CINXE.COM
Search results for: peptides
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: peptides</title> <meta name="description" content="Search results for: peptides"> <meta name="keywords" content="peptides"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="peptides" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="peptides"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 155</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: peptides</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Waste Egg Albumin Derived Small Peptides Stimulate Photosynthetic Electron Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seungwon%20Han">Seungwon Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20young%20Yoo"> Sung young Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Wan%20Kim"> Tae Wan Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to measure the changes in the photochemical response in the leaves of red pepper (Capsium annuum L.) after foliar fertilization of amino acid and small peptides derived from the waste egg. As a nitrogen fertilizer, waste eggs were incubated over one 1week and then degraded as amino acids and small peptides. The smaller peptides less than 20 kDa were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). MALDI-TOF-MS as a rapid analysis method was to show the molecular mass of degraded egg protein. The sequences of peptides were identified as follows; γ-Glu- Cys-γ-Glu-Cys-γ-Glu-Cys)-Ser and γ-Glu-Cys-γ-Glu-Cys-γ-Glu- Cys)-Gly. It was clearly illuminated that the parameters related to quantum yields for PSI electron transport (ΦRE1O, ΨRE1O, δRE1O) and RC/ABS have increased tendency by small peptide application. On the other hand, phenomenological energy fluxes (ABSO/CSM, TRO/CSM, ET2O/CSM, RE1O/CSM, DIO/CSM) have considerably fluctuated with foliar fertilization of small peptides. In conclusion, the small peptides can enhance the photochemical activities from photosystem II to photosystem I. This study was financially supported by RDA Agenda Project PJ 016196012022. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20transport" title="electron transport">electron transport</a>, <a href="https://publications.waset.org/abstracts/search?q=foliar%20fertilization" title=" foliar fertilization"> foliar fertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20peptide" title=" small peptide"> small peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20egg" title=" waste egg"> waste egg</a> </p> <a href="https://publications.waset.org/abstracts/143256/waste-egg-albumin-derived-small-peptides-stimulate-photosynthetic-electron-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Antibody Reactivity of Synthetic Peptides Belonging to Proteins Encoded by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions of Differences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Salim%20Mustafa">Abu Salim Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The comparisons of mycobacterial genomes have identified several <em>Mycobacterium tuberculosis</em>-specific genomic regions that are absent in other mycobacteria and are known as regions of differences. Due to <em>M. tuberculosis</em>-specificity, the peptides encoded by these regions could be useful in the specific diagnosis of tuberculosis. To explore this possibility, overlapping synthetic peptides corresponding to 39 proteins predicted to be encoded by genes present in regions of differences were tested for antibody-reactivity with sera from tuberculosis patients and healthy subjects. The results identified four immunodominant peptides corresponding to four different proteins, with three of the peptides showing significantly stronger antibody reactivity and rate of positivity with sera from tuberculosis patients than healthy subjects. The fourth peptide was recognized equally well by the sera of tuberculosis patients as well as healthy subjects. Predication of antibody epitopes by bioinformatics analyses using ABCpred server predicted multiple linear epitopes in each peptide. Furthermore, peptide sequence analysis for sequence identity using BLAST suggested <em>M. tuberculosis</em>-specificity for the three peptides that had preferential reactivity with sera from tuberculosis patients, but the peptide with equal reactivity with sera of TB patients and healthy subjects showed significant identity with sequences present in nob-tuberculous mycobacteria. The three identified <em>M. tuberculosis</em>-specific immunodominant peptides may be useful in the serological diagnosis of tuberculosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genomic%20regions%20of%20differences" title="genomic regions of differences">genomic regions of differences</a>, <a href="https://publications.waset.org/abstracts/search?q=Mycobacterium%20tuberculossis" title=" Mycobacterium tuberculossis"> Mycobacterium tuberculossis</a>, <a href="https://publications.waset.org/abstracts/search?q=peptides" title=" peptides"> peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=serodiagnosis" title=" serodiagnosis"> serodiagnosis</a> </p> <a href="https://publications.waset.org/abstracts/83354/antibody-reactivity-of-synthetic-peptides-belonging-to-proteins-encoded-by-genes-located-in-mycobacterium-tuberculosis-specific-genomic-regions-of-differences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> DNAJB6 Chaperone Prevents the Aggregation of Intracellular but not Extracellular Aβ Peptides Associated with Alzheimer’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasha%20M.%20Hussein">Rasha M. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Reem%20M.%20Hashem"> Reem M. Hashem</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20A.%20Rashed"> Laila A. Rashed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease is the most common dementia disease in the elderly. It is characterized by the accumulation of extracellular amyloid β (Aβ) peptides and intracellular hyper-phosphorylated tau protein. In addition, recent evidence indicates that accumulation of intracellular amyloid β peptides may play a role in Alzheimer’s disease pathogenesis. This suggests that intracellular Heat Shock Proteins (HSP) that maintain the protein quality control in the cell might be potential candidates for disease amelioration. DNAJB6, a member of DNAJ family of HSP, effectively prevented the aggregation of poly glutamines stretches associated with Huntington’s disease both in vitro and in cells. In addition, DNAJB6 was found recently to delay the aggregation of Aβ42 peptides in vitro. In the present study, we investigated the ability of DNAJB6 to prevent the aggregation of both intracellular and extracellular Aβ peptides using transfection of HEK293 cells with Aβ-GFP and recombinant Aβ42 peptides respectively. We performed western blotting and immunofluorescence techniques. We found that DNAJB6 can prevent Aβ-GFP aggregation, but not the seeded aggregation initiated by extracellular Aβ peptides. Moreover, DNAJB6 required interaction with HSP70 to prevent the aggregation of Aβ-GFP protein and its J-domain was essential for this anti-aggregation activity. Interestingly, overexpression of other DNAJ proteins as well as HSPB1 suppressed Aβ-GFP aggregation efficiently. Our findings suggest that DNAJB6 is a promising candidate for the inhibition of Aβ-GFP mediated aggregation through a canonical HSP70 dependent mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A%CE%B2" title="Aβ">Aβ</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title=" Alzheimer’s disease"> Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=chaperone" title=" chaperone"> chaperone</a>, <a href="https://publications.waset.org/abstracts/search?q=DNAJB6" title=" DNAJB6"> DNAJB6</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a> </p> <a href="https://publications.waset.org/abstracts/35650/dnajb6-chaperone-prevents-the-aggregation-of-intracellular-but-not-extracellular-av-peptides-associated-with-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Prediction of Antibacterial Peptides against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suwapitch%20Chalongkulasak">Suwapitch Chalongkulasak</a>, <a href="https://publications.waset.org/abstracts/search?q=Teerasak%20E-Kobon"> Teerasak E-Kobon</a>, <a href="https://publications.waset.org/abstracts/search?q=Pramote%20Chumnanpuen"> Pramote Chumnanpuen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acne vulgaris is a common skin disease mainly caused by the Gram–positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates inflammation process in human sebaceous glands. Giant African snail (Achatina fulica) is alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of this snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using several bioinformatic tools for determination of antimicrobial (iAMPpred), anti–biofilm (dPABBs), cytotoxic (Toxinpred), cell membrane penetrating (CPPpred) and anti–quorum sensing (QSPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti–P. acnes (APA) peptide candidates were performed by PEP–FOLD3 program and the five aforementioned tools. All candidates had random coiled structure and were named as APA1–ori, APA2–ori, APA3–ori, APA1–mod, APA2–mod and APA3–mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on some isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Propionibacterium%20acnes" title="Propionibacterium acnes">Propionibacterium acnes</a>, <a href="https://publications.waset.org/abstracts/search?q=Achatina%20fulica" title=" Achatina fulica"> Achatina fulica</a>, <a href="https://publications.waset.org/abstracts/search?q=peptidomes" title=" peptidomes"> peptidomes</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20peptides" title=" antibacterial peptides"> antibacterial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=snail%20mucus" title=" snail mucus"> snail mucus</a> </p> <a href="https://publications.waset.org/abstracts/118518/prediction-of-antibacterial-peptides-against-propionibacterium-acnes-from-the-peptidomes-of-achatina-fulica-mucus-fractions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Bioactivity of Peptides from Two Mushrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Farzaneh">Parisa Farzaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Azade%20Harati"> Azade Harati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mushrooms, or macro-fungi, as an important superfood, contain many bioactive compounds, particularly bio-peptides. In this research, mushroom proteins were extracted by buffer or buffer plus salt (0.15 M), along with an ultrasound bath to extract the intercellular protein. As a result, the highest amount of proteins in mushrooms were categorized into albumin. Proteins were also hydrolyzed and changed into peptides through endogenous and exogenous proteases, including gastrointestinal enzymes. The potency of endogenous proteases was also higher in Agaricus bisporus than Terfezia claveryi, as their activity ended at 75 for 15 min. The blanching process, endogenous enzymes, the mixture of gastrointestinal enzymes (pepsin-trypsin-α-chymotrypsin or trypsin- α-chymotrypsin) produced the different antioxidant and antibacterial hydrolysates. The peptide fractions produced with different cut-off ultrafilters also had various levels of radical scavenging, lipid peroxidation inhibition, and antibacterial activities. The bio-peptides with superior bioactivities (less than 3 kD of T. claveryi) were resistant to various environmental conditions (pH and temperatures). Therefore, they are good options to be added to nutraceutical and pharmaceutical preparations or functional foods, even during processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-peptide" title="bio-peptide">bio-peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=mushrooms" title=" mushrooms"> mushrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20enzymes" title=" gastrointestinal enzymes"> gastrointestinal enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a> </p> <a href="https://publications.waset.org/abstracts/183239/bioactivity-of-peptides-from-two-mushrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Design, Synthesis, and Evaluation of Small Peptides for Managing Inflammation: Inhibition to Substrate Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palwinder%20Singh">Palwinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Baljit%20Kaur"> Baljit Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhmeet%20Kaur"> Sukhmeet Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amongst a library of rationally designed small peptides, (H)Gly-Gly-Phe-Leu(OMe) was identified, reducing prostaglandin production of COX-2 with IC50 60 nM vs. 6000 nM for COX-1. The 5 mg Kg-1 dose of this compound rescued albino mice by 80% from capsaicin-induced paw licking and recovered it by 60% from carrageenan-induced inflammation. The mode of action of the compound for targeting COX-2, iNOS, and VGSC was investigated by using substances P, L-arginine, and veratrine, respectively, as the biomarkers. The interactions of the potent compound with COX-2 were supported by the isothermal calorimetry experiments showing Ka 6.10±1.10x104 mol-1 and ΔG -100.3 k J mol-1 in comparison to Ka 0.41x103 ±0.09 mol-1 and ΔG -19.2±0.06 k J mol-1 for COX-1. This compound did not show toxicity up to 2000 mg Kg-1 dose. Furthermore, beyond the conventional mode of working with anti-inflammatory agents through enzyme inhibition, COX-2 was provided with a peptide-based alternate substrate. Proline-centered pentapeptide iso-conformational to arachidonic acid exhibited appreciable selectivity for COX-2 overcoming acetic acid and formalin-induced pain in rats to almost 80% and was treated as a substrate by the enzyme. Hence, we suggest small peptides as highly potent and promising candidates for their further development into an anti-inflammatory drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20peptides" title="small peptides">small peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclooxygenase" title=" cyclooxygenase"> cyclooxygenase</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate" title=" substrate"> substrate</a> </p> <a href="https://publications.waset.org/abstracts/160257/design-synthesis-and-evaluation-of-small-peptides-for-managing-inflammation-inhibition-to-substrate-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Investigations of Protein Aggregation Using Sequence and Structure Based Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Michael%20Gromiha">M. Michael Gromiha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mary%20Thangakani"> A. Mary Thangakani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar"> Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Velmurugan"> D. Velmurugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson, and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence-based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation-prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation" title="aggregation">aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloids" title=" amyloids"> amyloids</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20proteins" title=" thermophilic proteins"> thermophilic proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20residues" title=" amino acid residues"> amino acid residues</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20techniques" title=" machine learning techniques"> machine learning techniques</a> </p> <a href="https://publications.waset.org/abstracts/20424/investigations-of-protein-aggregation-using-sequence-and-structure-based-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Design and Development of Small Peptides as Anti-inflammatory Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palwinder%20Singh">Palwinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beyond the conventional mode of working with anti-inflammatory agents through enzyme inhibition, herein, an alternate substrate of cyclooxygenase-2 was developed. Proline centered pentapeptide iso-conformational to arachidonic acid exhibited appreciable selectivity for COX-2 overcoming acetic acid and formalin induced pain in rats to almost 80% and was treated as a substrate by the enzyme. Remarkably, COX-2 metabolized the pentapeptide into small fragments consisting mainly of di- and tri-peptides that ensured the safe breakdown of the peptide under in-vivo conditions. The kinetic parameter Kcat/Km for COX-2 mediated metabolism of peptide 6.3 x 105 M-1 s-1 was quite similar to 9.5 x 105 M-1 s-1 for arachidonic acid. Evidenced by the dynamic molecular studies and the use of Y385F COX-2, it was observed that the breakage of the pentapeptide has probably taken place through H-bond activation of the peptide bond by the side chains of Y385 and S530. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20peptides" title="small peptides">small peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory%20agents" title=" anti-inflammatory agents"> anti-inflammatory agents</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclooxygenase-2" title=" cyclooxygenase-2"> cyclooxygenase-2</a>, <a href="https://publications.waset.org/abstracts/search?q=unnatural%20substrates" title=" unnatural substrates"> unnatural substrates</a> </p> <a href="https://publications.waset.org/abstracts/163697/design-and-development-of-small-peptides-as-anti-inflammatory-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Total Synthesis of Natural Cyclic Depsi Peptides by Convergent SPPS and Macrolactonization Strategy for Anti-Tb Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katharigatta%20N.%20Venugopala">Katharigatta N. Venugopala</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Albericio"> Fernando Albericio</a>, <a href="https://publications.waset.org/abstracts/search?q=Bander%20E.%20Al-Dhubiab"> Bander E. Al-Dhubiab</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Govender"> T. Govender </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent years have witnessed a renaissance in the field of peptides that are obtained from various natural sources such as many bacteria, fungi, plants, seaweeds, vertebrates, invertebrates and have been reported for various pharmacological properties such as anti-TB, anticancer, antimalarial, anti-inflammatory, anti-HIV, antibacterial, antifungal, and antidiabetic, activities. In view of the pharmacological significance of natural peptides, serious research efforts of many scientific groups and pharmaceutical companies have consequently focused on them to explore the possibility of developing their potential analogues as therapeutic agents. Solid phase and solution phase peptide synthesis are the two methodologies currently available for the synthesis of natural or synthetic linear or cyclic depsi-peptides. From a synthetic point of view, there is no doubt that the solid-phase methodology gained added advantages over solution phase methodology in terms of simplicity, purity of the compound and the speed with which peptides can be synthesised. In the present study total synthesis, purification and structural elucidation of analogues of natural anti-TB cyclic depsi-peptides such as depsidomycin, massetolides and viscosin has been attempted by solid phase method using standard Fmoc protocols and finally off resin cyclization in solution phase method. In case of depsidomycin, synthesis of linear peptide on solid phase could not be achieved because of two turn inducing amino acids in the peptide sequence, but total synthesis was achieved by convergent solid phase peptide synthesis followed by cyclization in solution phase method. The title compounds obtained were in good yields and characterized by NMR and HRMS. Anti-TB results revealed that the potential title compound exhibited promising activity at 4 µg/mL against H37Rv and 16 µg/mL against MDR strains of tuberculosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=total%20synthesis" title="total synthesis">total synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20depsi-peptides" title=" cyclic depsi-peptides"> cyclic depsi-peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-TB%20activity" title=" anti-TB activity"> anti-TB activity</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/16893/total-synthesis-of-natural-cyclic-depsi-peptides-by-convergent-spps-and-macrolactonization-strategy-for-anti-tb-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> The Effect of Taking Heavy Metal on Gastrointestinal Peptides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurgul%20Senol">Nurgul Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=Melda%20Azman"> Melda Azman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the rate of release of gastrointestinal peptides heavy metal compounds applied to a certain extent (gastrin/CCK) on immunohistochemical aimed to determine the effect. This study was supported by TÜBİTAK. Subjects were randomly grouped into three. Group I; iron (Fe), Group II; zinc (Zn), Group III; control; gavage technique was applied to each group once a day throughout 30 days. At the end of the experiment, rats were decapitated and their stomach-intestine tissues removed, Peroxidase anti peroxidase method was applied following the routine histological follow-ups. According to the control group, in the stomach, had more positive cell density of gastrin in Fe groups, it was observed that group followed by Zn. It was found between the groups in the stomach and intestinal gastrin, gastrin-positive cell density decreases towards the intestines from the stomach. Although CCK differences in staining were observed in the control group, the intensity of staining intensity between the two groups in positive cells was determined to be more than the stomach. The group in the intestines, there is no change in terms of positivity CCK. Consequently, there is no significant effect on gastrointestinal peptides in Zn application. It has been identified Fe application has a significant effect on the releasing of CCK/gastrin peptides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alimentary%20canal" title="alimentary canal">alimentary canal</a>, <a href="https://publications.waset.org/abstracts/search?q=CCK" title=" CCK"> CCK</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrin" title=" gastrin"> gastrin</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/51179/the-effect-of-taking-heavy-metal-on-gastrointestinal-peptides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> CCK/Gastrin Immunoreactivity in Gastrointestinal Tract of Vimba vimba</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurg%C3%BCl%20%C5%9Eenol">Nurgül Şenol</a>, <a href="https://publications.waset.org/abstracts/search?q=Melda%20Azman"> Melda Azman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, gastrointestinal immunohistochemistry in the Vimba vimba and the localization of CCK/gastrin were determined. Although there are a number of studies which relate to the gastrointestinal histochemistry and the localization of the peptides, a literature research in this field revealed that no histochemical or immunohistochemical study covering also the species had been found in our country. In this research, species will be provided from Vimba vimba located in Eğirdir lake. Stomach samples and intestinal samples of these fish will be exposed to routine histological tissue process, embedded in paraffin blocks, and 5-6 μ -thick sections will be taken. Using the PAP (Peroxidase anti-peroxidase) method, localization of the peptides CCK/gastrin was to be found. The densities of peptides of this species were compared, and then the findings obtained were to be evaluated through the statistical analysis methods (SPSS). Endocrine cells reactive to gastrin/CCK antiserum were demonstrated in the stomach and intestinal mucosa. There is a significant difference between gastrin and CCK when compared to regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CCK" title="CCK">CCK</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrin" title=" gastrin"> gastrin</a>, <a href="https://publications.waset.org/abstracts/search?q=immunoreactivity" title=" immunoreactivity"> immunoreactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=vimba%20vimba" title=" vimba vimba"> vimba vimba</a> </p> <a href="https://publications.waset.org/abstracts/44274/cckgastrin-immunoreactivity-in-gastrointestinal-tract-of-vimba-vimba" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Synthesis and Characterization of Cyclic PNC-28 Peptide, Residues 17–26 (ETFSDLWKLL), A Binding Domain of p53</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepshikha%20Verma">Deepshikha Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20N.%20Rajasekharan%20Pillai"> V. N. Rajasekharan Pillai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study reports the synthesis of cyclic PNC-28 peptides with solid-phase peptide synthesis method. In the first step, we synthesize the linear PNC-28 Peptide and in the second step, we cyclize (N-to-C or head-to-tail cyclization) the linear PNC-28 peptide. The molecular formula of cyclic PNC-28 peptide is C64H88N12O16 and its m/z mass is ≈1233.64. Elemental analysis of cyclic PNC-28 is C, 59.99; H, 6.92; N, 13.12; O, 19.98. The characterization of LC-MS, CD, FT-IR, and 1HNMR has been done to confirm the successful synthesis and cyclization of linear PNC-28 peptides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CD" title="CD">CD</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=1HNMR" title=" 1HNMR"> 1HNMR</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20peptide" title=" cyclic peptide"> cyclic peptide</a> </p> <a href="https://publications.waset.org/abstracts/149263/synthesis-and-characterization-of-cyclic-pnc-28-peptide-residues-17-26-etfsdlwkll-a-binding-domain-of-p53" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Radiochemical Purity of 68Ga-BCA-Peptides: Separation of All 68Ga Species with a Single iTLC Strip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anton%20A.%20Larenkov">Anton A. Larenkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alesya%20Ya%20Maruk"> Alesya Ya Maruk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, highly effective iTLC single strip method for the determination of radiochemical purity (RCP) of <sup>68</sup>Ga-BCA-peptides was developed (with no double-developing, changing of eluents or other additional manipulation). In this method iTLC-SG strips and commonly used eluent TFA<sub>aq.</sub> (3-5 % (v/v)) are used. The method allows determining each of the key radiochemical forms of <sup>68</sup>Ga (colloidal, bound, ionic) separately with the peaks separation being no less than 4 σ. <em>Rf</em> = 0.0-0.1 for <sup>68</sup>Ga-colloid; <em>Rf</em> = 0.5-0.6 for <sup>68</sup>Ga-BCA-peptides; <em>Rf</em> = 0.9-1.0 for ionic <sup>68</sup>Ga. The method is simple and fast: For developing length of 75 mm only 4-6 min is required (versus 18-20 min for pharmacopoeial method). The method has been tested on various compounds (including <sup>68</sup>Ga-DOTA-TOC, <sup>68</sup>Ga-DOTA-TATE, <sup>68</sup>Ga-NODAGA-RGD<sub>2</sub> etc.). The cross-validation work for every specific form of <sup>68</sup>Ga showed good correlation between method developed and control (pharmacopoeial) methods. The method can become convenient and much more informative replacement for pharmacopoeial methods, including HPLC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DOTA-TATE" title="DOTA-TATE">DOTA-TATE</a>, <a href="https://publications.waset.org/abstracts/search?q=68Ga" title=" 68Ga"> 68Ga</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=radiochemical%20purity" title=" radiochemical purity"> radiochemical purity</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmaceuticals" title=" radiopharmaceuticals"> radiopharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=TLC" title=" TLC"> TLC</a> </p> <a href="https://publications.waset.org/abstracts/54684/radiochemical-purity-of-68ga-bca-peptides-separation-of-all-68ga-species-with-a-single-itlc-strip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Antibacterial and Anti-Biofilm Activity of Papain Hydrolysed Camel Milk Whey and Its Fractions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdel-Hamid">M. Abdel-Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Saporito"> P. Saporito</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Mateiu"> R. V. Mateiu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Osman"> A. Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Romeih"> E. Romeih</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jenssen"> H. Jenssen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Camel milk whey (CMW) was hydrolyzed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial and anti-biofilm activity of the CMW, Camel milk whey hydrolysate (CMWH) and the obtained SEC-fractions was assessed against Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA). SEC-F2 (fraction 2) exhibited antibacterial effectiveness against MRSA and P. aeruginosa with the minimum inhibitory concentration of 0.31 and 0.156 mg/ml, respectively. Furthermore, SEC-F2 significantly decreased biofilm biomass by 71% and 83 % for MRSA and P. aeruginosa in a crystal violet microplate assay. Scanning electron microscopy showed that the SEC-F2 caused changes in the treated bacterial cells. Additionally, LC/MS analysis was used to characterize the peptides of SEC-F2. Two major peptides were detected in SEC-F2 having masses of 414.05 Da and 456.06 Da. In conclusion, this study has demonstrated that hydrolysis of CMW with papain generates small and extremely potent antibacterial and anti-biofilm peptides against both MRSA and P. aeruginosa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camel%20milk" title="camel milk">camel milk</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20proteins" title=" whey proteins"> whey proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20peptide" title=" antibacterial peptide"> antibacterial peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-biofilm" title=" anti-biofilm"> anti-biofilm</a> </p> <a href="https://publications.waset.org/abstracts/90413/antibacterial-and-anti-biofilm-activity-of-papain-hydrolysed-camel-milk-whey-and-its-fractions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> A Novel Epitope Prediction for Vaccine Designing against Ebola Viral Envelope Proteins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manju%20Kanu">Manju Kanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Sinha"> Subrata Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Surabhi%20Johari"> Surabhi Johari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Viral proteins of Ebola viruses belong to one of the best studied viruses; however no effective prevention against EBOV has been developed. Epitope-based vaccines provide a new strategy for prophylactic and therapeutic application of pathogen-specific immunity. A critical requirement of this strategy is the identification and selection of T-cell epitopes that act as vaccine targets. This study describes current methodologies for the selection process, with Ebola virus as a model system. Hence great challenge in the field of ebola virus research is to design universal vaccine. A combination of publicly available bioinformatics algorithms and computational tools are used to screen and select antigen sequences as potential T-cell epitopes of supertypes Human Leukocyte Antigen (HLA) alleles. MUSCLE and MOTIF tools were used to find out most conserved peptide sequences of viral proteins. Immunoinformatics tools were used for prediction of immunogenic peptides of viral proteins in zaire strains of Ebola virus. Putative epitopes for viral proteins (VP) were predicted from conserved peptide sequences of VP. Three tools NetCTL 1.2, BIMAS and Syfpeithi were used to predict the Class I putative epitopes while three tools, ProPred, IEDB-SMM-align and NetMHCII 2.2 were used to predict the Class II putative epitopes. B cell epitopes were predicted by BCPREDS 1.0. Immunogenic peptides were identified and selected manually by putative epitopes predicted from online tools individually for both MHC classes. Finally sequences of predicted peptides for both MHC classes were looked for common region which was selected as common immunogenic peptide. The immunogenic peptides were found for viral proteins of Ebola virus: epitopes FLESGAVKY, SSLAKHGEY. These predicted peptides could be promising candidates to be used as target for vaccine design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epitope" title="epitope">epitope</a>, <a href="https://publications.waset.org/abstracts/search?q=b%20cell" title=" b cell"> b cell</a>, <a href="https://publications.waset.org/abstracts/search?q=immunogenicity" title=" immunogenicity"> immunogenicity</a>, <a href="https://publications.waset.org/abstracts/search?q=ebola" title=" ebola"> ebola</a> </p> <a href="https://publications.waset.org/abstracts/36701/a-novel-epitope-prediction-for-vaccine-designing-against-ebola-viral-envelope-proteins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Phage Display-Derived Vaccine Candidates for Control of Bovine Anaplasmosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Itzel%20Amaro-Estrada">Itzel Amaro-Estrada</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Vergara-Rivera"> Eduardo Vergara-Rivera</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginia%20Juarez-Flores"> Virginia Juarez-Flores</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayra%20Cobaxin-Cardenas"> Mayra Cobaxin-Cardenas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20Estela%20Quiroz"> Rosa Estela Quiroz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jesus%20F.%20Preciado"> Jesus F. Preciado</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Rodriguez-Camarillo"> Sergio Rodriguez-Camarillo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bovine anaplasmosis is an infectious, tick-borne disease caused mainly by Anaplasma marginale; typical signs include anemia, fever, abortion, weight loss, decreased milk production, jaundice, and potentially death. Sick bovine can recover when antibiotics are administered; however, it usually remains as carrier for life, being a risk of infection for susceptible cattle. Anaplasma marginale is an obligate intracellular Gram-negative bacterium with genetic composition highly diverse among geographical isolates. There are currently no vaccines fully effective against bovine anaplasmosis; therefore, the economic losses due to disease are present. Vaccine formulation became a hard task for several pathogens as Anaplasma marginale, but peptide-based vaccines are an interesting proposal way to induce specific responses. Phage-displayed peptide libraries have been proved one of the most powerful technologies for identifying specific ligands. Screening of these peptides libraries is also a tool for studying interactions between proteins or peptides. Thus, it has allowed the identification of ligands recognized by polyclonal antiserums, and it has been successful for the identification of relevant epitopes in chronic diseases and toxicological conditions. Protective immune response to bovine anaplasmosis includes high levels of immunoglobulins subclass G2 (IgG2) but not subclass IgG1. Therefore, IgG2 from the serum of protected bovine can be useful to identify ligands, which can be part of an immunogen for cattle. In this work, phage display random peptide library Ph.D. ™ -12 was incubating with IgG2 or blood sera of immunized bovines against A. marginale as targets. After three rounds of biopanning, several candidates were selected for additional analysis. Subsequently, their reactivity with sera immunized against A. marginale, as well as with positive and negative sera to A. marginale was evaluated by immunoassays. A collection of recognized peptides tested by ELISA was generated. More than three hundred phage-peptides were separately evaluated against molecules which were used during panning. At least ten different peptides sequences were determined from their nucleotide composition. In this approach, three phage-peptides were selected by their binding and affinity properties. In the case of the development of vaccines or diagnostic reagents, it is important to evaluate the immunogenic and antigenic properties of the peptides. Immunogenic in vitro and in vivo behavior of peptides will be assayed as synthetic and as phage-peptide for to determinate their vaccine potential. Acknowledgment: This work was supported by grant SEP-CONACYT 252577 given to I. Amaro-Estrada. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine%20anaplasmosis" title="bovine anaplasmosis">bovine anaplasmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=peptides" title=" peptides"> peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=phage%20display" title=" phage display"> phage display</a>, <a href="https://publications.waset.org/abstracts/search?q=veterinary%20vaccines" title=" veterinary vaccines"> veterinary vaccines</a> </p> <a href="https://publications.waset.org/abstracts/109562/phage-display-derived-vaccine-candidates-for-control-of-bovine-anaplasmosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> The Production of Collagen and Collagen Peptides from Nile Tilapia Skin Using Membrane Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Thuanthong">M. Thuanthong</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Youravong"> W. Youravong</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Sirinupong"> N. Sirinupong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nile tilapia (Oreochromis niloticus) is one of fish species cultured in Thailand with a high production volume. A lot of skin is generated during fish processing. In addition, there are many research reported that fish skin contains abundant of collagen. Thus, the use of Nile tilapia skin as collagen source can increase the benefit of industrial waste. In this study, Acid soluble collagen (ASC) was extracted at 5, 15 or 25 ˚C with 0.5 M acetic acid then the acid was removed out and collagen was concentrated by ultrafiltration-diafiltration (UFDF). The triple helix collagen from UFDF process was used as substrate to produce collagen peptides by alcalase hydrolysis in an enzymatic membrane reactor (EMR) coupling with 1 kDa molecular weight cut off (MWCO) polysulfone hollow fiber membrane. The results showed that ASC extracted at high temperature (25 ˚C) with 0.5 M acetic acid for 5 h still preserved triple helix structure. In the UFDF process, the acid removal was higher than 90 % without any effect on ASC properties, particularly triple helix structure as indicated by circular dichroism spectrum. Moreover, Collagen from UFDF was used to produce collagen peptides by EMR. In EMR, collagen was pre-hydrolyzed by alcalase for 60 min before introduced to membrane separation. The EMR operation was operated for 10 h and provided a good of protein conversion stability. The results suggested that there is a successfulness of UF in application for acid removal to produce ASC with desirable preservation of its quality. In addition, the EMR was proven to be an effective process to produce low molecular weight peptides with ACE-inhibitory activity properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20soluble%20collagen" title="acid soluble collagen">acid soluble collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration-diafiltration" title=" ultrafiltration-diafiltration"> ultrafiltration-diafiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20membrane%20reactor" title=" enzymatic membrane reactor"> enzymatic membrane reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=ace-inhibitory%20activity" title=" ace-inhibitory activity"> ace-inhibitory activity</a> </p> <a href="https://publications.waset.org/abstracts/31350/the-production-of-collagen-and-collagen-peptides-from-nile-tilapia-skin-using-membrane-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Mode of Action of Surface Bound Antimicrobial Peptides Melimine and Mel4 against Pseudomonas aeruginosa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Yasir">Muhammad Yasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Debarun%20Dutta"> Debarun Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Willcox"> Mark Willcox</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomaterial-associated infections are a multi-billion dollar burden globally. Antimicrobial peptide-based coatings may be able to prevent such infections. The aim of this study was to investigate the mechanism of action surface bound peptides (AMPs) against Pseudomonas aeruginosa 6294. Melimine and Mel4 were covalently attached to glass coverslips using azido-benzoic acid. Attachment was confirmed using X-ray photoelectron spectroscopy. P. aeruginosa was allowed to attach to AMP-coated glass for up to 6 hours. The effect of the surface-bound AMPs on bacterial cell membranes was evaluated using the dyes DiSC3-(5), Sytox green, SYTO 9 and propidium iodide with fluorescence microscopy. Release of cytoplasmic materials ATP and DNA/RNA were determined in the surrounding fluid. The amount of cell death was estimated by agar plate counts. The AMPs were successfully covalently bound to the glass as demonstrated by increases in %nitrogen of 3.6% (melimine) and 2.3% (Mel4) compared to controls. Immobilized peptides disrupted the cytoplasmic membrane potential of P. aeruginosa within 10 min. This was followed by the release of ATP after 2 h. Membrane permeabilization started at 3 h of contact with glass coated AMPs. There was a significant number of bacteria (59% for melimine; 36% for Mel-4) with damaged membranes after 4 h of contact. At the 6 h time point, release of DNA occurred with melimine releasing 2 times the amount of DNA/RNA than Mel4 surfaces (p < 0.05). Surface bound AMPs were able to disrupt cell membranes with subsequent release of cytoplasmic materials, and ultimately resulting in bacterial death. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title="biomaterials">biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilized%20antimicrobial%20peptides" title=" immobilized antimicrobial peptides"> immobilized antimicrobial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20aeruginosa" title=" P. aeruginosa"> P. aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20of%20action" title=" mode of action"> mode of action</a> </p> <a href="https://publications.waset.org/abstracts/98822/mode-of-action-of-surface-bound-antimicrobial-peptides-melimine-and-mel4-against-pseudomonas-aeruginosa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Targeting Peptide Based Therapeutics: Integrated Computational and Experimental Studies of Autophagic Regulation in Host-Parasite Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vrushali%20Guhe">Vrushali Guhe</a>, <a href="https://publications.waset.org/abstracts/search?q=Shailza%20Singh"> Shailza Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cutaneous leishmaniasis is neglected tropical disease present worldwide caused by the protozoan parasite Leishmania major, the therapeutic armamentarium for leishmaniasis are showing several limitations as drugs are showing toxic effects with increasing resistance by a parasite. Thus identification of novel therapeutic targets is of paramount importance. Previous studies have shown that autophagy, a cellular process, can either facilitate infection or aid in the elimination of the parasite, depending on the specific parasite species and host background in leishmaniasis. In the present study, our objective was to target the essential autophagy protein ATG8, which plays a crucial role in the survival, infection dynamics, and differentiation of the Leishmania parasite. ATG8 in Leishmania major and its homologue, LC3, in Homo sapiens, act as autophagic markers. Present study manifested the crucial role of ATG8 protein as a potential target for combating Leishmania major infection. Through bioinformatics analysis, we identified non-conserved motifs within the ATG8 protein of Leishmania major, which are not present in LC3 of Homo sapiens. Against these two non-conserved motifs, we generated a peptide library of 60 peptides on the basis of physicochemical properties. These peptides underwent a filtering process based on various parameters, including feasibility of synthesis and purification, compatibility with Selective Reaction Monitoring (SRM)/Multiple reaction monitoring (MRM), hydrophobicity, hydropathy index, average molecular weight (Mw average), monoisotopic molecular weight (Mw monoisotopic), theoretical isoelectric point (pI), and half-life. Further filtering criterion shortlisted three peptides by using molecular docking and molecular dynamics simulations. The direct interaction between ATG8 and the shortlisted peptides was confirmed through Surface Plasmon Resonance (SPR) experiments. Notably, these peptides exhibited the remarkable ability to penetrate the parasite membrane and exert profound effects on Leishmania major. The treatment with these peptides significantly impacted parasite survival, leading to alterations in the cell cycle and morphology. Furthermore, the peptides were found to modulate autophagosome formation, particularly under starved conditions, suggesting their involvement in disrupting the regulation of autophagy within Leishmania major. In vitro, studies demonstrated that the selected peptides effectively reduced the parasite load within infected host cells. Encouragingly, these findings were corroborated by in vivo experiments, which showed a reduction in parasite burden upon peptide administration. Additionally, the peptides were observed to affect the levels of LC3II within host cells. In conclusion, our findings highlight the efficacy of these novel peptides in targeting Leishmania major’s ATG8 and disrupting parasite survival. These results provide valuable insights into the development of innovative therapeutic strategies against leishmaniasis via targeting autophagy protein ATG8 of Leishmania major. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATG8" title="ATG8">ATG8</a>, <a href="https://publications.waset.org/abstracts/search?q=leishmaniasis" title=" leishmaniasis"> leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=MD%20simulation" title=" MD simulation"> MD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide%20designing" title=" peptide designing"> peptide designing</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutics" title=" therapeutics"> therapeutics</a> </p> <a href="https://publications.waset.org/abstracts/169688/targeting-peptide-based-therapeutics-integrated-computational-and-experimental-studies-of-autophagic-regulation-in-host-parasite-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Endothelin Cells and Its Molecular Biology and Microbiology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chro%20Kawyan">Chro Kawyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endothelin-1 (ET-1), the principal individual from the newfound mammalian endothelin group of organically dynamic peptides, was initially distinguished as a 21 buildup powerful vasoconstrictor peptide in vascular endothelial cells. However, it has since been demonstrated to have a wide range of pharmacological activities in tissues both inside and outside the cardiovascular system. Additionally, peptides that have a striking resemblance to ET-1 have been identified as the primary toxic component of snake venom. In addition, late examinations have proposed that warm blooded creatures, including people, produce three unmistakable individuals from this peptide family, ET-1, ET-2 and ET-J, which might have various profiles of organic action and may follow up on particular subtypes of endothelin receptor. Masashi Yanagisawa and Tomoh Masaki survey the ongoing status of the organic chemistry and sub-atomic science of endothelin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thelin" title="thelin">thelin</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiology" title=" microbiology"> microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biology" title=" molecular biology"> molecular biology</a>, <a href="https://publications.waset.org/abstracts/search?q=cell" title=" cell"> cell</a> </p> <a href="https://publications.waset.org/abstracts/172519/endothelin-cells-and-its-molecular-biology-and-microbiology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Incorporation of Growth Factors onto Hydrogels via Peptide Mediated Binding for Development of Vascular Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katie%20Kilgour">Katie Kilgour</a>, <a href="https://publications.waset.org/abstracts/search?q=Brendan%20Turner"> Brendan Turner</a>, <a href="https://publications.waset.org/abstracts/search?q=Carly%20Catella"> Carly Catella</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Daniele"> Michael Daniele</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Menegatti"> Stefano Menegatti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In vivo, the extracellular matrix (ECM) provides biochemical and mechanical properties that are instructional to resident cells to form complex tissues with characteristics to develop and support vascular networks. In vitro, the development of vascular networks can be guided by biochemical patterning of substrates via spatial distribution and display of peptides and growth factors to prompt cell adhesion, differentiation, and proliferation. We have developed a technique utilizing peptide ligands that specifically bind vascular endothelial growth factor (VEGF), erythropoietin (EPO), or angiopoietin-1 (ANG1) to spatiotemporally distribute growth factors to cells. This allows for the controlled release of each growth factor, ultimately enhancing the formation of a vascular network. Our engineered tissue constructs (ETCs) are fabricated out of gelatin methacryloyl (GelMA), which is an ideal substrate for tailored stiffness and bio-functionality, and covalently patterned with growth factor specific peptides. These peptides mimic growth factor receptors, facilitating the non-covalent binding of the growth factors to the ETC, allowing for facile uptake by the cells. We have demonstrated in the absence of cells the binding affinity of VEGF, EPO, and ANG1 to their respective peptides and the ability for each to be patterned onto a GelMA substrate. The ability to organize growth factors on an ETC provides different functionality to develop organized vascular networks. Our results demonstrated a method to incorporate biochemical cues into ETCs that enable spatial and temporal control of growth factors. Future efforts will investigate the cellular response by evaluating gene expression, quantifying angiogenic activity, and measuring the speed of growth factor consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20factor" title="growth factor">growth factor</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide" title=" peptide"> peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=angiogenesis" title=" angiogenesis"> angiogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular" title=" vascular"> vascular</a>, <a href="https://publications.waset.org/abstracts/search?q=patterning" title=" patterning"> patterning</a> </p> <a href="https://publications.waset.org/abstracts/148298/incorporation-of-growth-factors-onto-hydrogels-via-peptide-mediated-binding-for-development-of-vascular-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Isolation, Characterization, and Antibacterial Evaluation of Antimicrobial Peptides and Derivatives from Fly Larvae Sarconesiopsis magellanica (Diptera: Calliphoridae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D%C3%ADaz-Roa">A. Díaz-Roa</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20I.%20Silva%20Junior"> P. I. Silva Junior</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20J.%20Bello"> F. J. Bello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sarconesiopsis magellanica (Diptera: Calliphoridae) is a medically important necrophagous fly which is used for establishing the post-mortem interval. Dipterous maggots release diverse proteins and peptides contained in larval excretion and secretion (ES) products playing a key role in digestion. The most important mechanism for combating infection using larval therapy depends on larval ES. These larvae are protected against infection by a diverse spectrum of antimicrobial peptides (AMPs), one already known like lucifensin. Special interest in these peptides has also been aroused regarding understanding their role in wound healing since they degrade necrotic tissue and kill different bacteria during larval therapy. The action of larvae on wounds occurs through 3 mechanisms of action: removal of necrotic tissue, stimulation of granulation tissue, and antibacterial action of larval ES. Some components of the ES include calcium, urea, allantoin ammonium bicarbonate and reducing the viability of Gram positive and Gram negative bacteria. The Lucilia sericata fly larvae have been the most used, however, we need to evaluate new species that could potentially be similar or more effective than fly above. This study was thus aimed at identifying and characterizing S. magellanica AMPs contained in ES products for the first time and compared them with the common fly used L. sericata. These products were obtained from third-instar larvae taken from a previously established colony. For the first analysis, ES fractions were separate by Sep-Pak C18 disposable columns (first step). The material obtained was fractionated by RP-HPLC by using Júpiter C18 semi-preparative column. The products were then lyophilized and their antimicrobial activity was characterized by incubation with different bacterial strains. The first chromatographic analysis of ES from L. sericata gives 6 fractions with antimicrobial activity against Gram-positive bacteria Micrococus luteus, and 3 fractions with activity against Gram-negative bacteria Pseudomonae aeruginosa while the one from S. magellanica gaves 1 fraction against M. luteus and 4 against P. aeruginosa. Maybe one of these fractions could correspond to the peptide already known from L. sericata. These results show the first work for supporting further experiments aimed at validating S. magellanica use in larval therapy. We still need to search if we find some new molecules, by making mass spectrometry and ‘de novo sequencing’. Further studies are necessary to identify and characterize them to better understand their functioning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20peptides" title="antimicrobial peptides">antimicrobial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=larval%20therapy" title=" larval therapy"> larval therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucilia%20sericata" title=" Lucilia sericata"> Lucilia sericata</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarconesiopsis%20magellanica" title=" Sarconesiopsis magellanica"> Sarconesiopsis magellanica</a> </p> <a href="https://publications.waset.org/abstracts/34404/isolation-characterization-and-antibacterial-evaluation-of-antimicrobial-peptides-and-derivatives-from-fly-larvae-sarconesiopsis-magellanica-diptera-calliphoridae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> New Kinetic Approach to the Enzymatic Hydrolysis of Proteins: A Case of Thermolysin-Catalyzed Albumin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Trusek-Holownia">Anna Trusek-Holownia</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Noworyta"> Andrzej Noworyta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using an enzyme of known specificity the hydrolysis of protein was carried out in a controlled manner. The aim was to obtain oligopeptides being the so-called active peptides or their direct precursors. An original way of expression of the protein hydrolysis kinetics was introduced. Peptide bonds contained in the protein were recognized as a diverse-quality substrate for hydrolysis by the applied protease. This assumption was positively verified taking as an example the hydrolysis of albumin by thermolysin. Peptide linkages for this system should be divided into at least four groups. One of them is a group of bonds non-hydrolyzable by this enzyme. These that are broken are hydrolyzed at a rate that differs even by tens of thousands of times. Designated kinetic constants were k'F = 10991.4 L/g.h, k'M = 14.83L/g.h, k'S about 10-1 L/g.h for fast, medium and slow bonds, respectively. Moreover, a procedure for unfolding of the protein, conducive to the improved susceptibility to enzymatic hydrolysis (approximately three-fold increase in the rate) was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peptide%20bond%20hydrolysis" title="peptide bond hydrolysis">peptide bond hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20specificity" title=" enzyme specificity"> enzyme specificity</a>, <a href="https://publications.waset.org/abstracts/search?q=biologically%20active%20peptides" title=" biologically active peptides "> biologically active peptides </a> </p> <a href="https://publications.waset.org/abstracts/5523/new-kinetic-approach-to-the-enzymatic-hydrolysis-of-proteins-a-case-of-thermolysin-catalyzed-albumin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Physicochemical Characterization of Peptides Isolated from Vigna unguiculata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonaal%20Ramsookmohan">Sonaal Ramsookmohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legume seeds are common foods in human diet and have been identied as a valuable source of human nutritonn Since they are useful sources of protein; legume proteins are used in many food applicatonsn Critcal functonal propertes are recognized to impact the quality of foodn Cowpea (Vigna unguiculata), has been well documented for its immense potental in contributng to food security forming part of daily staple diets in most developing countriesn. In this study, cowpea seeds were used to prepare cowpea four, protein isolates by the salt extractonndialysis method and peptdes by enzymatc hydrolysis using Alcalase and Flavourzymen Functonal analyses such as water absorpton capacity, oil absorpton capacity, emulsifying and foaming propertes were conducted on the cowpea peptdesn The physicochemical propertes determine their potental applicaton in food industries as functonal ingredientsn Cowpea peptdes could increase the value of cowpea by expanding its use, as well as contribute to the legume grain sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title="physicochemical">physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=peptides" title=" peptides"> peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=Cowpea" title=" Cowpea"> Cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=alcalase" title=" alcalase"> alcalase</a>, <a href="https://publications.waset.org/abstracts/search?q=flavourzyme" title=" flavourzyme"> flavourzyme</a> </p> <a href="https://publications.waset.org/abstracts/173925/physicochemical-characterization-of-peptides-isolated-from-vigna-unguiculata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Biochemical and Antiviral Study of Peptides Isolated from Amaranthus hypochondriacus on Tomato Yellow Leaf Curl Virus Replication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Silvestre%20Mendoza%20Figueroa">José Silvestre Mendoza Figueroa</a>, <a href="https://publications.waset.org/abstracts/search?q=Anders%20Kvarnheden"> Anders Kvarnheden</a>, <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20M%C3%A9ndez%20Lozano"> Jesús Méndez Lozano</a>, <a href="https://publications.waset.org/abstracts/search?q=Edgar%20Antonio%20Rodr%C3%ADguez%20Negrete"> Edgar Antonio Rodríguez Negrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Soriano%20Garc%C3%ADa"> Manuel Soriano García</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agroindustrial plants such as cereals and pseudo cereals offer a substantial source of biomacromolecules, as they contain large amounts per tissue-gram of proteins, polysaccharides and lipids in comparison with other plants. In particular, Amaranthus hypochondriacus seeds have high levels of proteins in comparison with other cereal and pseudo cereal species, which makes the plant a good source of bioactive molecules such as peptides. Geminiviruses are one principal class of pathogens that causes important economic losses in crops, affecting directly the development and production of the plant. One such virus is the Tomato yellow leaf curl virus (TYLCV), which affects mainly Solanacea family plants such as tomato species. The symptoms of the disease are curling of leaves, chlorosis, dwarfing and floral abortion. The aim of this work was to get peptides derived from enzymatic hydrolysis of globulins and albumins from amaranth seeds with specific recognition of the replication origin in the TYLCV genome, and to test the antiviral activity on host plants with the idea to generate a direct control of this viral infection. Globulins and albumins from amaranth were extracted, the fraction was enzymatically digested with papain, and the aromatic peptides fraction was selected for further purification. Six peptides were tested against the replication origin (OR) using affinity assays, surface resonance plasmon and fluorescent titration, and two of these peptides showed high affinity values to the replication origin of the virus, dissociation constant values were calculated and showed specific interaction between the peptide Ampep1 and the OR. An in vitro replication test of the total TYLCV DNA was performed, in which the peptide AmPep1 was added in different concentrations to the system reaction, which resulted in a decrease of viral DNA synthesis when the peptide concentration increased. Also, we showed that the peptide can decrease the complementary DNA chain of the virus in Nicotiana benthamiana leaves, confirming that the peptide binds to the OR and that its expected mechanism of action is to decrease the replication rate of the viral genome. In an infection assay, N. benthamiana plants were agroinfected with TYLCV-Israel and TYLCV-Guasave. After confirming systemic infection, the peptide was infiltrated in new infected leaves, and the plants treated with the peptide showed a decrease of virus symptoms and viral titer. In order to confirm the antiviral activity in a commercial crop, tomato plants were infected with TYLCV. After confirming systemic infection, plants were infiltrated with peptide solution as above, and the symptom development was monitored 21 days after treatment, showing that tomato plants treated with peptides had lower symptom rates and viral titer. The peptide was also tested against other begomovirus such as Pepper huasteco yellow vein virus (PHYVV-Guasave), showing a decrease of symptoms in N. benthamiana infected plants. The model of direct biochemical control of TYLCV infection shown in this work can be extrapolated to other begomovirus infections, and the methods reported here can be used for design of antiviral agrochemicals for other plant virus infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agrochemical%20screening" title="agrochemical screening">agrochemical screening</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral" title=" antiviral"> antiviral</a>, <a href="https://publications.waset.org/abstracts/search?q=begomovirus" title=" begomovirus"> begomovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=geminivirus" title=" geminivirus"> geminivirus</a>, <a href="https://publications.waset.org/abstracts/search?q=peptides" title=" peptides"> peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmon" title=" plasmon"> plasmon</a>, <a href="https://publications.waset.org/abstracts/search?q=TYLCV" title=" TYLCV"> TYLCV</a> </p> <a href="https://publications.waset.org/abstracts/73010/biochemical-and-antiviral-study-of-peptides-isolated-from-amaranthus-hypochondriacus-on-tomato-yellow-leaf-curl-virus-replication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Identification of Promiscuous Epitopes for Cellular Immune Responses in the Major Antigenic Protein Rv3873 Encoded by Region of Difference 1 of Mycobacterium tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Salim%20Mustafa">Abu Salim Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rv3873 is a relatively large size protein (371 amino acids in length) and its gene is located in the immunodominant genomic region of difference (RD)1 that is present in the genome of <em>Mycobacterium tuberculosis</em> but deleted from the genomes of all the vaccine strains of Bacillus Calmette Guerin (BCG) and most other mycobacteria. However, when tested for cellular immune responses using peripheral blood mononuclear cells from tuberculosis patients and <em>BCG</em>-vaccinated healthy subjects, this protein was found to be a major stimulator of cell mediated immune responses in both groups of subjects. In order to further identify the sequence of immunodominant epitopes and explore their Human Leukocyte Antigen (HLA)-restriction for epitope recognition, 24 peptides (25-mers overlapping with the neighboring peptides by 10 residues) covering the sequence of Rv3873 were synthesized chemically using fluorenylmethyloxycarbonyl chemistry and tested in cell mediated immune responses. The results of these experiments helped in the identification of an immunodominant peptide P9 that was recognized by people expressing varying HLA-DR types. Furthermore, it was also predicted to be a promiscuous binder with multiple epitopes for binding to HLA-DR, HLA-DP and HLA-DQ alleles of HLA-class II molecules that present antigens to T helper cells, and to HLA-class I molecules that present antigens to T cytotoxic cells. In addition, the evaluation of peptide P9 using an immunogenicity predictor server yielded a high score (0.94), which indicated a greater probability of this peptide to elicit a protective cellular immune response. In conclusion, P9, a peptide with multiple epitopes and ability to bind several HLA class I and class II molecules for presentation to cells of the cellular immune response, may be useful as a peptide-based vaccine against tuberculosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycobacterium%20tuberculosis" title="mycobacterium tuberculosis">mycobacterium tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=PPE68" title=" PPE68"> PPE68</a>, <a href="https://publications.waset.org/abstracts/search?q=peptides" title=" peptides"> peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccine" title=" vaccine"> vaccine</a> </p> <a href="https://publications.waset.org/abstracts/82250/identification-of-promiscuous-epitopes-for-cellular-immune-responses-in-the-major-antigenic-protein-rv3873-encoded-by-region-of-difference-1-of-mycobacterium-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Identification and Characterization of Small Peptides Encoded by Small Open Reading Frames using Mass Spectrometry and Bioinformatics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Mon%20Saw">Su Mon Saw</a>, <a href="https://publications.waset.org/abstracts/search?q=Joe%20Rothnagel"> Joe Rothnagel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Short open reading frames (sORFs) located in 5’UTR of mRNAs are known as uORFs. Characterization of uORF-encoded peptides (uPEPs) i.e., a subset of short open reading frame encoded peptides (sPEPs) and their translation regulation lead to understanding of causes of genetic disease, proteome complexity and development of treatments. Existence of uORFs within cellular proteome could be detected by LC-MS/MS. The ability of uORF to be translated into uPEP and achievement of uPEP identification will allow uPEP’s characterization, structures, functions, subcellular localization, evolutionary maintenance (conservation in human and other species) and abundance in cells. It is hypothesized that a subset of sORFs are translatable and that their encoded sPEPs are functional and are endogenously expressed contributing to the eukaryotic cellular proteome complexity. This project aimed to investigate whether sORFs encode functional peptides. Liquid chromatography-mass spectrometry (LC-MS) and bioinformatics were thus employed. Due to probable low abundance of sPEPs and small in sizes, the need for efficient peptide enrichment strategies for enriching small proteins and depleting the sub-proteome of large and abundant proteins is crucial for identifying sPEPs. Low molecular weight proteins were extracted using SDS-PAGE from Human Embryonic Kidney (HEK293) cells and Strong Cation Exchange Chromatography (SCX) from secreted HEK293 cells. Extracted proteins were digested by trypsin to peptides, which were detected by LC-MS/MS. The MS/MS data obtained was searched against Swiss-Prot using MASCOT version 2.4 to filter out known proteins, and all unmatched spectra were re-searched against human RefSeq database. ProteinPilot v5.0.1 was used to identify sPEPs by searching against human RefSeq, Vanderperre and Human Alternative Open Reading Frame (HaltORF) databases. Potential sPEPs were analyzed by bioinformatics. Since SDS PAGE electrophoresis could not separate proteins <20kDa, this could not identify sPEPs. All MASCOT-identified peptide fragments were parts of main open reading frame (mORF) by ORF Finder search and blastp search. No sPEP was detected and existence of sPEPs could not be identified in this study. 13 translated sORFs in HEK293 cells by mass spectrometry in previous studies were characterized by bioinformatics. Identified sPEPs from previous studies were <100 amino acids and <15 kDa. Bioinformatics results showed that sORFs are translated to sPEPs and contribute to proteome complexity. uPEP translated from uORF of SLC35A4 was strongly conserved in human and mouse while uPEP translated from uORF of MKKS was strongly conserved in human and Rhesus monkey. Cross-species conserved uORFs in association with protein translation strongly suggest evolutionary maintenance of coding sequence and indicate probable functional expression of peptides encoded within these uORFs. Translation of sORFs was confirmed by mass spectrometry and sPEPs were characterized with bioinformatics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title="bioinformatics">bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=HEK293%20cells" title=" HEK293 cells"> HEK293 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography-mass%20spectrometry" title=" liquid chromatography-mass spectrometry"> liquid chromatography-mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=ProteinPilot" title=" ProteinPilot"> ProteinPilot</a>, <a href="https://publications.waset.org/abstracts/search?q=Strong%20Cation%20Exchange%20Chromatography" title=" Strong Cation Exchange Chromatography"> Strong Cation Exchange Chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=SDS-PAGE" title=" SDS-PAGE"> SDS-PAGE</a>, <a href="https://publications.waset.org/abstracts/search?q=sPEPs" title=" sPEPs"> sPEPs</a> </p> <a href="https://publications.waset.org/abstracts/55031/identification-and-characterization-of-small-peptides-encoded-by-small-open-reading-frames-using-mass-spectrometry-and-bioinformatics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Bacteriocinogenic Strains of Bacillus thuringiensis Isolated from Soil at Northern of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Gounina-Allouane">R. Gounina-Allouane</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Moussaoui"> I. Moussaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boukahel"> N. Boukahel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacillus antimicrobial metabolites, especially those of Bacillus thuringiensis (Bt), are of great interest for research because of health risks generated by the excessive use of chemical additives as well as the propagation of resistant microbial strains, caused by the massive treatment with antibiotics. The objective of this study was the selection of Bt strains producing antimicrobial peptides (bacteriocins), and the partial purification of the most powerful bacteriocins, then the determination of their spectra of antimicrobial action. A collection of twenty one Bt strains isolated from soil at Boumerdès (northern Algeria) was used for screening strains having an antagonistic activity against phylogenetically closed bacteria. Spectra of antagonistic activity of two selected strains was determined against other Bt strains, Gram positive and Gram negative bacterial strains of clinical origin and others from ATCC collection as well as yeasts isolated in human dermatology. Bacteriocins of these two strains were partially purified and their effect on the kinetics of growth of the most sensitive microbial strains was studied. The bacteriocinogenic strains were biochemically characterized and their sensitivity to antibiotics was studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20peptides" title="antimicrobial peptides">antimicrobial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20thuringiensis" title=" Bacillus thuringiensis"> Bacillus thuringiensis</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriocin" title=" bacteriocin"> bacteriocin</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20purification" title=" partial purification"> partial purification</a> </p> <a href="https://publications.waset.org/abstracts/20467/bacteriocinogenic-strains-of-bacillus-thuringiensis-isolated-from-soil-at-northern-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Powerful Bacteriocins Produced by Bacillus thuringiensis Strains Isolated from Soil at Northern of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Gounina-Allouane">R. Gounina-Allouane</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Moussaoui"> I. Moussaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boukahel"> N. Boukahel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacillus antimicrobial metabolites, especially those of Bacillus thuringiensis (Bt), are of great interest for research because of health risks generated by the excessive use of chemical additives as well as the propagation of resistant microbial strains, caused by the massive treatment with antibiotics. The objective of this study was the selection of Bt strains producing antimicrobial peptides (bacteriocins), and the partial purification of the most powerful bacteriocins, then the determination of their spectra of antimicrobial action. A collection of twenty one Bt strains isolated from soil at Boumerdès (northern of Algeria) was used for screening strains having an antagonistic activity against phylogenetically closed bacteria. Spectra of antagonistic activity of two selected strains was determined against other Bt strains, Gram positive and Gram negative bacterial strains of clinical origin and others from ATCC collection as well as yeasts isolated in human dermatology. Bacteriocins of these two strains were partially purified and their effect on the kinetics of growth of the most sensitive microbial strains was studied. The bacteriocinogenic strains were biochemically characterized and their sensitivity to antibiotics was studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20peptides" title="antimicrobial peptides">antimicrobial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20thuringiensis" title=" Bacillus thuringiensis"> Bacillus thuringiensis</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriocin" title=" bacteriocin"> bacteriocin</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20purification" title=" partial purification"> partial purification</a> </p> <a href="https://publications.waset.org/abstracts/17937/powerful-bacteriocins-produced-by-bacillus-thuringiensis-strains-isolated-from-soil-at-northern-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Tetra Butyl Ammonium Cyanate Mediated Selective Synthesis of Sulfonyltriuret and Their Investigation towards Trypsin Protease Modulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amarjyoti%20Das%20Mahapatra">Amarjyoti Das Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Umesh%20Kumar"> Umesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhaskar%20Datta"> Bhaskar Datta </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pseudo peptide can mimic the biological or structural properties of natural peptides. They have become an increasing attention in medicinal chemistry because of their interesting advantages like more bioavailability and less biodegradation than compare to the physiologically active native peptides which increase their therapeutic applications. Many biologically active compounds contain urea as functional groups, and they have improved pharmacokinetic properties because of their bioavailability and metabolic stability. Recently we have reported a single-step synthesis of sulfonyl urea and sulfonyltriuret from sulfonyl chloride and sodium cyanate. But the yield of sulfonyltriuret was less around 40-60% because of the formation of other products like sulfonamide and sulfonylureas. In the present work, we mainly focused on the selective synthesis of sulfonyltriuret using tetrabutylammonium cyanate and sulfonyl chloride. More precisely, we are interested in the controlled synthesis of oligomeric urea mainly sulfonyltriuret as a new class of pseudo peptide and their application as protease modulators. The distinctive architecture of these molecules in the form of their pseudo-peptide backbone offers promise as a potential pharmacophore. The synthesized molecules have been screened on trypsin enzyme, and we observed that these molecules are the efficient modulator of trypsin enzyme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pseudo%20peptide" title="pseudo peptide">pseudo peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacophore" title=" pharmacophore"> pharmacophore</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfonyltriuret" title=" sulfonyltriuret"> sulfonyltriuret</a>, <a href="https://publications.waset.org/abstracts/search?q=trypsin" title=" trypsin"> trypsin</a> </p> <a href="https://publications.waset.org/abstracts/85539/tetra-butyl-ammonium-cyanate-mediated-selective-synthesis-of-sulfonyltriuret-and-their-investigation-towards-trypsin-protease-modulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peptides&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peptides&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peptides&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peptides&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peptides&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peptides&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>