CINXE.COM
Search results for: gelation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: gelation</title> <meta name="description" content="Search results for: gelation"> <meta name="keywords" content="gelation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="gelation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="gelation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 51</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: gelation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Kinetic Aspect Investigation of Chitosan / Nanohydroxyapatite / Na ₂CO₃ Gel System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20D.%20Perera">P. S. D. Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20U.%20Adikary"> S. U. Adikary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gelation behavior of Chitosan/nanohydroxyapatite sol in the presence of a crosslinking agent Na ₂CO₃ was investigated experimentally. In this case, the gelation time(tgel) was determined by the rheological measurements of the final mixture. The tgel has been determined from dynamic viscosity slope experiments. We found that chitosan/nHA sol with 1% nano-hydroxyapatite and 1.6% Na2CO3 required coagulant performance. Hence Na ₂CO₃ and nanohydroxyapatite concentrations remain constant over the experiment. The order of reaction was first order with respect to chitosan and rate constant of the gel system was 9.0 x 10-4 s-1, respectively, depending on the temperature of the system. The gelation temperature was carried out at 37 ⁰C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinetics" title="kinetics">kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=gelation" title=" gelation"> gelation</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20system" title=" sol-gel system"> sol-gel system</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan%2F%20nHA%2F%20Na%20%E2%82%82CO%E2%82%83%20composite" title=" chitosan/ nHA/ Na ₂CO₃ composite"> chitosan/ nHA/ Na ₂CO₃ composite</a> </p> <a href="https://publications.waset.org/abstracts/143713/kinetic-aspect-investigation-of-chitosan-nanohydroxyapatite-na-2co3-gel-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Fractal Analysis of Polyacrylamide-Graphene Oxide Composite Gels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%C5%9Fen%20Ak%C4%B1n%20Eving%C3%BCr">Gülşen Akın Evingür</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96nder%20Pekcan"> Önder Pekcan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fractal analysis is a bridge between the microstructure and macroscopic properties of gels. Fractal structure is usually provided to define the complexity of crosslinked molecules. The complexity in gel systems is described by the fractal dimension (Df). In this study, polyacrylamide- graphene oxide (GO) composite gels were prepared by free radical crosslinking copolymerization. The fractal analysis of polyacrylamide- graphene oxide (GO) composite gels were analyzed in various GO contents during gelation and were investigated by using Fluorescence Technique. The analysis was applied to estimate Df s of the composite gels. Fractal dimension of the polymer composite gels were estimated based on the power law exponent values using scaling models. In addition, here we aimed to present the geometrical distribution of GO during gelation. And we observed that as gelation proceeded GO plates first organized themselves into 3D percolation cluster with Df=2.52, then goes to diffusion limited clusters with Df =1.4 and then lines up to Von Koch curve with random interval with Df=1.14. Here, our goal is to try to interpret the low conductivity and/or broad forbidden gap of GO doped PAAm gels, by the distribution of GO in the final form of the produced gel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20gels" title="composite gels">composite gels</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal" title=" fractal"> fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling" title=" scaling"> scaling</a> </p> <a href="https://publications.waset.org/abstracts/70432/fractal-analysis-of-polyacrylamide-graphene-oxide-composite-gels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Typical Emulsions as Probiotic Food Carrier: Effect of Cells Position on Its Viability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengfan%20Li">Mengfan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Filip%20Van%20Bockstaele"> Filip Van Bockstaele</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenyong%20Lou"> Wenyong Lou</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Devlighere"> Frank Devlighere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of probiotics-encapsulated emulsions that maintain the viability of probiotics during processing, storage and human gastrointestinal (GI) tract environment receives great scientific and commercial interest. In this study, typical W/O and O/W emulsions with and without oil gelation were used to encapsulate L. plantarum. The effects of emulsion types on the viability of L. plantarum during storage and GI tract were investigated. Besides, the position of L. plantarum in emulsion system and its number of viable cells when threating by adverse environment was correlated in order to figure out which type of emulsion is more suitable as food carrier for probiotics encapsulation and protection. As a result, probiotics tend to migrate from oil to water phase due to the natural hydrophilicity; however, it’s harmful for cells viability when surrounding by water for a long time. Oil gelation in emulsions is one of the promising strategies for inhibiting the cells mobility and decreasing the contact with adverse factors (e.g., water, exogenous enzymes and gastric acid), thus enhancing the number of viable cells that enough to exert its beneficial effects in host. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsion" title="emulsion">emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=gelation" title=" gelation"> gelation</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a> </p> <a href="https://publications.waset.org/abstracts/165145/typical-emulsions-as-probiotic-food-carrier-effect-of-cells-position-on-its-viability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Nano-emulsion/Nano-suspension as Precursors for Oral Dissolvable Film to Enhance Bioavalabilty for Poor-water Solubility Drugs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yang">Yuan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mickey%20Lam"> Mickey Lam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oral dissolvable films have been considered as a unique alternative approach to conventional oral dosage forms. The films could be administrated via the gastrointestinal tract as conventional dosages or through sublingual/buccal mucosa membranes, which could enhance drug bioavailability by avoiding the first-pass effect and improving permeability due to high blood flow and lymphatic circulation. This work has described a state-of-art technic using nano-emulsion/nano-suspension as a precursor for the film to enhance the bioavailability of BCS class II drugs. The drug molecules are consequentially processed through the emulsification, gelation, and film-casting processes. The gelation process is critical to stabilizing the nano-emulsion for the film-casting as well as controlling the drug release process. Furthermore, the size of the nanoparticle on the film has a strong correlation with the size of the micelles in the precursor and the condition of the gelation process. It has been discovered that nanoparticle from 200 nm to 300 nm has shown the highest permeability for sublingual administration. In one example shown in work, the bioavailability of a low solubilize drug has been increased from 10% to 24% via sublingual administration of the film. The increasing of the bioavailability was thought to be associated with the enhancement of the diffusion process of the drug in the saliva layer above the mucosa membrane and the fact that the presents of the emulsifier help lose the rigid junction of the mucosa cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oral%20dissolvable%20film" title="oral dissolvable film">oral dissolvable film</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-suspension" title=" nano-suspension"> nano-suspension</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-emulsion" title=" nano-emulsion"> nano-emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title=" bioavailability"> bioavailability</a> </p> <a href="https://publications.waset.org/abstracts/142588/nano-emulsionnano-suspension-as-precursors-for-oral-dissolvable-film-to-enhance-bioavalabilty-for-poor-water-solubility-drugs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Floating Oral in Situ Gelling System of Anticancer Drug</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umme%20Hani">Umme Hani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Rahmatulla"> Mohammed Rahmatulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ghazwani"> Mohammed Ghazwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alqahtani"> Ali Alqahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20Alhamhoom"> Yahya Alhamhoom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and introduction: Neratinib is a potent anticancer drug used for the treatment of breast cancer. It is poorly soluble at higher pH, which tends to minimize the therapeutic effects in the lower gastrointestinal tract (GIT) leading to poor bioavailability. An attempt has been made to prepare and develop a gastro-retentive system of Neratinib to improve the drug bioavailability in the GIT by enhancing the gastric retention time. Materials and methods: In the present study a three-factor at two-level (23) factorial design based optimization was used to inspect the effects of three independent variables (factors) such as sodium alginate (A), sodium bicarbonate (B) and sodium citrate (C) on the dependent variables like in vitro gelation, in vitro floating, water uptake and percentage drug release. Results: All the formulations showed pH in the range 6.7 ±0.25 to 7.4 ±0.24, percentage drug content was observed to be 96.3±0.27 to 99.5 ±0.28%, in vitro gelation observed as gelation immediate remains for an extended period. Percentage of water uptake was in the range between 9.01±0.15 to 31.01±0.25%, floating lag time was estimated form 7±0.39 to 57±0.36 sec. F4 and F5 showed floating even after 12hrs. All formulations showed a release of around 90% drug release within 12hr. It was observed that the selected independent variables affect the dependent variables. Conclusion: The developed system may be a promising and alternative approach to augment gastric retention of drugs and enhances the therapeutic efficacy of the drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neratinib" title="neratinib">neratinib</a>, <a href="https://publications.waset.org/abstracts/search?q=2%C2%B3%20factorial%20design" title=" 2³ factorial design"> 2³ factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=floating" title=" floating"> floating</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20gelling%20system" title=" in situ gelling system"> in situ gelling system</a> </p> <a href="https://publications.waset.org/abstracts/116325/floating-oral-in-situ-gelling-system-of-anticancer-drug" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Advanced Catechol-Modified Chitosan Hydrogels with the Inducement of Iron (III) Ion at Acidic Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngoc%20Quang%20Nguyen">Ngoc Quang Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Daewon%20Sohn"> Daewon Sohn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan (CS) is a natural polycationic polysaccharide and pH-sensitive polymer with incomplete deacetylation from claiming chitin. It is also a guaranteeing material in terms of pharmaceutical, chemical, and sustenance industry due to its exceptional structure (reactive –OH and –NH2 groups). In this study, a catechol-functionalized chitosan (CCS, for an eminent level for substitution) was synthesized and propelled by marine mussel cuticles in place on research those intricate connections between Fe³⁺ and catechol under acidic conditions. The ratios of catechol, chitosan and other reagents decide the structure of the hydrogel. The gel formation is then well-maintained by dual cross-linking through electrostatic interactions between Fe³⁺ and CCS and covalent catechol-coupling-based coordinate bonds. The hydrogels showed enhanced cohesiveness and shock-absorbing properties with increasing pH due to coordinate bonds inspired by mussel byssal threads. Thus, the gelation time, rheological properties, UV-vis and ¹H-Nuclear Magnetic Resonance spectroscopy, and the morphologic aspects were elucidated to describe those crosslinking components and the physical properties of the chitosan backbones and hydrogel frameworks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catechol" title="catechol">catechol</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20ion" title=" iron ion"> iron ion</a>, <a href="https://publications.waset.org/abstracts/search?q=gelation" title=" gelation"> gelation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/97228/advanced-catechol-modified-chitosan-hydrogels-with-the-inducement-of-iron-iii-ion-at-acidic-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Controlled Release of Curcumin from a Thermoresponsive Polypeptide Hydrogel for Anti-Tumor Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chieh-Nan%20Chen">Chieh-Nan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Yu%20Lin"> Ji-Yu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Ming%20Chu"> I-Ming Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polypeptide thermosensitive hydrogel is an excellent candidate as a smart device to deliver drugs and cells due to its remarkable biocompatibility, low gelation concentration, and respond to temperature stimuli, it can be easily injected as a polymer solution into the patient’s body where it undergoes gelation due to an elevation in temperature. Poly (ethylene glycol) monomethyl ether-poly (ethyl-l-glutamate) (mPEG-PELG) contains a hydrophobic side chain –C2H5 which is useful in encapsulating and stabilizing hydrophobic drugs. In this study, we plan to focus on the hydrophobic anti-carcinogenic and anti-inflammatory drug curcumin, which due its insolubility in water, requires a proper carrier for delivery into the body. Our main concept is to use mPEG-PELG to stabilize curcumin, inject the curcumin-loaded hydrogel into the tumor site, and allow the enzymatically-sensitive hydrogel to be degraded by bodily fluids and release the drug. The polymers of interest have been successfully synthesized and characterized by 1H-NMR, FT-IR, SEM, and CMC. Curcumin loading content and drug release were assayed using HPLC. Preliminary results show that these materials have potential as a delivery vehicle for poorly soluble drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curcumin" title="curcumin">curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release" title=" drug release"> drug release</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=polypeptide%20material" title=" polypeptide material"> polypeptide material</a> </p> <a href="https://publications.waset.org/abstracts/46020/controlled-release-of-curcumin-from-a-thermoresponsive-polypeptide-hydrogel-for-anti-tumor-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Viscoelastic Behaviour of Hyaluronic Acid Copolymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loredana%20Elena%20Nita">Loredana Elena Nita</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Bercea"> Maria Bercea</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurica%20P.%20Chiriac"> Aurica P. Chiriac</a>, <a href="https://publications.waset.org/abstracts/search?q=Iordana%20Neamtu"> Iordana Neamtu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper is devoted to the behavior of gels based on poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) copolymers, with different ratio between the comonomers, and hyaluronic acid (HA). The gel formation was investigated by small-amplitude oscillatory shear measurements following the viscoelastic behavior as a function of gel composition, temperature and shear conditions. Hyaluronic acid was investigated in the same conditions and its rheological behavior is typical to viscous fluids. In the case of the copolymers, the ratio between the two comonomers influences the viscoelastic behavior, a higher content of itaconic anhydride favoring the gel formation. Also, the sol-gel transition was evaluated according to Winter-Chambon criterion that identifies the gelation point when the viscoelastic moduli (G’ and G”) behave similarly as a function of oscillation frequency. From rheological measurements, an optimum composition was evidenced for which the system presents a typical gel-like behavior at 37 °C: the elastic modulus is higher than the viscous modulus and they are not dependent on the oscillation frequency. The formation of the 3D macroporous network was also evidenced by FTIR spectra, SEM microscopy and chemical imaging. These hydrogels present a high potential as drug delivery systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copolymer" title="copolymer">copolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=gelation" title=" gelation"> gelation</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20network" title=" 3D network"> 3D network</a> </p> <a href="https://publications.waset.org/abstracts/46429/viscoelastic-behaviour-of-hyaluronic-acid-copolymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Controlled Release of Glucosamine from Pluronic-Based Hydrogels for the Treatment of Osteoarthritis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Papon%20Thamvasupong">Papon Thamvasupong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwanchanok%20Viravaidya-Pasuwat"> Kwanchanok Viravaidya-Pasuwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoarthritis affects a lot of people worldwide. Local injection of glucosamine is one of the alternative treatment methods to replenish the natural lubrication of cartilage. However, multiple injections can potentially lead to possible bacterial infection. Therefore, a drug delivery system is desired to reduce the frequencies of injections. A hydrogel is one of the delivery systems that can control the release of drugs. Thermo-reversible hydrogels can be beneficial to the drug delivery system especially in the local injection route because this formulation can change from liquid to gel after getting into human body. Once the gel is in the body, it will slowly release the drug in a controlled manner. In this study, various formulations of Pluronic-based hydrogels were synthesized for the controlled release of glucosamine. One of the challenges of the Pluronic controlled release system is its fast dissolution rate. To overcome this problem, alginate and calcium sulfate (CaSO<sub>4</sub>) were added to the polymer solution. The characteristics of the hydrogels were investigated including the gelation temperature, gelation time, hydrogel dissolution and glucosamine release mechanism. Finally, a mathematical model of glucosamine release from Pluronic-alginate-hyaluronic acid hydrogel was developed. Our results have shown that crosslinking Pluronic gel with alginate did not significantly extend the dissolution rate of the gel. Moreover, the gel dissolution profiles and the glucosamine release mechanisms were best described using the zeroth-order kinetic model, indicating that the release of glucosamine was primarily governed by the gel dissolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controlled%20release" title="controlled release">controlled release</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery%20system" title=" drug delivery system"> drug delivery system</a>, <a href="https://publications.waset.org/abstracts/search?q=glucosamine" title=" glucosamine"> glucosamine</a>, <a href="https://publications.waset.org/abstracts/search?q=pluronic" title=" pluronic"> pluronic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoreversible%20hydrogel" title=" thermoreversible hydrogel"> thermoreversible hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/51314/controlled-release-of-glucosamine-from-pluronic-based-hydrogels-for-the-treatment-of-osteoarthritis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Synthesis and Characterization of an Aerogel Based on Graphene Oxide and Polyethylene Glycol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javiera%20Poblete">Javiera Poblete</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Gajardo"> Fernando Gajardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Katherina%20Fernandez"> Katherina Fernandez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene, and its derivatives such as graphene oxide (GO), are emerging nanoscopic materials, with interesting physical and chemical properties. From them, it is possible to develop three-dimensional macrostructures, such as aerogels, which are characterized by a low density, high porosity, and large surface area, having a promising structure for the development of materials. The use of GO as a precursor of these structures provides a wide variety of materials, which can be developed as a result of the functionalization of their oxygenated groups, with specific compounds such as polyethylene glycol (PEG). The synthesis of aerogels of GO-PEG for non-covalent interactions has not yet been widely reported, being of interest due to its feasible escalation and economic viability. Thus, this work aims to develop a non-covalently functionalized GO-PEG aerogels and characterize them physicochemically. In order to get this, the GO was synthesized from the modified hummers method and it was functionalized with the PEG by polymer-assisted GO gelation (crosslinker). The gelation was obtained for GO solutions (10 mg/mL) with the incorporation of PEG in different proportions by weight. The hydrogel resulting from the reaction was subsequently lyophilized, to obtain the respective aerogel. The material obtained was chemically characterized by analysis of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray diffraction (XRD), and its morphology by scanning electron microscopy (SEM) images; as well as water absorption tests. The results obtained showed the formation of a non-covalent aerogel (FTIR), whose structure was highly porous (SEM) and with a water absorption values greater than 50% g/g. Thus, a methodology of synthesis for GO-PEG was developed and validated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerogel" title="aerogel">aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20glycol" title=" polyethylene glycol"> polyethylene glycol</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/117204/synthesis-and-characterization-of-an-aerogel-based-on-graphene-oxide-and-polyethylene-glycol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Comparative Analysis of in vitro Release profile for Escitalopram and Escitalopram Loaded Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashi%20Rajput">Rashi Rajput</a>, <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Singh"> Manisha Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Escitalopram oxalate (ETP), an FDA approved antidepressant drug from the category of SSRI (selective serotonin reuptake inhibitor) and is used in treatment of general anxiety disorder (GAD), major depressive disorder (MDD).When taken orally, it is metabolized to S-demethylcitalopram (S-DCT) and S-didemethylcitalopram (S-DDCT) in the liver with the help of enzymes CYP2C19, CYP3A4 and CYP2D6. Hence, causing side effects such as dizziness, fast or irregular heartbeat, headache, nausea etc. Therefore, targeted and sustained drug delivery will be a helpful tool for increasing its efficacy and reducing side effects. The present study is designed for formulating mucoadhesive nanoparticle formulation for the same Escitalopram loaded polymeric nanoparticles were prepared by ionic gelation method and characterization of the optimised formulation was done by zeta average particle size (93.63nm), zeta potential (-1.89mV), TEM (range of 60nm to 115nm) analysis also confirms nanometric size range of the drug loaded nanoparticles along with polydispersibility index of 0.117. In this research, we have studied the in vitro drug release profile for ETP nanoparticles, through a semi permeable dialysis membrane. The three important characteristics affecting the drug release behaviour were – particle size, ionic strength and morphology of the optimised nanoparticles. The data showed that on increasing the particle size of the drug loaded nanoparticles, the initial burst was reduced which was comparatively higher in drug. Whereas, the formulation with 1mg/ml chitosan in 1.5mg/ml tripolyphosphate solution showed steady release over the entire period of drug release. Then this data was further validated through mathematical modelling to establish the mechanism of drug release kinetics, which showed a typical linear diffusion profile in optimised ETP loaded nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20gelation" title="ionic gelation">ionic gelation</a>, <a href="https://publications.waset.org/abstracts/search?q=mucoadhesive%20nanoparticle" title=" mucoadhesive nanoparticle"> mucoadhesive nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-permeable%20dialysis%20membrane" title=" semi-permeable dialysis membrane"> semi-permeable dialysis membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=zeta%20potential" title=" zeta potential"> zeta potential</a> </p> <a href="https://publications.waset.org/abstracts/16460/comparative-analysis-of-in-vitro-release-profile-for-escitalopram-and-escitalopram-loaded-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Thermosensitive Hydrogel Development for Its Possible Application in Cardiac Cell Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lina%20Paola%20Orozco%20Marin">Lina Paola Orozco Marin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuliet%20Montoya%20Osorio"> Yuliet Montoya Osorio</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Bustamante%20Osorno"> John Bustamante Osorno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ischemic events can culminate in acute myocardial infarction by irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Cell therapy seeks to replace these injured or necrotic cells by transplanting healthy and functional cells. The therapeutic alternatives proposed by tissue engineering and cardiovascular regenerative medicine are the use of biomaterials to mimic the native extracellular medium, which is full of proteins, proteoglycans, and glycoproteins. The selected biomaterials must provide structural support to the encapsulated cells to avoid their migration and death in the host tissue. In this context, the present research work focused on developing a natural thermosensitive hydrogel, its physical and chemical characterization, and the determination of its biocompatibility in vitro. The hydrogel was developed by mixing hydrolyzed bovine and porcine collagen at 2% w/v, chitosan at 2.5% w/v, and beta-glycerolphosphate at 8.5% w/w and 10.5% w/w in magnetic stirring at 4°C. Once obtained, the thermosensitivity and gelation time were determined, incubating the samples at 37°C and evaluating them through the inverted tube method. The morphological characterization of the hydrogels was carried out through scanning electron microscopy. Chemical characterization was carried out employing infrared spectroscopy. The biocompatibility was determined using the MTT cytotoxicity test according to the ISO 10993-5 standard for the hydrogel’s precursors using the fetal human ventricular cardiomyocytes cell line RL-14. The RL-14 cells were also seeded on the top of the hydrogels, and the supernatants were subculture at different periods to their observation under a bright field microscope. Four types of thermosensitive hydrogels were obtained, which differ in their composition and concentration, called A1 (chitosan/bovine collagen/beta-glycerolphosphate 8.5%w/w), A2 (chitosan/porcine collagen/beta-glycerolphosphate 8.5%), B1 (chitosan/bovine collagen/beta-glycerolphosphate 10.5%) and B2 (chitosan/porcine collagen/beta-glycerolphosphate 10.5%). A1 and A2 had a gelation time of 40 minutes, and B1 and B2 had a gelation time of 30 minutes at 37°C. Electron micrographs revealed a three-dimensional internal structure with interconnected pores for the four types of hydrogels. This facilitates the exchange of nutrients, oxygen, and the exit of metabolites, allowing to preserve a microenvironment suitable for cell proliferation. In the infrared spectra, it was possible to observe the interaction that occurs between the amides of polymeric compounds with the phosphate groups of beta-glycerolphosphate. Finally, the biocompatibility tests indicated that cells in contact with the hydrogel or with each of its precursors are not affected in their proliferation capacity for a period of 16 days. These results show the potential of the hydrogel to increase the cell survival rate in the cardiac cell therapies under investigation. Moreover, the results lay the foundations for its characterization and biological evaluation in both in vitro and in vivo models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiac%20cell%20therapy" title="cardiac cell therapy">cardiac cell therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac%20ischemia" title=" cardiac ischemia"> cardiac ischemia</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20polymers" title=" natural polymers"> natural polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=thermosensitive%20hydrogel" title=" thermosensitive hydrogel"> thermosensitive hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/138689/thermosensitive-hydrogel-development-for-its-possible-application-in-cardiac-cell-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Synthesis and Characterization of Chitosan Microparticles for Scaffold Structure and Bioprinting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Mendes">J. E. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20de%20Barros"> T. T. de Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20B.%20G.%20de%20Assis"> O. B. G. de Assis</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20D.%20C.%20Pessoa"> J. D. C. Pessoa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan, a natural polysaccharide of β-1,4-linked glucosamine residues, is a biopolymer obtained primarily from the exoskeletons of crustaceans. Interest in polymeric materials increases year by year. Chitosan is one of the most plentiful biomaterials, with a wide range of pharmaceutical, biomedical, industrial and agricultural applications. Chitosan nanoparticles were synthesized via the ionotropic gelation of chitosan with sodium tripolyphosphate (TPP). Two concentrations of chitosan microparticles (0.1 and 0.2%) were synthesized. In this study, it was possible to synthesize and characterize microparticles of chitosan biomaterial and this will be used for future applications in cell anchorage for 3D bioprinting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan%20microparticles" title="chitosan microparticles">chitosan microparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title=" biomaterial"> biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=bioprinting" title=" bioprinting"> bioprinting</a> </p> <a href="https://publications.waset.org/abstracts/14524/synthesis-and-characterization-of-chitosan-microparticles-for-scaffold-structure-and-bioprinting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Curcumin Loaded Modified Chitosan Nanocarrier for Tumor Specificity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20T.%20Kumbhar">S. T. Kumbhar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Bhatia"> M. S. Bhatia</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Khairate"> R. C. Khairate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An effective nanodrug delivery system was developed by using chitosan for increased encapsulation efficiency and retarded release of curcumin. Potential ionotropic gelation method was used for the development of chitosan nanoparticles with TPP as cross-linker. The characterization was done for analysis of size, structure, surface morphology, and thermal behavior of synthesized chitosan nanoparticles. The encapsulation efficiency was more than 80%, with improved drug loading capacity. The in-vitro drug release study showed that curcumin release rate was decreased significantly. These chitosan nanoparticles could be a suitable platform for co-delivery of curcumin and anticancer agent for enhanced cytotoxic effect on tumor cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Curcumin" title="Curcumin">Curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=anticancer%20activity" title=" anticancer activity"> anticancer activity</a> </p> <a href="https://publications.waset.org/abstracts/145045/curcumin-loaded-modified-chitosan-nanocarrier-for-tumor-specificity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibtisam%20A.%20Abbas%20Al-Darkazly"> Ibtisam A. Abbas Al-Darkazly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl<sub>2</sub>) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl<sub>2</sub> solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for <em>in vitro</em> and <em>in vivo</em> tissue engineering applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title="biomaterial">biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20chloride" title=" calcium chloride"> calcium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20bio-printing" title=" 3D bio-printing"> 3D bio-printing</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion" title=" extrusion"> extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/132067/optimization-of-mechanical-properties-of-alginate-hydrogel-for-3d-bio-printing-self-standing-scaffold-architecture-for-tissue-engineering-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Quality Assessment Of Instant Breakfast Cereals From Yellow Maize (Zea mays), Sesame (Sesamum indicium), And Mushroom (Pleurotusostreatus) Flour Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mbaeyi-Nwaoha">Mbaeyi-Nwaoha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ifeoma%20Elizabeth"> Ifeoma Elizabeth</a>, <a href="https://publications.waset.org/abstracts/search?q=Orngu">Orngu</a>, <a href="https://publications.waset.org/abstracts/search?q=Africa%20Orngu"> Africa Orngu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite flours were processed from blends of yellow maize (Zea mays), sesame seed (Sesamum indicum) and oyster mushroom (Pleurotus ostreatus) powder in the ratio of 80:20:0; 75:20:5; 70:20:10; 65:20:10 and 60:20:20, respectively to produce the breakfast cereal coded as YSB, SMB, TMB, PMB and OMB with YSB as the control. The breakfast cereals were produced by hydration and toasting of yellow maize and sesame to 160oC for 25 minutes and blended together with oven dried and packaged oyster mushroom. The developed products (flours and breakfast cereals) were analyzed for proximate composition, vitamins, minerals, anti-nutrients, phytochemicals, functional, microbial and sensory properties. Results for the flours showed: proximate composition (%): moisture (2.59-7.27), ash (1.29-7.57), crude fat (0.98-14.91), fibre (1.03-16.02), protein (10.13-35.29), carbohydrate (75.48-38.18) and energy (295.18-410.75kcal). Vitamins ranged as: vitamin A (0.14-9.03 ug/100g), vitamin B1 (0.14-0.38), vitamin B2 (0.07-0.15), vitamin B3(0.89-4.88) and Vitamin C (0.03-4.24). Minerals (mg/100g) were reported thus: calcium (8.01-372.02), potassium (1.40-1.85), magnesium (12.09-13.15), iron (1.23-5.25) and zinc (0.85-2.20). The results for anti-nutrients and phytochemical ranged from: tannin (1.50-1.61mg/g), Phytate (0.40-0.71mg/g), Oxalate(1.81-2.02mg/g), Flavonoid (0.21-1.27%) and phenolic (1.12-2.01%). Functional properties showed: bulk density (0.51-0.77g/ml), water absorption capacity (266.0-301.5%), swelling capacity (136.0-354.0%), least Gelation (0.55-1.45g/g) and reconstitution index (35.20-69.60%). The total viable count ranged from 6.4× 102to1.0× 103cfu/g while the total mold count was from 1.0× 10to 3.0× 10 cfu/g. For the breakfast cereals, proximate composition (%) ranged thus: moisture (4.07-7.08), ash (3.09-2.28), crude fat(16.04-12.83), crude fibre(4.30-8.22), protein(16.14-22.54), carbohydrate(56.34-47.04) and energy (434.34-393.83Kcal).Vitamin A (7.99-5.98 ug/100g), vitamin B1(0.08-0.42mg/100g), vitamin B2(0.06-0.15 mg/100g), vitamin B3(1.91-4.52 mg/100g) and Vitamin C(3.55-3.32 mg/100g) were reported while Minerals (mg/100g) were: calcium (75.31-58.02), potassium (0.65-4.01), magnesium(12.25-12.62), iron (1.21-4.15) and zinc (0.40-1.32). The anti-nutrients and phytochemical revealed the range (mg/g) as: tannin (1.12-1.21), phytate (0.69-0.53), oxalate (1.21-0.43), flavonoid (0.23-1.22%) and phenolic (0.23-1.23%). The bulk density (0.77-0.63g/ml), water absorption capacity (156.5-126.0%), swelling capacity (309.5-249.5%), least gelation (1.10-0.75g/g) and reconstitution index (49.95-39.95%) were recorded. From the total viable count, it ranged from 3.3× 102to4.2× 102cfu/g but no mold growth was detected. Sensory scores revealed that the breakfast cereals were acceptable to the panelist with oyster mushroom supplementation up to 10%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oyster%20mushroom%20%28Pleurotus%20ostreatus%29" title="oyster mushroom (Pleurotus ostreatus)">oyster mushroom (Pleurotus ostreatus)</a>, <a href="https://publications.waset.org/abstracts/search?q=sesame%20seed%20%28Sesamum%20indicum%29" title=" sesame seed (Sesamum indicum)"> sesame seed (Sesamum indicum)</a>, <a href="https://publications.waset.org/abstracts/search?q=yellow%20maize%20%28Zea%20mays" title=" yellow maize (Zea mays"> yellow maize (Zea mays</a>, <a href="https://publications.waset.org/abstracts/search?q=instant%20breakfast%20cereals" title=" instant breakfast cereals"> instant breakfast cereals</a> </p> <a href="https://publications.waset.org/abstracts/143011/quality-assessment-of-instant-breakfast-cereals-from-yellow-maize-zea-mays-sesame-sesamum-indicium-and-mushroom-pleurotusostreatus-flour-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Study of Dispersion of Silica and Chitosan Nanoparticles into Gelatin Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohit%20Batra">Mohit Batra</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20Sarkar"> Noel Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayeeta%20Mitra"> Jayeeta Mitra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study silica nanoparticles were synthesized using different methods and different silica sources namely Tetraethyl ortho silicate (TEOS), Sodium Silicate, Rice husk while chitosan nanoparticles were prepared with ionic gelation method using Sodium tripolyphosphate (TPP). Size and texture of silica nanoparticles were studied using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) along with the effect of change in concentration of various reagents in different synthesis processes. Size and dispersion of Silica nanoparticles prepared from TEOS using stobber’s method were found better than other methods while nanoparticles prepared using rice husk were cheaper than other ones. Catalyst found to play a very significant role in controlling the size of nanoparticles in all methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoparticles" title="silica nanoparticles">silica nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin" title=" gelatin"> gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-nanocomposites" title=" bio-nanocomposites"> bio-nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a> </p> <a href="https://publications.waset.org/abstracts/63358/study-of-dispersion-of-silica-and-chitosan-nanoparticles-into-gelatin-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Physical Properties of Nine Nigerian Staple Food Flours Related to Bulk Handling and Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ogunsina%20Babatunde">Ogunsina Babatunde</a>, <a href="https://publications.waset.org/abstracts/search?q=Aregbesola%20Omotayo"> Aregbesola Omotayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebayo%20Adewale"> Adebayo Adewale</a>, <a href="https://publications.waset.org/abstracts/search?q=Odunlami%20Johnson"> Odunlami Johnson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The physical properties of nine Nigerian staple food flours related to bulk handling and processing were investigated following standard procedures. The results showed that the moisture content, bulk density, angle of repose, water absorption capacity, swelling index, dispersability, pH and wettability of the flours ranged from 9.95 to 11.98%, 0.44 to 0.66 g/cm3, 31.43 to 39.65o, 198.3 to 291.7 g of water/100 g of sample, 5.53 to 7.63, 60.3 to 73.8%, 4.43 to 6.70, and 11 to 150 s. The particle size analysis of the flour samples indicated significant differences (p<0.05). The least gelation concentration of the flour samples ranged from 6 to 14%. The colour of the flours fell between light and saturated, with the exception of cassava, millet and maize flours which appear dark and dull. The properties of food flours depend largely on the inherent property of the food material and may influence their functional behaviour as food materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=properties" title="properties">properties</a>, <a href="https://publications.waset.org/abstracts/search?q=flours" title=" flours"> flours</a>, <a href="https://publications.waset.org/abstracts/search?q=staple%20food" title=" staple food"> staple food</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20handling" title=" bulk handling"> bulk handling</a> </p> <a href="https://publications.waset.org/abstracts/37450/physical-properties-of-nine-nigerian-staple-food-flours-related-to-bulk-handling-and-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Effect of Alginate and Surfactant on Physical Properties of Oil Entrapped Alginate Bead Formulation of Curcumin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpa%20Petchsomrit">Arpa Petchsomrit</a>, <a href="https://publications.waset.org/abstracts/search?q=Namfa%20Sermkaew"> Namfa Sermkaew</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruedeekorn%20Wiwattanapatapee"> Ruedeekorn Wiwattanapatapee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil entrapped floating alginate beads of curcumin were developed and characterized. Cremophor EL, Cremophor RH and Tween 80 were utilized to improve the solubility of the drug. The oil-loaded floating gel beads prepared by emulsion gelation method contained sodium alginate, mineral oil and surfactant. The drug content and % encapsulation declined as the ratio of surfactant was increased. The release of curcumin from 1% alginate beads was significantly more than for the 2% alginate beads. The drug released from the beads containing 25% of tween 80 was about 70% while a higher drug release was observed with the beads containing Cremophor EL or Cremohor RH (approximately 90%). The developed floating beads of curcumin powder with surfactant provided a superior drug release than those without surfactant. Floating beads based on oil entrapment containing the drug solubilized in surfactants is a new delivery system to enhance the dissolution of poorly soluble drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alginate" title="alginate">alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumin" title=" curcumin"> curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20drug%20delivery" title=" floating drug delivery"> floating drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20entrapped%20bead" title=" oil entrapped bead"> oil entrapped bead</a> </p> <a href="https://publications.waset.org/abstracts/3633/effect-of-alginate-and-surfactant-on-physical-properties-of-oil-entrapped-alginate-bead-formulation-of-curcumin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Preparation of Essential Oil Capsule (Carum Copticum) In Chitosan Nanoparticles and Investigation of Its Biological Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Esmaeili">Akbar Esmaeili</a>, <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Asgari"> Azadeh Asgari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oils’ unique and practical properties have been widely reported in recent years. Still, the sensitivity of critical oils to environmental factors and their poor solubility in aqueous solutions have limited their use in industries. Therefore, we encapsulated C. copticum essential oil in chitosan nanoparticles by emulsion-ionic gelation with sodium tripolyphosphate and sodium hexametaphosphate cross-linkers. The nanoparticles showed a round shape with an average size of 30-80 nm and a regular distribution. The release profile in the laboratory environment showed a burst in the initial release and then a stable release of C. copticum essential oil from chitosan nanoparticles at different pH. Antioxidant and antibacterial properties of C. copticum essential oil before and after the encapsulation process were evaluated by 2,2-diphenyl-1-picrylhydrazyl radical and disc diffusion methods, respectively. The results showed that the encapsulation of C. copticum essential oil in chitosan nanoparticles could protect its quality and bioactive compounds and improve the properties of the crucial oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title="essential oils">essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=Carum%20copticum" title=" Carum copticum"> Carum copticum</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20activities" title=" biological activities"> biological activities</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/167505/preparation-of-essential-oil-capsule-carum-copticum-in-chitosan-nanoparticles-and-investigation-of-its-biological-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Impact of Air Pressure and Outlet Temperature on Physicochemical and Functional Properties of Spray-dried Skim Milk Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeline%20Meriaux">Adeline Meriaux</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20Gaiani"> Claire Gaiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Burgain"> Jennifer Burgain</a>, <a href="https://publications.waset.org/abstracts/search?q=Frantz%20Fournier"> Frantz Fournier</a>, <a href="https://publications.waset.org/abstracts/search?q=Lionel%20Muniglia"> Lionel Muniglia</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A9r%C3%A9my%20Petit"> Jérémy Petit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder, to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed and the use of genetic algorithm will allow the optimization of powder functionalities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dairy%20powders" title="dairy powders">dairy powders</a>, <a href="https://publications.waset.org/abstracts/search?q=spray-drying" title=" spray-drying"> spray-drying</a>, <a href="https://publications.waset.org/abstracts/search?q=powders%20functionalities" title=" powders functionalities"> powders functionalities</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a> </p> <a href="https://publications.waset.org/abstracts/168951/impact-of-air-pressure-and-outlet-temperature-on-physicochemical-and-functional-properties-of-spray-dried-skim-milk-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeline%20Meriaux">Adeline Meriaux</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20Gaiani"> Claire Gaiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Burgain"> Jennifer Burgain</a>, <a href="https://publications.waset.org/abstracts/search?q=Frantz%20Fournier"> Frantz Fournier</a>, <a href="https://publications.waset.org/abstracts/search?q=Lionel%20Muniglia"> Lionel Muniglia</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A9r%C3%A9my%20Petit"> Jérémy Petit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dairy%20powders" title="dairy powders">dairy powders</a>, <a href="https://publications.waset.org/abstracts/search?q=spray-drying" title=" spray-drying"> spray-drying</a>, <a href="https://publications.waset.org/abstracts/search?q=powders%20functionalities" title=" powders functionalities"> powders functionalities</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a> </p> <a href="https://publications.waset.org/abstracts/168954/study-of-operating-conditions-impact-on-physicochemical-and-functional-properties-of-dairy-powder-produced-by-spray-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Development of pH Responsive Nanoparticles for Colon Targeted Drug Delivery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Balamuralidhara">V. Balamuralidhara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present work was to develop Paclitaxel loaded polyacrylamide grafted guar gum nanoparticles as pH responsive nanoparticle systems for targeting colon. The pH sensitive nanoparticles were prepared by modified ionotropic gelation technique. The prepared nanoparticles showed mean diameters in the range of 264±0.676 nm to 726±0.671nm, and a negative net charge 10.8 mV to 35.4mV. Fourier Transformed Infrared Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC) studies suggested that there was no chemical interaction between drug and polymers. The encapsulation efficiency of the drug was found to be 40.92% to 48.14%. The suitability of the polyacrylamide grafted guar gum ERN’s for the release of Paclitaxel was studied by in vitro release at pH 1.2 and 7.4. It was observed that, there was no significant amount of drug release at gastric pH and 97.63% of drug release at pH 7.4 was obtained for optimized formulation F3 at the end of 12 hrs. In vivo drug targeting performance for the prepared optimized formulation (F3) and pure drug Paclitaxel was evaluated by HPLC. It was observed that the polyacrylamide grafted guar gum can be used to prepare nanoparticles for targeting the drug to the colon. The release performance was greatly affected by the materials used in ERN’s preparation, which allows maximum release at colon’s pH. It may be concluded that polyacrylamide grafted guar gum nanoparticles loaded with paclitaxel have desirable release responsive to specific pH. Hence it is a unique approach for colonic delivery of drug having appropriate site specificity and feasibility and controlled release of drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colon%20targeting" title="colon targeting">colon targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylamide%20grafted%20guar%20gum%20nanoparticles" title=" polyacrylamide grafted guar gum nanoparticles"> polyacrylamide grafted guar gum nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=paclitaxel" title=" paclitaxel"> paclitaxel</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/8472/development-of-ph-responsive-nanoparticles-for-colon-targeted-drug-delivery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> The Effect of the Addition of Additives on the Properties of Bisamide Organogels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmira%20%20Ghanbari">Elmira Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20%20Van%20Esch"> Jan Van Esch</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20%20J.%20Picken"> Stephen J. Picken</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahil%20%20Aggarwal"> Sahil Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organogels are formed by the assembly of low molecular weight gelators (LMWG) into fibrous structures. The assembly of these molecules into crystalline fibrous structures occurs as a result of reversible interactions such as π-stacking, hydrogen-bonding, and van der Waals interactions. Bisamide organogelators with two amide groups have been used as one of LMWGs which show efficient assembly behavior via hydrogen bonding for network formation, the formation of a crystalline network for solvent entrapment. In this study, different bisamide gelators with different lengths of alkyl chains have been added to the bisamide parent gels. The effect of the addition of bisamide additives on the gelation of bisamide gels is described. Investigation of the thermal properties of the gels by differential scanning calorimetry and dropping ball techniques indicated that the bisamide gels can be formed by the addition of a high concentration of the second bisamide components. The microstructure of the gels with different gelator components has been visualized with scanning electron microscopy (SEM) which has shown systematic woven, platelet-like, and a combination of those morphologies for different gels. Examining the addition of a range of bisamide additives with different structural characteristics than the parent bisamide gels has confirmed the effect of the molecular structure on the morphology of the bisamide gels and their final properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisamide%20organogelator%20additives" title="bisamide organogelator additives">bisamide organogelator additives</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20morphology" title=" gel morphology"> gel morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20properties" title=" gel properties"> gel properties</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a> </p> <a href="https://publications.waset.org/abstracts/138626/the-effect-of-the-addition-of-additives-on-the-properties-of-bisamide-organogels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Effect of Different Processing Methods on the Proximate, Functional, Sensory, and Nutritional Properties of Weaning Foods Formulated from Maize (Zea mays) and Soybean (Glycine max) Flour Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20O.%20Agu">C. O. Agu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Okafor"> C. C. Okafor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maize and soybean flours were produced using different methods of processing which include fermentation (FWF), roasting (RWF) and malting (MWF). Products from the different methods were mixed in the ratio 60:40 maize/soybean, respectively. These composites mixed with other ingredients such as sugar, vegetable oil, vanilla flavour and vitamin mix were analyzed for proximate composition, physical/functional, sensory and nutritional properties. The results for the protein content ranged between 6.25% and 16.65% with sample RWF having the highest value. Crude fibre values ranged from 3.72 to 10.0%, carbohydrate from 58.98% to 64.2%, ash from 1.27 to 2.45%. Physical and functional properties such as bulk density, wettability, gelation capacity have values between 0.74 and 0.76g/ml, 20.33 and 46.33 min and 0.73 to 0.93g/ml, respectively. On the sensory quality colour, flavour, taste, texture and general acceptability were determined. In terms of colour and flavour there was no significant difference (P < 0.05) while the values for taste ranged between 4.89 and 7.1 l, texture 5.50 to 8.38 and general acceptability 6.09 and 7.89. Nutritionally there is no significant difference (P < 0.05) between sample RWF and the control in all parameters considered. Samples FWF and MWF showed significantly (P < 0.5) lower values in all parameters determined. In the light of the above findings, roasting method is highly recommend in the production of weaning foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=malting" title=" malting"> malting</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio" title=" ratio"> ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=roasting" title=" roasting"> roasting</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a> </p> <a href="https://publications.waset.org/abstracts/5626/effect-of-different-processing-methods-on-the-proximate-functional-sensory-and-nutritional-properties-of-weaning-foods-formulated-from-maize-zea-mays-and-soybean-glycine-max-flour-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Preparation and Evaluation of siRNA Loaded Polymeric Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riddhi%20Trivedi">Riddhi Trivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrenik%20Shah"> Shrenik Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For Si RNA to be delivered various biodegradable polymers are trialed by many researchers. One of them is Chitosan (CS) nanoparticles which have been extensively studied for siRNA delivery but the stability and efficacy of such particles are highly dependent on the types of cross-linker used. Hence the attempts are made in this study with PGA To address this issue, three common cross-linkers; Ethylene glycol diacrylate (ED) and poly-D-glutamic acid (PGA) were used to prepare siRNA loaded CS-ED/PGA nanoparticles by ionic gelation method. The nanoparticles which were obtained were compared for its characterization in terms of its physicochemical properties i.e. particle size of the resultant particles, zeta potential, its encapsulation capacity in the polymer. Among all the formulations prepared with different crosslinker PGA siRNA had the smallest particle size (ranged from 120 ± 1.7 to 500 ± 10.9 nm) with zeta potential ranged from 22.1 ± 1.5 to +32.4 ± 0.5 mV, and high entrapment ( > 91%) and binding efficiencies. Similarly, CS-ED nanoparticles showed better siRNA protection during storage at 4˚C and as determined by serum protection assay. TEM micrographs revealed the assorted morphology of CS-PGA-siRNA nanoparticles in contrast to irregular morphology displayed by CS-ED-siRNA. All siRNA loaded nanoparticles were found to give initial burst release which after some time followed by a sustained release of siRNA which were loaded inside. All the formulations showed concentration-dependent cytotoxicity with when cytotoxicity performed by HeLa and normal vero cell lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=siRNA" title=" siRNA"> siRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20line%20study" title=" cell line study"> cell line study</a> </p> <a href="https://publications.waset.org/abstracts/69438/preparation-and-evaluation-of-sirna-loaded-polymeric-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Highly Selective Conversion of CO2 to CO on Cu Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rauf%20Razzaq">Rauf Razzaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaiwu%20Dong"> Kaiwu Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sharif"> Muhammad Sharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralf%20Jackstell"> Ralf Jackstell</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Beller"> Matthias Beller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide (CO2), a key greenhouse gas produced from both anthropogenic and natural sources, has been recently considered to be an important C1 building-block for the synthesis of many industrial fuels and chemicals. Catalytic hydrogenation of CO2 using a heterogeneous system is regarded as an efficient process for CO2 valorization. In this regard CO2 reduction to CO via the reverse water gas shift reaction (RWGSR) has attracted much attention as a viable process for large scale commercial CO2 utilization. This process can generate syn-gas (CO+H2) which can provide an alternative route to direct CO2 conversion to methanol and/or liquid HCs from FT reaction. Herein, we report a highly active and selective silica supported copper catalyst with efficient CO2 reduction to CO in a slurry-bed batch autoclave reactor. The reactions were carried out at 200°C and 60 bar initial pressure with CO2/H2 ratio of 1:3 with varying temperature, pressure and fed-gas ratio. The gaseous phase products were analyzed using FID while the liquid products were analyzed by using FID detectors. It was found that Cu/SiO2 catalyst prepared using novel ammonia precipitation-urea gelation method achieved 26% CO2 conversion with a CO and methanol selectivity of 98 and 2% respectively. The high catalytic activity could be attributed to its strong metal-support interaction with highly dispersed and stabilized Cu+ species active for RWGSR. So, it can be concluded that reduction of CO2 to CO via RWGSR could address the problem of using CO2 gas in C1 chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20reduction" title="CO2 reduction">CO2 reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=slurry%20reactor" title=" slurry reactor"> slurry reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis%20gas" title=" synthesis gas"> synthesis gas</a> </p> <a href="https://publications.waset.org/abstracts/70058/highly-selective-conversion-of-co2-to-co-on-cu-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Formulation Development and Evaluation Chlorpheniramine Maleate Containing Nanoparticles Loaded Thermo Sensitive in situ Gel for Treatment of Allergic Rhinitis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Saini">Vipin Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar"> Manish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shailendra%20Bhatt"> Shailendra Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pandurangan"> A. Pandurangan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study was to fabricate a thermo sensitive gel containing Chlorpheniramine maleate (CPM) loaded nanoparticles following intranasal administration for effective treatment of allergic rhinitis. Chitosan based nanoparticles were prepared by precipitation method followed by the addition of developed NPs within the Poloxamer 407 and carbopol 934P based mucoadhesive thermo-reversible gel. Developed formulations were evaluated for Particle size, PDI, % entrapment efficiency and % cumulative drug permeation. NP3 formulation was found to be optimized on the basis of minimum particle size (143.9 nm), maximum entrapment efficiency (80.10±0.414 %) and highest drug permeation (90.92±0.531 %). The optimized formulation NP3 was then formulated into thermo reversible in situ gel. This intensifies the contact between nasal mucosa and the drug, increases and facilitates the drug absorption which results in increased bioavailability. G4 formulation was selected as the optimize on the basis of gelation ability and mucoadhesive strength. Histology was carried out to examine the damage caused by the optimized G4 formulation. Results revealed no visual signs of tissue damage thus indicated safe nasal delivery of nanoparticulate in situ gel formulation G4. Thus, intranasal CPM NP-loaded in situ gel was found to be a promising formulation for the treatment of allergic rhinitis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20gel" title=" in situ gel"> in situ gel</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorpheniramine%20maleate" title=" chlorpheniramine maleate"> chlorpheniramine maleate</a>, <a href="https://publications.waset.org/abstracts/search?q=poloxamer%20407" title=" poloxamer 407"> poloxamer 407</a> </p> <a href="https://publications.waset.org/abstracts/82062/formulation-development-and-evaluation-chlorpheniramine-maleate-containing-nanoparticles-loaded-thermo-sensitive-in-situ-gel-for-treatment-of-allergic-rhinitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Nanoparaquat Effects on Oxidative Stress Status and Liver Function in Male Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Azizi">Zahra Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Karbasi"> Ashkan Karbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzin%20Firouzian"> Farzin Firouzian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Soleimani%20Asl"> Sara Soleimani Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Ranjbar"> Akram Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: One of the most often used herbicides in agriculture is paraquat (PQ), which is very harmful to both people and animals. Chitosan is a well-known, non-toxic polymer commonly used in preparing particles via ionotropic gelation facilitated by negatively charged agents such as sodium alginate. This study aimed to compare the effects of PQ and nanoparaquat (PQNPs) on liver function in male rats. Materials & Methods: Rats were exposed to PQ & PQNPs (4 mg/kg/day, intraperitoneally) for seven days. Then, rats were anesthetized, and serum and liver samples were collected. Later, enzymatic activities such as alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) in serum and oxidative stress biomarkers such as lipid peroxidation (LPO), total antioxidant capacity (TAC) and total thiol groups (TTG) levels in liver tissue were measured by colorimetric methods. Also, histological changes in the liver were evaluated. Results: PQ altered the levels of ALT, AST, and ALP while inducing oxidative stress in the liver. Additionally, liver homogenates with PQ exposure had challenged LPO, TAC, and TTG levels. The severe liver damage is indicated by a significant increase in the enzyme activity of AST, ALT, and ALP in serum. According to the results of the current study, PQNPs, as compared to PQ and the control group, lowered ALT, AST, ALP, and LPO levels while increasing TAC and TTG levels. Conclusion: According to biochemical and histological investigations, PQ loaded in chitosan-alginate particles is more efficient than free PQ at reducing liver toxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paraquat" title="paraquat">paraquat</a>, <a href="https://publications.waset.org/abstracts/search?q=paraquat%20nanoparticles" title=" paraquat nanoparticles"> paraquat nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/180939/nanoparaquat-effects-on-oxidative-stress-status-and-liver-function-in-male-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Development of Mucoadhesive Multiparticulate System for Nasal Drug Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Hemant%20Yadav">K. S. Hemant Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20G.%20Shivakumar"> H. G. Shivakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigation was to prepare and evaluate the mucoadhesive multi-particulate system for nasal drug delivery of anti-histaminic drug. Ebastine was chosen as the model drug. Drug loaded nanoparticles of Ebastine were prepared by ionic gelation method using chitosan as polymer using the drug-polymer weight ratios 1:1, 1:2, 1:3. Sodium tripolyphosphate (STPP) was used as the cross-linking agent in the range of 0.5 and 0.7% w/v. FTIR and DSC studies indicated that no chemical interaction occurred between the drug and polymers. Particle size ranged from 169 to 500 nm. The drug loading and entrapment efficiency was found to increase with increase in chitosan concentration and decreased with increase in poloxamer 407 concentration. The results of in vitro mucoadhesion carried out showed that all the prepared formulation had good mucoadhesive property and mucoadhesion increases with increase in the concentration of chitosan. The in vitro release pattern of all the formulations was observed to be in a biphasic manner characterized by slight burst effect followed by a slow release. By the end of 8 hrs, formulation F6 showed a release of only 86.9% which explains its sustained behaviour. The ex-vivo permeation of the pure drug ebastine was rapid than the optimized formulation(F6) indicating the capability of the chitosan polymer to control drug permeation rate through the sheep nasal mucosa. The results indicated that the mucoadhesive nanoparticulate system can be used for the nasal delivery of antihistaminic drugs in an effective manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nasal" title="nasal">nasal</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=ebastine" title=" ebastine"> ebastine</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-histaminic%20drug" title=" anti-histaminic drug"> anti-histaminic drug</a>, <a href="https://publications.waset.org/abstracts/search?q=mucoadhesive%20multi-particulate%20system" title=" mucoadhesive multi-particulate system"> mucoadhesive multi-particulate system</a> </p> <a href="https://publications.waset.org/abstracts/1786/development-of-mucoadhesive-multiparticulate-system-for-nasal-drug-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gelation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gelation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>