐藏</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">序言</div> </a> </li> <li id="toc-定义" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#定义"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>定义</span> </div> </a> <ul id="toc-定义-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-历史" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#历史"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>历史</span> </div> </a> <ul id="toc-历史-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-简介" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#简介"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>简介</span> </div> </a> <ul id="toc-简介-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-图解" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#图解"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>图解</span> </div> </a> <ul id="toc-图解-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-周期卷积" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#周期卷积"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>周期卷积</span> </div> </a> <ul id="toc-周期卷积-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-离散卷积" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#离散卷积"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>离散卷积</span> </div> </a> <button aria-controls="toc-离散卷积-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关离散卷积子章节</span> </button> <ul id="toc-离散卷积-sublist" class="vector-toc-list"> <li id="toc-多维离散卷积" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#多维离散卷积"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>多维离散卷积</span> </div> </a> <ul id="toc-多维离散卷积-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-离散周期卷积" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#离散周期卷积"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>离散周期卷积</span> </div> </a> <ul id="toc-离散周期卷积-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-性质" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#性质"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>性质</span> </div> </a> <button aria-controls="toc-性质-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关性质子章节</span> </button> <ul id="toc-性质-sublist" class="vector-toc-list"> <li id="toc-代数" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#代数"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>代数</span> </div> </a> <ul id="toc-代数-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-积分" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#积分"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>积分</span> </div> </a> <ul id="toc-积分-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-微分" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#微分"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>微分</span> </div> </a> <ul id="toc-微分-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-卷积定理" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#卷积定理"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>卷积定理</span> </div> </a> <button aria-controls="toc-卷积定理-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关卷积定理子章节</span> </button> <ul id="toc-卷积定理-sublist" class="vector-toc-list"> <li id="toc-周期卷积_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#周期卷积_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>周期卷积</span> </div> </a> <ul id="toc-周期卷积_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-离散卷积_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#离散卷积_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>离散卷积</span> </div> </a> <ul id="toc-离散卷积_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-离散周期卷积_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#离散周期卷积_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>离散周期卷积</span> </div> </a> <ul id="toc-离散周期卷积_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-推广" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#推广"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>推广</span> </div> </a> <ul id="toc-推广-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-离散卷積的計算方法" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#离散卷積的計算方法"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>离散卷積的計算方法</span> </div> </a> <button aria-controls="toc-离散卷積的計算方法-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关离散卷積的計算方法子章节</span> </button> <ul id="toc-离散卷積的計算方法-sublist" class="vector-toc-list"> <li id="toc-方法1:直接計算" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#方法1:直接計算"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>方法1:直接計算</span> </div> </a> <ul id="toc-方法1:直接計算-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-方法2:快速傅立葉轉換" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#方法2:快速傅立葉轉換"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>方法2:快速傅立葉轉換</span> </div> </a> <ul id="toc-方法2:快速傅立葉轉換-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-方法3:分段卷積" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#方法3:分段卷積"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.3</span> <span>方法3:分段卷積</span> </div> </a> <ul id="toc-方法3:分段卷積-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-應用時機" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#應用時機"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.4</span> <span>應用時機</span> </div> </a> <ul id="toc-應用時機-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-例子" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#例子"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.5</span> <span>例子</span> </div> </a> <ul id="toc-例子-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-应用" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#应用"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>应用</span> </div> </a> <ul id="toc-应用-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-参见" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#参见"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>参见</span> </div> </a> <ul id="toc-参见-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-引用" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#引用"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>引用</span> </div> </a> <ul id="toc-引用-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-延伸阅读" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#延伸阅读"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>延伸阅读</span> </div> </a> <ul id="toc-延伸阅读-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-外部链接" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#外部链接"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>外部链接</span> </div> </a> <ul id="toc-外部链接-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="目录" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="开关目录" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">开关目录</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">卷积</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="前往另一种语言写成的文章。40种语言可用" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-40" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">40种语言</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Konvolusie" title="Konvolusie – 南非荷兰语" lang="af" hreflang="af" data-title="Konvolusie" data-language-autonym="Afrikaans" data-language-local-name="南非荷兰语" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D9%84%D8%B7%D9%8A_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="الطي (رياضيات) – 阿拉伯语" lang="ar" hreflang="ar" data-title="الطي (رياضيات)" data-language-autonym="العربية" data-language-local-name="阿拉伯语" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B2%D0%BE%D0%BB%D1%8E%D1%86%D0%B8%D1%8F" title="Конволюция – 保加利亚语" lang="bg" hreflang="bg" data-title="Конволюция" data-language-autonym="Български" data-language-local-name="保加利亚语" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Convoluci%C3%B3" title="Convolució – 加泰罗尼亚语" lang="ca" hreflang="ca" data-title="Convolució" data-language-autonym="Català" data-language-local-name="加泰罗尼亚语" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Konvoluce" title="Konvoluce – 捷克语" lang="cs" hreflang="cs" data-title="Konvoluce" data-language-autonym="Čeština" data-language-local-name="捷克语" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Foldning" title="Foldning – 丹麦语" lang="da" hreflang="da" data-title="Foldning" data-language-autonym="Dansk" data-language-local-name="丹麦语" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Faltung_(Mathematik)" title="Faltung (Mathematik) – 德语" lang="de" hreflang="de" data-title="Faltung (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="德语" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%85%CE%BD%CE%AD%CE%BB%CE%B9%CE%BE%CE%B7" title="Συνέλιξη – 希腊语" lang="el" hreflang="el" data-title="Συνέλιξη" data-language-autonym="Ελληνικά" data-language-local-name="希腊语" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Convolution" title="Convolution – 英语" lang="en" hreflang="en" data-title="Convolution" data-language-autonym="English" data-language-local-name="英语" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Kunfalda%C4%B5o" title="Kunfaldaĵo – 世界语" lang="eo" hreflang="eo" data-title="Kunfaldaĵo" data-language-autonym="Esperanto" data-language-local-name="世界语" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Convoluci%C3%B3n" title="Convolución – 西班牙语" lang="es" hreflang="es" data-title="Convolución" data-language-autonym="Español" data-language-local-name="西班牙语" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Konvolutsioon" title="Konvolutsioon – 爱沙尼亚语" lang="et" hreflang="et" data-title="Konvolutsioon" data-language-autonym="Eesti" data-language-local-name="爱沙尼亚语" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%87%D9%85%E2%80%8C%DA%AF%D8%B4%D8%AA" title="هم‌گشت – 波斯语" lang="fa" hreflang="fa" data-title="هم‌گشت" data-language-autonym="فارسی" data-language-local-name="波斯语" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Konvoluutio" title="Konvoluutio – 芬兰语" lang="fi" hreflang="fi" data-title="Konvoluutio" data-language-autonym="Suomi" data-language-local-name="芬兰语" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Produit_de_convolution" title="Produit de convolution – 法语" lang="fr" hreflang="fr" data-title="Produit de convolution" data-language-autonym="Français" data-language-local-name="法语" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A7%D7%95%D7%A0%D7%91%D7%95%D7%9C%D7%95%D7%A6%D7%99%D7%94" title="קונבולוציה – 希伯来语" lang="he" hreflang="he" data-title="קונבולוציה" data-language-autonym="עברית" data-language-local-name="希伯来语" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%82%E0%A4%B5%E0%A4%B2%E0%A4%A8" title="संवलन – 印地语" lang="hi" hreflang="hi" data-title="संवलन" data-language-autonym="हिन्दी" data-language-local-name="印地语" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Konvol%C3%BAci%C3%B3" title="Konvolúció – 匈牙利语" lang="hu" hreflang="hu" data-title="Konvolúció" data-language-autonym="Magyar" data-language-local-name="匈牙利语" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Convoluzione" title="Convoluzione – 意大利语" lang="it" hreflang="it" data-title="Convoluzione" data-language-autonym="Italiano" data-language-local-name="意大利语" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%95%B3%E3%81%BF%E8%BE%BC%E3%81%BF" title="畳み込み – 日语" lang="ja" hreflang="ja" data-title="畳み込み" data-language-autonym="日本語" data-language-local-name="日语" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%95%A9%EC%84%B1%EA%B3%B1" title="합성곱 – 韩语" lang="ko" hreflang="ko" data-title="합성곱" data-language-autonym="한국어" data-language-local-name="韩语" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Konvoliucija" title="Konvoliucija – 立陶宛语" lang="lt" hreflang="lt" data-title="Konvoliucija" data-language-autonym="Lietuvių" data-language-local-name="立陶宛语" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Convolutie" title="Convolutie – 荷兰语" lang="nl" hreflang="nl" data-title="Convolutie" data-language-autonym="Nederlands" data-language-local-name="荷兰语" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Folding_i_signalhandsaming" title="Folding i signalhandsaming – 挪威尼诺斯克语" lang="nn" hreflang="nn" data-title="Folding i signalhandsaming" data-language-autonym="Norsk nynorsk" data-language-local-name="挪威尼诺斯克语" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Folding_(matematikk)" title="Folding (matematikk) – 书面挪威语" lang="nb" hreflang="nb" data-title="Folding (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="书面挪威语" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Splot_(analiza_matematyczna)" title="Splot (analiza matematyczna) – 波兰语" lang="pl" hreflang="pl" data-title="Splot (analiza matematyczna)" data-language-autonym="Polski" data-language-local-name="波兰语" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Convolu%C3%A7%C3%A3o" title="Convolução – 葡萄牙语" lang="pt" hreflang="pt" data-title="Convolução" data-language-autonym="Português" data-language-local-name="葡萄牙语" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Convolu%C8%9Bie" title="Convoluție – 罗马尼亚语" lang="ro" hreflang="ro" data-title="Convoluție" data-language-autonym="Română" data-language-local-name="罗马尼亚语" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%B2%D1%91%D1%80%D1%82%D0%BA%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7)" title="Свёртка (математический анализ) – 俄语" lang="ru" hreflang="ru" data-title="Свёртка (математический анализ)" data-language-autonym="Русский" data-language-local-name="俄语" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://sd.wikipedia.org/wiki/%D9%BE%D9%8A%DA%86%D9%8F" title="پيچُ – 信德语" lang="sd" hreflang="sd" data-title="پيچُ" data-language-autonym="سنڌي" data-language-local-name="信德语" class="interlanguage-link-target"><span>سنڌي</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Konvolucioni" title="Konvolucioni – 阿尔巴尼亚语" lang="sq" hreflang="sq" data-title="Konvolucioni" data-language-autonym="Shqip" data-language-local-name="阿尔巴尼亚语" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B2%D0%BE%D0%BB%D1%83%D1%86%D0%B8%D1%98%D0%B0" title="Конволуција – 塞尔维亚语" lang="sr" hreflang="sr" data-title="Конволуција" data-language-autonym="Српски / srpski" data-language-local-name="塞尔维亚语" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Konvolusi" title="Konvolusi – 巽他语" lang="su" hreflang="su" data-title="Konvolusi" data-language-autonym="Sunda" data-language-local-name="巽他语" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Faltning" title="Faltning – 瑞典语" lang="sv" hreflang="sv" data-title="Faltning" data-language-autonym="Svenska" data-language-local-name="瑞典语" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Konbolusyon" title="Konbolusyon – 他加禄语" lang="tl" hreflang="tl" data-title="Konbolusyon" data-language-autonym="Tagalog" data-language-local-name="他加禄语" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Konvol%C3%BCsyon" title="Konvolüsyon – 土耳其语" lang="tr" hreflang="tr" data-title="Konvolüsyon" data-language-autonym="Türkçe" data-language-local-name="土耳其语" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%97%D0%B3%D0%BE%D1%80%D1%82%D0%BA%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%BD%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D1%96%D0%B7)" title="Згортка (математичний аналіз) – 乌克兰语" lang="uk" hreflang="uk" data-title="Згортка (математичний аналіз)" data-language-autonym="Українська" data-language-local-name="乌克兰语" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/T%C3%ADch_ch%E1%BA%ADp" title="Tích chập – 越南语" lang="vi" hreflang="vi" data-title="Tích chập" data-language-autonym="Tiếng Việt" data-language-local-name="越南语" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%8D%B7%E7%A7%AF" title="卷积 – 吴语" lang="wuu" hreflang="wuu" data-title="卷积" data-language-autonym="吴语" data-language-local-name="吴语" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%8D%B7%E7%A9%8D" title="卷積 – 粤语" lang="yue" hreflang="yue" data-title="卷積" data-language-autonym="粵語" data-language-local-name="粤语" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q210857#sitelinks-wikipedia" title="编辑跨语言链接" class="wbc-editpage">编辑链接</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="命名空间"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E5%8D%B7%E7%A7%AF" title="浏览条目正文[c]" accesskey="c"><span>条目</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:%E5%8D%B7%E7%A7%AF" rel="discussion" title="关于此页面的讨论[t]" accesskey="t"><span>讨论</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown " > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="更改语言变体" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">不转换</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-varlang-0" class="selected ca-variants-zh mw-list-item"><a href="/zh/%E5%8D%B7%E7%A7%AF" lang="zh" hreflang="zh"><span>不转换</span></a></li><li id="ca-varlang-1" class="ca-variants-zh-Hans mw-list-item"><a href="/zh-hans/%E5%8D%B7%E7%A7%AF" lang="zh-Hans" hreflang="zh-Hans"><span>简体</span></a></li><li id="ca-varlang-2" class="ca-variants-zh-Hant mw-list-item"><a href="/zh-hant/%E5%8D%B7%E7%A7%AF" lang="zh-Hant" hreflang="zh-Hant"><span>繁體</span></a></li><li id="ca-varlang-3" class="ca-variants-zh-Hans-CN mw-list-item"><a href="/zh-cn/%E5%8D%B7%E7%A7%AF" lang="zh-Hans-CN" hreflang="zh-Hans-CN"><span>大陆简体</span></a></li><li id="ca-varlang-4" class="ca-variants-zh-Hant-HK mw-list-item"><a href="/zh-hk/%E5%8D%B7%E7%A7%AF" lang="zh-Hant-HK" hreflang="zh-Hant-HK"><span>香港繁體</span></a></li><li id="ca-varlang-5" class="ca-variants-zh-Hant-MO mw-list-item"><a href="/zh-mo/%E5%8D%B7%E7%A7%AF" lang="zh-Hant-MO" hreflang="zh-Hant-MO"><span>澳門繁體</span></a></li><li id="ca-varlang-6" class="ca-variants-zh-Hans-MY mw-list-item"><a href="/zh-my/%E5%8D%B7%E7%A7%AF" lang="zh-Hans-MY" hreflang="zh-Hans-MY"><span>大马简体</span></a></li><li id="ca-varlang-7" class="ca-variants-zh-Hans-SG mw-list-item"><a href="/zh-sg/%E5%8D%B7%E7%A7%AF" lang="zh-Hans-SG" hreflang="zh-Hans-SG"><span>新加坡简体</span></a></li><li id="ca-varlang-8" class="ca-variants-zh-Hant-TW mw-list-item"><a href="/zh-tw/%E5%8D%B7%E7%A7%AF" lang="zh-Hant-TW" hreflang="zh-Hant-TW"><span>臺灣正體</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="查看"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E5%8D%B7%E7%A7%AF"><span>阅读</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=history" title="本页面的早前版本。[h]" accesskey="h"><span>查看历史</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="工具" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">工具</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">工具</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">隐藏</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="更多选项" > <div class="vector-menu-heading"> 操作 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%E5%8D%B7%E7%A7%AF"><span>阅读</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=history"><span>查看历史</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 常规 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%85%A5%E9%A1%B5%E9%9D%A2/%E5%8D%B7%E7%A7%AF" title="列出所有与本页相链的页面[j]" accesskey="j"><span>链入页面</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%87%BA%E6%9B%B4%E6%94%B9/%E5%8D%B7%E7%A7%AF" rel="nofollow" title="页面链出所有页面的更改[k]" accesskey="k"><span>相关更改</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Project:%E4%B8%8A%E4%BC%A0" title="上传图像或多媒体文件[u]" accesskey="u"><span>上传文件</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:%E7%89%B9%E6%AE%8A%E9%A1%B5%E9%9D%A2" title="全部特殊页面的列表[q]" accesskey="q"><span>特殊页面</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;oldid=81235299" title="此页面该修订版本的固定链接"><span>固定链接</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=info" title="关于此页面的更多信息"><span>页面信息</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:%E5%BC%95%E7%94%A8%E6%AD%A4%E9%A1%B5%E9%9D%A2&amp;page=%E5%8D%B7%E7%A7%AF&amp;id=81235299&amp;wpFormIdentifier=titleform" title="有关如何引用此页面的信息"><span>引用此页</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:URL%E7%BC%A9%E7%9F%AD%E7%A8%8B%E5%BA%8F&amp;url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E5%258D%25B7%25E7%25A7%25AF"><span>获取短链接</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E5%258D%25B7%25E7%25A7%25AF"><span>下载二维码</span></a></li> </ul> </div> </div> <div id="p-electronpdfservice-sidebar-portlet-heading" class="vector-menu mw-portlet mw-portlet-electronpdfservice-sidebar-portlet-heading" > <div class="vector-menu-heading"> 打印/导出 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="electron-print_pdf" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=%E5%8D%B7%E7%A7%AF&amp;action=show-download-screen"><span>下载为PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="javascript:print();" rel="alternate" title="本页面的可打印版本[p]" accesskey="p"><span>打印页面</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 在其他项目中 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Convolution" hreflang="en"><span>维基共享资源</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q210857" title="链接到连接的数据仓库项目[g]" accesskey="g"><span>维基数据项目</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">外观</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">隐藏</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-noteTA-85514cac" class="mw-indicator"><div class="mw-parser-output"><span class="skin-invert" typeof="mw:File"><span title="本页使用了标题或全文手工转换"><img alt="本页使用了标题或全文手工转换" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/35px-Zh_conversion_icon_m.svg.png" decoding="async" width="35" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/53px-Zh_conversion_icon_m.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/70px-Zh_conversion_icon_m.svg.png 2x" data-file-width="32" data-file-height="20" /></span></span></div></div> </div> <div id="siteSub" class="noprint">维基百科,自由的百科全书</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="zh" dir="ltr"><div id="noteTA-85514cac" class="noteTA"><div class="noteTA-group"><div data-noteta-group-source="module" data-noteta-group="Signals and Systems"></div><div data-noteta-group-source="module" data-noteta-group="Math"></div></div></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Comparison_convolution_correlation.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/21/Comparison_convolution_correlation.svg/400px-Comparison_convolution_correlation.svg.png" decoding="async" width="400" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/21/Comparison_convolution_correlation.svg/600px-Comparison_convolution_correlation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/21/Comparison_convolution_correlation.svg/800px-Comparison_convolution_correlation.svg.png 2x" data-file-width="512" data-file-height="384" /></a><figcaption>卷积、<a href="/wiki/%E4%BA%92%E7%9B%B8%E5%85%B3" title="互相关">互相关</a>和<a href="/wiki/%E8%87%AA%E7%9B%B8%E5%85%B3%E5%87%BD%E6%95%B0" title="自相关函数">自相关</a>的图示比较。运算涉及函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>,并假定<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的高度是1.0,在5个不同点上的值,用在每个点下面的阴影面积来指示。<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的对称性是卷积<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g*f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g*f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d2fbdc97f570309b80e28109854afcacd85cce7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle g*f}"></span>和互相关<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\star g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x22C6;<!-- ⋆ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\star g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/371d3161cd7e094182a184d7601b49880228385c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle f\star g}"></span>在这个例子中相同的原因。</figcaption></figure> <p>在<a href="/wiki/%E6%B3%9B%E5%87%BD%E5%88%86%E6%9E%90" title="泛函分析">泛函分析</a>中,<b>捲積</b>(convolution),或译为<b>疊積</b>、<b>褶積</b>或<b>旋積</b>,是透過两个<a href="/wiki/%E5%87%BD%E6%95%B0" title="函数">函数</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>生成第三个函数的一种数学<a href="/wiki/%E7%AE%97%E5%AD%90" title="算子">算子</a>,表徵函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>与经过翻转和平移的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>的乘積函數所圍成的曲邊梯形的面積。如果将参加卷积的一个函数看作<a href="/wiki/%E5%8C%BA%E9%97%B4" class="mw-redirect" title="区间">区间</a>的<a href="/wiki/%E6%8C%87%E7%A4%BA%E5%87%BD%E6%95%B0" title="指示函数">指示函数</a>,卷积还可以被看作是“<a href="/wiki/%E6%BB%91%E5%8B%95%E5%B9%B3%E5%9D%87" class="mw-redirect" title="滑動平均">滑動平均</a>”的推廣。 </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="定义"><span id=".E5.AE.9A.E4.B9.89"></span>定义</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=1" title="编辑章节:定义"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>卷积是<a href="/wiki/%E6%95%B0%E5%AD%A6%E5%88%86%E6%9E%90" title="数学分析">数学分析</a>中一种重要的运算。设:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf044fe2fbfc4bd8d6d7230f4108430263f9fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.927ex; height:2.843ex;" alt="{\displaystyle f(t)}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b84f700860ee7af27797d11ddfad3d185eb7af0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.765ex; height:2.843ex;" alt="{\displaystyle g(t)}"></span>是<a href="/wiki/%E5%AE%9E%E6%95%B0" title="实数">实数</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>上的两个<a href="/wiki/%E5%8F%AF%E7%A7%AF%E5%87%BD%E6%95%B0" title="可积函数">可积函数</a>,定义二者的卷积<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa3f22d92993aba0b3be3ff9238f5e5373c7ca7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.048ex; height:2.843ex;" alt="{\displaystyle (f*g)(t)}"></span>为如下特定形式的<a href="/wiki/%E7%A7%AF%E5%88%86" title="积分">积分</a><a href="/wiki/%E7%A7%AF%E5%88%86%E5%8F%98%E6%8D%A2" title="积分变换">变换</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)(t)\triangleq \int _{-\infty }^{\infty }f(\tau )g(t-\tau )\,\mathrm {d} \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)(t)\triangleq \int _{-\infty }^{\infty }f(\tau )g(t-\tau )\,\mathrm {d} \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9342b735529a84cbd078ea905f94c79df9a4103" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.958ex; height:6.009ex;" alt="{\displaystyle (f*g)(t)\triangleq \int _{-\infty }^{\infty }f(\tau )g(t-\tau )\,\mathrm {d} \tau }"></span></dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa3f22d92993aba0b3be3ff9238f5e5373c7ca7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.048ex; height:2.843ex;" alt="{\displaystyle (f*g)(t)}"></span>仍为可积函数,并且有着: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)(t)\triangleq \int _{-\infty }^{\infty }f(t-\tau )g(\tau )\,d\tau =(g*f)(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)(t)\triangleq \int _{-\infty }^{\infty }f(t-\tau )g(\tau )\,d\tau =(g*f)(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/996dac5cd8ac0a45e329465bb173d0b7661a5d2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:44.028ex; height:6.009ex;" alt="{\displaystyle (f*g)(t)\triangleq \int _{-\infty }^{\infty }f(t-\tau )g(\tau )\,d\tau =(g*f)(t)}"></span></dd></dl> <p>函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>,如果只<a href="/wiki/%E6%94%AF%E6%92%91%E9%9B%86" title="支撑集">支撑</a>在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,\infty ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,\infty ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52088d5605716e18068a460dec118214954a68e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.814ex; height:2.843ex;" alt="{\displaystyle [0,\infty ]}"></span>之上,则积分界限可以截断为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)(t)=\int _{0}^{t}f(\tau )g(t-\tau )\,d\tau \quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)(t)=\int _{0}^{t}f(\tau )g(t-\tau )\,d\tau \quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d86de421b390b1f783148a1f282bf7600304c2cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.048ex; height:6.176ex;" alt="{\displaystyle (f*g)(t)=\int _{0}^{t}f(\tau )g(t-\tau )\,d\tau \quad }"></span>对于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ f,g:[0,\infty )\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>:</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ f,g:[0,\infty )\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2d942d6ec12f97e43318383c3cef93ff6f80db7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.31ex; height:2.843ex;" alt="{\displaystyle \ f,g:[0,\infty )\to \mathbb {R} }"></span></dd></dl> <p>对于两个得出<a href="/wiki/%E5%A4%8D%E6%95%B0_(%E6%95%B0%E5%AD%A6)" title="复数 (数学)">复数</a>值的<span class="ilh-all" data-orig-title="多元实变函数" data-lang-code="en" data-lang-name="英语" data-foreign-title="Function of several real variables"><span class="ilh-page"><a href="/w/index.php?title=%E5%A4%9A%E5%85%83%E5%AE%9E%E5%8F%98%E5%87%BD%E6%95%B0&amp;action=edit&amp;redlink=1" class="new" title="多元实变函数(页面不存在)">多元实变函数</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Function_of_several_real_variables" class="extiw" title="en:Function of several real variables"><span lang="en" dir="auto">Function of several real variables</span></a></span>)</span></span>,可以定义二者的卷积为如下形式的<a href="/wiki/%E5%A4%9A%E9%87%8D%E7%A7%AF%E5%88%86" title="多重积分">多重积分</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(f*g)(t_{1},t_{2},\cdots ,t_{n})&amp;\triangleq \int \int \cdots \int _{\mathbb {R} ^{n}}f(\tau _{1},\tau _{2},\cdots ,\tau _{n})g(t_{1}-\tau _{1},t_{2}-\tau _{2},\cdots ,t_{n}-\tau _{n},)\,d\tau _{1}d\tau _{2}\cdots d\tau _{n}\\&amp;\triangleq \int _{\mathbb {R} ^{n}}f(\tau )g(t-\tau )\,d^{n}\tau \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mo>&#x222B;<!-- ∫ --></mo> <mo>&#x222B;<!-- ∫ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>d</mi> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>d</mi> <msub> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>&#x03C4;<!-- τ --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(f*g)(t_{1},t_{2},\cdots ,t_{n})&amp;\triangleq \int \int \cdots \int _{\mathbb {R} ^{n}}f(\tau _{1},\tau _{2},\cdots ,\tau _{n})g(t_{1}-\tau _{1},t_{2}-\tau _{2},\cdots ,t_{n}-\tau _{n},)\,d\tau _{1}d\tau _{2}\cdots d\tau _{n}\\&amp;\triangleq \int _{\mathbb {R} ^{n}}f(\tau )g(t-\tau )\,d^{n}\tau \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15f1bbe98a1e8ac3d6887ca614b036e2f9a22489" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:96.948ex; height:11.843ex;" alt="{\displaystyle {\begin{aligned}(f*g)(t_{1},t_{2},\cdots ,t_{n})&amp;\triangleq \int \int \cdots \int _{\mathbb {R} ^{n}}f(\tau _{1},\tau _{2},\cdots ,\tau _{n})g(t_{1}-\tau _{1},t_{2}-\tau _{2},\cdots ,t_{n}-\tau _{n},)\,d\tau _{1}d\tau _{2}\cdots d\tau _{n}\\&amp;\triangleq \int _{\mathbb {R} ^{n}}f(\tau )g(t-\tau )\,d^{n}\tau \end{aligned}}}"></span></dd></dl> <p>卷积有一个通用的工程上的符号约定<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)*g(t)\triangleq \underbrace {\int _{-\infty }^{\infty }f(\tau )g(t-\tau )\,d\tau } _{(f*g)(t)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </munder> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)*g(t)\triangleq \underbrace {\int _{-\infty }^{\infty }f(\tau )g(t-\tau )\,d\tau } _{(f*g)(t)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c8752156813649a7c66de74a2b3d691491c438c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:32.721ex; height:10.009ex;" alt="{\displaystyle f(t)*g(t)\triangleq \underbrace {\int _{-\infty }^{\infty }f(\tau )g(t-\tau )\,d\tau } _{(f*g)(t)}}"></span></dd></dl> <p>它必须被谨慎解释以避免混淆。例如:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)*g(t-t_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)*g(t-t_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da85a8202af7a2978ff30530efb5477cc2852334" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.621ex; height:2.843ex;" alt="{\displaystyle f(t)*g(t-t_{0})}"></span>等价于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)(t-t_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)(t-t_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/234cb6bf010ce9f18c6fdbfef1a75d87661c52ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.782ex; height:2.843ex;" alt="{\displaystyle (f*g)(t-t_{0})}"></span>,而<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t-t_{0})*g(t-t_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t-t_{0})*g(t-t_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c225f7585abf969b8bd4319b078d10f44437abde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.356ex; height:2.843ex;" alt="{\displaystyle f(t-t_{0})*g(t-t_{0})}"></span>却实际上等价于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)(t-2t_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)(t-2t_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/792889872f217f9e95757a97da74f00cf27f2e81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.944ex; height:2.843ex;" alt="{\displaystyle (f*g)(t-2t_{0})}"></span><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading2"><h2 id="历史"><span id=".E5.8E.86.E5.8F.B2"></span>历史</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=2" title="编辑章节:历史"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>卷积运算的最早使用出现在<a href="/wiki/%E8%AE%A9%C2%B7%E5%8B%92%E6%9C%97%C2%B7%E8%BE%BE%E6%9C%97%E8%B4%9D%E5%B0%94" title="让·勒朗·达朗贝尔">达朗贝尔</a>于1754年出版的《宇宙体系的几个要点研究》中对<a href="/wiki/%E6%B3%B0%E5%8B%92%E5%AE%9A%E7%90%86" class="mw-redirect" title="泰勒定理">泰勒定理</a>的推导之中<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup>。还有<span class="ilh-all" data-orig-title="西尔维斯特·弗朗索瓦·拉克鲁瓦" data-lang-code="en" data-lang-name="英语" data-foreign-title="Sylvestre François Lacroix"><span class="ilh-page"><a href="/w/index.php?title=%E8%A5%BF%E5%B0%94%E7%BB%B4%E6%96%AF%E7%89%B9%C2%B7%E5%BC%97%E6%9C%97%E7%B4%A2%E7%93%A6%C2%B7%E6%8B%89%E5%85%8B%E9%B2%81%E7%93%A6&amp;action=edit&amp;redlink=1" class="new" title="西尔维斯特·弗朗索瓦·拉克鲁瓦(页面不存在)">西尔维斯特·拉克鲁瓦</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Sylvestre_Fran%C3%A7ois_Lacroix" class="extiw" title="en:Sylvestre François Lacroix"><span lang="en" dir="auto">Sylvestre François Lacroix</span></a></span>)</span></span>,将<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int f(u)\cdot g(x-u)\,du}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>u</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int f(u)\cdot g(x-u)\,du}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d6d36b7751cb0766e53e6f139179baa44567c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.259ex; height:3.176ex;" alt="{\textstyle \int f(u)\cdot g(x-u)\,du}"></span>类型的表达式,用在他的1797年–1800年出版的著作《微分与级数论文》中<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup>。此后不久,卷积运算出现在<a href="/wiki/%E7%9A%AE%E5%9F%83%E5%B0%94-%E8%A5%BF%E8%92%99%C2%B7%E6%8B%89%E6%99%AE%E6%8B%89%E6%96%AF" title="皮埃尔-西蒙·拉普拉斯">皮埃尔-西蒙·拉普拉斯</a>、<a href="/wiki/%E7%BA%A6%E7%91%9F%E5%A4%AB%C2%B7%E5%82%85%E9%87%8C%E5%8F%B6" title="约瑟夫·傅里叶">约瑟夫·傅里叶</a>和<a href="/wiki/%E8%A5%BF%E6%A2%85%E7%BF%81%C2%B7%E5%BE%B7%E5%B0%BC%C2%B7%E6%B3%8A%E6%9D%BE" title="西梅翁·德尼·泊松">西梅翁·泊松</a>等人的著作中。这个运算以前有时叫做“Faltung”(德语中的折叠)、合成乘积、叠加积分或卡森积分<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>“卷积”这个术语早在1903年就出现了,然而其定义在早期使用中是相当生僻的<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup>,直到1950年代或1960年代之前都未曾广泛使用。 </p> <div class="mw-heading mw-heading2"><h2 id="简介"><span id=".E7.AE.80.E4.BB.8B"></span>简介</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=3" title="编辑章节:简介"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>如果<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>都是在<a href="/wiki/Lp%E7%A9%BA%E9%97%B4" title="Lp空间"><i>L<sup>p</sup></i> 空间</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{1}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{1}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d919ffb3de31d39cecd5f28a2992e96b37dcb9d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.343ex; height:3.176ex;" alt="{\displaystyle L^{1}(\mathbb {R} ^{n})}"></span>内的<a href="/wiki/%E5%8B%92%E8%B2%9D%E6%A0%BC%E7%A9%8D%E5%88%86" title="勒貝格積分">勒贝格可积函数</a>,则二者的卷积存在,并且在这种情况下<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f*g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f*g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de088e4a3777d3b5d2787fdec81acd91e78a719e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle f*g}"></span>也是可积的<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup>。这是<a href="/wiki/%E5%AF%8C%E6%AF%94%E5%B0%BC%E5%AE%9A%E7%90%86#非负函数的Tonelli定理" title="富比尼定理">托內利定理</a>的结论。对于在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74c288d1089f1ec85b01b4de25c441fc792bd2d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{1}}"></span>中的函数在离散卷积下,或更一般的对于在任何群的上的卷积,这也是成立的。同样的,如果<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in L^{1}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in L^{1}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d18f6a375b29725466fd705ddd852c78b6969a9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.462ex; height:3.176ex;" alt="{\displaystyle f\in L^{1}(\mathbb {R} ^{n})}"></span>而<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\in L^{p}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\in L^{p}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de000d6e94bc4b702e579b94e7251b4ed2128800" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.305ex; height:2.843ex;" alt="{\displaystyle g\in L^{p}(\mathbb {R} ^{n})}"></span>,这里的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq p\leq \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>p</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\leq p\leq \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7d63bb8c8def80f4fb709fbb2aae6a11c9cd41d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.853ex; height:2.509ex;" alt="{\displaystyle 1\leq p\leq \infty }"></span>,则<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f*g\in L^{p}(\mathbb {R} ^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f*g\in L^{p}(\mathbb {R} ^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a8b04e5267aaa143352c2f0cae4cdf5a94055fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.778ex; height:2.843ex;" alt="{\displaystyle f*g\in L^{p}(\mathbb {R} ^{n})}"></span>,并且其<a href="/wiki/Lp%E8%8C%83%E6%95%B0" title="Lp范数"><i>L<sup>p</sup></i> </a><a href="/wiki/%E8%8C%83%E6%95%B0" title="范数">范数</a>间有着<a href="/wiki/%E4%B8%8D%E7%AD%89%E5%BC%8F" title="不等式">不等式</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|{f}*g\|_{p}\leq \|f\|_{1}\|g\|_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|{f}*g\|_{p}\leq \|f\|_{1}\|g\|_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac167e998466ca09086bc78af3450441a3a79b8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.23ex; height:3.009ex;" alt="{\displaystyle \|{f}*g\|_{p}\leq \|f\|_{1}\|g\|_{p}}"></span></dd></dl> <p>在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c29a2f2fb3f642618036ed7a79712202e7ada924" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.52ex; height:2.509ex;" alt="{\displaystyle p=1}"></span>的特殊情况下,这显示出<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74c288d1089f1ec85b01b4de25c441fc792bd2d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{1}}"></span>是在卷积下的<a href="/wiki/%E5%B7%B4%E6%8B%BF%E8%B5%AB%E4%BB%A3%E6%95%B0" title="巴拿赫代数">巴拿赫代数</a>(并且如果<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span><a href="/wiki/%E5%B9%BE%E4%B9%8E%E8%99%95%E8%99%95" title="幾乎處處">几乎处处</a>非负则两边间等式成立)。 </p><p>卷积与<a href="/wiki/%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2" title="傅里叶变换">傅里叶变换</a>有着密切的关系。例如两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,利用此一性質,能簡化傅里叶分析中的许多问题。 </p><p>由卷积得到的函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f*g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f*g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de088e4a3777d3b5d2787fdec81acd91e78a719e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle f*g}"></span>,一般要比<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>都光滑。特别当<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>为具有紧支集的<a href="/wiki/%E5%85%89%E6%BB%91%E5%87%BD%E6%95%B0" title="光滑函数">光滑函数</a>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>为局部可积时,它们的卷积<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f*g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f*g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de088e4a3777d3b5d2787fdec81acd91e78a719e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle f*g}"></span>也是光滑函数。利用这一性质,对于任意的可积函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>,都可以简单地构造出一列逼近于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的光滑函数列<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34f933ad7a8dc310b3fa8e9f7b0b2558cba136db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.143ex; height:2.509ex;" alt="{\displaystyle f_{s}}"></span>,这种方法称为函数的光滑化或<a href="/wiki/%E6%AD%A3%E5%88%99%E5%8C%96_(%E6%95%B0%E5%AD%A6)" title="正则化 (数学)">正则化</a>。 </p><p>函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf044fe2fbfc4bd8d6d7230f4108430263f9fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.927ex; height:2.843ex;" alt="{\displaystyle f(t)}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b84f700860ee7af27797d11ddfad3d185eb7af0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.765ex; height:2.843ex;" alt="{\displaystyle g(t)}"></span>的<a href="/wiki/%E4%BA%92%E7%9B%B8%E5%85%B3" title="互相关">互相关</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f\star g)(\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x22C6;<!-- ⋆ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f\star g)(\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35266c2d9dbb26a94586f73e383ac149d4c08af7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.41ex; height:2.843ex;" alt="{\displaystyle (f\star g)(\tau )}"></span>,等价于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d950c236d26a2bd8e7b3216c5d488d8f187219a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.098ex; height:2.843ex;" alt="{\displaystyle f(-\tau )}"></span>的<a href="/wiki/%E5%85%B1%E8%BD%AD%E5%A4%8D%E6%95%B0" title="共轭复数">共轭复数</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {f(-\tau )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {f(-\tau )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa777133e1e9df2383724c7d0799c0de1019a83c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.213ex; height:3.676ex;" alt="{\displaystyle {\overline {f(-\tau )}}}"></span>与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3ca3806d8f1456510d15896379772656cd465da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.127ex; height:2.843ex;" alt="{\displaystyle g(\tau )}"></span>的卷积: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f\star g)(\tau )\triangleq \int _{-\infty }^{\infty }{\overline {f(t-\tau )}}g(t)\,dt={\overline {f(-\tau )}}*g(\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x22C6;<!-- ⋆ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f\star g)(\tau )\triangleq \int _{-\infty }^{\infty }{\overline {f(t-\tau )}}g(t)\,dt={\overline {f(-\tau )}}*g(\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e6365fc831a45d617192b3c1595aa3ea6cdf7dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:47.268ex; height:6.009ex;" alt="{\displaystyle (f\star g)(\tau )\triangleq \int _{-\infty }^{\infty }{\overline {f(t-\tau )}}g(t)\,dt={\overline {f(-\tau )}}*g(\tau )}"></span></dd></dl> <p>这里的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span>叫做移位(displacement)或滞后(lag)。 </p><p>对于<a href="/wiki/%E7%8B%84%E6%8B%89%E5%85%8B%CE%B4%E5%87%BD%E6%95%B0" title="狄拉克δ函数">單位脈衝</a>函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c050147a97868286252447ef73515c8108edd398" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.698ex; height:2.843ex;" alt="{\displaystyle \delta (t)}"></span>和某个函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66abbb8ae1d9f30bb529739b109e1e5bbe83c626" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.988ex; height:2.843ex;" alt="{\displaystyle h(t)}"></span>,二者得到的捲積就是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66abbb8ae1d9f30bb529739b109e1e5bbe83c626" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.988ex; height:2.843ex;" alt="{\displaystyle h(t)}"></span>本身,此<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66abbb8ae1d9f30bb529739b109e1e5bbe83c626" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.988ex; height:2.843ex;" alt="{\displaystyle h(t)}"></span>被稱為<a href="/wiki/%E5%86%B2%E6%BF%80%E5%93%8D%E5%BA%94" title="冲激响应">衝激響應</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\delta *h)(t)=\int _{-\infty }^{\infty }\delta (\tau )h(t-\tau )\,d\tau =h(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\delta *h)(t)=\int _{-\infty }^{\infty }\delta (\tau )h(t-\tau )\,d\tau =h(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ab321a0bbd1a4487255d88feaced4ee25a7fed7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.954ex; height:6.009ex;" alt="{\displaystyle (\delta *h)(t)=\int _{-\infty }^{\infty }\delta (\tau )h(t-\tau )\,d\tau =h(t)}"></span></dd></dl> <p>在连续时间<a href="/wiki/%E7%BA%BF%E6%80%A7%E6%97%B6%E4%B8%8D%E5%8F%98%E7%B3%BB%E7%BB%9F%E7%90%86%E8%AE%BA" title="线性时不变系统理论">线性非时变系统</a>中,输出信号<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/397de1edef5bf2ee15c020f325d7d781a3aa7f50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle y(t)}"></span>被描述为输入<a href="/wiki/%E4%BF%A1%E5%8F%B7_(%E4%BF%A1%E6%81%AF%E8%AE%BA)" title="信号 (信息论)">信号</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54c275db3a1e620737b58e143b0818107fa5f5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.979ex; height:2.843ex;" alt="{\displaystyle x(t)}"></span>与<a href="/wiki/%E5%86%B2%E6%BF%80%E5%93%8D%E5%BA%94" title="冲激响应">冲激响应</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66abbb8ae1d9f30bb529739b109e1e5bbe83c626" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.988ex; height:2.843ex;" alt="{\displaystyle h(t)}"></span>的卷积<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(t)=(x*h)(t)\ \triangleq \ \int \limits _{-\infty }^{\infty }x(t-\tau )\cdot h(\tau )\,\mathrm {d} \tau =\int \limits _{-\infty }^{\infty }x(\tau )\cdot h(t-\tau )\,\mathrm {d} \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>&#x225C;<!-- ≜ --></mo> <mtext>&#xA0;</mtext> <munderover> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <munderover> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>x</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(t)=(x*h)(t)\ \triangleq \ \int \limits _{-\infty }^{\infty }x(t-\tau )\cdot h(\tau )\,\mathrm {d} \tau =\int \limits _{-\infty }^{\infty }x(\tau )\cdot h(t-\tau )\,\mathrm {d} \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/724a2ccb3ccd5206c06b2ba6a75d631aaf44d52c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:64.344ex; height:8.843ex;" alt="{\displaystyle y(t)=(x*h)(t)\ \triangleq \ \int \limits _{-\infty }^{\infty }x(t-\tau )\cdot h(\tau )\,\mathrm {d} \tau =\int \limits _{-\infty }^{\infty }x(\tau )\cdot h(t-\tau )\,\mathrm {d} \tau }"></span></dd></dl> <p>两个<a href="/wiki/%E7%8B%AC%E7%AB%8B_(%E6%A6%82%E7%8E%87%E8%AE%BA)" title="独立 (概率论)">独立</a>的<a href="/wiki/%E9%9A%8F%E6%9C%BA%E5%8F%98%E9%87%8F" title="随机变量">随机变量</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>,每个都有一个<a href="/wiki/%E6%A6%82%E7%8E%87%E5%AF%86%E5%BA%A6%E5%87%BD%E6%95%B0" class="mw-redirect" title="概率密度函数">概率密度函数</a>,二者之和的概率密度,是它们单独的密度函数的卷积: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{U+V}(x)=\int _{-\infty }^{\infty }f_{U}(y)f_{V}(x-y)\,dy=\left(f_{U}*f_{V}\right)(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> <mo>+</mo> <mi>V</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mo>&#x2217;<!-- ∗ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{U+V}(x)=\int _{-\infty }^{\infty }f_{U}(y)f_{V}(x-y)\,dy=\left(f_{U}*f_{V}\right)(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebb120a9824eba38d4162458ca90bf2c7f075c98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:50.266ex; height:6.009ex;" alt="{\displaystyle f_{U+V}(x)=\int _{-\infty }^{\infty }f_{U}(y)f_{V}(x-y)\,dy=\left(f_{U}*f_{V}\right)(x)}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="图解"><span id=".E5.9B.BE.E8.A7.A3"></span>图解</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=4" title="编辑章节:图解"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr style="vertical-align:top"> <td> <ol><li>已知右侧第一行图中两个函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf044fe2fbfc4bd8d6d7230f4108430263f9fd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.927ex; height:2.843ex;" alt="{\displaystyle f(t)}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b84f700860ee7af27797d11ddfad3d185eb7af0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.765ex; height:2.843ex;" alt="{\displaystyle g(t)}"></span>。</li> <li>首先將兩個函數都用<a href="/wiki/%E7%BA%A6%E6%9D%9F%E5%8F%98%E9%87%8F" class="mw-redirect" title="约束变量">约束变量</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span>來表示,并将<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3ca3806d8f1456510d15896379772656cd465da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.127ex; height:2.843ex;" alt="{\displaystyle g(\tau )}"></span>翻转至纵轴另一侧,从而得到右侧第二行图中<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcba00f11285b589b0ff57beeaf118defab2cfe8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.29ex; height:2.843ex;" alt="{\displaystyle f(\tau )}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7270aba4a907afb2c1e074efac5f90ccc6ede41e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.935ex; height:2.843ex;" alt="{\displaystyle g(-\tau )}"></span>。</li> <li>向函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7270aba4a907afb2c1e074efac5f90ccc6ede41e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.935ex; height:2.843ex;" alt="{\displaystyle g(-\tau )}"></span>增加一个时间偏移量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>,得到函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(-(\tau -t))=g(t-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(-(\tau -t))=g(t-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c359146c5ddafe39db1b991ac0436f96b022d062" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.33ex; height:2.843ex;" alt="{\displaystyle g(-(\tau -t))=g(t-\tau )}"></span>。<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>不是<a href="/wiki/%E5%B8%B8%E6%95%B0" title="常数">常数</a>而是<a href="/wiki/%E8%87%AA%E7%94%B1%E5%8F%98%E9%87%8F" class="mw-redirect" title="自由变量">自由变量</a>,当<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>取不同值时,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(t-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(t-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cb1c1c6de1ad02f14ce3217246b956b66f1c5a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.807ex; height:2.843ex;" alt="{\displaystyle g(t-\tau )}"></span>能沿着<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span>轴“滑动”。如果<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>是正值,则<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(t-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(t-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cb1c1c6de1ad02f14ce3217246b956b66f1c5a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.807ex; height:2.843ex;" alt="{\displaystyle g(t-\tau )}"></span>等于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7270aba4a907afb2c1e074efac5f90ccc6ede41e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.935ex; height:2.843ex;" alt="{\displaystyle g(-\tau )}"></span>沿着<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span>轴向右(朝向<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bddbb0e4420a7e744cf71bd71216e11b0bf88831" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle +\infty }"></span>)滑动数量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>。如果<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>是负值,则<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(t-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(t-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cb1c1c6de1ad02f14ce3217246b956b66f1c5a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.807ex; height:2.843ex;" alt="{\displaystyle g(t-\tau )}"></span>等价于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7270aba4a907afb2c1e074efac5f90ccc6ede41e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.935ex; height:2.843ex;" alt="{\displaystyle g(-\tau )}"></span>向左(朝向<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }"></span>)滑动数量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |t|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |t|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa9b1439497e4de838a6b1bcf724ef7a8fe48147" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.133ex; height:2.843ex;" alt="{\displaystyle |t|}"></span>。</li> <li>讓<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>從<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }"></span>变化至<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bddbb0e4420a7e744cf71bd71216e11b0bf88831" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle +\infty }"></span>,当兩個函數交會時,計算交會範圍中兩個函數乘積的積分值。換句話說,在时间<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>,计算函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcba00f11285b589b0ff57beeaf118defab2cfe8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.29ex; height:2.843ex;" alt="{\displaystyle f(\tau )}"></span>经过<a href="/wiki/%E6%9D%83%E9%87%8D" title="权重">权重函数</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(t-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(t-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cb1c1c6de1ad02f14ce3217246b956b66f1c5a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.807ex; height:2.843ex;" alt="{\displaystyle g(t-\tau )}"></span>施以权重后其下的面积。右侧第三、第四和第五行图中,分别是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43469ec032d858feae5aa87029e22eaaf0109e9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.101ex; height:2.176ex;" alt="{\displaystyle t=0}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=2.5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=2.5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0952a2f5eed09daab8545cb001f2a2e1a357de29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.91ex; height:2.176ex;" alt="{\displaystyle t=2.5}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=5.5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>5.5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=5.5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a902bad8de47ff2779b2898c3d4293fb304c15c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.91ex; height:2.176ex;" alt="{\displaystyle t=5.5}"></span>时的情况,从<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/730f3de856e6f8850f89a9b990cfc7f7ba7c28bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.101ex; height:2.176ex;" alt="{\displaystyle t&gt;1}"></span>时开始有交会,例如在第四行图中,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4422051052da869dc5b1f0e1cfb06a045ee0c36a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.463ex; height:2.176ex;" alt="{\displaystyle \tau =0}"></span>则<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(t-\tau )=g(2.5)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mn>2.5</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(t-\tau )=g(2.5)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c4d64523d9decfa1c0840f18163c1cdfd2f64d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.803ex; height:2.843ex;" alt="{\displaystyle g(t-\tau )=g(2.5)}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau =1.5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mn>1.5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau =1.5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/729234f1df0d6b8c95f6ceabcaced14a42e4de45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.272ex; height:2.176ex;" alt="{\displaystyle \tau =1.5}"></span>则<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(t-\tau )=g(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(t-\tau )=g(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf7e5bdc32b37a2fb5becd7a53f412343dd004fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.993ex; height:2.843ex;" alt="{\displaystyle g(t-\tau )=g(1)}"></span>,对于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau \notin [0,1.5]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo>&#x2209;<!-- ∉ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1.5</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau \notin [0,1.5]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/838205ce42d577093b941bc0a0fe5bcfef0b8f9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.504ex; height:2.843ex;" alt="{\displaystyle \tau \notin [0,1.5]}"></span>有着<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\tau )g(t-\tau )=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\tau )g(t-\tau )=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d3069e4a526b82c4d8fdf1157bfccb344ad3f40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.358ex; height:2.843ex;" alt="{\displaystyle f(\tau )g(t-\tau )=0}"></span>。</li></ol> <dl><dd>最後得到的<a href="/wiki/%E6%B3%A2%E5%BD%A2" title="波形">波形</a>(未包含在此圖中)就是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>的捲積。</dd></dl> </td> <td><span typeof="mw:File"><a href="/wiki/File:Convolution3.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Convolution3.svg/468px-Convolution3.svg.png" decoding="async" width="468" height="530" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Convolution3.svg/702px-Convolution3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/79/Convolution3.svg/936px-Convolution3.svg.png 2x" data-file-width="713" data-file-height="807" /></a></span> </td></tr> <tr style="vertical-align:top"> <td>两个<a href="/wiki/%E7%9F%A9%E5%BD%A2%E5%87%BD%E6%95%B0" title="矩形函数">矩形</a><a href="/wiki/%E8%84%88%E8%A1%9D%E6%B3%A2" class="mw-redirect" title="脈衝波">脈衝波</a>的捲積。其中函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>首先对<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4422051052da869dc5b1f0e1cfb06a045ee0c36a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.463ex; height:2.176ex;" alt="{\displaystyle \tau =0}"></span>反射,接著平移<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>,成為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(t-\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(t-\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cb1c1c6de1ad02f14ce3217246b956b66f1c5a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.807ex; height:2.843ex;" alt="{\displaystyle g(t-\tau )}"></span>。那么重叠部份的面积就相当于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>处的卷积,其中橫坐標代表待变量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span>以及新函數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\ast g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\ast g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f646d7f404b2b4c55d2005540bfe7cf36ee0eaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle f\ast g}"></span>的自變量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>。 </td> <td><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:Convolution_of_box_signal_with_itself2.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/6/6a/Convolution_of_box_signal_with_itself2.gif" decoding="async" width="468" height="147" class="mw-file-element" data-file-width="468" data-file-height="147" /></a></span> </td></tr> <tr style="vertical-align:top"> <td><a href="/wiki/%E7%9F%A9%E5%BD%A2%E5%87%BD%E6%95%B0" title="矩形函数">矩形</a><a href="/wiki/%E8%84%88%E8%A1%9D%E6%B3%A2" class="mw-redirect" title="脈衝波">脈衝波</a>和<a href="/wiki/%E6%8C%87%E6%95%B0%E8%A1%B0%E5%87%8F" title="指数衰减">指數衰減</a><a href="/wiki/%E8%84%88%E8%A1%9D%E6%B3%A2" class="mw-redirect" title="脈衝波">脈衝波</a>的捲積(後者可能出現於<a href="/wiki/RC%E9%9B%BB%E8%B7%AF" title="RC電路">RC電路</a>中),同樣地重疊部份面積就相當於<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>處的捲積。注意到因為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>是對稱的,所以在這兩張圖中,反射並不會改變它的形狀。 </td> <td><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:Convolution_of_spiky_function_with_box2.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/b/b9/Convolution_of_spiky_function_with_box2.gif" decoding="async" width="468" height="135" class="mw-file-element" data-file-width="468" data-file-height="135" /></a></span> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="周期卷积"><span id=".E5.91.A8.E6.9C.9F.E5.8D.B7.E7.A7.AF"></span>周期卷积</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=5" title="编辑章节:周期卷积"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r84833064">.mw-parser-output .hatnote{font-size:small}.mw-parser-output div.hatnote{padding-left:2em;margin-bottom:0.8em;margin-top:0.8em}.mw-parser-output .hatnote-notice-img::after{content:"\202f \202f \202f \202f "}.mw-parser-output .hatnote-notice-img-small::after{content:"\202f \202f "}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}body.skin-minerva .mw-parser-output .hatnote-notice-img,body.skin-minerva .mw-parser-output .hatnote-notice-img-small{display:none}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E5%9C%86%E5%91%A8%E5%8D%B7%E7%A7%AF" class="mw-redirect" title="圆周卷积">圆周卷积</a></div> <style data-mw-deduplicate="TemplateStyles:r70089473/mw-parser-output/.tmulti">.mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}</style><div class="thumb tmulti tright"><div class="thumbinner" style="width:472px;max-width:472px"><div class="trow"><div class="tsingle" style="width:470px;max-width:470px"><div class="thumbimage" style="height:193px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Splotc2.gif" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Splotc2.gif/468px-Splotc2.gif" decoding="async" width="468" height="194" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/6/68/Splotc2.gif 1.5x" data-file-width="512" data-file-height="212" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:470px;max-width:470px"><div class="thumbimage" style="height:193px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Splotc1.gif" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Splotc1.gif/468px-Splotc1.gif" decoding="async" width="468" height="194" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/0/02/Splotc1.gif 1.5x" data-file-width="512" data-file-height="212" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption"><a href="/wiki/%E7%9F%A9%E5%BD%A2%E5%87%BD%E6%95%B0" title="矩形函数">矩形</a><a href="/wiki/%E8%84%88%E8%A1%9D%E6%B3%A2" class="mw-redirect" title="脈衝波">脉冲波</a>和<a href="/wiki/%E6%8C%87%E6%95%B0%E8%A1%B0%E5%87%8F" title="指数衰减">指数衰减</a><a href="/wiki/%E8%84%88%E8%A1%9D%E6%B3%A2" class="mw-redirect" title="脈衝波">脉冲波</a>的周期卷积</div></div></div></div> <p>两个<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>周期的函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{_{T}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{_{T}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dbf745360cd1499bb246e4c4a0537bbe08dd82e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.324ex; height:3.009ex;" alt="{\displaystyle h_{_{T}}(t)}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{_{T}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{_{T}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a14897f04bb0ca2d651dd456402e3c5795e26bc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.314ex; height:3.009ex;" alt="{\displaystyle x_{_{T}}(t)}"></span>的“周期卷积”定义为<sup id="cite_ref-Jeruchim_10-0" class="reference"><a href="#cite_note-Jeruchim-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Udayashankara_11-0" class="reference"><a href="#cite_note-Udayashankara-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{t_{0}}^{t_{0}+T}h_{_{T}}(\tau )x_{_{T}}(t-\tau )\,d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>T</mi> </mrow> </msubsup> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{t_{0}}^{t_{0}+T}h_{_{T}}(\tau )x_{_{T}}(t-\tau )\,d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41326470a2d36ed2810203d0db93abc1828ed17c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:24.792ex; height:6.509ex;" alt="{\displaystyle \int _{t_{0}}^{t_{0}+T}h_{_{T}}(\tau )x_{_{T}}(t-\tau )\,d\tau }"></span></dd></dl> <p>这里的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02d3006c4190b1939b04d9b9bb21006fb4e6fa4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.894ex; height:2.343ex;" alt="{\displaystyle t_{0}}"></span>是任意参数。 </p><p>任何<span class="ilh-all" data-orig-title="绝对可积分函数" data-lang-code="en" data-lang-name="英语" data-foreign-title="Absolutely integrable function"><span class="ilh-page"><a href="/w/index.php?title=%E7%BB%9D%E5%AF%B9%E5%8F%AF%E7%A7%AF%E5%88%86%E5%87%BD%E6%95%B0&amp;action=edit&amp;redlink=1" class="new" title="绝对可积分函数(页面不存在)">可积分函数</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Absolutely_integrable_function" class="extiw" title="en:Absolutely integrable function"><span lang="en" dir="auto">Absolutely integrable function</span></a></span>)</span></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c484de351ba40ccb9a5ad522c29c1aac5686c0df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.739ex; height:2.843ex;" alt="{\displaystyle s(t)}"></span>,都可以通过求函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c484de351ba40ccb9a5ad522c29c1aac5686c0df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.739ex; height:2.843ex;" alt="{\displaystyle s(t)}"></span>的所有<a href="/wiki/%E5%80%8D%E6%95%B8" title="倍數">整数倍</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>的<a href="/wiki/%E5%B9%B3%E7%A7%BB" title="平移">平移</a>的<a href="/wiki/%E6%B1%82%E5%92%8C%E7%AC%A6%E5%8F%B7" title="求和符号">总和</a>,从而制作出具有<a href="/wiki/%E5%91%A8%E6%9C%9F" class="mw-redirect" title="周期">周期</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>的<a href="/wiki/%E5%91%A8%E6%9C%9F%E5%87%BD%E6%95%B0" title="周期函数">周期函数</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{_{P}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{_{P}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c539843035279ddcb5a59f2ee95b0d09797d743" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.138ex; height:3.009ex;" alt="{\displaystyle s_{_{P}}(t)}"></span>,这叫做<span class="ilh-all" data-orig-title="周期求和" data-lang-code="en" data-lang-name="英语" data-foreign-title="Periodic summation"><span class="ilh-page"><a href="/w/index.php?title=%E5%91%A8%E6%9C%9F%E6%B1%82%E5%92%8C&amp;action=edit&amp;redlink=1" class="new" title="周期求和(页面不存在)">周期求和</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Periodic_summation" class="extiw" title="en:Periodic summation"><span lang="en" dir="auto">Periodic summation</span></a></span>)</span></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{_{P}}(t)\triangleq \sum _{m=-\infty }^{\infty }s(t+mP)=\sum _{m=-\infty }^{\infty }s(t-mP),\quad m\in \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>m</mi> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mi>P</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>m</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{_{P}}(t)\triangleq \sum _{m=-\infty }^{\infty }s(t+mP)=\sum _{m=-\infty }^{\infty }s(t-mP),\quad m\in \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f1c0e96964754d5f4768b459bb80b47f1a158d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:53.914ex; height:6.843ex;" alt="{\displaystyle s_{_{P}}(t)\triangleq \sum _{m=-\infty }^{\infty }s(t+mP)=\sum _{m=-\infty }^{\infty }s(t-mP),\quad m\in \mathbb {Z} }"></span></dd></dl> <p>对于无周期函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>,其周期<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span>的周期求和分别是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{_{T}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{_{T}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dbf745360cd1499bb246e4c4a0537bbe08dd82e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.324ex; height:3.009ex;" alt="{\displaystyle h_{_{T}}(t)}"></span>与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{_{T}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{_{T}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a14897f04bb0ca2d651dd456402e3c5795e26bc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.314ex; height:3.009ex;" alt="{\displaystyle x_{_{T}}(t)}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>的周期卷积,可以定义为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66abbb8ae1d9f30bb529739b109e1e5bbe83c626" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.988ex; height:2.843ex;" alt="{\displaystyle h(t)}"></span>与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{_{T}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{_{T}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a14897f04bb0ca2d651dd456402e3c5795e26bc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.314ex; height:3.009ex;" alt="{\displaystyle x_{_{T}}(t)}"></span>的常规卷积,或<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54c275db3a1e620737b58e143b0818107fa5f5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.979ex; height:2.843ex;" alt="{\displaystyle x(t)}"></span>与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{_{T}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{_{T}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dbf745360cd1499bb246e4c4a0537bbe08dd82e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.324ex; height:3.009ex;" alt="{\displaystyle h_{_{T}}(t)}"></span>的常规卷积,二者都等价于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{_{T}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{_{T}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dbf745360cd1499bb246e4c4a0537bbe08dd82e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.324ex; height:3.009ex;" alt="{\displaystyle h_{_{T}}(t)}"></span>与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{_{T}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{_{T}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a14897f04bb0ca2d651dd456402e3c5795e26bc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.314ex; height:3.009ex;" alt="{\displaystyle x_{_{T}}(t)}"></span>的周期积分: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (h*x_{_{T}})(t)\ \triangleq \ \ \int _{-\infty }^{\infty }h(\tau )x_{_{T}}(t-\tau )\,d\tau \ =\ \int _{t_{0}}^{t_{0}+T}h_{_{T}}(\tau )x_{_{T}}(t-\tau )\,d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>h</mi> <mo>&#x2217;<!-- ∗ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>&#x225C;<!-- ≜ --></mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>h</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>T</mi> </mrow> </msubsup> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (h*x_{_{T}})(t)\ \triangleq \ \ \int _{-\infty }^{\infty }h(\tau )x_{_{T}}(t-\tau )\,d\tau \ =\ \int _{t_{0}}^{t_{0}+T}h_{_{T}}(\tau )x_{_{T}}(t-\tau )\,d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed3f9f6cb530132f7eb6e616ca84c3ef7b9df0ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:66.669ex; height:6.509ex;" alt="{\displaystyle (h*x_{_{T}})(t)\ \triangleq \ \ \int _{-\infty }^{\infty }h(\tau )x_{_{T}}(t-\tau )\,d\tau \ =\ \int _{t_{0}}^{t_{0}+T}h_{_{T}}(\tau )x_{_{T}}(t-\tau )\,d\tau }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (h*x_{_{T}})(t)=(x*h_{_{T}})(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>h</mi> <mo>&#x2217;<!-- ∗ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2217;<!-- ∗ --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (h*x_{_{T}})(t)=(x*h_{_{T}})(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b531b6fddc8d74b69d41f72c7442cab1f1073fd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.413ex; height:3.009ex;" alt="{\displaystyle (h*x_{_{T}})(t)=(x*h_{_{T}})(t)}"></span></dd></dl> <p><a href="/wiki/%E5%9C%86%E5%91%A8%E5%8D%B7%E7%A7%AF" class="mw-redirect" title="圆周卷积">圆周卷积</a>是周期卷积的特殊情况<sup id="cite_ref-Udayashankara_11-1" class="reference"><a href="#cite_note-Udayashankara-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Priemer_12-0" class="reference"><a href="#cite_note-Priemer-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup>,其中函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>二者的非零部份,都限定在区间<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,T]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,T]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35ccef2d3dc751e081375d51c111709d8a1d7ac6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.126ex; height:2.843ex;" alt="{\displaystyle [0,T]}"></span>之内,此时的周期求和称为“周期延拓”。<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h*x_{_{T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>&#x2217;<!-- ∗ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h*x_{_{T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b33366f8a6a4af042b06e2901487cfb39f7a040" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.199ex; height:2.843ex;" alt="{\displaystyle h*x_{_{T}}}"></span>中函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{_{T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{_{T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56fa15d468a0a0215f4fad40c34256bd48ba91db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.666ex; height:2.343ex;" alt="{\displaystyle x_{_{T}}}"></span>可以通过取<a href="/wiki/%E6%80%A7%E8%B3%AA%E7%AC%A6%E8%99%9F" title="性質符號">非负</a><a href="/wiki/%E4%BD%99%E6%95%B0" title="余数">余数</a>的<a href="/wiki/%E6%A8%A1%E9%99%A4" title="模除">模除</a>运算表达为“圆周函数”: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{_{T}}(t)=x(t_{\mathrm {mod} \ T}),\quad t\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">d</mi> </mrow> <mtext>&#xA0;</mtext> <mi>T</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{_{T}}(t)=x(t_{\mathrm {mod} \ T}),\quad t\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0f00f91b1a232ae69bdc58b0b56ee007f5e8419" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.181ex; height:3.009ex;" alt="{\displaystyle x_{_{T}}(t)=x(t_{\mathrm {mod} \ T}),\quad t\in \mathbb {R} }"></span></dd></dl> <p>而积分的界限可以缩简至函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>的长度范围<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,T]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,T]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35ccef2d3dc751e081375d51c111709d8a1d7ac6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.126ex; height:2.843ex;" alt="{\displaystyle [0,T]}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (h*x_{_{T}})(t)=\int _{0}^{T}h(\tau )x((t-\tau )_{\mathrm {mod} \ T})\ d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>h</mi> <mo>&#x2217;<!-- ∗ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <mi>h</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C4;<!-- τ --></mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">d</mi> </mrow> <mtext>&#xA0;</mtext> <mi>T</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (h*x_{_{T}})(t)=\int _{0}^{T}h(\tau )x((t-\tau )_{\mathrm {mod} \ T})\ d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18ab3031f01325fa5355ba6220fd10be1b2d2da7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:40.25ex; height:6.176ex;" alt="{\displaystyle (h*x_{_{T}})(t)=\int _{0}^{T}h(\tau )x((t-\tau )_{\mathrm {mod} \ T})\ d\tau }"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="离散卷积"><span id=".E7.A6.BB.E6.95.A3.E5.8D.B7.E7.A7.AF"></span>离散卷积</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=6" title="编辑章节:离散卷积"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Konvolutsioon.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/Konvolutsioon.png/200px-Konvolutsioon.png" decoding="async" width="200" height="136" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/3/37/Konvolutsioon.png 1.5x" data-file-width="300" data-file-height="204" /></a><figcaption>离散卷积示意图</figcaption></figure> <p>对于定义在整數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>上且得出<a href="/wiki/%E5%A4%8D%E6%95%B0_(%E6%95%B0%E5%AD%A6)" title="复数 (数学)">复数</a>值的函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b176b3dbcced447341ad5ab70001ef0e3231062e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.967ex; height:2.843ex;" alt="{\displaystyle f[n]}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5e1d771a2385e9aeb71838a40425bb07c89525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle g[n]}"></span>,离散卷积定义为<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)[n]\ \ \triangleq \ \sum _{m=-\infty }^{\infty }{f[m]g[n-m]}=\sum _{m=-\infty }^{\infty }f[n-m]\,g[m]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mo>&#x225C;<!-- ≜ --></mo> <mtext>&#xA0;</mtext> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>m</mi> <mo stretchy="false">]</mo> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">]</mo> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">[</mo> <mi>m</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)[n]\ \ \triangleq \ \sum _{m=-\infty }^{\infty }{f[m]g[n-m]}=\sum _{m=-\infty }^{\infty }f[n-m]\,g[m]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bd9a55083d6a0d0aa8bda67d179ebc0c7970166" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:56.456ex; height:6.843ex;" alt="{\displaystyle (f*g)[n]\ \ \triangleq \ \sum _{m=-\infty }^{\infty }{f[m]g[n-m]}=\sum _{m=-\infty }^{\infty }f[n-m]\,g[m]}"></span></dd></dl> <p>這裡一樣把函數定義域以外的值當成零,所以可以擴展函數到所有整數上(如果本來不是的話)。两个有限序列的卷积的定义,是将这些序列扩展成在整数集合上有限支撑的函数。在这些序列是两个<a href="/wiki/%E5%A4%9A%E9%A1%B9%E5%BC%8F" class="mw-redirect" title="多项式">多项式</a>的系数之时,这两个多项式的普通乘积的系数,就是这两个序列的卷积。这叫做序列系数的<a href="/wiki/%E6%9F%AF%E8%A5%BF%E4%B9%98%E7%A7%AF" title="柯西乘积">柯西乘积</a>。 </p><p>當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5e1d771a2385e9aeb71838a40425bb07c89525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle g[n]}"></span>的<a href="/wiki/%E6%94%AF%E6%92%91%E9%9B%86" title="支撑集">支撐集</a>為有限長度的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{-M,-M+1,\dots ,M-1,M\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>M</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{-M,-M+1,\dots ,M-1,M\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83f986c5ada0f03f25b8ef914cb30da0f84dabaa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.962ex; height:2.843ex;" alt="{\displaystyle \{-M,-M+1,\dots ,M-1,M\}}"></span>之时,上式會變成有限<a href="/wiki/%E6%B1%82%E5%92%8C%E7%AC%A6%E5%8F%B7" title="求和符号">求和</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)[n]=\sum _{m=-M}^{M}f[n-m]g[m]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">]</mo> <mi>g</mi> <mo stretchy="false">[</mo> <mi>m</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)[n]=\sum _{m=-M}^{M}f[n-m]g[m]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0a31f12e6771e6a8b1868f15214e43c8714c1d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:31.597ex; height:7.509ex;" alt="{\displaystyle (f*g)[n]=\sum _{m=-M}^{M}f[n-m]g[m]}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="多维离散卷积"><span id=".E5.A4.9A.E7.BB.B4.E7.A6.BB.E6.95.A3.E5.8D.B7.E7.A7.AF"></span>多维离散卷积</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=7" title="编辑章节:多维离散卷积"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84833064"><div role="note" class="hatnote navigation-not-searchable">主条目:<span class="ilh-all" data-orig-title="多维离散卷积" data-lang-code="en" data-lang-name="英语" data-foreign-title="Multidimensional discrete convolution"><span class="ilh-page"><a href="/w/index.php?title=%E5%A4%9A%E7%BB%B4%E7%A6%BB%E6%95%A3%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;redlink=1" class="new" title="多维离散卷积(页面不存在)">多维离散卷积</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Multidimensional_discrete_convolution" class="extiw" title="en:Multidimensional discrete convolution"><span lang="en" dir="auto">Multidimensional discrete convolution</span></a></span>)</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:2D_Convolution_Animation.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/1/19/2D_Convolution_Animation.gif" decoding="async" width="390" height="345" class="mw-file-element" data-file-width="390" data-file-height="345" /></a><figcaption>用离散二维卷积对<a href="/wiki/%E6%95%B0%E5%AD%97%E5%9B%BE%E5%83%8F" title="数字图像">图像</a>进行<span class="ilh-all" data-orig-title="核 (图像处理)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Kernel (image processing)"><span class="ilh-page"><a href="/w/index.php?title=%E6%A0%B8_(%E5%9B%BE%E5%83%8F%E5%A4%84%E7%90%86)&amp;action=edit&amp;redlink=1" class="new" title="核 (图像处理)(页面不存在)">锐化</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Kernel_(image_processing)" class="extiw" title="en:Kernel (image processing)"><span lang="en" dir="auto">Kernel (image processing)</span></a></span>)</span></span><a href="/wiki/%E5%9B%BE%E5%83%8F%E5%A4%84%E7%90%86" title="图像处理">处理</a>的动画</figcaption></figure> <p>类似于一维情况,使用<a href="/wiki/%E6%98%9F%E5%8F%B7" class="mw-redirect" title="星号">星号</a>表示卷积,而维度体现在星号的数量上,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>维卷积就写为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>个星号。下面是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>维信号的卷积的表示法: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(n_{1},n_{2},...,n_{_{M}})=h(n_{1},n_{2},...,n_{_{M}})*{\overset {M}{\cdots }}*x(n_{1},n_{2},...,n_{_{M}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>M</mi> </mover> </mrow> <mo>&#x2217;<!-- ∗ --></mo> <mi>x</mi> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(n_{1},n_{2},...,n_{_{M}})=h(n_{1},n_{2},...,n_{_{M}})*{\overset {M}{\cdots }}*x(n_{1},n_{2},...,n_{_{M}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8882d8be851e18fbfbd33e5e61d90591fc4fcf6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:62.347ex; height:3.843ex;" alt="{\displaystyle y(n_{1},n_{2},...,n_{_{M}})=h(n_{1},n_{2},...,n_{_{M}})*{\overset {M}{\cdots }}*x(n_{1},n_{2},...,n_{_{M}})}"></span></dd></dl> <p>对于离散值的信号,这个卷积可以直接如下这样计算: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k_{1}=-\infty }^{\infty }\sum _{k_{2}=-\infty }^{\infty }...\sum _{k_{_{M}}=-\infty }^{\infty }h(k_{1},k_{2},...,k_{_{M}})x(n_{1}-k_{1},n_{2}-k_{2},...,n_{_{M}}-k_{_{M}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo>.</mo> <mo>.</mo> <mo>.</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>h</mi> <mo stretchy="false">(</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k_{1}=-\infty }^{\infty }\sum _{k_{2}=-\infty }^{\infty }...\sum _{k_{_{M}}=-\infty }^{\infty }h(k_{1},k_{2},...,k_{_{M}})x(n_{1}-k_{1},n_{2}-k_{2},...,n_{_{M}}-k_{_{M}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84ae275b6e8d1788a42b8e45cfa43153e4e78741" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:72.797ex; height:7.676ex;" alt="{\displaystyle \sum _{k_{1}=-\infty }^{\infty }\sum _{k_{2}=-\infty }^{\infty }...\sum _{k_{_{M}}=-\infty }^{\infty }h(k_{1},k_{2},...,k_{_{M}})x(n_{1}-k_{1},n_{2}-k_{2},...,n_{_{M}}-k_{_{M}})}"></span></dd></dl> <p>结果的离散多维卷积所支撑的输出区域,基于两个输入信号所支撑的大小和区域来决定。 </p> <dl><dd><figure class="mw-halign-none" typeof="mw:File/Thumb"><a href="/wiki/File:Picture1_wiki.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/12/Picture1_wiki.png/600px-Picture1_wiki.png" decoding="async" width="600" height="196" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/1/12/Picture1_wiki.png 1.5x" data-file-width="748" data-file-height="244" /></a><figcaption>在两个二维信号之间的卷积的可视化</figcaption></figure></dd></dl> <div class="mw-heading mw-heading3"><h3 id="离散周期卷积"><span id=".E7.A6.BB.E6.95.A3.E5.91.A8.E6.9C.9F.E5.8D.B7.E7.A7.AF"></span>离散周期卷积</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=8" title="编辑章节:离散周期卷积"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Aperiodisch_periodische_Faltung.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Aperiodisch_periodische_Faltung.svg/390px-Aperiodisch_periodische_Faltung.svg.png" decoding="async" width="390" height="327" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Aperiodisch_periodische_Faltung.svg/585px-Aperiodisch_periodische_Faltung.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/77/Aperiodisch_periodische_Faltung.svg/780px-Aperiodisch_periodische_Faltung.svg.png 2x" data-file-width="585" data-file-height="490" /></a><figcaption>对比离散无周期卷积(左列)与离散圆周卷积(右列)</figcaption></figure> <p>对于离散序列和一个参数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>,无周期函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>的“周期卷积”是为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (h*x_{_{N}})[n]\ \triangleq \ \sum _{m=-\infty }^{\infty }h[m]\underbrace {x_{_{N}}[n-m]} _{\sum _{k=-\infty }^{\infty }x[n-m-kN]}\ =\ \sum _{m=0}^{N-1}\left(\sum _{k=-\infty }^{\infty }{h}[m-kN]\right)x_{_{N}}[n-m]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>h</mi> <mo>&#x2217;<!-- ∗ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mtext>&#xA0;</mtext> <mo>&#x225C;<!-- ≜ --></mo> <mtext>&#xA0;</mtext> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>h</mi> <mo stretchy="false">[</mo> <mi>m</mi> <mo stretchy="false">]</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">]</mo> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mi>N</mi> <mo stretchy="false">]</mo> </mrow> </munder> <mtext>&#xA0;</mtext> <mo>=</mo> <mtext>&#xA0;</mtext> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mo stretchy="false">[</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mi>N</mi> <mo stretchy="false">]</mo> </mrow> <mo>)</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (h*x_{_{N}})[n]\ \triangleq \ \sum _{m=-\infty }^{\infty }h[m]\underbrace {x_{_{N}}[n-m]} _{\sum _{k=-\infty }^{\infty }x[n-m-kN]}\ =\ \sum _{m=0}^{N-1}\left(\sum _{k=-\infty }^{\infty }{h}[m-kN]\right)x_{_{N}}[n-m]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14cb0408cb58e39c596cab8ee9f1f63cb6e2fa3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:81.215ex; height:9.509ex;" alt="{\displaystyle (h*x_{_{N}})[n]\ \triangleq \ \sum _{m=-\infty }^{\infty }h[m]\underbrace {x_{_{N}}[n-m]} _{\sum _{k=-\infty }^{\infty }x[n-m-kN]}\ =\ \sum _{m=0}^{N-1}\left(\sum _{k=-\infty }^{\infty }{h}[m-kN]\right)x_{_{N}}[n-m]}"></span></dd></dl> <p>这个函数有周期<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>,它有最多<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>个唯一性的值。<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>的非零范围都是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,N-1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,N-1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d4099dcd12fea62ad089a8d26d2a14c54fc88f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.557ex; height:2.843ex;" alt="{\displaystyle [0,N-1]}"></span>的特殊情况叫做<a href="/wiki/%E5%9C%86%E5%91%A8%E5%8D%B7%E7%A7%AF" class="mw-redirect" title="圆周卷积">圆周卷积</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (h*x_{_{N}})[n]=\sum _{m=0}^{N-1}h[m]x_{_{N}}[n-m]=\sum _{m=0}^{N-1}h[m]x[(n-m)_{\bmod {N}}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>h</mi> <mo>&#x2217;<!-- ∗ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>h</mi> <mo stretchy="false">[</mo> <mi>m</mi> <mo stretchy="false">]</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">]</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>h</mi> <mo stretchy="false">[</mo> <mi>m</mi> <mo stretchy="false">]</mo> <mi>x</mi> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo lspace="thickmathspace" rspace="thickmathspace">mod</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (h*x_{_{N}})[n]=\sum _{m=0}^{N-1}h[m]x_{_{N}}[n-m]=\sum _{m=0}^{N-1}h[m]x[(n-m)_{\bmod {N}}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac37f1cfe50298bfdefdcd870a5627ef30db1cee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:61.654ex; height:7.343ex;" alt="{\displaystyle (h*x_{_{N}})[n]=\sum _{m=0}^{N-1}h[m]x_{_{N}}[n-m]=\sum _{m=0}^{N-1}h[m]x[(n-m)_{\bmod {N}}]}"></span></dd></dl> <p>离散圆周卷积可简约为<a href="/wiki/%E7%9F%A9%E9%98%B5%E4%B9%98%E6%B3%95" class="mw-redirect" title="矩阵乘法">矩阵乘法</a>,这里的<a href="/wiki/%E7%A7%AF%E5%88%86%E5%8F%98%E6%8D%A2" title="积分变换">积分变换</a>的核函数是<a href="/wiki/%E5%BE%AA%E7%8E%AF%E7%9F%A9%E9%98%B5" title="循环矩阵">循环矩阵</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}y_{0}\\y_{1}\\\vdots \\y_{_{N-1}}\end{bmatrix}}={\begin{bmatrix}h_{0}&amp;h_{_{N-1}}&amp;\cdots &amp;h_{1}\\h_{1}&amp;h_{0}&amp;\cdots &amp;h_{2}\\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\h_{_{N-1}}&amp;h_{_{N-2}}&amp;\cdots &amp;h_{0}\end{bmatrix}}{\begin{bmatrix}x_{0}\\x_{1}\\\vdots \\x_{_{N-1}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22F1;<!-- ⋱ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}y_{0}\\y_{1}\\\vdots \\y_{_{N-1}}\end{bmatrix}}={\begin{bmatrix}h_{0}&amp;h_{_{N-1}}&amp;\cdots &amp;h_{1}\\h_{1}&amp;h_{0}&amp;\cdots &amp;h_{2}\\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\h_{_{N-1}}&amp;h_{_{N-2}}&amp;\cdots &amp;h_{0}\end{bmatrix}}{\begin{bmatrix}x_{0}\\x_{1}\\\vdots \\x_{_{N-1}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79c33531e3128fd998256cdb7740cbbc592ca1a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:45.287ex; height:14.843ex;" alt="{\displaystyle {\begin{bmatrix}y_{0}\\y_{1}\\\vdots \\y_{_{N-1}}\end{bmatrix}}={\begin{bmatrix}h_{0}&amp;h_{_{N-1}}&amp;\cdots &amp;h_{1}\\h_{1}&amp;h_{0}&amp;\cdots &amp;h_{2}\\\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\h_{_{N-1}}&amp;h_{_{N-2}}&amp;\cdots &amp;h_{0}\end{bmatrix}}{\begin{bmatrix}x_{0}\\x_{1}\\\vdots \\x_{_{N-1}}\end{bmatrix}}}"></span></dd></dl> <p>圆周卷积最经常出现的<a href="/wiki/%E5%BF%AB%E9%80%9F%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2" title="快速傅里叶变换">快速傅里叶变换</a>的实现算法比如<a href="/wiki/%E9%9B%B7%E5%BE%B7%E6%BC%94%E7%AE%97%E6%B3%95" title="雷德演算法">雷德演算法</a>之中。 </p> <div class="mw-heading mw-heading2"><h2 id="性质"><span id=".E6.80.A7.E8.B4.A8"></span>性质</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=9" title="编辑章节:性质"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="代数"><span id=".E4.BB.A3.E6.95.B0"></span>代数</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=10" title="编辑章节:代数"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84833064"><div role="note" class="hatnote navigation-not-searchable">主条目:<span class="ilh-all" data-orig-title="卷积代数" data-lang-code="en" data-lang-name="英语" data-foreign-title="Convolution algebra"><span class="ilh-page"><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF%E4%BB%A3%E6%95%B0&amp;action=edit&amp;redlink=1" class="new" title="卷积代数(页面不存在)">卷积代数</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Convolution_algebra" class="extiw" title="en:Convolution algebra"><span lang="en" dir="auto">Convolution algebra</span></a></span>)</span></span></div> <p>各种卷积算子都满足下列性质: </p> <dl><dt><a href="/wiki/%E4%BA%A4%E6%8D%A2%E5%BE%8B" class="mw-redirect" title="交换律">交换律</a></dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f*g=g*f\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo>=</mo> <mi>g</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f*g=g*f\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0702c60de9cfe34bad273e611a5f2503f521961" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.664ex; height:2.509ex;" alt="{\displaystyle f*g=g*f\,}"></span></dd></dl> <dl><dt><a href="/wiki/%E7%BB%93%E5%90%88%E5%BE%8B" title="结合律">结合律</a></dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f*(g*h)=(f*g)*h\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f*(g*h)=(f*g)*h\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f91da320ed0154cf328e6777c90f3c55b87d177" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.35ex; height:2.843ex;" alt="{\displaystyle f*(g*h)=(f*g)*h\,}"></span></dd></dl> <dl><dt><a href="/wiki/%E5%88%86%E9%85%8D%E5%BE%8B" title="分配律">分配律</a></dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f*(g+h)=(f*g)+(f*h)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f*(g+h)=(f*g)+(f*h)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2796399c899a369d328478676837f13a05beb7d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.924ex; height:2.843ex;" alt="{\displaystyle f*(g+h)=(f*g)+(f*h)\,}"></span></dd></dl> <dl><dt>数乘结合律</dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(f*g)=(af)*g=f*(ag)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo>=</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>g</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(f*g)=(af)*g=f*(ag)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15bcb3b0cc4a54bcc9028ebdd4071274628af33b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.469ex; height:2.843ex;" alt="{\displaystyle a(f*g)=(af)*g=f*(ag)\,}"></span></dd></dl> <p>其中<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>为任意<a href="/wiki/%E5%AE%9E%E6%95%B0" title="实数">实数</a>(或<a href="/wiki/%E5%A4%8D%E6%95%B0_(%E6%95%B0%E5%AD%A6)" title="复数 (数学)">复数</a>)。 </p> <dl><dt>复数共轭</dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {f*g}}={\overline {f}}*{\overline {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {f*g}}={\overline {f}}*{\overline {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/470c71208829c0057c4e5039c3d57c05ca753822" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.722ex; height:3.343ex;" alt="{\displaystyle {\overline {f*g}}={\overline {f}}*{\overline {g}}}"></span></dd></dl> <dl><dt>微分有关</dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)'=f'*g=f*g'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <msup> <mo stretchy="false">)</mo> <mo>&#x2032;</mo> </msup> <mo>=</mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo>=</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <msup> <mi>g</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)'=f'*g=f*g'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bb43d0eaccf5b46033e79f16a1a88d99eba34ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.872ex; height:3.009ex;" alt="{\displaystyle (f*g)&#039;=f&#039;*g=f*g&#039;}"></span></dd></dl> <dl><dt>积分有关</dt> <dd>如果<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle F(t)=\int _{-\infty }^{t}f(\tau )d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle F(t)=\int _{-\infty }^{t}f(\tau )d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98473e8bdf1dcc8ae0fe58d7ca12d35d24467601" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:18.834ex; height:3.676ex;" alt="{\textstyle F(t)=\int _{-\infty }^{t}f(\tau )d\tau }"></span>,并且<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle G(t)=\int _{-\infty }^{t}g(\tau )\,d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle G(t)=\int _{-\infty }^{t}g(\tau )\,d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23987b1ff80b3b0a21bcc674a65eb86126b9c1db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:19.145ex; height:3.676ex;" alt="{\textstyle G(t)=\int _{-\infty }^{t}g(\tau )\,d\tau }"></span>,则有:</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (F*g)(t)=(f*G)(t)=\int _{-\infty }^{t}(f*g)(\tau )\,d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>F</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (F*g)(t)=(f*G)(t)=\int _{-\infty }^{t}(f*g)(\tau )\,d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bf3e59d8b80a869159b7668c92cd3de8bd05c0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:42.126ex; height:6.343ex;" alt="{\displaystyle (F*g)(t)=(f*G)(t)=\int _{-\infty }^{t}(f*g)(\tau )\,d\tau }"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="积分"><span id=".E7.A7.AF.E5.88.86"></span>积分</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=11" title="编辑章节:积分"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>如果<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>是可积分函数,则它们在整个空间上的卷积的积分,简单的就是它们积分的乘积<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{\mathbb {R} ^{n}}(f*g)(t)\,d^{n}t=\left(\int _{\mathbb {R} ^{n}}f(t)\,d^{n}t\right)\left(\int _{\mathbb {R} ^{n}}g(t)\,d^{n}t\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>t</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{\mathbb {R} ^{n}}(f*g)(t)\,d^{n}t=\left(\int _{\mathbb {R} ^{n}}f(t)\,d^{n}t\right)\left(\int _{\mathbb {R} ^{n}}g(t)\,d^{n}t\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1e073a296110ce71299bf95518e57e45d6a7f3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:49.861ex; height:6.176ex;" alt="{\displaystyle \int _{\mathbb {R} ^{n}}(f*g)(t)\,d^{n}t=\left(\int _{\mathbb {R} ^{n}}f(t)\,d^{n}t\right)\left(\int _{\mathbb {R} ^{n}}g(t)\,d^{n}t\right)}"></span></dd></dl> <p>这是<a href="/wiki/%E5%AF%8C%E6%AF%94%E5%B0%BC%E5%AE%9A%E7%90%86" title="富比尼定理">富比尼定理</a>的结果。如果<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>只被假定为非负可测度函数,根据<a href="/wiki/%E5%AF%8C%E6%AF%94%E5%B0%BC%E5%AE%9A%E7%90%86#非负函数的Tonelli定理" title="富比尼定理">托内利定理</a>,这也是成立的。 </p> <div class="mw-heading mw-heading3"><h3 id="微分"><span id=".E5.BE.AE.E5.88.86"></span>微分</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=12" title="编辑章节:微分"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>在一元函数情况下,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>的卷积的<a href="/wiki/%E5%AF%BC%E6%95%B0" title="导数">导数</a>有着: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dt}}(f*g)={\frac {df}{dt}}*g=f*{\frac {dg}{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo>=</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>g</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dt}}(f*g)={\frac {df}{dt}}*g=f*{\frac {dg}{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5daf1200a04c8cbd3164dee2b061b1f4cffa312" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:28.77ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dt}}(f*g)={\frac {df}{dt}}*g=f*{\frac {dg}{dt}}}"></span></dd></dl> <p>这里的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55e262410b19a3eeab08b01224e89815c110c8ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:2.892ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dt}}}"></span>是<a href="/wiki/%E5%BE%AE%E5%88%86%E7%AE%97%E5%AD%90" title="微分算子">微分算子</a>。更一般的说,在<a href="/wiki/%E5%A4%9A%E5%85%83%E5%87%BD%E6%95%B0" class="mw-redirect" title="多元函数">多元函数</a>的情况下,对<a href="/wiki/%E5%81%8F%E5%AF%BC%E6%95%B0" title="偏导数">偏导数</a>也有类似的公式: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial }{\partial t_{i}}}(f*g)={\frac {\partial f}{\partial t_{i}}}*g=f*{\frac {\partial g}{\partial t_{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo>=</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>g</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial }{\partial t_{i}}}(f*g)={\frac {\partial f}{\partial t_{i}}}*g=f*{\frac {\partial g}{\partial t_{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85ae3732580569e3e82fc24ce769e49437b9cd00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.76ex; height:6.009ex;" alt="{\displaystyle {\frac {\partial }{\partial t_{i}}}(f*g)={\frac {\partial f}{\partial t_{i}}}*g=f*{\frac {\partial g}{\partial t_{i}}}}"></span></dd></dl> <p>这就有了一个特殊结论,卷积可以看作“光滑”运算:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>的卷积可微分的次数,是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>的总数。 </p><p>这些恒等式成立的严格条件,为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>是绝对可积分的,并且至少二者之一有绝对可积分(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74c288d1089f1ec85b01b4de25c441fc792bd2d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{1}}"></span>)弱导数,这是<span class="ilh-all" data-orig-title="Young卷积不等式" data-lang-code="en" data-lang-name="英语" data-foreign-title="Young&#39;s convolution inequality"><span class="ilh-page"><a href="/w/index.php?title=Young%E5%8D%B7%E7%A7%AF%E4%B8%8D%E7%AD%89%E5%BC%8F&amp;action=edit&amp;redlink=1" class="new" title="Young卷积不等式(页面不存在)">Young卷积不等式</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Young%27s_convolution_inequality" class="extiw" title="en:Young&#39;s convolution inequality"><span lang="en" dir="auto">Young's convolution inequality</span></a></span>)</span></span>的结论。 </p><p>在离散情况下,<a href="/wiki/%E5%B7%AE%E5%88%86" title="差分">差分</a><a href="/wiki/%E7%AE%97%E5%AD%90" title="算子">算子</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta [f](n)=f(n+1)-f(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta [f](n)=f(n+1)-f(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10ef9708b32ccda9a3be9ff9c1f8865c4107cf59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.619ex; height:2.843ex;" alt="{\displaystyle \Delta [f](n)=f(n+1)-f(n)}"></span>满足类似的关系: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta (f*g)=(\Delta f)*g=f*(\Delta g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo>=</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta (f*g)=(\Delta f)*g=f*(\Delta g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a3054211a7bca858f948f7c9dfa3dc7f42d6557" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.2ex; height:2.843ex;" alt="{\displaystyle \Delta (f*g)=(\Delta f)*g=f*(\Delta g)}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="卷积定理"><span id=".E5.8D.B7.E7.A7.AF.E5.AE.9A.E7.90.86"></span>卷积定理</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=13" title="编辑章节:卷积定理"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84833064"><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E5%8D%B7%E7%A7%AF%E5%AE%9A%E7%90%86" title="卷积定理">卷积定理</a></div> <p><a href="/wiki/%E5%8D%B7%E7%A7%AF%E5%AE%9A%E7%90%86" title="卷积定理">卷积定理</a>指出<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup>,在适当的条件下,两个函数(或<a href="/wiki/%E4%BF%A1%E5%8F%B7" class="mw-disambig" title="信号">信号</a>)的卷积的<a href="/wiki/%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2" title="傅里叶变换">傅里叶变换</a>,是它们的傅里叶变换的<a href="/wiki/%E9%80%90%E7%82%B9%E4%B9%98%E7%A7%AF" title="逐点乘积">逐点乘积</a>。更一般的说,在一个域(比如<a href="/wiki/%E6%99%82%E5%9F%9F" title="時域">时域</a>)中的卷积等于在其他域(比如<a href="/wiki/%E9%A2%91%E5%9F%9F" class="mw-redirect" title="频域">频域</a>)<a href="/wiki/%E9%80%90%E7%82%B9" title="逐点">逐点</a>乘法。 </p><p>设两个函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ca91363022bd5e4dcb17e5ef29f78b8ef00b59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.255ex; height:2.843ex;" alt="{\displaystyle g(x)}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02c07825dae28705df03d15daeb8844d49c4dbd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.478ex; height:2.843ex;" alt="{\displaystyle h(x)}"></span>,分别具有<a href="/wiki/%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2" title="傅里叶变换">傅里叶变换</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb2e6025c8f4c9d44fb1dc2da68407e4eb56f9db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.726ex; height:2.843ex;" alt="{\displaystyle G(s)}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1b91390324fc9c33ec00fe57e3924ad7118cc1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.963ex; height:2.843ex;" alt="{\displaystyle H(s)}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}G(s)&amp;\triangleq {\mathcal {F}}\{g\}(s)=\int _{-\infty }^{\infty }g(x)e^{-i2\pi sx}\,dx,\quad s\in \mathbb {R} \\H(s)&amp;\triangleq {\mathcal {F}}\{h\}(s)=\int _{-\infty }^{\infty }h(x)e^{-i2\pi sx}\,dx,\quad s\in \mathbb {R} \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>s</mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> <mspace width="1em" /> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>s</mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> <mspace width="1em" /> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}G(s)&amp;\triangleq {\mathcal {F}}\{g\}(s)=\int _{-\infty }^{\infty }g(x)e^{-i2\pi sx}\,dx,\quad s\in \mathbb {R} \\H(s)&amp;\triangleq {\mathcal {F}}\{h\}(s)=\int _{-\infty }^{\infty }h(x)e^{-i2\pi sx}\,dx,\quad s\in \mathbb {R} \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d46a4244a87c775849a7b9a41ebcaf2576b0d89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:48.249ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}G(s)&amp;\triangleq {\mathcal {F}}\{g\}(s)=\int _{-\infty }^{\infty }g(x)e^{-i2\pi sx}\,dx,\quad s\in \mathbb {R} \\H(s)&amp;\triangleq {\mathcal {F}}\{h\}(s)=\int _{-\infty }^{\infty }h(x)e^{-i2\pi sx}\,dx,\quad s\in \mathbb {R} \end{aligned}}}"></span></dd></dl> <p>这里的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span><a href="/wiki/%E7%AE%97%E5%AD%90" title="算子">算子</a>指示<a href="/wiki/%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2" title="傅里叶变换">傅里叶变换</a>。 </p><p>卷积定理声称: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\{g*h\}(s)=G(s)H(s),\quad s\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\{g*h\}(s)=G(s)H(s),\quad s\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d51ac270a6b46716ddadd6df1260e48ffa2405e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.555ex; height:2.843ex;" alt="{\displaystyle {\mathcal {F}}\{g*h\}(s)=G(s)H(s),\quad s\in \mathbb {R} }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\{g\cdot h\}(s)=G(s)*H(s),\quad s\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\{g\cdot h\}(s)=G(s)*H(s),\quad s\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7c544d4e59f781cf6fd4903a144c59ea7169de8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.234ex; height:2.843ex;" alt="{\displaystyle {\mathcal {F}}\{g\cdot h\}(s)=G(s)*H(s),\quad s\in \mathbb {R} }"></span></dd></dl> <p>应用逆傅里叶变换<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/798153399d91ed4f7c88fa012bd0fabe708c4de2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.336ex; height:2.676ex;" alt="{\displaystyle {\mathcal {F}}^{-1}}"></span>产生推论: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g*h)(s)={\mathcal {F}}^{-1}\{G\cdot H\},\quad s\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>g</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo fence="false" stretchy="false">{</mo> <mi>G</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>H</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mspace width="1em" /> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g*h)(s)={\mathcal {F}}^{-1}\{G\cdot H\},\quad s\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf440c01e9f89b2eb44ca3c2fd55a730d084cba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.653ex; height:3.176ex;" alt="{\displaystyle (g*h)(s)={\mathcal {F}}^{-1}\{G\cdot H\},\quad s\in \mathbb {R} }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g\cdot h)(s)={\mathcal {F}}^{-1}\{G*H\},\quad s\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>g</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo fence="false" stretchy="false">{</mo> <mi>G</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>H</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mspace width="1em" /> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g\cdot h)(s)={\mathcal {F}}^{-1}\{G*H\},\quad s\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5be42ca7c0e1256d362473717850e2ee740395c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.653ex; height:3.176ex;" alt="{\displaystyle (g\cdot h)(s)={\mathcal {F}}^{-1}\{G*H\},\quad s\in \mathbb {R} }"></span></dd></dl> <p>这里的算符<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\cdot \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x22C5;<!-- ⋅ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\cdot \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3081768f879578964ed0ead9a51abaa41c41d542" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.421ex; height:1.176ex;" alt="{\displaystyle \,\cdot \,}"></span>指示<a href="/wiki/%E9%80%90%E7%82%B9" title="逐点">逐点</a>乘法。 </p><p>这一定理对<a href="/wiki/%E6%8B%89%E6%99%AE%E6%8B%89%E6%96%AF%E5%8F%98%E6%8D%A2" title="拉普拉斯变换">拉普拉斯变换</a>、<a href="/wiki/%E5%8F%8C%E8%BE%B9%E6%8B%89%E6%99%AE%E6%8B%89%E6%96%AF%E5%8F%98%E6%8D%A2" title="双边拉普拉斯变换">双边拉普拉斯变换</a>、<a href="/wiki/Z%E5%8F%98%E6%8D%A2" class="mw-redirect" title="Z变换">Z变换</a>、<a href="/wiki/%E6%A2%85%E6%9E%97%E5%8F%98%E6%8D%A2" title="梅林变换">梅林变换</a>和<span class="ilh-all" data-orig-title="Hartley变换" data-lang-code="en" data-lang-name="英语" data-foreign-title="Hartley transform"><span class="ilh-page"><a href="/w/index.php?title=Hartley%E5%8F%98%E6%8D%A2&amp;action=edit&amp;redlink=1" class="new" title="Hartley变换(页面不存在)">Hartley变换</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Hartley_transform" class="extiw" title="en:Hartley transform"><span lang="en" dir="auto">Hartley transform</span></a></span>)</span></span>等各种傅里叶变换的变体同样成立。在<a href="/wiki/%E8%AA%BF%E5%92%8C%E5%88%86%E6%9E%90" title="調和分析">调和分析</a>中还可以推广到在局部紧致的<a href="/wiki/%E9%98%BF%E8%B4%9D%E5%B0%94%E7%BE%A4" title="阿贝尔群">阿贝尔群</a>上定义的傅里叶变换。 </p> <div class="mw-heading mw-heading3"><h3 id="周期卷积_2"><span id=".E5.91.A8.E6.9C.9F.E5.8D.B7.E7.A7.AF_2"></span>周期卷积</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=14" title="编辑章节:周期卷积"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>对于周期为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>的函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{_{P}}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{_{P}}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67f61b19c957f7cd78069b1627daf01db33775e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.647ex; height:3.009ex;" alt="{\displaystyle g_{_{P}}(x)}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{_{P}}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{_{P}}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8172030295d1c18d63dc30c3452ccd9b9d4489ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.876ex; height:3.009ex;" alt="{\displaystyle h_{_{P}}(x)}"></span>,可以被表达为二者的<span class="ilh-all" data-orig-title="周期求和" data-lang-code="en" data-lang-name="英语" data-foreign-title="Periodic summation"><span class="ilh-page"><a href="/w/index.php?title=%E5%91%A8%E6%9C%9F%E6%B1%82%E5%92%8C&amp;action=edit&amp;redlink=1" class="new" title="周期求和(页面不存在)">周期求和</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Periodic_summation" class="extiw" title="en:Periodic summation"><span lang="en" dir="auto">Periodic summation</span></a></span>)</span></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}g_{_{P}}(x)\ &amp;\triangleq \sum _{m=-\infty }^{\infty }g(x-mP),\quad m\in \mathbb {Z} \\h_{_{P}}(x)\ &amp;\triangleq \sum _{m=-\infty }^{\infty }h(x-mP),\quad m\in \mathbb {Z} \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mi>P</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>m</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mi>P</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>m</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}g_{_{P}}(x)\ &amp;\triangleq \sum _{m=-\infty }^{\infty }g(x-mP),\quad m\in \mathbb {Z} \\h_{_{P}}(x)\ &amp;\triangleq \sum _{m=-\infty }^{\infty }h(x-mP),\quad m\in \mathbb {Z} \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81b6f246e1f3f696a28abf6c295cfc054562b0f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:37.229ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}g_{_{P}}(x)\ &amp;\triangleq \sum _{m=-\infty }^{\infty }g(x-mP),\quad m\in \mathbb {Z} \\h_{_{P}}(x)\ &amp;\triangleq \sum _{m=-\infty }^{\infty }h(x-mP),\quad m\in \mathbb {Z} \end{aligned}}}"></span></dd></dl> <p>它们的<a href="/wiki/%E5%82%85%E9%87%8C%E5%8F%B6%E7%BA%A7%E6%95%B0" title="傅里叶级数">傅里叶级数</a><a href="/wiki/%E7%B3%BB%E6%95%B0" title="系数">系数</a>为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}G[k]&amp;\triangleq {\mathcal {F}}\{g_{_{P}}\}[k]={\frac {1}{P}}\int _{P}g_{_{P}}(x)e^{-i2\pi kx/P}\,dx,\quad k\in \mathbb {Z} \\H[k]&amp;\triangleq {\mathcal {F}}\{h_{_{P}}\}[k]={\frac {1}{P}}\int _{P}h_{_{P}}(x)e^{-i2\pi kx/P}\,dx,\quad k\in \mathbb {Z} \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>G</mi> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>k</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>P</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> <mspace width="1em" /> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>H</mi> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>k</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>P</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> <mspace width="1em" /> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}G[k]&amp;\triangleq {\mathcal {F}}\{g_{_{P}}\}[k]={\frac {1}{P}}\int _{P}g_{_{P}}(x)e^{-i2\pi kx/P}\,dx,\quad k\in \mathbb {Z} \\H[k]&amp;\triangleq {\mathcal {F}}\{h_{_{P}}\}[k]={\frac {1}{P}}\int _{P}h_{_{P}}(x)e^{-i2\pi kx/P}\,dx,\quad k\in \mathbb {Z} \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ff5ff5748d540ed77192958f5ec50cbe83ff9b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:53.672ex; height:11.843ex;" alt="{\displaystyle {\begin{aligned}G[k]&amp;\triangleq {\mathcal {F}}\{g_{_{P}}\}[k]={\frac {1}{P}}\int _{P}g_{_{P}}(x)e^{-i2\pi kx/P}\,dx,\quad k\in \mathbb {Z} \\H[k]&amp;\triangleq {\mathcal {F}}\{h_{_{P}}\}[k]={\frac {1}{P}}\int _{P}h_{_{P}}(x)e^{-i2\pi kx/P}\,dx,\quad k\in \mathbb {Z} \end{aligned}}}"></span></dd></dl> <p>这里的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span>算子指示<a href="/wiki/%E5%82%85%E9%87%8C%E5%8F%B6%E7%BA%A7%E6%95%B0" title="傅里叶级数">傅里叶级数</a><a href="/wiki/%E7%A7%AF%E5%88%86" title="积分">积分</a>。 </p><p><a href="/wiki/%E9%80%90%E7%82%B9%E4%B9%98%E7%A7%AF" title="逐点乘积">逐点乘积</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{_{P}}(x)\cdot h_{_{P}}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{_{P}}(x)\cdot h_{_{P}}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e69957704e4722c546473ebc5729095f7a3467d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.202ex; height:3.009ex;" alt="{\displaystyle g_{_{P}}(x)\cdot h_{_{P}}(x)}"></span>的周期也是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>,它的傅里叶级数系数为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\{g_{_{P}}\cdot h_{_{P}}\}[k]=(G*H)[k]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>G</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>H</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\{g_{_{P}}\cdot h_{_{P}}\}[k]=(G*H)[k]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec23600fe822e18dc005e7025b45caeb30a17f48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.178ex; height:3.009ex;" alt="{\displaystyle {\mathcal {F}}\{g_{_{P}}\cdot h_{_{P}}\}[k]=(G*H)[k]}"></span></dd></dl> <p>周期卷积<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g_{_{P}}*h)(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g_{_{P}}*h)(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01ed21bc66cdd18171cff8cd5c9c06753c5d11c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.989ex; height:3.009ex;" alt="{\displaystyle (g_{_{P}}*h)(x)}"></span>的周期也是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>,周期卷积的卷积定理为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\{g_{_{P}}*h\}[k]=\ P\cdot G[k]\ H[k]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mtext>&#xA0;</mtext> <mi>P</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>G</mi> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mtext>&#xA0;</mtext> <mi>H</mi> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\{g_{_{P}}*h\}[k]=\ P\cdot G[k]\ H[k]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d08db60e83b8282a9c6351dc2b556632ad6c336" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:29.382ex; height:3.009ex;" alt="{\displaystyle {\mathcal {F}}\{g_{_{P}}*h\}[k]=\ P\cdot G[k]\ H[k]}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="离散卷积_2"><span id=".E7.A6.BB.E6.95.A3.E5.8D.B7.E7.A7.AF_2"></span>离散卷积</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=15" title="编辑章节:离散卷积"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>对于作为两个连续函数<a href="/wiki/%E9%87%87%E6%A0%B7" class="mw-redirect" title="采样">采样</a>的<a href="/wiki/%E5%BA%8F%E5%88%97" title="序列">序列</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5e1d771a2385e9aeb71838a40425bb07c89525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle g[n]}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89981bbbb05ffd469eeadb828c18359965985e46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.027ex; height:2.843ex;" alt="{\displaystyle h[n]}"></span>,它们具有<a href="/wiki/%E7%A6%BB%E6%95%A3%E6%97%B6%E9%97%B4%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2" title="离散时间傅里叶变换">离散时间傅里叶变换</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb2e6025c8f4c9d44fb1dc2da68407e4eb56f9db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.726ex; height:2.843ex;" alt="{\displaystyle G(s)}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1b91390324fc9c33ec00fe57e3924ad7118cc1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.963ex; height:2.843ex;" alt="{\displaystyle H(s)}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}G(s)&amp;\triangleq {\mathcal {F}}\{g\}(s)=\sum _{n=-\infty }^{\infty }g[n]\cdot e^{-i2\pi sn}\;,\quad s\in \mathbb {R} \\H(s)&amp;\triangleq {\mathcal {F}}\{h\}(s)=\sum _{n=-\infty }^{\infty }h[n]\cdot e^{-i2\pi sn}\;,\quad s\in \mathbb {R} \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>s</mi> <mi>n</mi> </mrow> </msup> <mspace width="thickmathspace" /> <mo>,</mo> <mspace width="1em" /> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>h</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>s</mi> <mi>n</mi> </mrow> </msup> <mspace width="thickmathspace" /> <mo>,</mo> <mspace width="1em" /> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}G(s)&amp;\triangleq {\mathcal {F}}\{g\}(s)=\sum _{n=-\infty }^{\infty }g[n]\cdot e^{-i2\pi sn}\;,\quad s\in \mathbb {R} \\H(s)&amp;\triangleq {\mathcal {F}}\{h\}(s)=\sum _{n=-\infty }^{\infty }h[n]\cdot e^{-i2\pi sn}\;,\quad s\in \mathbb {R} \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0173c3574eda0d0a0ab15d8aef57be616c6efd03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:47.976ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}G(s)&amp;\triangleq {\mathcal {F}}\{g\}(s)=\sum _{n=-\infty }^{\infty }g[n]\cdot e^{-i2\pi sn}\;,\quad s\in \mathbb {R} \\H(s)&amp;\triangleq {\mathcal {F}}\{h\}(s)=\sum _{n=-\infty }^{\infty }h[n]\cdot e^{-i2\pi sn}\;,\quad s\in \mathbb {R} \end{aligned}}}"></span></dd></dl> <p>这里的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span>算子指示<a href="/wiki/%E7%A6%BB%E6%95%A3%E6%97%B6%E9%97%B4%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2" title="离散时间傅里叶变换">离散时间傅里叶变换</a>(DTFT)。 </p><p>离散卷积的卷积定理为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\{g*h\}(s)=\ G(s)H(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mtext>&#xA0;</mtext> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\{g*h\}(s)=\ G(s)H(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f92345020b517d0b7c9da022e2cc133cde2e2462" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.17ex; height:2.843ex;" alt="{\displaystyle {\mathcal {F}}\{g*h\}(s)=\ G(s)H(s)}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="离散周期卷积_2"><span id=".E7.A6.BB.E6.95.A3.E5.91.A8.E6.9C.9F.E5.8D.B7.E7.A7.AF_2"></span>离散周期卷积</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=16" title="编辑章节:离散周期卷积"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>对于周期为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>的<a href="/wiki/%E5%BA%8F%E5%88%97" title="序列">序列</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{_{N}}[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{_{N}}[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30368575be97a3a4a9213a5bace7faff1a4a6371" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.379ex; height:3.009ex;" alt="{\displaystyle g_{_{N}}[n]}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{_{N}}[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{_{N}}[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50abe51c291125077df860525b4c6c1c8d767595" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.609ex; height:3.009ex;" alt="{\displaystyle h_{_{N}}[n]}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}g_{_{N}}[n]\ &amp;\triangleq \sum _{m=-\infty }^{\infty }g[n-mN],\quad m,n\in \mathbb {Z} \\h_{_{N}}[n]\ &amp;\triangleq \sum _{m=-\infty }^{\infty }h[n-mN],\quad m,n\in \mathbb {Z} \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mi>N</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mspace width="1em" /> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mo>&#x225C;<!-- ≜ --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>h</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mi>N</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mspace width="1em" /> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}g_{_{N}}[n]\ &amp;\triangleq \sum _{m=-\infty }^{\infty }g[n-mN],\quad m,n\in \mathbb {Z} \\h_{_{N}}[n]\ &amp;\triangleq \sum _{m=-\infty }^{\infty }h[n-mN],\quad m,n\in \mathbb {Z} \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a06f5589438df8b4574b428b5869c5178b9d2e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:39.258ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}g_{_{N}}[n]\ &amp;\triangleq \sum _{m=-\infty }^{\infty }g[n-mN],\quad m,n\in \mathbb {Z} \\h_{_{N}}[n]\ &amp;\triangleq \sum _{m=-\infty }^{\infty }h[n-mN],\quad m,n\in \mathbb {Z} \end{aligned}}}"></span></dd></dl> <p>相较于离散时间傅里叶变换<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb2e6025c8f4c9d44fb1dc2da68407e4eb56f9db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.726ex; height:2.843ex;" alt="{\displaystyle G(s)}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1b91390324fc9c33ec00fe57e3924ad7118cc1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.963ex; height:2.843ex;" alt="{\displaystyle H(s)}"></span>的周期是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>,它们是按间隔<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa5c2544725c51dfe75eea07ee1f487feb8664c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.389ex; height:2.843ex;" alt="{\displaystyle 1/N}"></span>采样<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb2e6025c8f4c9d44fb1dc2da68407e4eb56f9db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.726ex; height:2.843ex;" alt="{\displaystyle G(s)}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1b91390324fc9c33ec00fe57e3924ad7118cc1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.963ex; height:2.843ex;" alt="{\displaystyle H(s)}"></span>,并在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>个采样上进行了逆<a href="/wiki/%E7%A6%BB%E6%95%A3%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2" title="离散傅里叶变换">离散傅里叶变换</a>(DFT<sup>-1</sup>或IDFT)的结果。 </p><p>离散周期卷积<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g_{_{N}}*h)[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g_{_{N}}*h)[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3f3e5554f1c3fe2b5f2edeff4e779ccedb445a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.722ex; height:3.009ex;" alt="{\displaystyle (g_{_{N}}*h)[n]}"></span>的周期也是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>。离散周期卷积定理为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\{g_{_{N}}*h\}[k]=\ \underbrace {{\mathcal {F}}\{g_{_{N}}\}[k]} _{G(k/N)}\cdot \underbrace {{\mathcal {F}}\{h_{_{N}}\}[k]} _{H(k/N)},\quad k,n\in \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mtext>&#xA0;</mtext> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </munder> <mo>&#x22C5;<!-- ⋅ --></mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">[</mo> <mi>k</mi> <mo stretchy="false">]</mo> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </munder> <mo>,</mo> <mspace width="1em" /> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\{g_{_{N}}*h\}[k]=\ \underbrace {{\mathcal {F}}\{g_{_{N}}\}[k]} _{G(k/N)}\cdot \underbrace {{\mathcal {F}}\{h_{_{N}}\}[k]} _{H(k/N)},\quad k,n\in \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88f84f790337809a2e0ba2a745b25083a4f3129c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:48.849ex; height:6.843ex;" alt="{\displaystyle {\mathcal {F}}\{g_{_{N}}*h\}[k]=\ \underbrace {{\mathcal {F}}\{g_{_{N}}\}[k]} _{G(k/N)}\cdot \underbrace {{\mathcal {F}}\{h_{_{N}}\}[k]} _{H(k/N)},\quad k,n\in \mathbb {Z} }"></span></dd></dl> <p>这里的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span>算子指示长度<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>的<a href="/wiki/%E7%A6%BB%E6%95%A3%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2" title="离散傅里叶变换">离散傅里叶变换</a>(DFT)。 </p><p>它有着推论: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g_{_{N}}*h)[n]=\ {\mathcal {F}}^{-1}\{{\mathcal {F}}\{g_{_{N}}\}\cdot {\mathcal {F}}\{h_{_{N}}\}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mtext>&#xA0;</mtext> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g_{_{N}}*h)[n]=\ {\mathcal {F}}^{-1}\{{\mathcal {F}}\{g_{_{N}}\}\cdot {\mathcal {F}}\{h_{_{N}}\}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab487693fbf66da441eb710125e5ceff2194398e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:36.854ex; height:3.343ex;" alt="{\displaystyle (g_{_{N}}*h)[n]=\ {\mathcal {F}}^{-1}\{{\mathcal {F}}\{g_{_{N}}\}\cdot {\mathcal {F}}\{h_{_{N}}\}\}}"></span></dd></dl> <p>对于其非零时段小于等于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>,离散圆周卷积的卷积定理为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g_{_{N}}*h)[n]=\ {\mathcal {F}}^{-1}\{{\mathcal {F}}\{g\}\cdot {\mathcal {F}}\{h\}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mtext>&#xA0;</mtext> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g_{_{N}}*h)[n]=\ {\mathcal {F}}^{-1}\{{\mathcal {F}}\{g\}\cdot {\mathcal {F}}\{h\}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0defba14a548128651067acefb5121ba77e020c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:33.699ex; height:3.343ex;" alt="{\displaystyle (g_{_{N}}*h)[n]=\ {\mathcal {F}}^{-1}\{{\mathcal {F}}\{g\}\cdot {\mathcal {F}}\{h\}\}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="推广"><span id=".E6.8E.A8.E5.B9.BF"></span>推广</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=17" title="编辑章节:推广"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>卷积的概念还可以推广到<a href="/wiki/%E6%95%B0%E5%88%97" title="数列">数列</a>、<a href="/wiki/%E6%B5%8B%E5%BA%A6" title="测度">测度</a>以及<a href="/wiki/%E5%B9%BF%E4%B9%89%E5%87%BD%E6%95%B0" title="广义函数">广义函数</a>上去。<a href="/wiki/%E5%87%BD%E6%95%B0" title="函数">函数</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25b6ab1762925585cd7605809caa8b1b5284177b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.429ex; height:2.509ex;" alt="{\displaystyle f,g}"></span>是定義在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>上的<a href="/wiki/%E5%8F%AF%E6%B5%8B%E5%87%BD%E6%95%B0" title="可测函数">可測函數</a>(measurable function),<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>存在卷积并记作<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f*g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f*g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de088e4a3777d3b5d2787fdec81acd91e78a719e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.589ex; height:2.509ex;" alt="{\displaystyle f*g}"></span>。如果函數不是定義在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>上,可以把函數定義域以外的值都規定成零,這樣就變成一個定義在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>上的函數。 </p><p>若<i>G</i>是有某<i>m</i> <a href="/wiki/%E6%B5%8B%E5%BA%A6" title="测度">测度</a>的<a href="/wiki/%E7%BE%A4" title="群">群</a>(例如<a href="/wiki/%E8%B1%AA%E6%96%AF%E5%A4%9A%E5%A4%AB%E7%A9%BA%E9%97%B4" title="豪斯多夫空间">豪斯多夫空间</a>上<a href="/wiki/%E5%93%88%E5%B0%94%E6%B5%8B%E5%BA%A6" title="哈尔测度">哈尔测度</a>下<a href="/wiki/%E5%B1%80%E9%83%A8%E7%B4%A7%E8%87%B4" class="mw-redirect" title="局部紧致">局部紧致</a>的<a href="/wiki/%E6%8B%93%E6%89%91%E7%BE%A4" title="拓扑群">拓扑群</a>),对于<i>G</i>上<i>m</i>-<a href="/wiki/%E5%8B%92%E8%B4%9D%E6%A0%BC%E5%8F%AF%E7%A7%AF" class="mw-redirect" title="勒贝格可积">勒贝格可积</a>的<a href="/wiki/%E5%AE%9E%E6%95%B0" title="实数">实数</a>或<a href="/wiki/%E5%A4%8D%E6%95%B0_(%E6%95%B0%E5%AD%A6)" title="复数 (数学)">复数</a>函数<i>f</i>和<i>g</i>,可定义它们的卷积: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)(x)=\int _{G}f(y)g(xy^{-1})\,dm(y)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>m</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)(x)=\int _{G}f(y)g(xy^{-1})\,dm(y)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cec355c5ad869ef4f885be24d690d057d56c589" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:34.826ex; height:5.676ex;" alt="{\displaystyle (f*g)(x)=\int _{G}f(y)g(xy^{-1})\,dm(y)\,}"></span></dd></dl> <p>对于这些群上定义的卷积同样可以给出诸如卷积定理等性质,但是这需要对这些群的<a href="/wiki/%E7%BE%A4%E8%A1%A8%E7%A4%BA" class="mw-redirect" title="群表示">表示理论</a>以及调和分析的<a href="/wiki/%E5%BD%BC%E5%BE%97-%E5%A4%96%E5%B0%94%E5%AE%9A%E7%90%86" class="mw-redirect" title="彼得-外尔定理">彼得-外尔定理</a>。 </p> <div class="mw-heading mw-heading2"><h2 id="离散卷積的計算方法"><span id=".E7.A6.BB.E6.95.A3.E5.8D.B7.E7.A9.8D.E7.9A.84.E8.A8.88.E7.AE.97.E6.96.B9.E6.B3.95"></span>离散卷積的計算方法</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=18" title="编辑章节:离散卷積的計算方法"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>計算卷積<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[n]*g[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[n]*g[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53f78eb841159a85c00fe9a4331825a77341e67c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.966ex; height:2.843ex;" alt="{\displaystyle f[n]*g[n]}"></span>有三種主要的方法,分別為 </p> <ol><li>直接計算(Direct Method)</li> <li><a href="/wiki/%E5%BF%AB%E9%80%9F%E5%82%85%E7%AB%8B%E8%91%89%E8%BD%89%E6%8F%9B" class="mw-redirect" title="快速傅立葉轉換">快速傅立葉轉換</a>(FFT)</li> <li>分段卷積(sectioned convolution)</li></ol> <p>方法1是直接利用定義來計算卷積,而方法2和3都是用到了FFT來快速計算卷積。也有不需要用到FFT的作法,如使用<a href="/wiki/%E6%95%B8%E8%AB%96%E8%BD%89%E6%8F%9B" title="數論轉換">數論轉換</a>。 </p> <div class="mw-heading mw-heading3"><h3 id="方法1:直接計算"><span id=".E6.96.B9.E6.B3.951.EF.BC.9A.E7.9B.B4.E6.8E.A5.E8.A8.88.E7.AE.97"></span>方法1:直接計算</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=19" title="编辑章节:方法1:直接計算"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>作法:利用卷積的定義</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y[n]=f[n]*g[n]=\sum _{m=0}^{M-1}f[n-m]g[m]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">]</mo> <mi>g</mi> <mo stretchy="false">[</mo> <mi>m</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y[n]=f[n]*g[n]=\sum _{m=0}^{M-1}f[n-m]g[m]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1081139aae46ebd7421e11ec20351dc12688cedd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:37.519ex; height:7.343ex;" alt="{\displaystyle y[n]=f[n]*g[n]=\sum _{m=0}^{M-1}f[n-m]g[m]}"></span></dd></dl></dd></dl> <ul><li>若<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b176b3dbcced447341ad5ab70001ef0e3231062e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.967ex; height:2.843ex;" alt="{\displaystyle f[n]}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5e1d771a2385e9aeb71838a40425bb07c89525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle g[n]}"></span>皆為實數信號,則需要<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle MN}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle MN}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fa6819fea85a0b616a35d340ad6461ababdbeee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.506ex; height:2.176ex;" alt="{\displaystyle MN}"></span>個乘法。</li></ul> <ul><li>若<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b176b3dbcced447341ad5ab70001ef0e3231062e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.967ex; height:2.843ex;" alt="{\displaystyle f[n]}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5e1d771a2385e9aeb71838a40425bb07c89525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle g[n]}"></span>皆為更一般性的複數信號,不使用複數乘法的快速演算法,會需要<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4MN}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mi>M</mi> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4MN}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b944e9abade872ed66faaa18325338aa04007d97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.668ex; height:2.176ex;" alt="{\displaystyle 4MN}"></span>個乘法;但若使用複數乘法的快速演算法,則可簡化至<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3MN}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mi>M</mi> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3MN}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8312dbac32788daf932d2fd6ccc8dd35707f237" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.668ex; height:2.176ex;" alt="{\displaystyle 3MN}"></span>個乘法。</li></ul> <dl><dd>因此,使用定義直接計算卷積的複雜度為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(MN)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mi>N</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(MN)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee63b96e5439a02e97fd879b623275fbda6be74a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.088ex; height:2.843ex;" alt="{\displaystyle O(MN)}"></span>。</dd></dl> <div class="mw-heading mw-heading3"><h3 id="方法2:快速傅立葉轉換"><span id=".E6.96.B9.E6.B3.952.EF.BC.9A.E5.BF.AB.E9.80.9F.E5.82.85.E7.AB.8B.E8.91.89.E8.BD.89.E6.8F.9B"></span>方法2:快速傅立葉轉換</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=20" title="编辑章节:方法2:快速傅立葉轉換"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>概念:由於兩個離散信號在時域(time domain)做卷積相當於這兩個信號的離散傅立葉轉換在頻域(frequency domain)做相乘:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y[n]=f[n]*g[n]\leftrightarrow Y[f]=F[f]G[f]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">&#x2194;<!-- ↔ --></mo> <mi>Y</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>F</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mi>G</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y[n]=f[n]*g[n]\leftrightarrow Y[f]=F[f]G[f]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27f83ca717dff1b21da43e56127c50874843b8b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.679ex; height:2.843ex;" alt="{\displaystyle y[n]=f[n]*g[n]\leftrightarrow Y[f]=F[f]G[f]}"></span></dd></dl></dd></dl> <dl><dd>,可以看出在頻域的計算較簡單。</dd></dl> <ul><li>作法:因此這個方法即是先將信號從時域轉成頻域:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F[f]=DFT_{P}(f[n]),G[f]=DFT_{P}(g[n])}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>,</mo> <mi>G</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F[f]=DFT_{P}(f[n]),G[f]=DFT_{P}(g[n])}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af332366ed1070784c006329adcd40833e64c44d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.311ex; height:2.843ex;" alt="{\displaystyle F[f]=DFT_{P}(f[n]),G[f]=DFT_{P}(g[n])}"></span></dd></dl></dd></dl> <dl><dd>,於是</dd></dl> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y[f]=DFT_{P}(f[n])DFT_{P}(g[n])}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y[f]=DFT_{P}(f[n])DFT_{P}(g[n])}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93ec9e3130dcd720d4d6b1930bd492f29fee0faf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.812ex; height:2.843ex;" alt="{\displaystyle Y[f]=DFT_{P}(f[n])DFT_{P}(g[n])}"></span></dd></dl></dd></dl> <dl><dd>,最後再將頻域信號轉回時域,就完成了卷積的計算:</dd></dl> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y[n]=IDFT_{P}{DFT_{P}(f[n])DFT_{P}(g[n])}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>I</mi> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y[n]=IDFT_{P}{DFT_{P}(f[n])DFT_{P}(g[n])}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adc12d1e8c9712ca85bf040d7e8573842c545588" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.971ex; height:2.843ex;" alt="{\displaystyle y[n]=IDFT_{P}{DFT_{P}(f[n])DFT_{P}(g[n])}}"></span></dd></dl></dd></dl> <dl><dd>總共做了2次DFT和1次IDFT。</dd></dl> <ul><li>特別注意DFT和IDFT的點數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>要滿足<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\geq M+N-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>M</mi> <mo>+</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\geq M+N-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07fd28bdc507c483207bbd025c5c746d72a70f40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:16.193ex; height:2.343ex;" alt="{\displaystyle P\geq M+N-1}"></span>。</li></ul> <ul><li>由於DFT有快速演算法FFT,所以運算量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(P\log _{2}P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>P</mi> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(P\log _{2}P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c74fc93c033d1c137f1f3444761adb5c57a78446" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.874ex; height:2.843ex;" alt="{\displaystyle O(P\log _{2}P)}"></span></li></ul> <ul><li>假設<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>點DFT的乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b176b3dbcced447341ad5ab70001ef0e3231062e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.967ex; height:2.843ex;" alt="{\displaystyle f[n]}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5e1d771a2385e9aeb71838a40425bb07c89525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle g[n]}"></span>為一般性的複數信號,並使用複數乘法的快速演算法,則共需要<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3a+3P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mi>a</mi> <mo>+</mo> <mn>3</mn> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3a+3P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8101617e2091a1781d290397f0f22d80cd102954" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.141ex; height:2.343ex;" alt="{\displaystyle 3a+3P}"></span>個乘法。</li></ul> <div class="mw-heading mw-heading3"><h3 id="方法3:分段卷積"><span id=".E6.96.B9.E6.B3.953.EF.BC.9A.E5.88.86.E6.AE.B5.E5.8D.B7.E7.A9.8D"></span>方法3:分段卷積</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=21" title="编辑章节:方法3:分段卷積"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>概念:將<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b176b3dbcced447341ad5ab70001ef0e3231062e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.967ex; height:2.843ex;" alt="{\displaystyle f[n]}"></span>切成好幾段(section),每一段分別和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5e1d771a2385e9aeb71838a40425bb07c89525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle g[n]}"></span>做卷積後,再將結果相加。</li></ul> <ul><li>作法:先將<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b176b3dbcced447341ad5ab70001ef0e3231062e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.967ex; height:2.843ex;" alt="{\displaystyle f[n]}"></span>切成每段長度為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>的區段(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L&gt;M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>&gt;</mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L&gt;M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44be94a8e4243927e4c8d84983ad8c94f785e151" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.124ex; height:2.176ex;" alt="{\displaystyle L&gt;M}"></span>),假設共切成S段:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[n](n=0,1,...,N-1)\to f_{1}[n],f_{2}[n],f_{3}[n],...,f_{S}[n](S=\left\lceil {\frac {N}{L}}\right\rceil )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo>=</mo> <mrow> <mo>&#x2308;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>N</mi> <mi>L</mi> </mfrac> </mrow> <mo>&#x2309;</mo> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[n](n=0,1,...,N-1)\to f_{1}[n],f_{2}[n],f_{3}[n],...,f_{S}[n](S=\left\lceil {\frac {N}{L}}\right\rceil )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b2758eba65ad177619e0d9198cc913abf649b9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:67.499ex; height:6.176ex;" alt="{\displaystyle f[n](n=0,1,...,N-1)\to f_{1}[n],f_{2}[n],f_{3}[n],...,f_{S}[n](S=\left\lceil {\frac {N}{L}}\right\rceil )}"></span></dd></dl></dd></dl> <dl><dd><dl><dd>Section 1: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1}[n]=f[n],n=0,1,...,L-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>L</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1}[n]=f[n],n=0,1,...,L-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22401ad12747eb80e3ec79d0c5b189b3c186d912" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.589ex; height:2.843ex;" alt="{\displaystyle f_{1}[n]=f[n],n=0,1,...,L-1}"></span></dd></dl></dd></dl> <dl><dd><dl><dd>Section 2: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{2}[n]=f[n+L],n=0,1,...,L-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo>+</mo> <mi>L</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>L</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{2}[n]=f[n+L],n=0,1,...,L-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccb4f0b33490a5fc67f57cb6d353087f35c3db5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.012ex; height:2.843ex;" alt="{\displaystyle f_{2}[n]=f[n+L],n=0,1,...,L-1}"></span></dd></dl></dd></dl> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22EE;<!-- ⋮ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8039d9feb6596ae092e5305108722975060c083" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.647ex; height:3.676ex;" alt="{\displaystyle \vdots }"></span></dd></dl></dd></dl></dd></dl> <dl><dd><dl><dd>Section r: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{r}[n]=f[n+(r-1)L],n=0,1,...,L-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>L</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>L</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{r}[n]=f[n+(r-1)L],n=0,1,...,L-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0d987ef3bab08edc0d97642435c8f97a1383304" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.792ex; height:2.843ex;" alt="{\displaystyle f_{r}[n]=f[n+(r-1)L],n=0,1,...,L-1}"></span></dd></dl></dd></dl> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22EE;<!-- ⋮ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8039d9feb6596ae092e5305108722975060c083" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.647ex; height:3.676ex;" alt="{\displaystyle \vdots }"></span></dd></dl></dd></dl></dd></dl> <dl><dd><dl><dd>Section S: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{S}[n]=f[n+(S-1)L],n=0,1,...,L-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>L</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>L</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{S}[n]=f[n+(S-1)L],n=0,1,...,L-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b30b353213c930583b0b65c5598ea334fdfee777" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.561ex; height:2.843ex;" alt="{\displaystyle f_{S}[n]=f[n+(S-1)L],n=0,1,...,L-1}"></span></dd></dl></dd></dl> <dl><dd>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b176b3dbcced447341ad5ab70001ef0e3231062e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.967ex; height:2.843ex;" alt="{\displaystyle f[n]}"></span>為各個section的和</dd></dl> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[n]=\sum _{r=1}^{S}f_{r}[n+(r-1)L]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>L</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[n]=\sum _{r=1}^{S}f_{r}[n+(r-1)L]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ad8dbc7f1039ba3824c87225b58895e27a85453" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.893ex; height:7.343ex;" alt="{\displaystyle f[n]=\sum _{r=1}^{S}f_{r}[n+(r-1)L]}"></span>。</dd></dl></dd></dl> <dl><dd>因此,</dd></dl> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y[n]=f[n]*g[n]=\sum _{r=1}^{S}\sum _{m=0}^{M-1}f_{r}[n+(r-1)L-m]g[m]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>L</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">]</mo> <mi>g</mi> <mo stretchy="false">[</mo> <mi>m</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y[n]=f[n]*g[n]=\sum _{r=1}^{S}\sum _{m=0}^{M-1}f_{r}[n+(r-1)L-m]g[m]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e15254f6bff4b4db4f6899f0bb3e450f75e3625d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:53.38ex; height:7.343ex;" alt="{\displaystyle y[n]=f[n]*g[n]=\sum _{r=1}^{S}\sum _{m=0}^{M-1}f_{r}[n+(r-1)L-m]g[m]}"></span>,</dd></dl></dd></dl> <dl><dd>每一小段作卷積則是採用方法2,先將時域信號轉到頻域相乘,再轉回時域:</dd></dl> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y[n]=IDFT(\sum _{r=1}^{S}\sum _{m=0}^{M-1}DFT_{P}(f_{r}[n+(r-1)L-m])DFT_{P}(g[m])),P\geq M+L-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>I</mi> <mi>D</mi> <mi>F</mi> <mi>T</mi> <mo stretchy="false">(</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>L</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">[</mo> <mi>m</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> <mi>P</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>M</mi> <mo>+</mo> <mi>L</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y[n]=IDFT(\sum _{r=1}^{S}\sum _{m=0}^{M-1}DFT_{P}(f_{r}[n+(r-1)L-m])DFT_{P}(g[m])),P\geq M+L-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3c1ccb338a07511f8c82bbe1478beb62fafdea6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:81.94ex; height:7.343ex;" alt="{\displaystyle y[n]=IDFT(\sum _{r=1}^{S}\sum _{m=0}^{M-1}DFT_{P}(f_{r}[n+(r-1)L-m])DFT_{P}(g[m])),P\geq M+L-1}"></span>。</dd></dl></dd></dl> <ul><li>總共只需要做<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>點FFT <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2S+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>S</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2S+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3df223d40c7b1f05b258b61f6151fe74c5f4214" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.665ex; height:2.343ex;" alt="{\displaystyle 2S+1}"></span>次,因為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5e1d771a2385e9aeb71838a40425bb07c89525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle g[n]}"></span>只需要做一次FFT。</li></ul> <ul><li>假設<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>點DFT的乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b176b3dbcced447341ad5ab70001ef0e3231062e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.967ex; height:2.843ex;" alt="{\displaystyle f[n]}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5e1d771a2385e9aeb71838a40425bb07c89525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle g[n]}"></span>為一般性的複數信號,並使用複數乘法的快速演算法,則共需要<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2S+1)a+3SP}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>S</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>a</mi> <mo>+</mo> <mn>3</mn> <mi>S</mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2S+1)a+3SP}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df54ba339c817baead4f20ca77644146ee448262" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.951ex; height:2.843ex;" alt="{\displaystyle (2S+1)a+3SP}"></span>個乘法。</li></ul> <ul><li>運算量:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {N}{L}}3(L+M-1)[\log _{2}(L+M-1)+1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>N</mi> <mi>L</mi> </mfrac> </mrow> <mn>3</mn> <mo stretchy="false">(</mo> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {N}{L}}3(L+M-1)[\log _{2}(L+M-1)+1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4b5d72adc35b450cfcc40c0d13720fa6d6bd070" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:38.74ex; height:5.176ex;" alt="{\displaystyle {\frac {N}{L}}3(L+M-1)[\log _{2}(L+M-1)+1]}"></span></li></ul> <ul><li>運算複雜度:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(N)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(N)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78484c5c26cfc97bb3b915418caa09454421e80b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.646ex; height:2.843ex;" alt="{\displaystyle O(N)}"></span>,和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>呈線性,較方法2小。</li> <li>分為 Overlap-Add 和 Overlap-Save 兩種方法。</li></ul> <p><b>分段卷積: Overlap-Add</b> </p><p>欲做<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]*h[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]*h[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c97358d336f2e21de7913bc46fac6477eef3bc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.24ex; height:2.843ex;" alt="{\displaystyle x[n]*h[n]}"></span>的分段卷積分,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/864cbbefbdcb55af4d9390911de1bf70167c4a3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.018ex; height:2.843ex;" alt="{\displaystyle x[n]}"></span> 長度為 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89981bbbb05ffd469eeadb828c18359965985e46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.027ex; height:2.843ex;" alt="{\displaystyle h[n]}"></span> 長度為 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>, </p><p>Step 1: 將<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/864cbbefbdcb55af4d9390911de1bf70167c4a3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.018ex; height:2.843ex;" alt="{\displaystyle x[n]}"></span>每 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> 分成一段 </p><p>Step 2: 再每段 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> 點後面添加 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 個零,變成長度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L+M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L+M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85e33f15990cd14d3bf8a47611f4e5e0bafe4173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.868ex; height:2.343ex;" alt="{\displaystyle L+M-1}"></span> </p><p>Step 3: 把 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89981bbbb05ffd469eeadb828c18359965985e46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.027ex; height:2.843ex;" alt="{\displaystyle h[n]}"></span> 添加 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fe61101dd489eb8e1a974ab6c409190a76541bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.586ex; height:2.343ex;" alt="{\displaystyle L-1}"></span>個零,變成長度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L+M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L+M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85e33f15990cd14d3bf8a47611f4e5e0bafe4173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.868ex; height:2.343ex;" alt="{\displaystyle L+M-1}"></span>的 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h'[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>h</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h'[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7af9a0c1d0c9753adba0e2e13fc2c45e8d5698f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.712ex; height:3.009ex;" alt="{\displaystyle h&#039;[n]}"></span> </p><p>Step 4: 把每個 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/864cbbefbdcb55af4d9390911de1bf70167c4a3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.018ex; height:2.843ex;" alt="{\displaystyle x[n]}"></span> 的小段和 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h'[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>h</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h'[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7af9a0c1d0c9753adba0e2e13fc2c45e8d5698f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.712ex; height:3.009ex;" alt="{\displaystyle h&#039;[n]}"></span> 做快速卷積,也就是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle IDFT_{L+M-1}\{{DFT_{L+M-1}(x[n])DFT_{L+M-1}(h'[n])}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>h</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle IDFT_{L+M-1}\{{DFT_{L+M-1}(x[n])DFT_{L+M-1}(h'[n])}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71884e63653a1501f77c376b182141bd9d8e86ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.286ex; height:3.009ex;" alt="{\displaystyle IDFT_{L+M-1}\{{DFT_{L+M-1}(x[n])DFT_{L+M-1}(h&#039;[n])}\}}"></span>,每小段會得到長度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L+M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L+M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85e33f15990cd14d3bf8a47611f4e5e0bafe4173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.868ex; height:2.343ex;" alt="{\displaystyle L+M-1}"></span> 的時域訊號 </p><p>Step 5: 放置第 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> 個小段的起點在位置 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L\times i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>&#x00D7;<!-- × --></mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L\times i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af7e585ea7b2669445ce0e7068a7a168616de7c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.226ex; height:2.176ex;" alt="{\displaystyle L\times i}"></span> 上, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i=0,1,...,\lceil {\frac {N}{L}}\rceil -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mo fence="false" stretchy="false">&#x2308;<!-- ⌈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>N</mi> <mi>L</mi> </mfrac> </mrow> <mo fence="false" stretchy="false">&#x2309;<!-- ⌉ --></mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i=0,1,...,\lceil {\frac {N}{L}}\rceil -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b0e431850a09ed6a4c8846077aaf114c9920344" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.397ex; height:5.176ex;" alt="{\displaystyle i=0,1,...,\lceil {\frac {N}{L}}\rceil -1}"></span> </p><p>Step 6: 會發現在每一段的後面 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 點有重疊,將所有點都相加起來,顧名思義 Overlap-Add,最後得到結果 </p><p>舉例來說: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]=[1,2,3,4,5,-1,-2,-3,-4,-5,1,2,3,4,5]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]=[1,2,3,4,5,-1,-2,-3,-4,-5,1,2,3,4,5]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98580fd364a838db6ecc3c27068105c31f81d9a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.363ex; height:2.843ex;" alt="{\displaystyle x[n]=[1,2,3,4,5,-1,-2,-3,-4,-5,1,2,3,4,5]}"></span>, 長度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=15}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>15</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=15}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d92efb5a8a42b0cf920aeb6e437f8ab40420bd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.487ex; height:2.176ex;" alt="{\displaystyle N=15}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h[n]=[1,2,3]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h[n]=[1,2,3]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67fdc55efaef23389bacd0b58cf59865377f46f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.975ex; height:2.843ex;" alt="{\displaystyle h[n]=[1,2,3]}"></span>, 長度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f650bb93b4dc73fb000a07a4c9d7f3e3094e965d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.703ex; height:2.176ex;" alt="{\displaystyle M=3}"></span> </p><p> 令 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f0a13e71c8b4a72c47192e0197ae0faaa78240a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.844ex; height:2.176ex;" alt="{\displaystyle L=5}"></span> </p><ul class="gallery mw-gallery-nolines"> <li class="gallerybox" style="width: 305px"> <div class="thumb" style="width: 300px;"><span typeof="mw:File"><a href="/wiki/File:Data_overlap_add.png" class="mw-file-description" title="x[n]和h[n]"><img alt="x[n]和h[n]" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Data_overlap_add.png/300px-Data_overlap_add.png" decoding="async" width="300" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Data_overlap_add.png/450px-Data_overlap_add.png 1.5x, //upload.wikimedia.org/wikipedia/commons/f/fc/Data_overlap_add.png 2x" data-file-width="561" data-file-height="413" /></a></span></div> <div class="gallerytext">x[n]和h[n]</div> </li> </ul><p> 令 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f0a13e71c8b4a72c47192e0197ae0faaa78240a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.844ex; height:2.176ex;" alt="{\displaystyle L=5}"></span> 切成三段,分別為 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}[n],x_{1}[n],x_{2}[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}[n],x_{1}[n],x_{2}[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d11383cb60875adb6faaedbf729e5956982bff0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.285ex; height:2.843ex;" alt="{\displaystyle x_{0}[n],x_{1}[n],x_{2}[n]}"></span>, 每段填 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 個零,並將 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89981bbbb05ffd469eeadb828c18359965985e46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.027ex; height:2.843ex;" alt="{\displaystyle h[n]}"></span> 填零至長度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L+M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L+M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85e33f15990cd14d3bf8a47611f4e5e0bafe4173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.868ex; height:2.343ex;" alt="{\displaystyle L+M-1}"></span></p><ul class="gallery mw-gallery-nolines"> <li class="gallerybox" style="width: 305px"> <div class="thumb" style="width: 300px;"><span typeof="mw:File"><a href="/wiki/File:Seperate_x_overlap_add.png" class="mw-file-description" title="分段x[n]"><img alt="分段x[n]" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Seperate_x_overlap_add.png/300px-Seperate_x_overlap_add.png" decoding="async" width="300" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Seperate_x_overlap_add.png/450px-Seperate_x_overlap_add.png 1.5x, //upload.wikimedia.org/wikipedia/commons/3/30/Seperate_x_overlap_add.png 2x" data-file-width="561" data-file-height="413" /></a></span></div> <div class="gallerytext">分段x[n]</div> </li> </ul><p>將每一段做<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle IDFT_{L+M-1}\{{DFT_{L+M-1}(x[n])DFT_{L+M-1}(h'[n])}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>h</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle IDFT_{L+M-1}\{{DFT_{L+M-1}(x[n])DFT_{L+M-1}(h'[n])}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71884e63653a1501f77c376b182141bd9d8e86ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.286ex; height:3.009ex;" alt="{\displaystyle IDFT_{L+M-1}\{{DFT_{L+M-1}(x[n])DFT_{L+M-1}(h&#039;[n])}\}}"></span></p><ul class="gallery mw-gallery-nolines"> <li class="gallerybox" style="width: 305px"> <div class="thumb" style="width: 300px;"><span typeof="mw:File"><a href="/wiki/File:Seperate_result_overlap_add.png" class="mw-file-description" title="分段運算結果"><img alt="分段運算結果" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Seperate_result_overlap_add.png/300px-Seperate_result_overlap_add.png" decoding="async" width="300" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Seperate_result_overlap_add.png/450px-Seperate_result_overlap_add.png 1.5x, //upload.wikimedia.org/wikipedia/commons/2/2f/Seperate_result_overlap_add.png 2x" data-file-width="561" data-file-height="413" /></a></span></div> <div class="gallerytext">分段運算結果</div> </li> </ul><p>若將每小段擺在一起,可以注意到第一段的範圍是 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\thicksim 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo class="MJX-variant">&#x223C;<!-- ∼ --></mo> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\thicksim 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff1f76f3b7fb25ff5032477f749b824f079377ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.423ex; height:2.176ex;" alt="{\displaystyle 0\thicksim 6}"></span> ,第二段的範圍是 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5\thicksim 11}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> <mo class="MJX-variant">&#x223C;<!-- ∼ --></mo> <mn>11</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5\thicksim 11}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73806cbb3abe04465e34f3360cdc864050bc169e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.586ex; height:2.176ex;" alt="{\displaystyle 5\thicksim 11}"></span>,第三段的範圍是 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10\thicksim 16}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>10</mn> <mo class="MJX-variant">&#x223C;<!-- ∼ --></mo> <mn>16</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10\thicksim 16}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04af9c6fcca3e9f2c6ed48dbea15abec8deda045" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.748ex; height:2.176ex;" alt="{\displaystyle 10\thicksim 16}"></span>,三段的範圍是有重疊的</p><ul class="gallery mw-gallery-nolines"> <li class="gallerybox" style="width: 305px"> <div class="thumb" style="width: 300px;"><span typeof="mw:File"><a href="/wiki/File:Summation_overlap_add.png" class="mw-file-description" title="合併分段運算結果"><img alt="合併分段運算結果" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Summation_overlap_add.png/300px-Summation_overlap_add.png" decoding="async" width="300" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Summation_overlap_add.png/450px-Summation_overlap_add.png 1.5x, //upload.wikimedia.org/wikipedia/commons/3/3c/Summation_overlap_add.png 2x" data-file-width="561" data-file-height="413" /></a></span></div> <div class="gallerytext">合併分段運算結果</div> </li> </ul><p>最後將三小段加在一起,並將結果和未分段的卷積做比較,上圖是分段的結果,下圖是沒有分段並利用快速卷積所算出的結果,驗證兩者運算結果相同。</p><ul class="gallery mw-gallery-nolines"> <li class="gallerybox" style="width: 305px"> <div class="thumb" style="width: 300px;"><span typeof="mw:File"><a href="/wiki/File:Final_result_overlap_add.png" class="mw-file-description" title="結果比較圖"><img alt="結果比較圖" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Final_result_overlap_add.png/300px-Final_result_overlap_add.png" decoding="async" width="300" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Final_result_overlap_add.png/450px-Final_result_overlap_add.png 1.5x, //upload.wikimedia.org/wikipedia/commons/c/c7/Final_result_overlap_add.png 2x" data-file-width="561" data-file-height="413" /></a></span></div> <div class="gallerytext">結果比較圖</div> </li> </ul><p><b>分段卷積: Overlap-Save</b> </p><p>欲做<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]*h[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>h</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]*h[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c97358d336f2e21de7913bc46fac6477eef3bc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.24ex; height:2.843ex;" alt="{\displaystyle x[n]*h[n]}"></span>的分段卷積分,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/864cbbefbdcb55af4d9390911de1bf70167c4a3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.018ex; height:2.843ex;" alt="{\displaystyle x[n]}"></span> 長度為 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89981bbbb05ffd469eeadb828c18359965985e46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.027ex; height:2.843ex;" alt="{\displaystyle h[n]}"></span> 長度為 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>, </p><p>Step 1: 將 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/864cbbefbdcb55af4d9390911de1bf70167c4a3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.018ex; height:2.843ex;" alt="{\displaystyle x[n]}"></span> 前面填 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 個零 </p><p>Step 2: 第一段 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31a682d568ee6a5fe51d76423186057f625ada5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.063ex; height:2.176ex;" alt="{\displaystyle i=0}"></span>, 從新的 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/864cbbefbdcb55af4d9390911de1bf70167c4a3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.018ex; height:2.843ex;" alt="{\displaystyle x[n]}"></span> 中 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L\times i-(M-1)\times i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>&#x00D7;<!-- × --></mo> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L\times i-(M-1)\times i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bbe351cd9908206caef3805019887754d2a0ba3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.963ex; height:2.843ex;" alt="{\displaystyle L\times i-(M-1)\times i}"></span> 取到 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L\times (i+1)-(M-1)\times i-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L\times (i+1)-(M-1)\times i-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b1d31a1f325d0a1909572da59315cebde6b8ace" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.778ex; height:2.843ex;" alt="{\displaystyle L\times (i+1)-(M-1)\times i-1}"></span> 總共 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> 點當做一段,因此每小段會重複取到前一小段的 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 點,取到新的一段全為零為止 </p><p>Step 3: 把 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89981bbbb05ffd469eeadb828c18359965985e46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.027ex; height:2.843ex;" alt="{\displaystyle h[n]}"></span> 添加 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L-M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L-M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6b200b4cc6237428dd16e147476bc0f465f53b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.865ex; height:2.343ex;" alt="{\displaystyle L-M}"></span> 個零,變成長度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> 的 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h'[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>h</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h'[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7af9a0c1d0c9753adba0e2e13fc2c45e8d5698f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.712ex; height:3.009ex;" alt="{\displaystyle h&#039;[n]}"></span> </p><p>Step 4: 把每個 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/864cbbefbdcb55af4d9390911de1bf70167c4a3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.018ex; height:2.843ex;" alt="{\displaystyle x[n]}"></span> 的小段和 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h'[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>h</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h'[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7af9a0c1d0c9753adba0e2e13fc2c45e8d5698f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.712ex; height:3.009ex;" alt="{\displaystyle h&#039;[n]}"></span> 做快速卷積,也就是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle IDFT_{L}\{{DFT_{L}(x[n])DFT_{L}(h'[n])}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>h</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle IDFT_{L}\{{DFT_{L}(x[n])DFT_{L}(h'[n])}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c639c720d3a6a4922220ac66a9c31d6e8eb7987" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.968ex; height:3.009ex;" alt="{\displaystyle IDFT_{L}\{{DFT_{L}(x[n])DFT_{L}(h&#039;[n])}\}}"></span>,每小段會得到長度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> 的時域訊號 </p><p>Step 5: 對於每個 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> 小段,只會保留末端的 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L-(M-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L-(M-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfe931bb8cbd6173a0b7762d45dd6f5a0698a179" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.678ex; height:2.843ex;" alt="{\displaystyle L-(M-1)}"></span> 點,因此得名 Overlap-Save </p><p>Step 6: 將所有保留的點合再一起,得到最後結果 </p><p>舉例來說: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mn>7</mn> <mo>,</mo> <mn>8</mn> <mo>,</mo> <mn>9</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>11</mn> <mo>,</mo> <mn>12</mn> <mo>,</mo> <mn>13</mn> <mo>,</mo> <mn>14</mn> <mo>,</mo> <mn>15</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f54af19067aacc4ba29d8c5a4e661d92c3f2ab24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.297ex; height:2.843ex;" alt="{\displaystyle x[n]=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]}"></span>, 長度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=15}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>15</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=15}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d92efb5a8a42b0cf920aeb6e437f8ab40420bd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.487ex; height:2.176ex;" alt="{\displaystyle N=15}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h[n]=[1,2,3]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h[n]=[1,2,3]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67fdc55efaef23389bacd0b58cf59865377f46f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.975ex; height:2.843ex;" alt="{\displaystyle h[n]=[1,2,3]}"></span>, 長度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f650bb93b4dc73fb000a07a4c9d7f3e3094e965d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.703ex; height:2.176ex;" alt="{\displaystyle M=3}"></span> </p><p> 令 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=7}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mn>7</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=7}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ceb99e4503e826f7f0aa12251552f6193d5fdc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.844ex; height:2.176ex;" alt="{\displaystyle L=7}"></span> </p><ul class="gallery mw-gallery-nolines"> <li class="gallerybox" style="width: 305px"> <div class="thumb" style="width: 300px;"><span typeof="mw:File"><a href="/wiki/File:Data_overlap_save.png" class="mw-file-description" title="x[n]和h[n]"><img alt="x[n]和h[n]" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Data_overlap_save.png/300px-Data_overlap_save.png" decoding="async" width="300" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Data_overlap_save.png/450px-Data_overlap_save.png 1.5x, //upload.wikimedia.org/wikipedia/commons/9/9e/Data_overlap_save.png 2x" data-file-width="561" data-file-height="413" /></a></span></div> <div class="gallerytext">x[n]和h[n]</div> </li> </ul><p>將 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/864cbbefbdcb55af4d9390911de1bf70167c4a3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.018ex; height:2.843ex;" alt="{\displaystyle x[n]}"></span> 前面填 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 個零以後,按照 Step 2 的方式分段,可以看到每一段都重複上一段的 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 點</p><ul class="gallery mw-gallery-nolines"> <li class="gallerybox" style="width: 305px"> <div class="thumb" style="width: 300px;"><span typeof="mw:File"><a href="/wiki/File:Seperate_x_overlap_save.png" class="mw-file-description" title="分段x[n]"><img alt="分段x[n]" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Seperate_x_overlap_save.png/300px-Seperate_x_overlap_save.png" decoding="async" width="300" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Seperate_x_overlap_save.png/450px-Seperate_x_overlap_save.png 1.5x, //upload.wikimedia.org/wikipedia/commons/b/b2/Seperate_x_overlap_save.png 2x" data-file-width="561" data-file-height="413" /></a></span></div> <div class="gallerytext">分段x[n]</div> </li> </ul><p>再將每一段做 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle IDFT_{L}\{{DFT_{L}(x[n])DFT_{L}(h'[n])}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>h</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle IDFT_{L}\{{DFT_{L}(x[n])DFT_{L}(h'[n])}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c639c720d3a6a4922220ac66a9c31d6e8eb7987" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.968ex; height:3.009ex;" alt="{\displaystyle IDFT_{L}\{{DFT_{L}(x[n])DFT_{L}(h&#039;[n])}\}}"></span>以後可以得到</p><ul class="gallery mw-gallery-nolines"> <li class="gallerybox" style="width: 305px"> <div class="thumb" style="width: 300px;"><span typeof="mw:File"><a href="/wiki/File:Seperate_result_overlap_save.png" class="mw-file-description" title="分段運算結果"><img alt="分段運算結果" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Seperate_result_overlap_save.png/300px-Seperate_result_overlap_save.png" decoding="async" width="300" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Seperate_result_overlap_save.png/450px-Seperate_result_overlap_save.png 1.5x, //upload.wikimedia.org/wikipedia/commons/0/0b/Seperate_result_overlap_save.png 2x" data-file-width="561" data-file-height="413" /></a></span></div> <div class="gallerytext">分段運算結果</div> </li> </ul><p>保留每一段末端的 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L-(M-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L-(M-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfe931bb8cbd6173a0b7762d45dd6f5a0698a179" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.678ex; height:2.843ex;" alt="{\displaystyle L-(M-1)}"></span> 點,擺在一起以後,可以注意到第一段的範圍是 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\thicksim 4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo class="MJX-variant">&#x223C;<!-- ∼ --></mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\thicksim 4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5be3a806df1e8c89dfe1ad470b7de303c4f1bc65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.423ex; height:2.176ex;" alt="{\displaystyle 0\thicksim 4}"></span> ,第二段的範圍是 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5\thicksim 9}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> <mo class="MJX-variant">&#x223C;<!-- ∼ --></mo> <mn>9</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5\thicksim 9}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d24e6c6441877394c4dc2cc57d53305610921e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.423ex; height:2.176ex;" alt="{\displaystyle 5\thicksim 9}"></span>,第三段的範圍是 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10\thicksim 14}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>10</mn> <mo class="MJX-variant">&#x223C;<!-- ∼ --></mo> <mn>14</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10\thicksim 14}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/978b95a17201951e2fb90fe7c3e71d9332e75abe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.748ex; height:2.176ex;" alt="{\displaystyle 10\thicksim 14}"></span>,第四段的範圍是 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 15\thicksim 16}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>15</mn> <mo class="MJX-variant">&#x223C;<!-- ∼ --></mo> <mn>16</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 15\thicksim 16}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f914497bd0ad34c39e327c2144cae036ef85b88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.748ex; height:2.176ex;" alt="{\displaystyle 15\thicksim 16}"></span>,四段的範圍是沒有重疊的</p><ul class="gallery mw-gallery-nolines"> <li class="gallerybox" style="width: 305px"> <div class="thumb" style="width: 300px;"><span typeof="mw:File"><a href="/wiki/File:Summation_overlap_save.png" class="mw-file-description" title="合併分段運算結果"><img alt="合併分段運算結果" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Summation_overlap_save.png/300px-Summation_overlap_save.png" decoding="async" width="300" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Summation_overlap_save.png/450px-Summation_overlap_save.png 1.5x, //upload.wikimedia.org/wikipedia/commons/5/5f/Summation_overlap_save.png 2x" data-file-width="561" data-file-height="413" /></a></span></div> <div class="gallerytext">合併分段運算結果</div> </li> </ul><p>將結果和未分段的卷積做比較,下圖是分段的結果,上圖是沒有分段並利用快速卷積所算出的結果,驗證兩者運算結果相同。</p><ul class="gallery mw-gallery-nolines"> <li class="gallerybox" style="width: 305px"> <div class="thumb" style="width: 300px;"><span typeof="mw:File"><a href="/wiki/File:Final_compare_overlap_save.png" class="mw-file-description" title="結果比較圖"><img alt="結果比較圖" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Final_compare_overlap_save.png/300px-Final_compare_overlap_save.png" decoding="async" width="300" height="221" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Final_compare_overlap_save.png/450px-Final_compare_overlap_save.png 1.5x, //upload.wikimedia.org/wikipedia/commons/b/ba/Final_compare_overlap_save.png 2x" data-file-width="561" data-file-height="413" /></a></span></div> <div class="gallerytext">結果比較圖</div> </li> </ul><p>至於為什麼要把前面 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 丟掉? </p><p>以下以一例子來闡述: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]=[1,2,3,4,5,6,7,8,9,10]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mn>7</mn> <mo>,</mo> <mn>8</mn> <mo>,</mo> <mn>9</mn> <mo>,</mo> <mn>10</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]=[1,2,3,4,5,6,7,8,9,10]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/197c03fad73159099a753aa21015d7a410c619ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.503ex; height:2.843ex;" alt="{\displaystyle x[n]=[1,2,3,4,5,6,7,8,9,10]}"></span>, 長度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/822d0ac489846a3ba69441969952c7c7526e81e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.006ex; height:2.176ex;" alt="{\displaystyle L=10}"></span>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h[n]=[1,2,3,4,5]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h[n]=[1,2,3,4,5]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01382de68d6838f4a938ab33a5ad465fa1ae6d0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.368ex; height:2.843ex;" alt="{\displaystyle h[n]=[1,2,3,4,5]}"></span>, 長度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c0200217dd924af1a3fad45f994af52cb7306ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.703ex; height:2.176ex;" alt="{\displaystyle M=5}"></span>, </p><p> 第一條藍線代表 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> 軸,而兩條藍線之間代表長度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>,是在做快速摺積時的週期</p><ul class="gallery mw-gallery-nolines"> <li class="gallerybox" style="width: 305px"> <div class="thumb" style="width: 300px;"><span typeof="mw:File"><a href="/wiki/File:Original_ov_extra.png" class="mw-file-description" title="x[n]和h[n]"><img alt="x[n]和h[n]" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/Original_ov_extra.png/300px-Original_ov_extra.png" decoding="async" width="300" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/Original_ov_extra.png/450px-Original_ov_extra.png 1.5x, //upload.wikimedia.org/wikipedia/commons/2/25/Original_ov_extra.png 2x" data-file-width="561" data-file-height="420" /></a></span></div> <div class="gallerytext">x[n]和h[n]</div> </li> </ul><p>當在做快速摺積時<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle IDFT_{L}\{{DFT_{L}(x[n])DFT_{L}(h'[n])}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mi>D</mi> <mi>F</mi> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>h</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle IDFT_{L}\{{DFT_{L}(x[n])DFT_{L}(h'[n])}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c639c720d3a6a4922220ac66a9c31d6e8eb7987" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.968ex; height:3.009ex;" alt="{\displaystyle IDFT_{L}\{{DFT_{L}(x[n])DFT_{L}(h&#039;[n])}\}}"></span>,是把訊號視為週期 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>,在時域上為循環摺積分, </p><p>而在一開始前 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 點所得到的值,是 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h[0],h[6],h[7],h[8],h[9]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">[</mo> <mn>0</mn> <mo stretchy="false">]</mo> <mo>,</mo> <mi>h</mi> <mo stretchy="false">[</mo> <mn>6</mn> <mo stretchy="false">]</mo> <mo>,</mo> <mi>h</mi> <mo stretchy="false">[</mo> <mn>7</mn> <mo stretchy="false">]</mo> <mo>,</mo> <mi>h</mi> <mo stretchy="false">[</mo> <mn>8</mn> <mo stretchy="false">]</mo> <mo>,</mo> <mi>h</mi> <mo stretchy="false">[</mo> <mn>9</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h[0],h[6],h[7],h[8],h[9]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c2e1f7ce57e74223a3049d5d803bd8af91b8019" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.111ex; height:2.843ex;" alt="{\displaystyle h[0],h[6],h[7],h[8],h[9]}"></span> 和 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[0],x[6],x[7],x[8],x[9]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mn>0</mn> <mo stretchy="false">]</mo> <mo>,</mo> <mi>x</mi> <mo stretchy="false">[</mo> <mn>6</mn> <mo stretchy="false">]</mo> <mo>,</mo> <mi>x</mi> <mo stretchy="false">[</mo> <mn>7</mn> <mo stretchy="false">]</mo> <mo>,</mo> <mi>x</mi> <mo stretchy="false">[</mo> <mn>8</mn> <mo stretchy="false">]</mo> <mo>,</mo> <mi>x</mi> <mo stretchy="false">[</mo> <mn>9</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[0],x[6],x[7],x[8],x[9]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f004d095726b6a642d26dd6dc4bef9660ec8c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.065ex; height:2.843ex;" alt="{\displaystyle x[0],x[6],x[7],x[8],x[9]}"></span> 內積的值, </p><p>然而 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h[6],h[7],h[8],h[9]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">[</mo> <mn>6</mn> <mo stretchy="false">]</mo> <mo>,</mo> <mi>h</mi> <mo stretchy="false">[</mo> <mn>7</mn> <mo stretchy="false">]</mo> <mo>,</mo> <mi>h</mi> <mo stretchy="false">[</mo> <mn>8</mn> <mo stretchy="false">]</mo> <mo>,</mo> <mi>h</mi> <mo stretchy="false">[</mo> <mn>9</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h[6],h[7],h[8],h[9]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ccee59494bedbceae16aa4bce150fbcef8b2cf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.282ex; height:2.843ex;" alt="{\displaystyle h[6],h[7],h[8],h[9]}"></span> 這 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 個值應該要為零,以往在做快速摺積時長度為 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L+M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L+M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85e33f15990cd14d3bf8a47611f4e5e0bafe4173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.868ex; height:2.343ex;" alt="{\displaystyle L+M-1}"></span> 時不會遇到這些問題, </p><p> 而今天因為在做快速摺積時長度為 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> 才會把這 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 點算進來,因此我們要丟棄這 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 點內積的結果</p><ul class="gallery mw-gallery-nolines"> <li class="gallerybox" style="width: 305px"> <div class="thumb" style="width: 300px;"><span typeof="mw:File"><a href="/wiki/File:Cir_conv_ov_extra.png" class="mw-file-description" title="循環摺積"><img alt="循環摺積" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Cir_conv_ov_extra.png/300px-Cir_conv_ov_extra.png" decoding="async" width="300" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Cir_conv_ov_extra.png/450px-Cir_conv_ov_extra.png 1.5x, //upload.wikimedia.org/wikipedia/commons/a/ab/Cir_conv_ov_extra.png 2x" data-file-width="561" data-file-height="420" /></a></span></div> <div class="gallerytext">循環摺積</div> </li> </ul><p>為了要丟棄這 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 點內積的結果,位移 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h[-n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">[</mo> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h[-n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2160e2740fe612954bc0c6d78203d595d29076e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.836ex; height:2.843ex;" alt="{\displaystyle h[-n]}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"></span> 點,並把位移以後內積合的值才算有效。</p><ul class="gallery mw-gallery-nolines"> <li class="gallerybox" style="width: 305px"> <div class="thumb" style="width: 300px;"><span typeof="mw:File"><a href="/wiki/File:Cir_conv_shift_ov_extra.png" class="mw-file-description" title="位移以後內積"><img alt="位移以後內積" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Cir_conv_shift_ov_extra.png/300px-Cir_conv_shift_ov_extra.png" decoding="async" width="300" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Cir_conv_shift_ov_extra.png/450px-Cir_conv_shift_ov_extra.png 1.5x, //upload.wikimedia.org/wikipedia/commons/b/b8/Cir_conv_shift_ov_extra.png 2x" data-file-width="561" data-file-height="420" /></a></span></div> <div class="gallerytext">位移以後內積</div> </li> </ul> <div class="mw-heading mw-heading3"><h3 id="應用時機"><span id=".E6.87.89.E7.94.A8.E6.99.82.E6.A9.9F"></span>應用時機</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=22" title="编辑章节:應用時機"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>以上三種方法皆可用來計算卷積,其差別在於所需總體乘法量不同。基於運算量以及效率的考量,在計算卷積時,通常會選擇所需總體乘法量較少的方法。 </p><p>以下根據<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b176b3dbcced447341ad5ab70001ef0e3231062e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.967ex; height:2.843ex;" alt="{\displaystyle f[n]}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5e1d771a2385e9aeb71838a40425bb07c89525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle g[n]}"></span>的長度(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N,M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>,</mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N,M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b84399043f9b62ad56f415c81ae8f0a3b6d9b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.54ex; height:2.509ex;" alt="{\displaystyle N,M}"></span>)分成5類,並列出適合使用的方法: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>為一非常小的整數 - 直接計算</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\ll N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x226A;<!-- ≪ --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\ll N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c456a544c3c1b8f408180fba0c01467fefcce5fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.12ex; height:2.176ex;" alt="{\displaystyle M\ll N}"></span> - 分段卷积</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\approx N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2248;<!-- ≈ --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\approx N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8018282f8dfe8fc79adc3f6a7bc1cd37fc5e0ba9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.604ex; height:2.176ex;" alt="{\displaystyle M\approx N}"></span> - 快速傅里叶变换</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\gg N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x226B;<!-- ≫ --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\gg N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7b8060d0395cb2ce841998907ac013b1535a4fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.12ex; height:2.176ex;" alt="{\displaystyle M\gg N}"></span> - 分段卷积</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>為一非常小的整數 - 直接計算</li></ol> <p>基本上,以上只是粗略的分類。在實際應用時,最好還是算出三種方法所需的總乘法量,再選擇其中最有效率的方法來計算卷積。 </p> <div class="mw-heading mw-heading3"><h3 id="例子"><span id=".E4.BE.8B.E5.AD.90"></span>例子</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=23" title="编辑章节:例子"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Q1:當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=2000,M=17}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>2000</mn> <mo>,</mo> <mi>M</mi> <mo>=</mo> <mn>17</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=2000,M=17}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdb0a6a4b701aa466fc4896c8e3b5f3f7dbc5a80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.711ex; height:2.509ex;" alt="{\displaystyle N=2000,M=17}"></span>,適合用哪種方法計算卷積? </p><p>Ans: </p> <dl><dd>方法1:所需乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3MN=102000}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mi>M</mi> <mi>N</mi> <mo>=</mo> <mn>102000</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3MN=102000}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/176f76ca3518d89f694c6c0830be780083947e96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.741ex; height:2.176ex;" alt="{\displaystyle 3MN=102000}"></span></dd></dl> <dl><dd>方法2:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\geq M+N-1=2016}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>M</mi> <mo>+</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>2016</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\geq M+N-1=2016}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/747186637828661c1069ff4d99e79898992dddb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:23.941ex; height:2.343ex;" alt="{\displaystyle P\geq M+N-1=2016}"></span>,而2016點的DFT最少乘法數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=12728}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mn>12728</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=12728}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db42666547a18589485d2431de9dac2cc363a4bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.141ex; height:2.176ex;" alt="{\displaystyle a=12728}"></span>,所以總乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3(a+P)=44232}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>44232</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3(a+P)=44232}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed765f9deb33d69a263ab630ad2d2961a902b732" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.698ex; height:2.843ex;" alt="{\displaystyle 3(a+P)=44232}"></span></dd></dl> <dl><dd>方法3: <dl><dd>若切成8塊(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=8}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mn>8</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=8}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b6fde353a7ad189d669d892caf328dd817b4476" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.76ex; height:2.176ex;" alt="{\displaystyle S=8}"></span>),則<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=250,P\geq M+L-1=266}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mn>250</mn> <mo>,</mo> <mi>P</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>M</mi> <mo>+</mo> <mi>L</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>266</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=250,P\geq M+L-1=266}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61dc28bcf875e9833584fc94e53d2394dc05526c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:31.501ex; height:2.509ex;" alt="{\displaystyle L=250,P\geq M+L-1=266}"></span>。選<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=288}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>288</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=288}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98dd9e9428e5a1fa8da1e7613f3667fd479ab8ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.331ex; height:2.176ex;" alt="{\displaystyle P=288}"></span>,則總乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2S+1)a+3SP=26632}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>S</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>a</mi> <mo>+</mo> <mn>3</mn> <mi>S</mi> <mi>P</mi> <mo>=</mo> <mn>26632</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2S+1)a+3SP=26632}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00be17dc0e4330f599346fa3f0bcac092bc3d309" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.862ex; height:2.843ex;" alt="{\displaystyle (2S+1)a+3SP=26632}"></span>,比方法1和2少了很多。</dd> <dd>但是若要找到最少的乘法量,必須依照以下步驟 <dl><dd>(1)先找出<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>:解<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>&#160;: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial {{\frac {N}{L}}3(L+M-1)[\log _{2}(L+M-1)+1]}}{\partial L}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>N</mi> <mi>L</mi> </mfrac> </mrow> <mn>3</mn> <mo stretchy="false">(</mo> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>L</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial {{\frac {N}{L}}3(L+M-1)[\log _{2}(L+M-1)+1]}}{\partial L}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5212be896bcbc7febbe5e992d9650c2b0ea09c6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:44.551ex; height:6.676ex;" alt="{\displaystyle {\frac {\partial {{\frac {N}{L}}3(L+M-1)[\log _{2}(L+M-1)+1]}}{\partial L}}=0}"></span></dd> <dd>(2)由<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\geq L+M-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\geq L+M-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73b07631ac40ea2ec55be227826919cb664de70e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:15.712ex; height:2.343ex;" alt="{\displaystyle P\geq L+M-1}"></span>算出點數在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>附近的DFT所需最少的乘法量,選擇DFT的點數</dd> <dd>(3)最後由<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=P+1-M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mi>P</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=P+1-M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c90e2502147388084dc4cf0371d0f749e941142" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:15.712ex; height:2.343ex;" alt="{\displaystyle L=P+1-M}"></span>算出<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{opt}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{opt}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/251f8d17fb14ec764eb37937a75c9ea07333ed12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.033ex; height:2.843ex;" alt="{\displaystyle L_{opt}}"></span></dd></dl></dd> <dd>因此, <dl><dd>(1)由運算量對<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>的偏微分為0而求出<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=85}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mn>85</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=85}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/915cf63e7c6ca7d395868ebfedf0b4f4c0b79b18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.006ex; height:2.176ex;" alt="{\displaystyle L=85}"></span></dd> <dd>(2)<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\geq L+M-1=101}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>101</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\geq L+M-1=101}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6af236cd660084af132397f1f7d5ecbc547c4975" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:22.298ex; height:2.343ex;" alt="{\displaystyle P\geq L+M-1=101}"></span>,所以選擇101點DFT附近點數乘法量最少的點數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=96}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>96</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=96}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8176b66e459f4e6c5b30aa8e0a7d6d3084e3edf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.169ex; height:2.176ex;" alt="{\displaystyle P=96}"></span>或<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=120}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>120</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=120}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8443c256b1bb6fb70e7244854af9cde6fc5b45c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.331ex; height:2.176ex;" alt="{\displaystyle P=120}"></span>。</dd> <dd>(3-1)當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=96\to a=280,L=P+1-M=80\to S=25}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>96</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>a</mi> <mo>=</mo> <mn>280</mn> <mo>,</mo> <mi>L</mi> <mo>=</mo> <mi>P</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> <mo>=</mo> <mn>80</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo>=</mo> <mn>25</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=96\to a=280,L=P+1-M=80\to S=25}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96bfbfe34cf2f827d1e04b2fd258866fd025cec7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:51.305ex; height:2.509ex;" alt="{\displaystyle P=96\to a=280,L=P+1-M=80\to S=25}"></span>,總乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2S+1)a+3SP=21480}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>S</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>a</mi> <mo>+</mo> <mn>3</mn> <mi>S</mi> <mi>P</mi> <mo>=</mo> <mn>21480</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2S+1)a+3SP=21480}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3021467cf4f4a5e193f6dab0d40177178dccc45a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.862ex; height:2.843ex;" alt="{\displaystyle (2S+1)a+3SP=21480}"></span>。</dd> <dd>(3-2)當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=120\to a=380,L=P+1-M=104\to S=20}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>120</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>a</mi> <mo>=</mo> <mn>380</mn> <mo>,</mo> <mi>L</mi> <mo>=</mo> <mi>P</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> <mo>=</mo> <mn>104</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo>=</mo> <mn>20</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=120\to a=380,L=P+1-M=104\to S=20}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8c2a4c174e7734c4d60a041cff1c0bc2b581a60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:53.63ex; height:2.509ex;" alt="{\displaystyle P=120\to a=380,L=P+1-M=104\to S=20}"></span>,總乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2S+1)a+3SP=22780}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>S</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>a</mi> <mo>+</mo> <mn>3</mn> <mi>S</mi> <mi>P</mi> <mo>=</mo> <mn>22780</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2S+1)a+3SP=22780}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50f6435fe44b7ca39cea737bd3a3287c311bcd9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.862ex; height:2.843ex;" alt="{\displaystyle (2S+1)a+3SP=22780}"></span>。</dd></dl></dd> <dd>由此可知,切成20塊會有較好的效率,而所需總乘法量為21480。</dd></dl></dd></dl> <ul><li>因此,當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=2000,M=17}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>2000</mn> <mo>,</mo> <mi>M</mi> <mo>=</mo> <mn>17</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=2000,M=17}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdb0a6a4b701aa466fc4896c8e3b5f3f7dbc5a80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.711ex; height:2.509ex;" alt="{\displaystyle N=2000,M=17}"></span>,所需總乘法量:分段卷積&lt;快速傅立葉轉換&lt;直接計算。故,此時選擇使用分段卷積來計算卷積最適合。</li></ul> <p>Q2:當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=1024,M=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>1024</mn> <mo>,</mo> <mi>M</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=1024,M=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5534a8add9bf105b36e9435dd1143026807e89fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.549ex; height:2.509ex;" alt="{\displaystyle N=1024,M=3}"></span>,適合用哪種方法計算卷積? </p><p>Ans: </p> <dl><dd>方法1:所需乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3MN=9216}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mi>M</mi> <mi>N</mi> <mo>=</mo> <mn>9216</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3MN=9216}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecf603bb99b5d764d4aec0c0e634833257533d9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.417ex; height:2.176ex;" alt="{\displaystyle 3MN=9216}"></span></dd></dl> <dl><dd>方法2:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\geq M+N-1=1026}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>M</mi> <mo>+</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>1026</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\geq M+N-1=1026}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbbfd2baea30d8e84f98f4086312da79dd075683" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:23.941ex; height:2.343ex;" alt="{\displaystyle P\geq M+N-1=1026}"></span>,選擇1026點DFT附近點數乘法量最少的點數,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \to P=1152,a=7088}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo>=</mo> <mn>1152</mn> <mo>,</mo> <mi>a</mi> <mo>=</mo> <mn>7088</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \to P=1152,a=7088}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dde34876d36ec115c115fe52e369b8419e52a111" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.475ex; height:2.509ex;" alt="{\displaystyle \to P=1152,a=7088}"></span>。 <dl><dd><dl><dd>因此,所需乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3(a+P)=24342}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>24342</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3(a+P)=24342}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a994d5254d9022c33244969331dc7c38c0ddc94c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.698ex; height:2.843ex;" alt="{\displaystyle 3(a+P)=24342}"></span></dd></dl></dd></dl></dd></dl> <dl><dd>方法3: <dl><dd><dl><dd>(1)由運算量對<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>的偏微分為0而求出<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f0a13e71c8b4a72c47192e0197ae0faaa78240a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.844ex; height:2.176ex;" alt="{\displaystyle L=5}"></span></dd> <dd>(2)<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\geq L+M-1=7}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>7</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\geq L+M-1=7}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b1cb0f183d7913a4a80707929cc4b43bd985dab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.973ex; height:2.343ex;" alt="{\displaystyle P\geq L+M-1=7}"></span>,所以選擇7點DFT附近點數乘法量最少的點數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=8}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>8</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=8}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2cb6b1c3b569d1947518cddea3fd4065d4efe6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.006ex; height:2.176ex;" alt="{\displaystyle P=8}"></span>或<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f00880e5728dfc4be0109de6351a907d8000c04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.006ex; height:2.176ex;" alt="{\displaystyle P=6}"></span>或<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a72557b268b516cc20a9a15b5158d36b1104d85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.006ex; height:2.176ex;" alt="{\displaystyle P=4}"></span>。</dd> <dd>(3-1)當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=8\to a=4,L=P+1-M=6\to S=171}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>8</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>a</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mi>L</mi> <mo>=</mo> <mi>P</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> <mo>=</mo> <mn>6</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo>=</mo> <mn>171</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=8\to a=4,L=P+1-M=6\to S=171}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e2bd0611281705e987b5fd5f6c4829c38182285" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:47.817ex; height:2.509ex;" alt="{\displaystyle P=8\to a=4,L=P+1-M=6\to S=171}"></span>,總乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2S+1)a+3SP=5476}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>S</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>a</mi> <mo>+</mo> <mn>3</mn> <mi>S</mi> <mi>P</mi> <mo>=</mo> <mn>5476</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2S+1)a+3SP=5476}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b77a1cbd93d23dd58652c35e66e1eea04599dc35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.699ex; height:2.843ex;" alt="{\displaystyle (2S+1)a+3SP=5476}"></span>。</dd> <dd>(3-2)當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=6\to a=4,L=P+1-M=4\to S=256}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>6</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>a</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mi>L</mi> <mo>=</mo> <mi>P</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> <mo>=</mo> <mn>4</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo>=</mo> <mn>256</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=6\to a=4,L=P+1-M=4\to S=256}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00487b92bb8b73fd6585e111fc33c54666255fa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:47.817ex; height:2.509ex;" alt="{\displaystyle P=6\to a=4,L=P+1-M=4\to S=256}"></span>,總乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2S+1)a+3SP=6660}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>S</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>a</mi> <mo>+</mo> <mn>3</mn> <mi>S</mi> <mi>P</mi> <mo>=</mo> <mn>6660</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2S+1)a+3SP=6660}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b03c72421a46510026463dc22b43e1eca843bd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.699ex; height:2.843ex;" alt="{\displaystyle (2S+1)a+3SP=6660}"></span>。</dd> <dd>(3-3)當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=4\to a=0,L=P+1-M=2\to S=512}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>4</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>a</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>L</mi> <mo>=</mo> <mi>P</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> <mo>=</mo> <mn>2</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo>=</mo> <mn>512</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=4\to a=0,L=P+1-M=2\to S=512}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d34e4a20ff71c07ca2eb6a4267ad87348b14c70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:47.817ex; height:2.509ex;" alt="{\displaystyle P=4\to a=0,L=P+1-M=2\to S=512}"></span>,總乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2S+1)a+3SP=6144}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>S</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>a</mi> <mo>+</mo> <mn>3</mn> <mi>S</mi> <mi>P</mi> <mo>=</mo> <mn>6144</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2S+1)a+3SP=6144}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb38ec554194d8a38c2a957ae717c73ed03c2880" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.699ex; height:2.843ex;" alt="{\displaystyle (2S+1)a+3SP=6144}"></span>。</dd></dl></dd> <dd>由此可知,切成171塊會有較好的效率,而所需總乘法量為5476。</dd></dl></dd></dl> <ul><li>因此,當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=1024,M=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>1024</mn> <mo>,</mo> <mi>M</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=1024,M=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5534a8add9bf105b36e9435dd1143026807e89fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.549ex; height:2.509ex;" alt="{\displaystyle N=1024,M=3}"></span>,所需總乘法量:分段卷積&lt;直接計算&lt;快速傅立葉轉換。故,此時選擇使用分段卷積來計算卷積最適合。</li> <li>雖然當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>是個很小的正整數時,大致上適合使用直接計算。但實際上還是將3個方法所需的乘法量都算出來,才能知道用哪種方法可以達到最高的效率。</li></ul> <p>Q3:當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=1024,M=600}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>1024</mn> <mo>,</mo> <mi>M</mi> <mo>=</mo> <mn>600</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=1024,M=600}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9995308e131b620743af80eba59c16a8b54f36d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.874ex; height:2.509ex;" alt="{\displaystyle N=1024,M=600}"></span>,適合用哪種方法計算卷積? </p><p>Ans: </p> <dl><dd>方法1:所需乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3MN=1843200}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mi>M</mi> <mi>N</mi> <mo>=</mo> <mn>1843200</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3MN=1843200}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55d14707009359954f78aaf073f6511619f9ad5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:16.904ex; height:2.176ex;" alt="{\displaystyle 3MN=1843200}"></span></dd></dl> <dl><dd>方法2:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\geq M+N-1=1623}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>M</mi> <mo>+</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>1623</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\geq M+N-1=1623}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03cd4af9b7fe6282e41e63d9f788b5cf58260668" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:23.941ex; height:2.343ex;" alt="{\displaystyle P\geq M+N-1=1623}"></span>,選擇1026點DFT附近點數乘法量最少的點數,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \to P=2016,a=12728}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>P</mi> <mo>=</mo> <mn>2016</mn> <mo>,</mo> <mi>a</mi> <mo>=</mo> <mn>12728</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \to P=2016,a=12728}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79759b86348e7932321d78bfb6158cebb2823148" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.637ex; height:2.509ex;" alt="{\displaystyle \to P=2016,a=12728}"></span>。 <dl><dd><dl><dd>因此,所需乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3(a+P)=44232}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>44232</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3(a+P)=44232}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed765f9deb33d69a263ab630ad2d2961a902b732" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.698ex; height:2.843ex;" alt="{\displaystyle 3(a+P)=44232}"></span></dd></dl></dd></dl></dd></dl> <dl><dd>方法3: <dl><dd><dl><dd>(1)由運算量對<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>的偏微分為0而求出<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=1024}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mn>1024</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=1024}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b1dea891d99d45646054fa5a0b58b3e5dce6f25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.331ex; height:2.176ex;" alt="{\displaystyle L=1024}"></span></dd> <dd>(2)<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\geq L+M-1=1623}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>L</mi> <mo>+</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>1623</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\geq L+M-1=1623}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7b1e052b8de53ec0deb988b462c5b199854baf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:23.46ex; height:2.343ex;" alt="{\displaystyle P\geq L+M-1=1623}"></span>,所以選擇1623點DFT附近點數乘法量最少的點數<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=2016}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>2016</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=2016}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bad33a15e07caab3ed1f6b04d28dbeeadc8a635" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.494ex; height:2.176ex;" alt="{\displaystyle P=2016}"></span>。</dd> <dd>(3)當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=2016\to a=12728,L=P+1-M=1417\to S=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mn>2016</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>a</mi> <mo>=</mo> <mn>12728</mn> <mo>,</mo> <mi>L</mi> <mo>=</mo> <mi>P</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> <mo>=</mo> <mn>1417</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=2016\to a=12728,L=P+1-M=1417\to S=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77d1e873d9a4334c86d1af7183efaf91daf1f3f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:57.117ex; height:2.509ex;" alt="{\displaystyle P=2016\to a=12728,L=P+1-M=1417\to S=1}"></span>,總乘法量為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2S+1)a+3SP=44232}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>S</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>a</mi> <mo>+</mo> <mn>3</mn> <mi>S</mi> <mi>P</mi> <mo>=</mo> <mn>44232</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2S+1)a+3SP=44232}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4351a2a23dc1ab7d18ddb46126658ccf9ad52e08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.862ex; height:2.843ex;" alt="{\displaystyle (2S+1)a+3SP=44232}"></span>。</dd></dl></dd> <dd>由此可知,此時切成一段,就跟方法2一樣,所需總乘法量為44232。</dd></dl></dd></dl> <ul><li>因此,當<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=1024,M=600}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>1024</mn> <mo>,</mo> <mi>M</mi> <mo>=</mo> <mn>600</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=1024,M=600}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9995308e131b620743af80eba59c16a8b54f36d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.874ex; height:2.509ex;" alt="{\displaystyle N=1024,M=600}"></span>,所需總乘法量:快速傅立葉轉換 = 分段卷積&lt;直接計算。故,此時選擇使用分段卷積來計算卷積最適合。</li></ul> <div class="mw-heading mw-heading2"><h2 id="应用"><span id=".E5.BA.94.E7.94.A8"></span>应用</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=24" title="编辑章节:应用"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Halftone,_Gaussian_Blur.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Halftone%2C_Gaussian_Blur.jpg/220px-Halftone%2C_Gaussian_Blur.jpg" decoding="async" width="220" height="337" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Halftone%2C_Gaussian_Blur.jpg/330px-Halftone%2C_Gaussian_Blur.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/d/d7/Halftone%2C_Gaussian_Blur.jpg 2x" data-file-width="438" data-file-height="670" /></a><figcaption><a href="/wiki/%E9%AB%98%E6%96%AF%E6%A8%A1%E7%B3%8A" title="高斯模糊">高斯模糊</a>可被用来从<a href="/wiki/%E5%8D%8A%E8%89%B2%E8%AA%BF" title="半色調">半色调</a>印刷品复原出光滑灰度数字图像。</figcaption></figure> <p>卷积在科学、工程和数学上都有很多应用: </p> <ul><li><a href="/wiki/%E4%BB%A3%E6%95%B0" title="代数">代数</a>中,整数乘法和多项式乘法都是卷积。</li> <li><a href="/wiki/%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C" title="卷积神经网络">卷积神经网络</a>应用了多重级联的卷积<span class="ilh-all" data-orig-title="核心 (图像处理)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Kernel (image processing)"><span class="ilh-page"><a href="/w/index.php?title=%E6%A0%B8%E5%BF%83_(%E5%9B%BE%E5%83%8F%E5%A4%84%E7%90%86)&amp;action=edit&amp;redlink=1" class="new" title="核心 (图像处理)(页面不存在)">核心</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Kernel_(image_processing)" class="extiw" title="en:Kernel (image processing)"><span lang="en" dir="auto">Kernel (image processing)</span></a></span>)</span></span>,它被用于<a href="/wiki/%E6%9C%BA%E5%99%A8%E8%A7%86%E8%A7%89" title="机器视觉">机器视觉</a>和<a href="/wiki/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD" title="人工智能">人工智能</a><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup>,尽管在多数情况下实际上用的是<a href="/wiki/%E4%BA%92%E7%9B%B8%E5%85%B3" title="互相关">互相关</a>而非卷积<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup>。</li> <li>在非<a href="/wiki/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD" title="人工智能">人工智能</a>的<a href="/wiki/%E5%9B%BE%E5%83%8F%E5%A4%84%E7%90%86" title="图像处理">图像处理</a>中,用作图像模糊、锐化、<a href="/wiki/%E8%BE%B9%E7%BC%98%E6%A3%80%E6%B5%8B" title="边缘检测">边缘检测</a>。</li> <li><a href="/wiki/%E7%BB%9F%E8%AE%A1%E5%AD%A6" title="统计学">统计学</a>中,加权的滑动平均是一种卷积。</li> <li><a href="/wiki/%E6%A6%82%E7%8E%87%E8%AE%BA" title="概率论">概率论</a>中,两个统计独立变量X与Y的和的<a href="/wiki/%E6%A6%82%E7%8E%87%E5%AF%86%E5%BA%A6%E5%87%BD%E6%95%B0" class="mw-redirect" title="概率密度函数">概率密度函数</a>是X与Y的概率密度函数的卷积。</li> <li><a href="/wiki/%E5%A3%B0%E5%AD%A6" title="声学">声学</a>中,<a href="/wiki/%E5%9B%9E%E8%81%B2" title="回聲">回声</a>可以用源声与一个反映各种反射效应的函数的卷积表示。</li> <li><a href="/wiki/%E7%94%B5%E5%AD%90%E5%B7%A5%E7%A8%8B" title="电子工程">电子工程</a>与<a href="/wiki/%E4%BF%A1%E5%8F%B7%E5%A4%84%E7%90%86" title="信号处理">信号处理</a>中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的<a href="/wiki/%E5%86%B2%E6%BF%80%E5%93%8D%E5%BA%94" title="冲激响应">冲激响应</a>)做卷积获得。</li> <li><a href="/wiki/%E7%89%A9%E7%90%86%E5%AD%A6" title="物理学">物理学</a>中,任何一个线性系统(符合<a href="/wiki/%E5%8F%A0%E5%8A%A0%E5%8E%9F%E7%90%86" title="叠加原理">叠加原理</a>)都存在卷积。</li></ul> <div class="mw-heading mw-heading2"><h2 id="参见"><span id=".E5.8F.82.E8.A7.81"></span>参见</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=25" title="编辑章节:参见"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%E5%8F%8D%E8%A4%B6%E7%A7%AF" title="反褶积">反卷积</a></li> <li><a href="/wiki/%E8%87%AA%E7%9B%B8%E5%85%B3%E5%87%BD%E6%95%B0" title="自相关函数">自相关函数</a></li> <li><a href="/wiki/%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2" title="傅里叶变换">傅里叶变换</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="引用"><span id=".E5.BC.95.E7.94.A8"></span>引用</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=26" title="编辑章节:引用"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist columns references-column-count references-column-count-2" style="-moz-column-count: 2; -webkit-column-count: 2; column-count: 2; list-style-type: decimal;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><cite class="citation book">Smith, Stephen W. <a rel="nofollow" class="external text" href="http://www.dspguide.com/ch13/2.htm">13.Convolution</a>. The Scientist and Engineer's Guide to Digital Signal Processing 1. California Technical Publishing. 1997 <span class="reference-accessdate"> &#91;<span class="nowrap">22 April</span> 2016&#93;</span>. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-9660176-3-3" title="Special:网络书源/0-9660176-3-3"><span title="国际标准书号">ISBN</span>&#160;0-9660176-3-3</a>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20230626124155/http://www.dspguide.com/ch13/2.htm">存档</a>于2023-06-26).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.atitle=13.Convolution&amp;rft.aufirst=Stephen+W&amp;rft.aulast=Smith&amp;rft.btitle=The+Scientist+and+Engineer%27s+Guide+to+Digital+Signal+Processing&amp;rft.date=1997&amp;rft.edition=1&amp;rft.genre=bookitem&amp;rft.isbn=0-9660176-3-3&amp;rft.pub=California+Technical+Publishing&amp;rft_id=http%3A%2F%2Fwww.dspguide.com%2Fch13%2F2.htm&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><cite class="citation book"><a href="/w/index.php?title=J._David_Irwin&amp;action=edit&amp;redlink=1" class="new" title="J. David Irwin(页面不存在)">Irwin, J. David</a>. 4.3. <a rel="nofollow" class="external text" href="https://archive.org/details/industrialelectr0000unse_m6c8">The Industrial Electronics Handbook</a> 1. Boca Raton, FL: CRC Press. 1997: <a rel="nofollow" class="external text" href="https://archive.org/details/industrialelectr0000unse_m6c8/page/75">75</a>. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-8493-8343-9" title="Special:网络书源/0-8493-8343-9"><span title="国际标准书号">ISBN</span>&#160;0-8493-8343-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.atitle=4.3&amp;rft.aufirst=J.+David&amp;rft.aulast=Irwin&amp;rft.btitle=The+Industrial+Electronics+Handbook&amp;rft.date=1997&amp;rft.edition=1&amp;rft.genre=bookitem&amp;rft.isbn=0-8493-8343-9&amp;rft.pages=75&amp;rft.place=Boca+Raton%2C+FL&amp;rft.pub=CRC+Press&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Findustrialelectr0000unse_m6c8&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Dominguez-Torres, p 2</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">on page 505 of his book entitled <i>Treatise on differences and series</i>, which is the last of 3 volumes of the encyclopedic series: <i>Traité du calcul différentiel et du calcul intégral</i>, Chez Courcier, Paris, 1797–1800. Dominguez-Torres, p 4</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"> <cite id="CITEREFR._N._Bracewell2005" class="citation">R. N. Bracewell, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=v2SqL0zCrwcC&amp;pg=PA172">Early work on imaging theory in radio astronomy</a>, W. T. Sullivan (编), The Early Years of Radio Astronomy: Reflections Fifty Years After Jansky's Discovery, Cambridge University Press: 172, 2005, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-521-61602-7" title="Special:网络书源/978-0-521-61602-7"><span title="国际标准书号">ISBN</span>&#160;978-0-521-61602-7</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.atitle=Early+work+on+imaging+theory+in+radio+astronomy&amp;rft.au=R.+N.+Bracewell&amp;rft.btitle=The+Early+Years+of+Radio+Astronomy%3A+Reflections+Fifty+Years+After+Jansky%27s+Discovery&amp;rft.date=2005&amp;rft.genre=bookitem&amp;rft.isbn=978-0-521-61602-7&amp;rft.pages=172&amp;rft.pub=Cambridge+University+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dv2SqL0zCrwcC%26pg%3DPA172&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"> <cite id="CITEREFJohn_Hilton_Grace_and_Alfred_Young1903" class="citation">John Hilton Grace and Alfred Young, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NIe4AAAAIAAJ&amp;pg=PA40">The algebra of invariants</a>, Cambridge University Press: 40, 1903</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.au=John+Hilton+Grace+and+Alfred+Young&amp;rft.btitle=The+algebra+of+invariants&amp;rft.date=1903&amp;rft.genre=book&amp;rft.pages=40&amp;rft.pub=Cambridge+University+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNIe4AAAAIAAJ%26pg%3DPA40&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"> <cite id="CITEREFLeonard_Eugene_Dickson1914" class="citation">Leonard Eugene Dickson, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LRGoAAAAIAAJ&amp;pg=PA85">Algebraic invariants</a>, J. Wiley: 85, 1914</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.au=Leonard+Eugene+Dickson&amp;rft.btitle=Algebraic+invariants&amp;rft.date=1914&amp;rft.genre=book&amp;rft.pages=85&amp;rft.pub=J.+Wiley&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLRGoAAAAIAAJ%26pg%3DPA85&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">(<a href="#CITEREFSteinWeiss1971">Stein &amp; Weiss 1971</a>,Theorem 1.3)</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><cite id="CITEREFCrutchfield2010" class="citation">Crutchfield, Steve, <a rel="nofollow" class="external text" href="http://www.jhu.edu/signals/convolve/index.html">The Joy of Convolution</a>, Johns Hopkins University, October 12, 2010 <span class="reference-accessdate"> &#91;<span class="nowrap">November 21,</span> 2010&#93;</span>, (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20130911022447/http://www.jhu.edu/signals/convolve/index.html">存档</a>于2013-09-11)</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.atitle=The+Joy+of+Convolution&amp;rft.aufirst=Steve&amp;rft.aulast=Crutchfield&amp;rft.date=2010-10-12&amp;rft.genre=article&amp;rft.jtitle=Johns+Hopkins+University&amp;rft_id=http%3A%2F%2Fwww.jhu.edu%2Fsignals%2Fconvolve%2Findex.html&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Jeruchim-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Jeruchim_10-0">^</a></b></span> <span class="reference-text"> <cite class="citation book">Jeruchim, Michel C.; Balaban, Philip; Shanmugan, K. Sam. Simulation of Communication Systems: Modeling, Methodology and Techniques 2nd. New York: Kluwer Academic Publishers. October 2000: 73–74. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-30-646267-2" title="Special:网络书源/0-30-646267-2"><span title="国际标准书号">ISBN</span>&#160;0-30-646267-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.au=Balaban%2C+Philip&amp;rft.au=Shanmugan%2C+K.+Sam&amp;rft.aufirst=Michel+C.&amp;rft.aulast=Jeruchim&amp;rft.btitle=Simulation+of+Communication+Systems%3A+Modeling%2C+Methodology+and+Techniques&amp;rft.date=2000-10&amp;rft.edition=2nd&amp;rft.genre=book&amp;rft.isbn=0-30-646267-2&amp;rft.pages=73-74&amp;rft.place=New+York&amp;rft.pub=Kluwer+Academic+Publishers&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Udayashankara-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-Udayashankara_11-0"><sup><b>11.0</b></sup></a> <a href="#cite_ref-Udayashankara_11-1"><sup><b>11.1</b></sup></a></span> <span class="reference-text"> <cite class="citation book">Udayashankara, V. Real Time Digital Signal Processing. India: Prentice-Hall. June 2010: 189. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-8-12-034049-7" title="Special:网络书源/978-8-12-034049-7"><span title="国际标准书号">ISBN</span>&#160;978-8-12-034049-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.aufirst=V.&amp;rft.aulast=Udayashankara&amp;rft.btitle=Real+Time+Digital+Signal+Processing&amp;rft.date=2010-06&amp;rft.genre=book&amp;rft.isbn=978-8-12-034049-7&amp;rft.pages=189&amp;rft.place=India&amp;rft.pub=Prentice-Hall&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Priemer-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Priemer_12-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Priemer, Roland. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QBT7nP7zTLgC&amp;q=Priemer,+Roland">Introductory Signal Processing</a>. Advanced Series in Electrical and Computer Engineering <b>6</b>. Teaneck,N.J.: World Scientific Pub Co Inc. July 1991: 286–289 <span class="reference-accessdate"> &#91;<span class="nowrap">2023-10-26</span>&#93;</span>. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/9971-50-919-9" title="Special:网络书源/9971-50-919-9"><span title="国际标准书号">ISBN</span>&#160;9971-50-919-9</a>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20231011035931/https://books.google.com/books?id=QBT7nP7zTLgC&amp;q=Priemer,+Roland">存档</a>于2023-10-11).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.aufirst=Roland&amp;rft.aulast=Priemer&amp;rft.btitle=Introductory+Signal+Processing&amp;rft.date=1991-07&amp;rft.genre=book&amp;rft.isbn=9971-50-919-9&amp;rft.pages=286-289&amp;rft.place=Teaneck%2CN.J.&amp;rft.pub=World+Scientific+Pub+Co+Inc.&amp;rft.series=Advanced+Series+in+Electrical+and+Computer+Engineering&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQBT7nP7zTLgC%26q%3DPriemer%2C%2BRoland&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><a href="#CITEREFDamelinMiller2011">Damelin &amp; Miller 2011</a>,第219頁</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><cite class="citation web">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Convolution.html">Convolution</a>. mathworld.wolfram.com. <span class="reference-accessdate"> &#91;<span class="nowrap">2021-09-22</span>&#93;</span>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20020114175851/https://mathworld.wolfram.com/Convolution.html">存档</a>于2002-01-14) <span style="font-family: sans-serif; cursor: default; color:var(--color-subtle, #54595d); font-size: 0.8em; bottom: 0.1em; font-weight: bold;" title="连接到英语网页">(英语)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.atitle=Convolution&amp;rft.aufirst=Eric+W.&amp;rft.aulast=Weisstein&amp;rft.genre=unknown&amp;rft.jtitle=mathworld.wolfram.com&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FConvolution.html&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><cite class="citation web">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/ConvolutionTheorem.html">From MathWorld--A Wolfram Web Resource</a>. <span class="reference-accessdate"> &#91;<span class="nowrap">2023-10-23</span>&#93;</span>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20000711062946/https://mathworld.wolfram.com/ConvolutionTheorem.html">存档</a>于2000-07-11).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.aufirst=Eric+W&amp;rft.aulast=Weisstein&amp;rft.btitle=From+MathWorld--A+Wolfram+Web+Resource&amp;rft.genre=unknown&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FConvolutionTheorem.html&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><cite class="citation journal">Zhang, Yingjie; Soon, Hong Geok; Ye, Dongsen; Fuh, Jerry Ying Hsi; Zhu, Kunpeng. <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/8913613">Powder-Bed Fusion Process Monitoring by Machine Vision With Hybrid Convolutional Neural Networks</a>. IEEE Transactions on Industrial Informatics. September 2020, <b>16</b> (9): 5769–5779 <span class="reference-accessdate"> &#91;<span class="nowrap">2023-10-24</span>&#93;</span>. <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/1941-0050"><span title="国际标准连续出版物号">ISSN&#160;1941-0050</span></a>. <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:213010088"><span title="Semantic Scholar">S2CID&#160;213010088</span></a>. <a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTII.2019.2956078"><span title="數位物件識別號">doi:10.1109/TII.2019.2956078</span></a>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20230731120013/https://ieeexplore.ieee.org/document/8913613/">存档</a>于2023-07-31).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.atitle=Powder-Bed+Fusion+Process+Monitoring+by+Machine+Vision+With+Hybrid+Convolutional+Neural+Networks&amp;rft.au=Fuh%2C+Jerry+Ying+Hsi&amp;rft.au=Soon%2C+Hong+Geok&amp;rft.au=Ye%2C+Dongsen&amp;rft.au=Zhu%2C+Kunpeng&amp;rft.aufirst=Yingjie&amp;rft.aulast=Zhang&amp;rft.date=2020-09&amp;rft.genre=article&amp;rft.issn=1941-0050&amp;rft.issue=9&amp;rft.jtitle=IEEE+Transactions+on+Industrial+Informatics&amp;rft.pages=5769-5779&amp;rft.volume=16&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A213010088&amp;rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F8913613&amp;rft_id=info%3Adoi%2F10.1109%2FTII.2019.2956078&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><cite class="citation journal">Chervyakov, N.I.; Lyakhov, P.A.; Deryabin, M.A.; Nagornov, N.N.; Valueva, M.V.; Valuev, G.V. <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/S092523122030583X">Residue Number System-Based Solution for Reducing the Hardware Cost of a Convolutional Neural Network</a>. Neurocomputing. September 2020, <b>407</b>: 439–453 <span class="reference-accessdate"> &#91;<span class="nowrap">2023-10-24</span>&#93;</span>. <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:219470398"><span title="Semantic Scholar">S2CID&#160;219470398</span></a>. <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.neucom.2020.04.018"><span title="數位物件識別號">doi:10.1016/j.neucom.2020.04.018</span></a>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20230629155646/https://linkinghub.elsevier.com/retrieve/pii/S092523122030583X">存档</a>于2023-06-29) <span style="font-family: sans-serif; cursor: default; color:var(--color-subtle, #54595d); font-size: 0.8em; bottom: 0.1em; font-weight: bold;" title="连接到英语网页">(英语)</span>. <q>Convolutional neural networks represent deep learning architectures that are currently used in a wide range of applications, including computer vision, speech recognition, time series analysis in finance, and many others.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.atitle=Residue+Number+System-Based+Solution+for+Reducing+the+Hardware+Cost+of+a+Convolutional+Neural+Network&amp;rft.au=Deryabin%2C+M.A.&amp;rft.au=Lyakhov%2C+P.A.&amp;rft.au=Nagornov%2C+N.N.&amp;rft.au=Valuev%2C+G.V.&amp;rft.au=Valueva%2C+M.V.&amp;rft.aufirst=N.I.&amp;rft.aulast=Chervyakov&amp;rft.date=2020-09&amp;rft.genre=article&amp;rft.jtitle=Neurocomputing&amp;rft.pages=439-453&amp;rft.volume=407&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A219470398&amp;rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS092523122030583X&amp;rft_id=info%3Adoi%2F10.1016%2Fj.neucom.2020.04.018&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><cite class="citation journal">Atlas, Homma, and Marks. <a rel="nofollow" class="external text" href="https://papers.nips.cc/paper/1987/file/98f13708210194c475687be6106a3b84-Paper.pdf">An Artificial Neural Network for Spatio-Temporal Bipolar Patterns: Application to Phoneme Classification</a> <span style="font-size:85%;">(PDF)</span>. Neural Information Processing Systems (NIPS 1987). (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20210414091306/https://papers.nips.cc/paper/1987/file/98f13708210194c475687be6106a3b84-Paper.pdf">存档</a> <span style="font-size:85%;">(PDF)</span>于2021-04-14).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.atitle=An+Artificial+Neural+Network+for+Spatio-Temporal+Bipolar+Patterns%3A+Application+to+Phoneme+Classification&amp;rft.au=Atlas%2C+Homma%2C+and+Marks&amp;rft.genre=article&amp;rft.jtitle=Neural+Information+Processing+Systems+%28NIPS+1987%29&amp;rft.volume=1&amp;rft_id=https%3A%2F%2Fpapers.nips.cc%2Fpaper%2F1987%2Ffile%2F98f13708210194c475687be6106a3b84-Paper.pdf&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="延伸阅读"><span id=".E5.BB.B6.E4.BC.B8.E9.98.85.E8.AF.BB"></span>延伸阅读</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=27" title="编辑章节:延伸阅读"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite id="CITEREFBracewell1986" class="citation">Bracewell, R., The Fourier Transform and Its Applications 2nd, McGraw–Hill, 1986, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-07-116043-4" title="Special:网络书源/0-07-116043-4"><span title="国际标准书号">ISBN</span>&#160;0-07-116043-4</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.aufirst=R.&amp;rft.aulast=Bracewell&amp;rft.btitle=The+Fourier+Transform+and+Its+Applications&amp;rft.date=1986&amp;rft.edition=2nd&amp;rft.genre=book&amp;rft.isbn=0-07-116043-4&amp;rft.pub=McGraw%E2%80%93Hill&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>.</li> <li><cite id="CITEREFDamelinMiller2011" class="citation">Damelin, S.; Miller, W., The Mathematics of Signal Processing, Cambridge University Press, 2011, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-1107601048" title="Special:网络书源/978-1107601048"><span title="国际标准书号">ISBN</span>&#160;978-1107601048</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.au=Miller%2C+W.&amp;rft.aufirst=S.&amp;rft.aulast=Damelin&amp;rft.btitle=The+Mathematics+of+Signal+Processing&amp;rft.date=2011&amp;rft.genre=book&amp;rft.isbn=978-1107601048&amp;rft.pub=Cambridge+University+Press&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFDiggle1985" class="citation">Diggle, P. J., A kernel method for smoothing point process data, Journal of the Royal Statistical Society, Series C, 1985, <b>34</b> (2): 138–147, <a rel="nofollow" class="external text" href="//www.jstor.org/stable/2347366"><span title="JSTOR">JSTOR&#160;2347366</span></a>, <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:116746157"><span title="Semantic Scholar">S2CID&#160;116746157</span></a>, <a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2347366"><span title="數位物件識別號">doi:10.2307/2347366</span></a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.atitle=A+kernel+method+for+smoothing+point+process+data&amp;rft.aufirst=P.+J.&amp;rft.aulast=Diggle&amp;rft.date=1985&amp;rft.genre=article&amp;rft.issue=2&amp;rft.jtitle=Journal+of+the+Royal+Statistical+Society%2C+Series+C&amp;rft.pages=138-147&amp;rft.volume=34&amp;rft_id=%2F%2Fwww.jstor.org%2Fstable%2F2347366&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A116746157&amp;rft_id=info%3Adoi%2F10.2307%2F2347366&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li>Dominguez-Torres, Alejandro (Nov 2, 2010). "Origin and history of convolution". 41 pgs. <a rel="nofollow" class="external free" href="https://www.slideshare.net/Alexdfar/origin-adn-history-of-convolution">http://www.slideshare.net/Alexdfar/origin-adn-history-of-convolution</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20231030184051/http://www.slideshare.net/Alexdfar/origin-adn-history-of-convolution">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>). Cranfield, Bedford MK43 OAL, UK. Retrieved Mar 13, 2013.</li> <li><cite id="CITEREFGhasemiNowak2017" class="citation">Ghasemi, S. Hooman; Nowak, Andrzej S., Reliability Index for Non-normal Distributions of Limit State Functions, Structural Engineering and Mechanics, 2017, <b>62</b> (3): 365–372, <a rel="nofollow" class="external text" href="https://doi.org/10.12989%2Fsem.2017.62.3.365"><span title="數位物件識別號">doi:10.12989/sem.2017.62.3.365</span></a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.atitle=Reliability+Index+for+Non-normal+Distributions+of+Limit+State+Functions&amp;rft.au=Nowak%2C+Andrzej+S.&amp;rft.aufirst=S.+Hooman&amp;rft.aulast=Ghasemi&amp;rft.date=2017&amp;rft.genre=article&amp;rft.issue=3&amp;rft.jtitle=Structural+Engineering+and+Mechanics&amp;rft.pages=365-372&amp;rft.volume=62&amp;rft_id=info%3Adoi%2F10.12989%2Fsem.2017.62.3.365&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFGrinshpan2017" class="citation">Grinshpan, A. Z., An inequality for multiple convolutions with respect to Dirichlet probability measure, Advances in Applied Mathematics, 2017, <b>82</b> (1): 102–119, <span class="plainlinks"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.aam.2016.08.001"><span title="數位物件識別號">doi:10.1016/j.aam.2016.08.001</span></a>&#8239;<span typeof="mw:File"><span title="可免费查阅"><img alt="可免费查阅" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.atitle=An+inequality+for+multiple+convolutions+with+respect+to+Dirichlet+probability+measure&amp;rft.aufirst=A.+Z.&amp;rft.aulast=Grinshpan&amp;rft.date=2017&amp;rft.genre=article&amp;rft.issue=1&amp;rft.jtitle=Advances+in+Applied+Mathematics&amp;rft.pages=102-119&amp;rft.volume=82&amp;rft_id=info%3Adoi%2F10.1016%2Fj.aam.2016.08.001&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFHewittRoss1979" class="citation">Hewitt, Edwin; Ross, Kenneth A., Abstract harmonic analysis. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] <b>115</b> 2nd, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, 1979, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-3-540-09434-0" title="Special:网络书源/978-3-540-09434-0"><span title="国际标准书号">ISBN</span>&#160;978-3-540-09434-0</a>, <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=0551496"><span title="數學評論">MR&#160;0551496</span></a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.au=Ross%2C+Kenneth+A.&amp;rft.aufirst=Edwin&amp;rft.aulast=Hewitt&amp;rft.btitle=Abstract+harmonic+analysis.+Vol.+I&amp;rft.date=1979&amp;rft.edition=2nd&amp;rft.genre=book&amp;rft.isbn=978-3-540-09434-0&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer-Verlag&amp;rft.series=Grundlehren+der+Mathematischen+Wissenschaften+%5BFundamental+Principles+of+Mathematical+Sciences%5D&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D551496&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>.</li> <li><cite id="CITEREFHewittRoss1970" class="citation">Hewitt, Edwin; Ross, Kenneth A., Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, 1970, <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=0262773"><span title="數學評論">MR&#160;0262773</span></a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.au=Ross%2C+Kenneth+A.&amp;rft.aufirst=Edwin&amp;rft.aulast=Hewitt&amp;rft.btitle=Abstract+harmonic+analysis.+Vol.+II%3A+Structure+and+analysis+for+compact+groups.+Analysis+on+locally+compact+Abelian+groups&amp;rft.date=1970&amp;rft.genre=book&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer-Verlag&amp;rft.series=Die+Grundlehren+der+mathematischen+Wissenschaften%2C+Band+152&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D0262773&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>.</li> <li><cite id="CITEREFHörmander1983" class="citation"><a href="/w/index.php?title=Lars_H%C3%B6rmander&amp;action=edit&amp;redlink=1" class="new" title="Lars Hörmander(页面不存在)">Hörmander, L.</a>, The analysis of linear partial differential operators I, Grundl. Math. Wissenschaft. <b>256</b>, Springer, 1983, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/3-540-12104-8" title="Special:网络书源/3-540-12104-8"><span title="国际标准书号">ISBN</span>&#160;3-540-12104-8</a>, <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=0717035"><span title="數學評論">MR&#160;0717035</span></a>, <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-96750-4"><span title="數位物件識別號">doi:10.1007/978-3-642-96750-4</span></a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.aufirst=L.&amp;rft.aulast=H%C3%B6rmander&amp;rft.btitle=The+analysis+of+linear+partial+differential+operators+I&amp;rft.date=1983&amp;rft.genre=book&amp;rft.isbn=3-540-12104-8&amp;rft.pub=Springer&amp;rft.series=Grundl.+Math.+Wissenschaft.&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D0717035&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-642-96750-4&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>.</li> <li><cite id="CITEREFKassel1995" class="citation">Kassel, Christian, <a rel="nofollow" class="external text" href="https://archive.org/details/quantumgroups0000kass">Quantum groups</a><span typeof="mw:File"><span title="需要免费注册"><img alt="需要免费注册" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span>, Graduate Texts in Mathematics <b>155</b>, Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, 1995, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-387-94370-1" title="Special:网络书源/978-0-387-94370-1"><span title="国际标准书号">ISBN</span>&#160;978-0-387-94370-1</a>, <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=1321145"><span title="數學評論">MR&#160;1321145</span></a>, <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4612-0783-2"><span title="數位物件識別號">doi:10.1007/978-1-4612-0783-2</span></a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.aufirst=Christian&amp;rft.aulast=Kassel&amp;rft.btitle=Quantum+groups&amp;rft.date=1995&amp;rft.genre=book&amp;rft.isbn=978-0-387-94370-1&amp;rft.place=Berlin%2C+New+York&amp;rft.pub=Springer-Verlag&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D1321145&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fquantumgroups0000kass&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4612-0783-2&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span><span class="citation-comment" style="display:none; color:#33aa33"> 含有內容需登入查看的頁面 (<a href="/wiki/Category:%E5%90%AB%E6%9C%89%E5%85%A7%E5%AE%B9%E9%9C%80%E7%99%BB%E5%85%A5%E6%9F%A5%E7%9C%8B%E7%9A%84%E9%A0%81%E9%9D%A2" title="Category:含有內容需登入查看的頁面">link</a>)</span>.</li> <li><cite id="CITEREFKnuth1997" class="citation"><a href="/wiki/Donald_Knuth" class="mw-redirect" title="Donald Knuth">Knuth, Donald</a>, Seminumerical Algorithms 3rd., Reading, Massachusetts: Addison–Wesley, 1997, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-201-89684-2" title="Special:网络书源/0-201-89684-2"><span title="国际标准书号">ISBN</span>&#160;0-201-89684-2</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.aufirst=Donald&amp;rft.aulast=Knuth&amp;rft.btitle=Seminumerical+Algorithms&amp;rft.date=1997&amp;rft.edition=3rd.&amp;rft.genre=book&amp;rft.isbn=0-201-89684-2&amp;rft.place=Reading%2C+Massachusetts&amp;rft.pub=Addison%E2%80%93Wesley&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>.</li> <li><a href="/w/index.php?title=Template:Narici_Beckenstein_Topological_Vector_Spaces&amp;action=edit&amp;redlink=1" class="new" title="Template:Narici Beckenstein Topological Vector Spaces(页面不存在)">Template:Narici Beckenstein Topological Vector Spaces</a></li> <li><cite id="CITEREFReedSimon1975" class="citation">Reed, Michael; <a href="/w/index.php?title=Barry_Simon&amp;action=edit&amp;redlink=1" class="new" title="Barry Simon(页面不存在)">Simon, Barry</a>, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, New York-London: Academic Press Harcourt Brace Jovanovich, Publishers: xv+361, 1975, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-12-585002-6" title="Special:网络书源/0-12-585002-6"><span title="国际标准书号">ISBN</span>&#160;0-12-585002-6</a>, <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=0493420"><span title="數學評論">MR&#160;0493420</span></a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.au=Simon%2C+Barry&amp;rft.aufirst=Michael&amp;rft.aulast=Reed&amp;rft.btitle=Methods+of+modern+mathematical+physics.+II.+Fourier+analysis%2C+self-adjointness&amp;rft.date=1975&amp;rft.genre=book&amp;rft.isbn=0-12-585002-6&amp;rft.pages=xv%2B361&amp;rft.place=New+York-London&amp;rft.pub=Academic+Press+Harcourt+Brace+Jovanovich%2C+Publishers&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D0493420&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFRudin1962" class="citation"><a href="/wiki/Walter_Rudin" class="mw-redirect" title="Walter Rudin">Rudin, Walter</a>, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics <b>12</b>, New York–London: Interscience Publishers, 1962, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-471-52364-X" title="Special:网络书源/0-471-52364-X"><span title="国际标准书号">ISBN</span>&#160;0-471-52364-X</a>, <a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=0152834"><span title="數學評論">MR&#160;0152834</span></a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.aufirst=Walter&amp;rft.aulast=Rudin&amp;rft.btitle=Fourier+analysis+on+groups&amp;rft.date=1962&amp;rft.genre=book&amp;rft.isbn=0-471-52364-X&amp;rft.place=New+York%E2%80%93London&amp;rft.pub=Interscience+Publishers&amp;rft.series=Interscience+Tracts+in+Pure+and+Applied+Mathematics&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D0152834&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>.</li> <li><a href="/w/index.php?title=Template:Schaefer_Wolff_Topological_Vector_Spaces&amp;action=edit&amp;redlink=1" class="new" title="Template:Schaefer Wolff Topological Vector Spaces(页面不存在)">Template:Schaefer Wolff Topological Vector Spaces</a></li> <li><cite id="CITEREFSteinWeiss1971" class="citation"><a href="/wiki/Elias_Stein" class="mw-redirect" title="Elias Stein">Stein, Elias</a>; Weiss, Guido, <a rel="nofollow" class="external text" href="https://archive.org/details/introductiontofo0000stei">Introduction to Fourier Analysis on Euclidean Spaces</a><span typeof="mw:File"><span title="需要免费注册"><img alt="需要免费注册" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span>, Princeton University Press, 1971, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-691-08078-X" title="Special:网络书源/0-691-08078-X"><span title="国际标准书号">ISBN</span>&#160;0-691-08078-X</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.au=Weiss%2C+Guido&amp;rft.aufirst=Elias&amp;rft.aulast=Stein&amp;rft.btitle=Introduction+to+Fourier+Analysis+on+Euclidean+Spaces&amp;rft.date=1971&amp;rft.genre=book&amp;rft.isbn=0-691-08078-X&amp;rft.pub=Princeton+University+Press&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontofo0000stei&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span><span class="citation-comment" style="display:none; color:#33aa33"> 含有內容需登入查看的頁面 (<a href="/wiki/Category:%E5%90%AB%E6%9C%89%E5%85%A7%E5%AE%B9%E9%9C%80%E7%99%BB%E5%85%A5%E6%9F%A5%E7%9C%8B%E7%9A%84%E9%A0%81%E9%9D%A2" title="Category:含有內容需登入查看的頁面">link</a>)</span>.</li> <li><cite id="CITEREFSobolev2001" class="citation">Sobolev, V.I., <a rel="nofollow" class="external text" href="http://www.encyclopediaofmath.org/index.php?title=C/c026430">Convolution of functions</a>, Hazewinkel, Michiel (编), <a href="/wiki/%E6%95%B0%E5%AD%A6%E7%99%BE%E7%A7%91%E5%85%A8%E4%B9%A6" title="数学百科全书">数学百科全书</a>, <a href="/wiki/Springer_Science%2BBusiness_Media" class="mw-redirect" title="Springer Science+Business Media">Springer</a>, 2001, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-1-55608-010-4" title="Special:网络书源/978-1-55608-010-4"><span title="国际标准书号">ISBN</span>&#160;978-1-55608-010-4</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.atitle=Convolution+of+functions&amp;rft.aufirst=V.I.&amp;rft.aulast=Sobolev&amp;rft.btitle=%E6%95%B0%E5%AD%A6%E7%99%BE%E7%A7%91%E5%85%A8%E4%B9%A6&amp;rft.date=2001&amp;rft.genre=bookitem&amp;rft.isbn=978-1-55608-010-4&amp;rft.pub=Springer&amp;rft_id=http%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DC%2Fc026430&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>.</li> <li><cite id="CITEREFStrichartz1994" class="citation">Strichartz, R., A Guide to Distribution Theory and Fourier Transforms, CRC Press, 1994, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-8493-8273-4" title="Special:网络书源/0-8493-8273-4"><span title="国际标准书号">ISBN</span>&#160;0-8493-8273-4</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.aufirst=R.&amp;rft.aulast=Strichartz&amp;rft.btitle=A+Guide+to+Distribution+Theory+and+Fourier+Transforms&amp;rft.date=1994&amp;rft.genre=book&amp;rft.isbn=0-8493-8273-4&amp;rft.pub=CRC+Press&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>.</li> <li><cite id="CITEREFTitchmarsh1948" class="citation"><a href="/w/index.php?title=Edward_Charles_Titchmarsh&amp;action=edit&amp;redlink=1" class="new" title="Edward Charles Titchmarsh(页面不存在)">Titchmarsh, E</a>, Introduction to the theory of Fourier integrals 2nd, New York, N.Y.: Chelsea Pub. Co., 19481986, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-8284-0324-5" title="Special:网络书源/978-0-8284-0324-5"><span title="国际标准书号">ISBN</span>&#160;978-0-8284-0324-5</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.aufirst=E&amp;rft.aulast=Titchmarsh&amp;rft.btitle=Introduction+to+the+theory+of+Fourier+integrals&amp;rft.date=1948&amp;rft.edition=2nd&amp;rft.genre=book&amp;rft.isbn=978-0-8284-0324-5&amp;rft.place=New+York%2C+N.Y.&amp;rft.pub=Chelsea+Pub.+Co.&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>.</li> <li><a href="/w/index.php?title=Template:Tr%C3%A8ves_Fran%C3%A7ois_Topological_vector_spaces,_distributions_and_kernels&amp;action=edit&amp;redlink=1" class="new" title="Template:Trèves François Topological vector spaces, distributions and kernels(页面不存在)">Template:Trèves François Topological vector spaces, distributions and kernels</a></li> <li><cite id="CITEREFUludag1998" class="citation"><a href="/w/index.php?title=A._Muhammed_Uludag&amp;action=edit&amp;redlink=1" class="new" title="A. Muhammed Uludag(页面不存在)">Uludag, A. M.</a>, On possible deterioration of smoothness under the operation of convolution, J. Math. Anal. Appl., 1998, <b>227</b> (2): 335–358, <span class="plainlinks"><a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fjmaa.1998.6091"><span title="數位物件識別號">doi:10.1006/jmaa.1998.6091</span></a>&#8239;<span typeof="mw:File"><span title="可免费查阅"><img alt="可免费查阅" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.atitle=On+possible+deterioration+of+smoothness+under+the+operation+of+convolution&amp;rft.aufirst=A.+M.&amp;rft.aulast=Uludag&amp;rft.date=1998&amp;rft.genre=article&amp;rft.issue=2&amp;rft.jtitle=J.+Math.+Anal.+Appl.&amp;rft.pages=335-358&amp;rft.volume=227&amp;rft_id=info%3Adoi%2F10.1006%2Fjmaa.1998.6091&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFvon_zur_GathenGerhard2003" class="citation">von zur Gathen, J.; Gerhard, J ., Modern Computer Algebra, Cambridge University Press, 2003, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-521-82646-2" title="Special:网络书源/0-521-82646-2"><span title="国际标准书号">ISBN</span>&#160;0-521-82646-2</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.au=Gerhard%2C+J+.&amp;rft.aufirst=J.&amp;rft.aulast=von+zur+Gathen&amp;rft.btitle=Modern+Computer+Algebra&amp;rft.date=2003&amp;rft.genre=book&amp;rft.isbn=0-521-82646-2&amp;rft.pub=Cambridge+University+Press&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>.</li> <li><cite id="Oppenheim" class="citation book"><a href="/w/index.php?title=Alan_V._Oppenheim&amp;action=edit&amp;redlink=1" class="new" title="Alan V. Oppenheim(页面不存在)">Oppenheim, Alan V.</a>; <a href="/w/index.php?title=Ronald_W._Schafer&amp;action=edit&amp;redlink=1" class="new" title="Ronald W. Schafer(页面不存在)">Schafer, Ronald W.</a>; Buck, John R. <a rel="nofollow" class="external text" href="https://archive.org/details/discretetimesign00alan">Discrete-time signal processing</a><span typeof="mw:File"><span title="需要免费注册"><img alt="需要免费注册" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/9px-Lock-blue-alt-2.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/14px-Lock-blue-alt-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Lock-blue-alt-2.svg/18px-Lock-blue-alt-2.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span> 2nd. Upper Saddle River,N.J.: Prentice Hall. 1999: <a rel="nofollow" class="external text" href="https://archive.org/details/discretetimesign00alan/page/548">548</a>, 571. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-13-754920-2" title="Special:网络书源/0-13-754920-2"><span title="国际标准书号">ISBN</span>&#160;0-13-754920-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.au=Buck%2C+John+R.&amp;rft.au=Schafer%2C+Ronald+W.&amp;rft.aufirst=Alan+V.&amp;rft.aulast=Oppenheim&amp;rft.btitle=Discrete-time+signal+processing&amp;rft.date=1999&amp;rft.edition=2nd&amp;rft.genre=book&amp;rft.isbn=0-13-754920-2&amp;rft.pages=548%2C+571&amp;rft.place=Upper+Saddle+River%2CN.J.&amp;rft.pub=Prentice+Hall&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdiscretetimesign00alan&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span><span class="citation-comment" style="display:none; color:#33aa33"> 含有內容需登入查看的頁面 (<a href="/wiki/Category:%E5%90%AB%E6%9C%89%E5%85%A7%E5%AE%B9%E9%9C%80%E7%99%BB%E5%85%A5%E6%9F%A5%E7%9C%8B%E7%9A%84%E9%A0%81%E9%9D%A2" title="Category:含有內容需登入查看的頁面">link</a>)</span></li> <li><cite id="McGillem" class="citation book">McGillem, Clare D.; Cooper, George R. <a rel="nofollow" class="external text" href="https://archive.org/details/continuousdiscre0000mcgi">Continuous and Discrete Signal and System Analysis</a> 2. Holt, Rinehart and Winston. 1984. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-03-061703-0" title="Special:网络书源/0-03-061703-0"><span title="国际标准书号">ISBN</span>&#160;0-03-061703-0</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%8D%B7%E7%A7%AF&amp;rft.au=Cooper%2C+George+R.&amp;rft.aufirst=Clare+D.&amp;rft.aulast=McGillem&amp;rft.btitle=Continuous+and+Discrete+Signal+and+System+Analysis&amp;rft.date=1984&amp;rft.edition=2&amp;rft.genre=book&amp;rft.isbn=0-03-061703-0&amp;rft.pub=Holt%2C+Rinehart+and+Winston&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcontinuousdiscre0000mcgi&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="外部链接"><span id=".E5.A4.96.E9.83.A8.E9.93.BE.E6.8E.A5"></span>外部链接</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;action=edit&amp;section=28" title="编辑章节:外部链接"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r82655521">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box side-box-right plainlinks sistersitebox" style="font-size:small;"><style data-mw-deduplicate="TemplateStyles:r82655520">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist"><a href="/wiki/%E7%BB%B4%E5%9F%BA%E5%85%B1%E4%BA%AB%E8%B5%84%E6%BA%90" title="维基共享资源">维基共享资源</a>上的相关多媒体资源:<a href="https://commons.wikimedia.org/wiki/Category:Convolution" class="extiw" title="commons:Category:Convolution"><span style="font-weight:bold;">卷积</span></a></div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://jeff560.tripod.com/c.html">Earliest Uses: The entry on Convolution has some historical information.</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20110501074959/http://jeff560.tripod.com/c.html">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20060221234856/http://rkb.home.cern.ch/rkb/AN16pp/node38.html#SECTION000380000000000000000">Convolution</a>, on <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060512020859/http://rkb.home.cern.ch/rkb/titleA.html">The Data Analysis BriefBook</a></li> <li><a rel="nofollow" class="external free" href="http://www.jhu.edu/~signals/convolve/index.html">http://www.jhu.edu/~signals/convolve/index.html</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20120831101935/http://www.jhu.edu/~signals/convolve/index.html">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) Visual convolution Java Applet</li> <li><a rel="nofollow" class="external free" href="http://www.jhu.edu/~signals/discreteconv2/index.html">http://www.jhu.edu/~signals/discreteconv2/index.html</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20120831102747/http://www.jhu.edu/~signals/discreteconv2/index.html">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) Visual convolution Java Applet for discrete-time functions</li> <li><a rel="nofollow" class="external free" href="https://get-the-solution.net/projects/discret-convolution">https://get-the-solution.net/projects/discret-convolution</a> discret-convolution online calculator</li> <li><a rel="nofollow" class="external free" href="https://lpsa.swarthmore.edu/Convolution/CI.html">https://lpsa.swarthmore.edu/Convolution/CI.html</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20230715160527/https://lpsa.swarthmore.edu/Convolution/CI.html">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) Convolution demo and visualization in javascript</li> <li><a rel="nofollow" class="external free" href="https://phiresky.github.io/convolution-demo/">https://phiresky.github.io/convolution-demo/</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20231029022044/https://phiresky.github.io/convolution-demo/">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) Another convolution demo in javascript</li> <li><a rel="nofollow" class="external text" href="https://archive.org/details/Lectures_on_Image_Processing">Lectures on Image Processing: A collection of 18 lectures in pdf format from Vanderbilt University. Lecture 7 is on 2-D convolution.</a>, by Alan Peters</li> <li>* <a rel="nofollow" class="external free" href="https://archive.org/details/Lectures_on_Image_Processing">https://archive.org/details/Lectures_on_Image_Processing</a></li> <li><a rel="nofollow" class="external text" href="http://micro.magnet.fsu.edu/primer/java/digitalimaging/processing/kernelmaskoperation/">Convolution Kernel Mask Operation Interactive tutorial</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20231210161008/http://micro.magnet.fsu.edu/primer/java/digitalimaging/processing/kernelmaskoperation/">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)</li> <li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Convolution.html">Convolution</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20230315013334/http://mathworld.wolfram.com/Convolution.html">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) at <a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></li> <li><a rel="nofollow" class="external text" href="http://www.nongnu.org/freeverb3/">Freeverb3 Impulse Response Processor</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20231029093122/http://www.nongnu.org/freeverb3/">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>): Opensource zero latency impulse response processor with VST plugins</li> <li>Stanford University CS 178 <a rel="nofollow" class="external text" href="http://graphics.stanford.edu/courses/cs178/applets/convolution.html">interactive Flash demo </a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20231029022042/http://graphics.stanford.edu/courses/cs178/applets/convolution.html">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) showing how spatial convolution works.</li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=IW4Reburjpc">A video lecture on the subject of convolution</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20231029022044/https://www.youtube.com/watch?v=IW4Reburjpc">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) given by <a href="/w/index.php?title=Salman_Khan_(educator)&amp;action=edit&amp;redlink=1" class="new" title="Salman Khan (educator)(页面不存在)">Salman Khan</a></li> <li><a rel="nofollow" class="external text" href="http://www.dspguide.com/ch24/6.htm">Example of FFT convolution for pattern-recognition (image processing)</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20230319094048/http://www.dspguide.com/ch24/6.htm">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)</li> <li><a rel="nofollow" class="external text" href="https://betterexplained.com/articles/intuitive-convolution/">Intuitive Guide to Convolution</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20231207202207/https://betterexplained.com/articles/intuitive-convolution/">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) A blogpost about an intuitive interpretation of convolution.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r84265675">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:" :"}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist-pipe dd::after,.mw-parser-output .hlist-pipe li::after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd::after,.mw-parser-output .hlist-hyphen li::after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd::after,.mw-parser-output .hlist-comma li::after{content:"、";font-weight:normal}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:"("counter(listitem)"\a0 "}.mw-parser-output ul.cslist,.mw-parser-output ul.sslist{margin:0;padding:0;display:inline-block;list-style:none}.mw-parser-output .cslist li,.mw-parser-output .sslist li{margin:0;display:inline-block}.mw-parser-output .cslist li::after{content:","}.mw-parser-output .sslist li::after{content:";"}.mw-parser-output .cslist li:last-child::after,.mw-parser-output .sslist li:last-child::after{content:none}</style><style data-mw-deduplicate="TemplateStyles:r84261037">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{text-align:center;padding-left:1em;padding-right:1em}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf;position:relative}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em;width:auto;padding-left:0.2em;position:absolute;left:1em}.mw-parser-output .navbox .mw-collapsible-toggle{margin-left:0.5em;position:absolute;right:1em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="可微分计算" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="collapsible-title navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84265675"><style data-mw-deduplicate="TemplateStyles:r84244141">.mw-parser-output .navbar{display:inline;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:110%;margin:0 8em}.mw-parser-output .navbar-ct-mini{font-size:110%;margin:0 5em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Differentiable_computing" title="Template:Differentiable computing"><abbr title="查看该模板">查</abbr></a></li><li class="nv-talk"><a href="/w/index.php?title=Template_talk:Differentiable_computing&amp;action=edit&amp;redlink=1" class="new" title="Template talk:Differentiable computing(页面不存在)"><abbr title="讨论该模板">论</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:%E7%BC%96%E8%BE%91%E9%A1%B5%E9%9D%A2/Template:Differentiable_computing" title="Special:编辑页面/Template:Differentiable computing"><abbr title="编辑该模板">编</abbr></a></li></ul></div><div id="可微分计算" style="font-size:110%;margin:0 5em">可微分计算</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E5%8F%AF%E5%BE%AE%E5%87%BD%E6%95%B0" title="可微函数">概论</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E5%8F%AF%E5%BE%AE%E5%88%86%E7%BC%96%E7%A8%8B" title="可微分编程">可微分编程</a></li> <li><a href="/wiki/%E8%87%AA%E5%8B%95%E5%BE%AE%E5%88%86" title="自動微分">自動微分</a></li> <li><span class="ilh-all" data-orig-title="张量微积分" data-lang-code="en" data-lang-name="英语" data-foreign-title="Tensor calculus"><span class="ilh-page"><a href="/wiki/%E5%BC%B5%E9%87%8F%E5%BE%AE%E7%A9%8D%E5%88%86" class="mw-redirect" title="張量微積分">张量微积分</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Tensor_calculus" class="extiw" title="en:Tensor calculus"><span lang="en" dir="auto">Tensor calculus</span></a></span>)</span></span></li> <li><a href="/wiki/%E4%BF%A1%E6%81%AF%E5%87%A0%E4%BD%95" title="信息几何">信息几何</a></li> <li><a href="/wiki/%E7%BB%9F%E8%AE%A1%E6%B5%81%E5%BD%A2" title="统计流形">统计流形</a></li> <li><span class="ilh-all" data-orig-title="神经形态工程" data-lang-code="en" data-lang-name="英语" data-foreign-title="Neuromorphic engineering"><span class="ilh-page"><a href="/w/index.php?title=%E7%A5%9E%E7%BB%8F%E5%BD%A2%E6%80%81%E5%B7%A5%E7%A8%8B&amp;action=edit&amp;redlink=1" class="new" title="神经形态工程(页面不存在)">神经形态工程</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Neuromorphic_engineering" class="extiw" title="en:Neuromorphic engineering"><span lang="en" dir="auto">Neuromorphic engineering</span></a></span>)</span></span></li> <li><a href="/wiki/%E6%A8%A1%E5%BC%8F%E8%AF%86%E5%88%AB" title="模式识别">模式识别</a></li> <li><span class="ilh-all" data-orig-title="运算学习理论" data-lang-code="en" data-lang-name="英语" data-foreign-title="Computational learning theory"><span class="ilh-page"><a href="/w/index.php?title=%E8%BF%90%E7%AE%97%E5%AD%A6%E4%B9%A0%E7%90%86%E8%AE%BA&amp;action=edit&amp;redlink=1" class="new" title="运算学习理论(页面不存在)">运算学习理论</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Computational_learning_theory" class="extiw" title="en:Computational learning theory"><span lang="en" dir="auto">Computational learning theory</span></a></span>)</span></span></li> <li><a href="/wiki/%E5%BD%92%E7%BA%B3%E5%81%8F%E7%BD%AE" title="归纳偏置">归纳偏置</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">概念</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E6%A2%AF%E5%BA%A6%E4%B8%8B%E9%99%8D%E6%B3%95" title="梯度下降法">梯度下降</a> <ul><li><span class="ilh-all" data-orig-title="随机梯度下降" data-lang-code="en" data-lang-name="英语" data-foreign-title="Stochastic gradient descent"><span class="ilh-page"><a href="/w/index.php?title=%E9%9A%8F%E6%9C%BA%E6%A2%AF%E5%BA%A6%E4%B8%8B%E9%99%8D&amp;action=edit&amp;redlink=1" class="new" title="随机梯度下降(页面不存在)">SGD</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Stochastic_gradient_descent" class="extiw" title="en:Stochastic gradient descent"><span lang="en" dir="auto">Stochastic gradient descent</span></a></span>)</span></span></li></ul></li> <li><a href="/wiki/%E8%81%9A%E7%B1%BB%E5%88%86%E6%9E%90" title="聚类分析">聚类</a></li> <li><a href="/wiki/%E8%BF%B4%E6%AD%B8%E5%88%86%E6%9E%90" title="迴歸分析">回归</a> <ul><li><a href="/wiki/%E9%81%8E%E9%81%A9" title="過適">过拟合</a></li></ul></li> <li><a href="/wiki/%E5%B9%BB%E8%A7%89_(%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD)" title="幻觉 (人工智能)">幻觉</a></li> <li><span class="ilh-all" data-orig-title="对抗机器学习" data-lang-code="en" data-lang-name="英语" data-foreign-title="Adversarial machine learning"><span class="ilh-page"><a href="/w/index.php?title=%E5%AF%B9%E6%8A%97%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0&amp;action=edit&amp;redlink=1" class="new" title="对抗机器学习(页面不存在)">对抗</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Adversarial_machine_learning" class="extiw" title="en:Adversarial machine learning"><span lang="en" dir="auto">Adversarial machine learning</span></a></span>)</span></span></li> <li><a href="/wiki/%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6" title="注意力机制">注意力</a></li> <li><a class="mw-selflink selflink">卷积</a></li> <li><a href="/wiki/%E5%88%86%E9%A1%9E%E5%95%8F%E9%A1%8C%E4%B9%8B%E6%90%8D%E5%A4%B1%E5%87%BD%E6%95%B8" title="分類問題之損失函數">損失函數</a></li> <li><a href="/wiki/%E5%8F%8D%E5%90%91%E4%BC%A0%E6%92%AD%E7%AE%97%E6%B3%95" title="反向传播算法">反向传播</a></li> <li><a href="/wiki/%E6%BF%80%E6%B4%BB%E5%87%BD%E6%95%B0" title="激活函数">激活函数</a> <ul><li><a href="/wiki/Softmax%E5%87%BD%E6%95%B0" title="Softmax函数">softmax</a></li> <li><a href="/wiki/S%E5%9E%8B%E5%87%BD%E6%95%B0" title="S型函数">sigmoid</a></li> <li><a href="/wiki/%E7%BA%BF%E6%80%A7%E6%95%B4%E6%B5%81%E5%87%BD%E6%95%B0" title="线性整流函数">ReLU</a></li></ul></li> <li><a href="/wiki/%E6%AD%A3%E5%88%99%E5%8C%96_(%E6%95%B0%E5%AD%A6)" title="正则化 (数学)">正则化</a></li> <li><a href="/wiki/%E8%AE%AD%E7%BB%83%E9%9B%86%E3%80%81%E9%AA%8C%E8%AF%81%E9%9B%86%E5%92%8C%E6%B5%8B%E8%AF%95%E9%9B%86" title="训练集、验证集和测试集">数据集</a></li> <li><span class="ilh-all" data-orig-title="扩散过程" data-lang-code="en" data-lang-name="英语" data-foreign-title="Diffusion process"><span class="ilh-page"><a href="/w/index.php?title=%E6%89%A9%E6%95%A3%E8%BF%87%E7%A8%8B&amp;action=edit&amp;redlink=1" class="new" title="扩散过程(页面不存在)">扩散</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Diffusion_process" class="extiw" title="en:Diffusion process"><span lang="en" dir="auto">Diffusion process</span></a></span>)</span></span></li> <li><a href="/wiki/%E8%87%AA%E6%88%91%E8%BF%B4%E6%AD%B8%E6%A8%A1%E5%9E%8B" title="自我迴歸模型">自回归</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">应用</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0" title="机器学习">机器学习</a></li> <li><a href="/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C" title="人工神经网络">人工神经网络</a> <ul><li><a href="/wiki/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0" title="深度学习">深度学习</a></li></ul></li> <li><a href="/wiki/%E8%BF%90%E7%AE%97%E7%A7%91%E5%AD%A6" title="运算科学">科学计算</a></li> <li><a href="/wiki/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD" title="人工智能">人工智能</a></li> <li><a href="/wiki/%E8%AA%9E%E8%A8%80%E6%A8%A1%E5%9E%8B" title="語言模型">語言模型</a> <ul><li><a href="/wiki/%E5%A4%A7%E5%9E%8B%E8%AF%AD%E8%A8%80%E6%A8%A1%E5%9E%8B" title="大型语言模型">大型语言模型</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">硬件</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E5%BC%A0%E9%87%8F%E5%A4%84%E7%90%86%E5%8D%95%E5%85%83" title="张量处理单元">TPU</a></li> <li><a href="/wiki/%E8%A7%86%E8%A7%89%E5%A4%84%E7%90%86%E5%8D%95%E5%85%83" title="视觉处理单元">VPU</a></li> <li><span class="ilh-all" data-orig-title="Graphcore" data-lang-code="en" data-lang-name="英语" data-foreign-title="Graphcore"><span class="ilh-page"><a href="/w/index.php?title=Graphcore&amp;action=edit&amp;redlink=1" class="new" title="Graphcore(页面不存在)">IPU</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Graphcore" class="extiw" title="en:Graphcore"><span lang="en" dir="auto">Graphcore</span></a></span>)</span></span></li> <li><a href="/wiki/%E6%86%B6%E9%98%BB%E5%99%A8" title="憶阻器">憶阻器</a></li> <li><span class="ilh-all" data-orig-title="SpiNNaker" data-lang-code="en" data-lang-name="英语" data-foreign-title="SpiNNaker"><span class="ilh-page"><a href="/w/index.php?title=SpiNNaker&amp;action=edit&amp;redlink=1" class="new" title="SpiNNaker(页面不存在)">SpiNNaker</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/SpiNNaker" class="extiw" title="en:SpiNNaker"><span lang="en" dir="auto">SpiNNaker</span></a></span>)</span></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">软件库</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Theano" title="Theano">Theano</a></li> <li><a href="/wiki/TensorFlow" title="TensorFlow">TensorFlow</a> <ul><li><a href="/wiki/Keras" title="Keras">Keras</a></li></ul></li> <li><a href="/wiki/PyTorch" title="PyTorch">PyTorch</a></li> <li><a href="/wiki/Google_JAX" title="Google JAX">JAX</a></li> <li><span class="ilh-all" data-orig-title="Flux (机器学习框架)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Flux (machine-learning framework)"><span class="ilh-page"><a href="/w/index.php?title=Flux_(%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E6%A1%86%E6%9E%B6)&amp;action=edit&amp;redlink=1" class="new" title="Flux (机器学习框架)(页面不存在)">Flux.jl</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Flux_(machine-learning_framework)" class="extiw" title="en:Flux (machine-learning framework)"><span lang="en" dir="auto">Flux (machine-learning framework)</span></a></span>)</span></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">实现</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">视觉·语音</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/AlexNet" title="AlexNet">AlexNet</a></li> <li><a href="/wiki/WaveNet" title="WaveNet">WaveNet</a></li> <li><a href="/wiki/%E4%BA%BA%E9%AB%94%E5%9C%96%E5%83%8F%E5%90%88%E6%88%90" title="人體圖像合成">人像合成</a></li> <li><a href="/wiki/%E6%89%8B%E5%86%99%E8%AF%86%E5%88%AB" title="手写识别">手寫识别</a></li> <li><a href="/wiki/%E5%85%89%E5%AD%A6%E5%AD%97%E7%AC%A6%E8%AF%86%E5%88%AB" title="光学字符识别">OCR</a></li> <li><a href="/wiki/%E8%AF%AD%E9%9F%B3%E5%90%88%E6%88%90" title="语音合成">语音合成</a></li> <li><a href="/wiki/%E8%AF%AD%E9%9F%B3%E8%AF%86%E5%88%AB" title="语音识别">语音识别</a></li> <li><a href="/wiki/%E8%87%89%E9%83%A8%E8%BE%A8%E8%AD%98%E7%B3%BB%E7%B5%B1" title="臉部辨識系統">人脸识别</a></li> <li><a href="/wiki/AlphaFold" title="AlphaFold">AlphaFold</a></li> <li><a href="/wiki/DALL-E" title="DALL-E">DALL-E</a></li> <li><a href="/wiki/Midjourney" title="Midjourney">Midjourney</a></li> <li><a href="/wiki/Stable_Diffusion" title="Stable Diffusion">Stable Diffusion</a></li> <li><a href="/wiki/Sora_(%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E6%A8%A1%E5%9E%8B)" title="Sora (人工智能模型)">Sora</a></li> <li><span class="ilh-all" data-orig-title="Whisper (语音识别系统)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Whisper (speech recognition system)"><span class="ilh-page"><a href="/w/index.php?title=Whisper_(%E8%AF%AD%E9%9F%B3%E8%AF%86%E5%88%AB%E7%B3%BB%E7%BB%9F)&amp;action=edit&amp;redlink=1" class="new" title="Whisper (语音识别系统)(页面不存在)">Whisper</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Whisper_(speech_recognition_system)" class="extiw" title="en:Whisper (speech recognition system)"><span lang="en" dir="auto">Whisper (speech recognition system)</span></a></span>)</span></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">自然语言</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Word2vec" title="Word2vec">Word2vec</a></li> <li><a href="/wiki/Seq2Seq%E6%A8%A1%E5%9E%8B" title="Seq2Seq模型">Seq2seq</a></li> <li><a href="/wiki/BERT" title="BERT">BERT</a></li> <li><a href="/wiki/%E5%B0%8D%E8%A9%B1%E7%A8%8B%E5%BC%8F%E8%AA%9E%E8%A8%80%E6%A8%A1%E5%9E%8B" title="對話程式語言模型">LaMDA</a> <ul><li><a href="/wiki/Bard" class="mw-disambig" title="Bard">Bard</a></li></ul></li> <li><a href="/wiki/%E7%A5%9E%E7%BB%8F%E6%9C%BA%E5%99%A8%E7%BF%BB%E8%AF%91" title="神经机器翻译">NMT</a></li> <li><span class="ilh-all" data-orig-title="辩手项目" data-lang-code="en" data-lang-name="英语" data-foreign-title="Project Debater"><span class="ilh-page"><a href="/w/index.php?title=%E8%BE%A9%E6%89%8B%E9%A1%B9%E7%9B%AE&amp;action=edit&amp;redlink=1" class="new" title="辩手项目(页面不存在)">辩手项目</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Project_Debater" class="extiw" title="en:Project Debater"><span lang="en" dir="auto">Project Debater</span></a></span>)</span></span></li> <li><a href="/wiki/%E6%B2%83%E6%A3%AE_(%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E7%A8%8B%E5%BA%8F)" title="沃森 (人工智能程序)">沃森</a></li> <li><a href="/wiki/%E5%9F%BA%E4%BA%8E%E8%BD%AC%E6%8D%A2%E5%99%A8%E7%9A%84%E7%94%9F%E6%88%90%E5%BC%8F%E9%A2%84%E8%AE%AD%E7%BB%83%E6%A8%A1%E5%9E%8B" title="基于转换器的生成式预训练模型">GPT</a> <ul><li><a href="/wiki/GPT-1" title="GPT-1">GPT-1</a></li> <li><a href="/wiki/GPT-2" title="GPT-2">GPT-2</a></li> <li><a href="/wiki/GPT-3" title="GPT-3">GPT-3</a></li> <li><a href="/wiki/GPT-4" title="GPT-4">GPT-4</a></li></ul></li> <li><span class="ilh-all" data-orig-title="GPT-J" data-lang-code="en" data-lang-name="英语" data-foreign-title="GPT-J"><span class="ilh-page"><a href="/w/index.php?title=GPT-J&amp;action=edit&amp;redlink=1" class="new" title="GPT-J(页面不存在)">GPT-J</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/GPT-J" class="extiw" title="en:GPT-J"><span lang="en" dir="auto">GPT-J</span></a></span>)</span></span></li> <li><a href="/wiki/ChatGPT" title="ChatGPT">ChatGPT</a></li> <li><a href="/wiki/%E6%96%87%E5%BF%83%E4%B8%80%E8%A8%80" title="文心一言">文心一言</a></li> <li><span class="ilh-all" data-orig-title="Chinchilla AI" data-lang-code="en" data-lang-name="英语" data-foreign-title="Chinchilla AI"><span class="ilh-page"><a href="/w/index.php?title=Chinchilla_AI&amp;action=edit&amp;redlink=1" class="new" title="Chinchilla AI(页面不存在)">Chinchilla AI</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Chinchilla_AI" class="extiw" title="en:Chinchilla AI"><span lang="en" dir="auto">Chinchilla AI</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="PaLM" data-lang-code="en" data-lang-name="英语" data-foreign-title="PaLM"><span class="ilh-page"><a href="/w/index.php?title=PaLM&amp;action=edit&amp;redlink=1" class="new" title="PaLM(页面不存在)">PaLM</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/PaLM" class="extiw" title="en:PaLM"><span lang="en" dir="auto">PaLM</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="BLOOM (语言模型)" data-lang-code="en" data-lang-name="英语" data-foreign-title="BLOOM (language model)"><span class="ilh-page"><a href="/w/index.php?title=BLOOM_(%E8%AF%AD%E8%A8%80%E6%A8%A1%E5%9E%8B)&amp;action=edit&amp;redlink=1" class="new" title="BLOOM (语言模型)(页面不存在)">BLOOM</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/BLOOM_(language_model)" class="extiw" title="en:BLOOM (language model)"><span lang="en" dir="auto">BLOOM (language model)</span></a></span>)</span></span></li> <li><a href="/wiki/LLaMA" title="LLaMA">LLaMA</a></li> <li><a href="/wiki/TAIDE" title="TAIDE">TAIDE</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">决策</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/AlphaGo" title="AlphaGo">AlphaGo</a></li> <li><a href="/wiki/Q%E5%AD%A6%E4%B9%A0" title="Q学习">Q学习</a></li> <li><a href="/wiki/SARSA%E7%AE%97%E6%B3%95" title="SARSA算法">SARSA</a></li> <li><span class="ilh-all" data-orig-title="OpenAI Five" data-lang-code="en" data-lang-name="英语" data-foreign-title="OpenAI Five"><span class="ilh-page"><a href="/w/index.php?title=OpenAI_Five&amp;action=edit&amp;redlink=1" class="new" title="OpenAI Five(页面不存在)">OpenAI Five</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/OpenAI_Five" class="extiw" title="en:OpenAI Five"><span lang="en" dir="auto">OpenAI Five</span></a></span>)</span></span></li> <li><a href="/wiki/%E8%87%AA%E5%8B%95%E9%A7%95%E9%A7%9B%E6%B1%BD%E8%BB%8A" title="自動駕駛汽車">自动驾驶</a></li> <li><a href="/wiki/MuZero" title="MuZero">MuZero</a></li> <li><span class="ilh-all" data-orig-title="行动选择" data-lang-code="en" data-lang-name="英语" data-foreign-title="Action selection"><span class="ilh-page"><a href="/w/index.php?title=%E8%A1%8C%E5%8A%A8%E9%80%89%E6%8B%A9&amp;action=edit&amp;redlink=1" class="new" title="行动选择(页面不存在)">行动选择</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Action_selection" class="extiw" title="en:Action selection"><span lang="en" dir="auto">Action selection</span></a></span>)</span></span> <ul><li><a href="/wiki/Auto-GPT" title="Auto-GPT">Auto-GPT</a></li></ul></li> <li><span class="ilh-all" data-orig-title="机器人控制" data-lang-code="en" data-lang-name="英语" data-foreign-title="Robot control"><span class="ilh-page"><a href="/w/index.php?title=%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8E%A7%E5%88%B6&amp;action=edit&amp;redlink=1" class="new" title="机器人控制(页面不存在)">机器人控制</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Robot_control" class="extiw" title="en:Robot control"><span lang="en" dir="auto">Robot control</span></a></span>)</span></span></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">人物</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%BA%A6%E4%B9%A6%E4%BA%9A%C2%B7%E6%9C%AC%E5%B8%8C%E5%A5%A5" title="约书亚·本希奥">约书亚·本希奥</a></li> <li><a href="/wiki/%E6%9D%B0%E5%BC%97%E9%87%8C%C2%B7%E8%BE%9B%E9%A1%BF" title="杰弗里·辛顿">杰弗里·辛顿</a></li> <li><a href="/wiki/%E6%9D%A8%E7%AB%8B%E6%98%86" title="杨立昆">杨立昆</a></li> <li><a href="/wiki/%E8%89%BE%E5%8A%9B%E5%85%8B%E6%96%AF%C2%B7%E6%A0%BC%E9%9B%B7%E5%A4%AB%E6%96%AF_(%E8%A8%88%E7%AE%97%E6%A9%9F%E7%A7%91%E5%AD%B8%E5%AE%B6)" title="艾力克斯·格雷夫斯 (計算機科學家)">艾力克斯·格雷夫斯</a></li> <li><a href="/wiki/%E4%BC%8A%E6%81%A9%C2%B7%E5%8F%A4%E5%BE%B7%E8%B4%B9%E6%B4%9B" title="伊恩·古德费洛">伊恩·古德费洛</a></li> <li><a href="/wiki/%E5%90%B4%E6%81%A9%E8%BE%BE" title="吴恩达">吴恩达</a></li> <li><a href="/wiki/%E6%9D%B0%E7%B1%B3%E6%96%AF%C2%B7%E5%93%88%E8%90%A8%E6%AF%94%E6%96%AF" title="杰米斯·哈萨比斯">杰米斯·哈萨比斯</a></li> <li><a href="/wiki/%E5%A4%A7%E8%A1%9B%C2%B7%E5%B8%AD%E7%88%BE%E7%93%A6_(%E8%A8%88%E7%AE%97%E6%A9%9F%E7%A7%91%E5%AD%B8%E5%AE%B6)" title="大衛·席爾瓦 (計算機科學家)">大衛·席爾瓦</a></li> <li><a href="/wiki/%E6%9D%8E%E9%A3%9B%E9%A3%9B" title="李飛飛">李飛飛</a></li> <li><a href="/wiki/%E4%BA%8E%E5%B0%94%E6%A0%B9%C2%B7%E6%96%BD%E5%AF%86%E5%BE%B7%E8%83%A1%E4%BC%AF" title="于尔根·施密德胡伯">于尔根·施密德胡伯</a></li> <li><a href="/wiki/%E4%BC%8A%E7%88%BE%E4%BA%9E%C2%B7%E8%98%87%E8%8C%A8%E5%85%8B%E7%B6%AD" title="伊爾亞·蘇茨克維">伊爾亞·蘇茨克維</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">组织</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Anthropic" title="Anthropic">Anthropic</a></li> <li><a href="/wiki/DeepMind" class="mw-redirect" title="DeepMind">DeepMind</a></li> <li><span class="ilh-all" data-orig-title="EleutherAI" data-lang-code="en" data-lang-name="英语" data-foreign-title="EleutherAI"><span class="ilh-page"><a href="/w/index.php?title=EleutherAI&amp;action=edit&amp;redlink=1" class="new" title="EleutherAI(页面不存在)">EleutherAI</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/EleutherAI" class="extiw" title="en:EleutherAI"><span lang="en" dir="auto">EleutherAI</span></a></span>)</span></span></li> <li><a href="/wiki/%E8%B0%B7%E6%AD%8C%E5%A4%A7%E8%84%91" title="谷歌大脑">Google Brain</a></li> <li><span class="ilh-all" data-orig-title="Meta AI" data-lang-code="en" data-lang-name="英语" data-foreign-title="Meta AI"><span class="ilh-page"><a href="/w/index.php?title=Meta_AI&amp;action=edit&amp;redlink=1" class="new" title="Meta AI(页面不存在)">Meta AI</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Meta_AI" class="extiw" title="en:Meta AI"><span lang="en" dir="auto">Meta AI</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="Mila (研究所)" data-lang-code="en" data-lang-name="英语" data-foreign-title="Mila (research institute)"><span class="ilh-page"><a href="/w/index.php?title=Mila_(%E7%A0%94%E7%A9%B6%E6%89%80)&amp;action=edit&amp;redlink=1" class="new" title="Mila (研究所)(页面不存在)">Mila</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Mila_(research_institute)" class="extiw" title="en:Mila (research institute)"><span lang="en" dir="auto">Mila (research institute)</span></a></span>)</span></span></li> <li><a href="/wiki/MIT%E8%A8%88%E7%AE%97%E6%A9%9F%E7%A7%91%E5%AD%B8%E8%88%87%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7%E5%AF%A6%E9%A9%97%E5%AE%A4" title="MIT計算機科學與人工智慧實驗室">MIT CSAIL</a></li> <li><a href="/wiki/OpenAI" title="OpenAI">OpenAI</a></li> <li><a href="/wiki/Hugging_Face" title="Hugging Face">Hugging Face</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">架构</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E5%A4%9A%E5%B1%82%E6%84%9F%E7%9F%A5%E5%99%A8" title="多层感知器">多层感知器</a>(MLP)</li> <li><a href="/wiki/%E5%BE%AA%E7%8E%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C" title="循环神经网络">循环神经网络</a>(RNN)</li> <li><a href="/wiki/%E9%95%B7%E7%9F%AD%E6%9C%9F%E8%A8%98%E6%86%B6" title="長短期記憶">長短期記憶</a>(LSTM)</li> <li><span class="ilh-all" data-orig-title="门控循环单元" data-lang-code="en" data-lang-name="英语" data-foreign-title="Gated recurrent unit"><span class="ilh-page"><a href="/w/index.php?title=%E9%97%A8%E6%8E%A7%E5%BE%AA%E7%8E%AF%E5%8D%95%E5%85%83&amp;action=edit&amp;redlink=1" class="new" title="门控循环单元(页面不存在)">门控循环单元</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Gated_recurrent_unit" class="extiw" title="en:Gated recurrent unit"><span lang="en" dir="auto">Gated recurrent unit</span></a></span>)</span></span>(GRU)</li> <li><a href="/wiki/%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C" title="卷积神经网络">卷积神经网络</a>(CNN)</li> <li><a href="/wiki/%E6%AE%8B%E5%B7%AE%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C" title="残差神经网络">残差神经网络</a>(ResNet)</li> <li><a href="/wiki/Transformer%E6%A8%A1%E5%9E%8B" title="Transformer模型">变换器</a></li> <li><a href="/wiki/%E8%87%AA%E7%BC%96%E7%A0%81%E5%99%A8" title="自编码器">自编码器</a></li> <li><a href="/wiki/%E5%8F%98%E5%88%86%E8%87%AA%E7%BC%96%E7%A0%81%E5%99%A8" title="变分自编码器">变分自编码器</a>(VAE)</li> <li><a href="/wiki/%E7%94%9F%E6%88%90%E5%AF%B9%E6%8A%97%E7%BD%91%E7%BB%9C" title="生成对抗网络">生成对抗网络</a>(GAN)</li> <li><span class="ilh-all" data-orig-title="图神经网络" data-lang-code="en" data-lang-name="英语" data-foreign-title="Graph neural network"><span class="ilh-page"><a href="/w/index.php?title=%E5%9B%BE%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&amp;action=edit&amp;redlink=1" class="new" title="图神经网络(页面不存在)">图神经网络</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Graph_neural_network" class="extiw" title="en:Graph neural network"><span lang="en" dir="auto">Graph neural network</span></a></span>)</span></span>(GNN)</li> <li><span class="ilh-all" data-orig-title="回响状态网络" data-lang-code="en" data-lang-name="英语" data-foreign-title="Echo state network"><span class="ilh-page"><a href="/w/index.php?title=%E5%9B%9E%E5%93%8D%E7%8A%B6%E6%80%81%E7%BD%91%E7%BB%9C&amp;action=edit&amp;redlink=1" class="new" title="回响状态网络(页面不存在)">回响状态网络</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Echo_state_network" class="extiw" title="en:Echo state network"><span lang="en" dir="auto">Echo state network</span></a></span>)</span></span>(ESN)</li> <li><a href="/wiki/%E7%A5%9E%E7%BB%8F%E5%9B%BE%E7%81%B5%E6%9C%BA" title="神经图灵机">神经图灵机</a>(NTM)</li> <li><span class="ilh-all" data-orig-title="可微分神经计算机" data-lang-code="en" data-lang-name="英语" data-foreign-title="Differentiable neural computer"><span class="ilh-page"><a href="/w/index.php?title=%E5%8F%AF%E5%BE%AE%E5%88%86%E7%A5%9E%E7%BB%8F%E8%AE%A1%E7%AE%97%E6%9C%BA&amp;action=edit&amp;redlink=1" class="new" title="可微分神经计算机(页面不存在)">可微分神经计算机</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Differentiable_neural_computer" class="extiw" title="en:Differentiable neural computer"><span lang="en" dir="auto">Differentiable neural computer</span></a></span>)</span></span>(DNC)</li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span typeof="mw:File"><span title="主题"><img alt="主题" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> 主题 <ul><li><a href="/wiki/Portal:%E9%9B%BB%E8%85%A6%E7%A8%8B%E5%BC%8F%E8%A8%AD%E8%A8%88" title="Portal:電腦程式設計">计算机编程</a></li> <li><a href="/wiki/Portal:%E6%8A%80%E8%A1%93" title="Portal:技術">技术</a></li></ul></li> <li><span typeof="mw:File"><span title="分类"><img alt="分类" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> 分类 <ul><li><a href="/wiki/Category:%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C" title="Category:人工神经网络">人工神经网络</a></li> <li><a href="/wiki/Category:%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0" title="Category:机器学习">机器学习</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐ckrcl Cached time: 20241124083402 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.124 seconds Real time usage: 1.503 seconds Preprocessor visited node count: 6272/1000000 Post‐expand include size: 233451/2097152 bytes Template argument size: 2479/2097152 bytes Highest expansion depth: 11/100 Expensive parser function count: 39/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 63791/5000000 bytes Lua time usage: 0.427/10.000 seconds Lua memory usage: 6588405/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 698.875 1 -total 25.85% 180.655 2 Template:Navbox 23.80% 166.345 1 Template:Reflist 22.83% 159.532 1 Template:Differentiable_computing 15.23% 106.424 22 Template:Citation 9.91% 69.263 7 Template:Cite_book 8.85% 61.856 1 Template:Commons_category 8.71% 60.894 25 Template:Le 8.64% 60.356 1 Template:Sister_project 8.63% 60.288 1 Template:NoteTA --> <!-- Saved in parser cache with key zhwiki:pcache:idhash:87090-0!canonical!zh and timestamp 20241124083402 and revision id 81235299. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">检索自“<a dir="ltr" href="https://zh.wikipedia.org/w/index.php?title=卷积&amp;oldid=81235299">https://zh.wikipedia.org/w/index.php?title=卷积&amp;oldid=81235299</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:%E9%A1%B5%E9%9D%A2%E5%88%86%E7%B1%BB" title="Special:页面分类">分类</a>:​<ul><li><a href="/wiki/Category:%E6%B3%9B%E5%87%BD%E5%88%86%E6%9E%90" title="Category:泛函分析">泛函分析</a></li><li><a href="/wiki/Category:%E4%BF%A1%E5%8F%B7%E5%A4%84%E7%90%86" title="Category:信号处理">信号处理</a></li><li><a href="/wiki/Category:%E4%BA%8C%E5%85%83%E9%81%8B%E7%AE%97" title="Category:二元運算">二元運算</a></li><li><a href="/wiki/Category:%E5%8F%8C%E7%BA%BF%E6%80%A7%E7%AE%97%E5%AD%90" title="Category:双线性算子">双线性算子</a></li><li><a href="/wiki/Category:%E7%89%B9%E5%BE%81%E6%A3%80%E6%B5%8B_(%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%A7%86%E8%A7%89)" title="Category:特征检测 (计算机视觉)">特征检测 (计算机视觉)</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">隐藏分类:​<ul><li><a href="/wiki/Category:CS1%E8%8B%B1%E8%AF%AD%E6%9D%A5%E6%BA%90_(en)" title="Category:CS1英语来源 (en)">CS1英语来源 (en)</a></li><li><a href="/wiki/Category:%E4%BD%BF%E7%94%A8%E5%A4%9A%E4%B8%AA%E5%9B%BE%E5%83%8F%E4%B8%94%E8%87%AA%E5%8A%A8%E7%BC%A9%E6%94%BE%E7%9A%84%E9%A1%B5%E9%9D%A2" title="Category:使用多个图像且自动缩放的页面">使用多个图像且自动缩放的页面</a></li><li><a href="/wiki/Category:%E5%90%AB%E6%9C%89%E5%85%A7%E5%AE%B9%E9%9C%80%E7%99%BB%E5%85%A5%E6%9F%A5%E7%9C%8B%E7%9A%84%E9%A0%81%E9%9D%A2" title="Category:含有內容需登入查看的頁面">含有內容需登入查看的頁面</a></li><li><a href="/wiki/Category:%E7%BB%B4%E5%9F%BA%E5%85%B1%E4%BA%AB%E8%B5%84%E6%BA%90%E5%88%86%E7%B1%BB%E9%93%BE%E6%8E%A5%E4%BD%BF%E7%94%A8%E4%BA%86%E7%BB%B4%E5%9F%BA%E6%95%B0%E6%8D%AE%E4%B8%8A%E7%9A%84%E5%8C%B9%E9%85%8D%E9%A1%B9" title="Category:维基共享资源分类链接使用了维基数据上的匹配项">维基共享资源分类链接使用了维基数据上的匹配项</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 本页面最后修订于2024年2月18日 (星期日) 03:07。</li> <li id="footer-info-copyright">本站的全部文字在<a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.zh">知识共享 署名-相同方式共享 4.0协议</a>之条款下提供,附加条款亦可能应用。(请参阅<a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">使用条款</a>)<br /> Wikipedia&#174;和维基百科标志是<a rel="nofollow" class="external text" href="https://wikimediafoundation.org/zh">维基媒体基金会</a>的注册商标;维基&#8482;是维基媒体基金会的商标。<br /> 维基媒体基金会是按美国国內稅收法501(c)(3)登记的<a class="external text" href="https://donate.wikimedia.org/wiki/Special:MyLanguage/Tax_deductibility">非营利慈善机构</a>。<br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">隐私政策</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E">关于维基百科</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:%E5%85%8D%E8%B4%A3%E5%A3%B0%E6%98%8E">免责声明</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">行为准则</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">开发者</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/zh.wikipedia.org">统计</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie声明</a></li> <li id="footer-places-mobileview"><a href="//zh.m.wikipedia.org/w/index.php?title=%E5%8D%B7%E7%A7%AF&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">手机版视图</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-ckrcl","wgBackendResponseTime":1701,"wgPageParseReport":{"limitreport":{"cputime":"1.124","walltime":"1.503","ppvisitednodes":{"value":6272,"limit":1000000},"postexpandincludesize":{"value":233451,"limit":2097152},"templateargumentsize":{"value":2479,"limit":2097152},"expansiondepth":{"value":11,"limit":100},"expensivefunctioncount":{"value":39,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":63791,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 698.875 1 -total"," 25.85% 180.655 2 Template:Navbox"," 23.80% 166.345 1 Template:Reflist"," 22.83% 159.532 1 Template:Differentiable_computing"," 15.23% 106.424 22 Template:Citation"," 9.91% 69.263 7 Template:Cite_book"," 8.85% 61.856 1 Template:Commons_category"," 8.71% 60.894 25 Template:Le"," 8.64% 60.356 1 Template:Sister_project"," 8.63% 60.288 1 Template:NoteTA"]},"scribunto":{"limitreport-timeusage":{"value":"0.427","limit":"10.000"},"limitreport-memusage":{"value":6588405,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAtlas,_Homma,_and_Marks\"] = 1,\n [\"CITEREFBracewell1986\"] = 1,\n [\"CITEREFChervyakovLyakhovDeryabinNagornov2020\"] = 1,\n [\"CITEREFCrutchfield2010\"] = 1,\n [\"CITEREFDamelinMiller2011\"] = 1,\n [\"CITEREFDiggle1985\"] = 1,\n [\"CITEREFGhasemiNowak2017\"] = 1,\n [\"CITEREFGrinshpan2017\"] = 1,\n [\"CITEREFHewittRoss1970\"] = 1,\n [\"CITEREFHewittRoss1979\"] = 1,\n [\"CITEREFHörmander1983\"] = 1,\n [\"CITEREFIrwin1997\"] = 1,\n [\"CITEREFJeruchimBalabanShanmugan2000\"] = 1,\n [\"CITEREFJohn_Hilton_Grace_and_Alfred_Young1903\"] = 1,\n [\"CITEREFKassel1995\"] = 1,\n [\"CITEREFKnuth1997\"] = 1,\n [\"CITEREFLeonard_Eugene_Dickson1914\"] = 1,\n [\"CITEREFPriemer1991\"] = 1,\n [\"CITEREFR._N._Bracewell2005\"] = 1,\n [\"CITEREFReedSimon1975\"] = 1,\n [\"CITEREFRudin1962\"] = 1,\n [\"CITEREFSmith1997\"] = 1,\n [\"CITEREFSteinWeiss1971\"] = 1,\n [\"CITEREFStrichartz1994\"] = 1,\n [\"CITEREFTitchmarsh1948\"] = 1,\n [\"CITEREFUdayashankara2010\"] = 1,\n [\"CITEREFUludag1998\"] = 1,\n [\"CITEREFWeisstein\"] = 2,\n [\"CITEREFZhangSoonYeFuh2020\"] = 1,\n [\"CITEREFvon_zur_GathenGerhard2003\"] = 1,\n [\"McGillem\"] = 1,\n [\"Oppenheim\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Citation\"] = 21,\n [\"Cite book\"] = 7,\n [\"Cite journal\"] = 3,\n [\"Cite web\"] = 2,\n [\"Commons category\"] = 1,\n [\"DFT_{L\"] = 3,\n [\"DFT_{L+M-1\"] = 2,\n [\"Differentiable computing\"] = 1,\n [\"En-link\"] = 11,\n [\"Harv\"] = 1,\n [\"Harvnb\"] = 1,\n [\"Main\"] = 3,\n [\"Main article\"] = 1,\n [\"Multiple image\"] = 1,\n [\"Narici Beckenstein Topological Vector Spaces\"] = 1,\n [\"NoteTA\"] = 1,\n [\"Reflist\"] = 1,\n [\"Schaefer Wolff Topological Vector Spaces\"] = 1,\n [\"Springer\"] = 1,\n [\"Trèves François Topological vector spaces, distributions and kernels\"] = 1,\n [\"Wayback\"] = 13,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-ckrcl","timestamp":"20241124083402","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u5377\u79ef","url":"https:\/\/zh.wikipedia.org\/wiki\/%E5%8D%B7%E7%A7%AF","sameAs":"http:\/\/www.wikidata.org\/entity\/Q210857","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q210857","author":{"@type":"Organization","name":"\u7ef4\u57fa\u5a92\u4f53\u9879\u76ee\u8d21\u732e\u8005"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-03-22T21:36:18Z","dateModified":"2024-02-18T03:07:06Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/2\/21\/Comparison_convolution_correlation.svg"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10