CINXE.COM

Search results for: municipal solid waste

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: municipal solid waste</title> <meta name="description" content="Search results for: municipal solid waste"> <meta name="keywords" content="municipal solid waste"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="municipal solid waste" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="municipal solid waste"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4765</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: municipal solid waste</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4495</span> Synthesis of Solid Polymeric Materials by Maghnite-H⁺ as a Green Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Draoua%20Zohra">Draoua Zohra</a>, <a href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine"> Harrane Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Solid Polymeric Materials have been successfully prepared by the copolymerization of e-caprolactone (CL) and poly (ethylene glycol) (PEG) employing Maghnite-H+ at 80°C. Maghnite-H+ is a solid catalyst non-toxic. The presence of PEG chains leads to a break in the growth of PCL chains and consequently leads to the copolymer tri-block PCL-PEG-PCL. The objective of this study was to synthesize and characterize of Solid Polymeric Materials. The highly hydrophilic nature of polyethylene glycol has sparked our interest in developing a Solid Polymeric based e-caprolactone and poly (ethylene glycol). PCL and PEG are biocompatible materials. Their ring-opening copolymerization using Maghnite H+ makes to the Solid Polymeric Materials. The morphology and structure of Solid polymeric Materials were characterized by ¹H and ¹³C-NMR spectra and Gel Permeation Chromatography (GPC). This paper developed the application of Maghnite-H+ as an efficient catalyst by an easy-to-handle procedure to get solid polymeric materials. A cationic mechanism for the copolymerization reaction was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20copolymers" title="block copolymers">block copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite" title=" maghnite"> maghnite</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28e-caprolactone%29" title=" poly(e-caprolactone)"> poly(e-caprolactone)</a> </p> <a href="https://publications.waset.org/abstracts/97417/synthesis-of-solid-polymeric-materials-by-maghnite-h-as-a-green-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4494</span> Biogas Production from Zebra Manure and Winery Waste Co-Digestion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wicleffe%20Musingarimi">Wicleffe Musingarimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the rising energy demand as a result of an increase in the world’s population and the sustainable use of abundant natural resources are key issues facing many developed and developing countries including South Africa. Most of the energy to meet this growing demand comes from fossil fuel. Use of fossil fuels has led to environmental problems such air pollution, climate change, and acid rain. In addition, fossil fuels are facing continual depletion, which has led to the rise in oil prices, leading to the global economies melt down. Hence development of alternative clean and renewable energy source is a global priority. Renewable biomass from forest products, agricultural crops, and residues, as well as animal and municipal waste are promising alternatives. South Africa is one of the leading wine producers in the world; leading to a lot of winery waste (ww) being produced which can be used in anaerobic digestion (AD) to produce biogas. Biogas was produced from batch anaerobic digestion of zebra manure (zm) and batch anaerobic co-digestion of winery waste (ww) and zebra manure through water displacement. The batch digester with slurry of winery waste and zebra manure in the weight ratio of 1:2 was operated in a 1L container at 37°C for 30days. Co-digestion of winery waste and zebra manure produced higher amount of biogas as compared to zebra manure alone and winery waste alone. No biogas was produced by batch anaerobic digestion of winery waste alone. Chemical analysis of C/N ratio and total solids (TS) of zebra manure was 21.89 and 25.2 respectively. These values of C/N ratio and TS were quite high compared to values of other studied manures. Zebra manure also revealed unusually high concentration of Fe reaching 3600pm compared to other studies of manure. PCR with communal DNA of the digestate gave a positive hit for the presence of archaea species using standard archea primers; suggesting the presence of methanogens. Methanogens are key microbes in the production of biogas. Therefore, this study demonstrated the potential of zebra manure as an inoculum in the production of biogas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=co-digestion" title=" co-digestion"> co-digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=methanogens" title=" methanogens"> methanogens</a> </p> <a href="https://publications.waset.org/abstracts/77383/biogas-production-from-zebra-manure-and-winery-waste-co-digestion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4493</span> Reducing Environmental Impact of Olive Oil Production in Sakaka City Using Combined Chemical, Physical, and Biological Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alhajoj">Abdullah Alhajoj</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassam%20Alowaiesh"> Bassam Alowaiesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to reduce the risks of discharging olive mill waste directly to the environment without treatment in Sakaka City, KSA. The organic loads expressed by chemical oxygen demand (COD) and biological oxygen demand (BOD) of the produced wastewater (OMWW) as well as the solid waste (OMW) were evaluated. The wastes emitted from the three-phase centrifuge decanters was found to be higher than that emitted from the two-phase centrifuge decanters. The olive mill wastewater (OMWW) was treated using advanced oxidation combined with filtration treatment. The results indicated that the concentration of COD, BOD, TSS, oil and grease and phenol was reduced by using complex sand filtration from 72150, 21660 10256, 36430, and 1470 mg/l to 980, 421, 58, 68, and 0.35 mg/l for three-phase OMWW and from 150562, 17955, 15325, 19658 and 2153 mg/l to 1050, 501, 29, 0.75, and 0.29 mg/l, respectively. While, by using modified trickling filter (packed with the neck of waste plastic bottles the concentration of the previously mentioned parameters was reduced to 1190, 570, 55, 0.85, and 0.3 mg/l, respectively. This work supports the application of such treatment technique for reducing the environmental threats of olive mill waste effluents in Saudi Arabia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-phase" title="two-phase">two-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=three-phase" title=" three-phase"> three-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20mill" title=" olive mill"> olive mill</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title=" olive oil"> olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20treatment" title=" waste treatment"> waste treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20oxidation" title=" advanced oxidation"> advanced oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20plastic%20bottles" title=" waste plastic bottles"> waste plastic bottles</a> </p> <a href="https://publications.waset.org/abstracts/94956/reducing-environmental-impact-of-olive-oil-production-in-sakaka-city-using-combined-chemical-physical-and-biological-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4492</span> Sustainable Textiles: Innovation through Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Mitra%20Pramanik">Ananya Mitra Pramanik</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjali%20Agrawal"> Anjali Agrawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper traces the waste produced by the textile industry and evaluates the need for this waste to be reused or repurposed. From ancient times the textile industry has been a prominent part of all the economies of the world. It is famous for traditional as well as mill made fabrics. However the beauty and utility radiated by the textiles are juxtaposed by the piling amount of waste that the whole life cycle of a textile production and disposal entails. Waste happens in stages in a textile life cycle. It can be broadly categorised as pre-consumer and post-consumer waste. This research suggests suitable processes and techniques for channelizing post-industrial waste. It explores the scope of textile waste as a raw material for innovation and design. It discusses the role of designers in using waste to create useful and appealing designs. The paper examines the need of designers to create novel ideas to reuse textiles. This paper is based on secondary research. Most of the information used is taken from books and journals. The DEFRA report 2009 is also consulted for comprehensive data on textile waste percentage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=designers" title="designers">designers</a>, <a href="https://publications.waset.org/abstracts/search?q=repurposing" title=" repurposing"> repurposing</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles" title=" textiles"> textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/84920/sustainable-textiles-innovation-through-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4491</span> Co-Pyrolysis of Olive Pomace with Plastic Wastes and Characterization of Pyrolysis Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merve%20Sogancioglu">Merve Sogancioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Esra%20Yel"> Esra Yel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferda%20Tartar"> Ferda Tartar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihan%20Canan%20Iskender"> Nihan Canan Iskender</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste polyethylene (PE) is classified as waste low density polyethylene (LDPE) and waste high density polyethylene (HDPE) according to their densities. Pyrolysis of plastic waste may have an important role in dealing with the enormous amounts of plastic waste produced all over the world, by decreasing their negative impact on the environment. This waste may be converted into economically valuable hydrocarbons, which can be used both as fuels and as feed stock in the petrochemical industry. End product yields and properties depend on the plastic waste composition. Pyrolytic biochar is one of the most important products of waste plastics pyrolysis. In this study, HDPE and LDPE plastic wastes were co-pyrolyzed together with waste olive pomace. Pyrolysis runs were performed at temperature 700&deg;C with heating rates of 5&deg;C/min. Higher pyrolysis oil and gas yields were observed by the using waste olive pomace. The biochar yields of HDPE- olive pomace and LDPEolive pomace were 6.37% and 7.26% respectively for 50% olive pomace doses. The calorific value of HDPE-olive pomace and LDPE-olive pomace of pyrolysis oil were 8350 and 8495 kCal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=co-pyrolysis" title=" co-pyrolysis"> co-pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20plastic" title=" waste plastic"> waste plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20olive%20pomace" title=" waste olive pomace"> waste olive pomace</a> </p> <a href="https://publications.waset.org/abstracts/43077/co-pyrolysis-of-olive-pomace-with-plastic-wastes-and-characterization-of-pyrolysis-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4490</span> Industrial-Waste Management in Developing Countries: The Case of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Sefouhi">L. Sefouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Djebabra"> M. Djebabra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial operations have been accompanied by a problem: industrial waste which may be toxic, ignitable, corrosive or reactive. If improperly managed, this waste can pose dangerous health and environmental consequences. The industrial waste management becomes a real problem for them. The oil industry is an important sector in Algeria, from exploration to development and marketing of hydrocarbons. For this sector, industrial wastes pose a big problem. The aim of the present study is to present in a systematic way the subject of industrial waste from the point-of-view of definitions in engineering and legislation. This analysis is necessary, as many different approaches and we will attempt to diagnose the current management of industrial waste, namely an inventory of deposits and methods of sorting, packing, storage, and a description of the different disposal routes. Thus, a proposal for a reasoned and responsible management of waste by avoiding a shift towards future expenses related to the disposal of such waste, and prevents pollution they cause to the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20waste" title="industrial waste">industrial waste</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=risks" title=" risks"> risks</a> </p> <a href="https://publications.waset.org/abstracts/49008/industrial-waste-management-in-developing-countries-the-case-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4489</span> Fishing Waste: A Source of Valuable Products through Anaerobic Treatments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luisa%20Maria%20Arrechea%20Fajardo">Luisa Maria Arrechea Fajardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Luz%20Stella%20%20Cadavid%20Rodriguez"> Luz Stella Cadavid Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish is one of the most commercialized foods worldwide. However, this industry only takes advantage of about 55% of the product's weight, the rest is converted into waste, which is mainly composed of viscera, gills, scales and spines. Consequently, if these wastes are not used or disposed of properly, they cause serious environmental impacts. This is the case of Tumaco (Colombia), the second largest producer of marine fisheries on the Colombian Pacific coast, where artisanal fishermen process more than 50% of the commercialized volume. There, fishing waste is disposed primarily in the ocean, causing negative impacts on the environment and society. Therefore, in the present research, a proposal was made to take advantage of fishing waste through anaerobic treatments, through which it is possible to obtain products with high added value from organic waste. The research was carried out in four stages. First, the production of volatile fatty acids (VFA) in semi-continuous 4L reactors was studied, evaluating three hydraulic retention times (HRT) (10, 7 and 5 days) with four organic loading rates (OLR) (16, 14, 12 and 10 gVS/L/day), the experiment was carried out for 150 days. Subsequently, biogas production was evaluated from the solid digestate generated in the VFA production reactors, initially evaluating the biochemical methane potential (BMP) of 4 total solid concentrations (1, 2, 4 and 6% TS), for 40 days and then, with the optimum TS concentration (2 gVS/L/day), 2 HRT (15 and 20 days) in semi-continuous reactors, were evaluated for 100 days. Finally, the integration of the processes was carried out with the best conditions found, a first phase of VFA production from fishing waste and a second phase of biogas production from unrecovered VFAs and unprocessed material Additionally, an VFA membrane extraction system was included. In the first phase, a liquid digestate with a concentration and VFA production yield of 59.04 gVFA/L and 0.527 gVFA/gVS, respectively, was obtained, with the best condition found (HRT:7 days and OLR: 16 gVS/L/día), where acetic acid and isobutyric acid were the predominant acids. In the second phase of biogas production, a BMP of 0.349 Nm3CH4/KgVS was reached, and it was found as best HRT 20 days. In the integration, the isovaleric, butyric and isobutyric acid were the VFA with the highest percentage of extraction, additionally a 106.67% increase in biogas production was achieved. This research shows that anaerobic treatments are a promising technology for an environmentally safe management of fishing waste and presents the basis of a possible biorefinery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas%20production" title="biogas production">biogas production</a>, <a href="https://publications.waset.org/abstracts/search?q=fishing%20waste" title=" fishing waste"> fishing waste</a>, <a href="https://publications.waset.org/abstracts/search?q=VFA%20membrane%20extraction" title=" VFA membrane extraction"> VFA membrane extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=VFA%20production" title=" VFA production"> VFA production</a> </p> <a href="https://publications.waset.org/abstracts/122947/fishing-waste-a-source-of-valuable-products-through-anaerobic-treatments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4488</span> Gender Perception on Food Waste within the Household and Community: Case Study in Bandung City, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gumilar%20Hadiningrat">Gumilar Hadiningrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Stewart%20Barr"> Stewart Barr</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%20Little"> Jo Little</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Indonesia, the majority of those who manage food waste are women. It is Indonesian culture that women act as household managers. Therefore, women as household managers hold an important role in reducing food waste within households. Meanwhile, in the community, women’s organisations are some of the most active organisations dealing with food waste. Food waste has an increasing profile and is the subject of much global attention and have economic, social and environmental impacts. Reducing food waste will improve future food availability in the context of global population growth and increasing resource scarcity. The aim of this research is to investigate women’s experience and understanding of dealing with food waste in the household and in the community. The research will use an inductive approach using in-depth qualitative methods. In terms of data collection, two methods will be used - questionnaire and interviews. All in all, it could be claimed that women, both within the household and the community in Indonesia, hold an important role in dealing with food waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20waste%20management" title="community waste management">community waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20waste" title=" food waste"> food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=household%20waste" title=" household waste"> household waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/85101/gender-perception-on-food-waste-within-the-household-and-community-case-study-in-bandung-city-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4487</span> Review of Research on Waste Plastic Modified Asphalt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Song%20Xinze">Song Xinze</a>, <a href="https://publications.waset.org/abstracts/search?q=Cai%20Kejian"> Cai Kejian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To further explore the application of waste plastics in asphalt pavement, this paper begins with the classification and characteristics of waste plastics. It then provides a state-of-the-art review of the preparation methods and processes of waste plastic modifiers, waste plastic-modified asphalt, and waste plastic-modified asphalt mixtures. The paper also analyzes the factors influencing the compatibility between waste plastics and asphalt and summarizes the performance evaluation indicators for waste plastic-modified asphalt and its mixtures. It explores the research approaches and findings of domestic and international scholars and presents examples of waste plastics applications in pavement engineering. The author believes that there is a basic consensus that waste plastics can improve the high-temperature performance of asphalt. The use of cracking processes to solve the storage stability of waste plastic polymer-modified asphalt is the key to promoting its application. Additionally, the author anticipates that future research will concentrate on optimizing the recycling, processing, screening, and preparation of waste plastics, along with developing composite plastic modifiers to improve their compatibility and long-term performance in asphalt pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20plastics" title="waste plastics">waste plastics</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title=" asphalt pavement"> asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20performance" title=" asphalt performance"> asphalt performance</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20modification" title=" asphalt modification"> asphalt modification</a> </p> <a href="https://publications.waset.org/abstracts/186021/review-of-research-on-waste-plastic-modified-asphalt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4486</span> Optimization of Fenton Process for the Treatment of Young Municipal Leachate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouchra%20Wassate">Bouchra Wassate</a>, <a href="https://publications.waset.org/abstracts/search?q=Younes%20Karhat"> Younes Karhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadija%20El%20Falaki"> Khadija El Falaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leachate is a source of surface water and groundwater contamination if it has not been pretreated. Indeed, due to its complex structure and its pollution load make its treatment extremely difficult to achieve the standard limits required. The objective of this work is to show the interest of advanced oxidation processes on leachate treatment of urban waste containing high concentrations of organic pollutants. The efficiency of Fenton (Fe2+ +H2O2 + H+) reagent for young leachate recovered from collection trucks household waste in the city of Casablanca, Morocco, was evaluated with the objectives of chemical oxygen demand (COD) and discoloration reductions. The optimization of certain physicochemical parameters (initial pH value, reaction time, and [Fe2+], [H2O2]/ [Fe2+] ratio) has yielded good results in terms of reduction of COD and discoloration of the leachate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COD%20removal" title="COD removal">COD removal</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20removal" title=" color removal"> color removal</a>, <a href="https://publications.waset.org/abstracts/search?q=Fenton%20process" title=" Fenton process"> Fenton process</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20process" title=" oxidation process"> oxidation process</a>, <a href="https://publications.waset.org/abstracts/search?q=leachate" title=" leachate "> leachate </a> </p> <a href="https://publications.waset.org/abstracts/33168/optimization-of-fenton-process-for-the-treatment-of-young-municipal-leachate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4485</span> Utilization of Torula Yeast (Zymomonas mobilis) as Main/Reciprocal for Degradation of Municipal Organic Waste as Feed for Goats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nkutere%20Chikezie%20Kanu">Nkutere Chikezie Kanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nnamdi%20M.%20Anigbogu"> Nnamdi M. Anigbogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnson%20C.%20Ezike"> Johnson C. Ezike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was carried out to investigate the performance of Red Sokoto goats fed Municipal Oranic Wastes (MOW) subjected to two methods of in vivo degradation by Torula Yeast and Zymomonas mobilis. Two combination, Torula Yeast + Zymomonas mobilis (main degradation), and Zymomonas mobilis + Torula Yeast (Reciprocal degradation) were used to degrade MOW. Eighteen Red Sokoto goats of both sexes (9 males and 9 females) of ages between 6-8 were used for the study. The goats were randomly assigned into 3 treatments groups A, B and C respectively with 6 goats per treatment. The experiment was laid in a Completely Randomized Design and replicated 3 times. Treatment A groups were fed 30% Undegraded MOW base diet +concentrate mixture, Treatment B groups were fed 30% Main degraded MOW base diet +concentrate mixture, Treatment C groups were fed 30% Reciprocal degraded MOW base diet +concentrate mixture. The result of the daily weight gain was significantly (P<0.05) better than on the other Treatments. There was significant improvement (P<0.05) on the daily feed consumption in Treatment B than on the Treatments A and C. The feed conversion ratio revealed no significant (P>0.05) differences among the treatment groups but much better in the treatment B and C, the cost of feed consumed was much higher (P>0.05) in Treatment B followed by Treatment C, while Treatment A had the lowest. The cost/ kg weight gain that was recorded in Treatment A was better (P<0.05) than the Treatment B, followed by Treatment C, while the cost of production was high (P<0.05) in Treatment B than in other treatments. The gross profit was observed best (P<0.05) on the Treatment B, followed by Treatment C while Treatment A had the lowest. The net profit as noted in this study was much better (P<0.05) in Treatment B, and Treatment C, while the least was observed in Treatment A, where the return on investment was high in Treatments B and C, while Treatment A had the lowest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reciprocal" title="reciprocal">reciprocal</a>, <a href="https://publications.waset.org/abstracts/search?q=torula%20yeast" title=" torula yeast"> torula yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=Zymomonas%20mobilis" title=" Zymomonas mobilis"> Zymomonas mobilis</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20waste" title=" organic waste"> organic waste</a> </p> <a href="https://publications.waset.org/abstracts/56758/utilization-of-torula-yeast-zymomonas-mobilis-as-mainreciprocal-for-degradation-of-municipal-organic-waste-as-feed-for-goats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4484</span> Non-Burn Treatment of Health Care Risk Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jefrey%20Pilusa">Jefrey Pilusa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research discusses a South African case study for the potential of utilizing refuse-derived fuel (RDF) obtained from non-burn treatment of health care risk waste (HCRW) as potential feedstock for green energy production. This specific waste stream can be destroyed via non-burn treatment technology involving high-speed mechanical shredding followed by steam or chemical injection to disinfect the final product. The RDF obtained from this process is characterised by a low moisture, low ash, and high calorific value which means it can be potentially used as high-value solid fuel. Due to the raw feed of this RDF being classified as hazardous, the final RDF has been reported to be non-infectious and can blend with other combustible wastes such as rubber and plastic for waste to energy applications. This study evaluated non-burn treatment technology as a possible solution for on-site destruction of HCRW in South African private and public health care centres. Waste generation quantities were estimated based on the number of registered patient beds, theoretical bed occupancy. Time and motion study was conducted to evaluate the logistics viability of on-site treatment. Non-burn treatment technology for HCRW is a promising option for South Africa, and successful implementation of this method depends upon the initial capital investment, operational cost and environmental permitting of such technology; there are other influencing factors such as the size of the waste stream, product off-take price as well as product demand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoclave" title="autoclave">autoclave</a>, <a href="https://publications.waset.org/abstracts/search?q=disposal" title=" disposal"> disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel" title=" fuel"> fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=incineration" title=" incineration"> incineration</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20waste" title=" medical waste"> medical waste</a> </p> <a href="https://publications.waset.org/abstracts/75768/non-burn-treatment-of-health-care-risk-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4483</span> Modelling and Simulation of Bioethanol Production from Food Waste Using CHEMCAD Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kgomotso%20Matobole">Kgomotso Matobole</a>, <a href="https://publications.waset.org/abstracts/search?q=Noluzuko%20Monakali"> Noluzuko Monakali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On a global scale, there is an alarming generation of food waste. Food waste is generated across the food supply chain. Worldwide urbanization, as well as global economic growth, have contributed to this amount of food waste the environment is receiving. Food waste normally ends on illegal dumping sites when not properly disposed, or disposed to landfills. This results in environmental pollution due to inadequate waste management practices. Food waste is rich in organic matter and highly biodegradable; hence, it can be utilized for the production of bioethanol, a type of biofuel. In so doing, alternative energy will be created, and the volumes of food waste will be reduced in the process. This results in food waste being seen as a precious commodity in energy generation instead of a pollutant. The main aim of the project was to simulate a biorefinery, using a software called CHEMCAD 7.12. The resulting purity of the ethanol from the simulation was 98.9%, with the feed ratio of 1: 2 for food waste and water. This was achieved by integrating necessary unit operations and optimisation of their operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20waste" title=" food waste"> food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/112719/modelling-and-simulation-of-bioethanol-production-from-food-waste-using-chemcad-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4482</span> Determination of Gold in Microelectronics Waste Pieces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20I.%20Usenko">S. I. Usenko</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20N.%20Golubeva"> V. N. Golubeva</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Konopkina"> I. A. Konopkina</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20V.%20Astakhova"> I. V. Astakhova</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20V.%20Vakhnina"> O. V. Vakhnina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Korableva"> A. A. Korableva</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Kalinina"> A. A. Kalinina</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Zhogova"> K. B. Zhogova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gold can be determined in natural objects and manufactured articles of different origin. The up-to-date status of research and problems of high gold level determination in alloys and manufactured articles are described in detail in the literature. No less important is the task of this metal determination in minerals, process products and waste pieces. The latters, as objects of gold content chemical analysis, are most hard-to-study for two reasons: Because of high requirements to accuracy of analysis results and because of difference in chemical and phase composition. As a rule, such objects are characterized by compound, variable and very often unknown matrix composition that leads to unpredictable and uncontrolled effect on accuracy and other analytical characteristics of analysis technique. In this paper, the methods for the determination of gold are described, using flame atomic-absorption spectrophotometry and gravimetric analysis technique. The techniques are aimed at gold determination in a solution for gold etching (KJ+J2), in the technological mixture formed after cleaning stainless steel members of vacuum-deposit installation with concentrated nitric and hydrochloric acids as well as in gold-containing powder resulted from liquid wastes reprocessing. Optimal conditions for sample preparation and analysis of liquid and solid waste specimens of compound and variable matrix composition were chosen. The boundaries of relative resultant error were determined for the methods within the range of gold mass concentration from 0.1 to 30g/dm3 in the specimens of liquid wastes and mass fractions from 3 to 80% in the specimens of solid wastes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microelectronics%20waste%20pieces" title="microelectronics waste pieces">microelectronics waste pieces</a>, <a href="https://publications.waset.org/abstracts/search?q=gold" title=" gold"> gold</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20preparation" title=" sample preparation"> sample preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic-absorption%20spectrophotometry" title=" atomic-absorption spectrophotometry"> atomic-absorption spectrophotometry</a>, <a href="https://publications.waset.org/abstracts/search?q=gravimetric%20analysis%20technique" title=" gravimetric analysis technique"> gravimetric analysis technique</a> </p> <a href="https://publications.waset.org/abstracts/56156/determination-of-gold-in-microelectronics-waste-pieces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4481</span> Medical Waste Management in Nigeria: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Y.%20Babanyara">Y. Y. Babanyara</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B.%20Ibrahim"> D. B. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Garba"> T. Garba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proper management of medical waste is a crucial issue for maintaining human health and the environment. The waste generated in the hospitals has the potential for spreading infections and causing diseases. The study is aimed at assessing the medical waste management practices in Nigeria. Three instruments, questionnaire administration, in-depth interview and observation method for data collection were adopted in the study. The results revealed that the hospital does not quantify medical waste. Segregation of medical wastes is not conducted according to definite rules and standards. Wheeled trolleys are used for on-site transportation of waste from the points of production to the temporary storage area. Offsite transportation of the hospital waste is undertaken by a private waste management company. Small pickups are mainly used to transport waste daily to an off-site area for treatment and disposal. The main treatment method used in the final disposal of infectious waste is incineration. Non-infectious waste is disposed off using land disposal method. The study showed that the hospital does not have a policy and plan in place for managing medical waste. The study revealed number of problems the hospital faces in terms of medical waste management, including; lack of necessary rules, regulations and instructions on the different aspects of collections and disposal of waste, failure to quantify the waste generated in reliable records, lack of use of coloured bags by limiting the bags to only one colour for all waste, the absence of a dedicated waste manager, and no committee responsible for monitoring the management of medical waste. Recommendations are given with the aim of improving medical waste management in the hospital. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20waste" title="medical waste">medical waste</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=disposal" title=" disposal"> disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health" title=" public health"> public health</a> </p> <a href="https://publications.waset.org/abstracts/5191/medical-waste-management-in-nigeria-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4480</span> Current Status and a Forecasting Model of Community Household Waste Generation: A Case Study on Ward 24 (Nirala), Khulna, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Nazmul%20Haque">Md. Nazmul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahinur%20Rahman"> Mahinur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the research is to determine the quantity of household waste generated and forecast the future condition of Ward No 24 (Nirala). For performing that, three core issues are focused: (i) the capacity and service area of the dumping stations; (ii) the present waste generation amount per capita per day; (iii) the responsibility of the local authority in the household waste collection. This research relied on field survey-based data collection from all stakeholders and GIS-based secondary analysis of waste collection points and their coverage. However, these studies are mostly based on the inherent forecasting approaches, cannot predict the amount of waste correctly. The findings of this study suggest that Nirala is a formal residential area introducing a better approach to the waste collection - self-controlled and collection system. Here, a forecasting model proposed for waste generation as Y = -2250387 + 1146.1 * X, where X = year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20environment" title="eco-friendly environment">eco-friendly environment</a>, <a href="https://publications.waset.org/abstracts/search?q=household%20waste" title=" household waste"> household waste</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/88848/current-status-and-a-forecasting-model-of-community-household-waste-generation-a-case-study-on-ward-24-nirala-khulna-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4479</span> Financial Administration of Urban Local Governance: A Comparative Study of Ahmedabad Municipal Corporation (AMC) and Bhavnagar Municipal Corporation(BMC)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aneri%20Mehta">Aneri Mehta</a>, <a href="https://publications.waset.org/abstracts/search?q=Krunal%20Mehta"> Krunal Mehta </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Financial administration is part of government which deals with collection, preservation and distribution of public funds, with the coordination of public revenue and expenditure, with the management of credit operation on behalf of the state and with the general control of the financial affairs of public households. The researcher has taken the prime body of the local self government viz. Municipal Corporation. However, the number of municipal corporations in India has rapidly increased in recent years. Countries 27% of the total population are living in urban area & in recent it increasing very fast. People are moving very fast from rural area to urban area. Their demand, awareness is increasing day by day. The Municipal Corporations render many services for the development of the urban area. Thus, researcher has taken a step to know the accounting practices of the municipal corporations of Gujarat state (AMC & BMC ). The research will try to show you the status of finance of municipal corporations. Article 243(w) of the constitution of India envisaged that the state government maybe, by law , endow the municipalities with such powers and authorities as may be necessary to enable them to function as institution of self government and such law may contain provision for devolution of powers and responsibilities upon municipalities subjects to such condition as may be specified there in with respect to (i) the peroration of plans for economic development and social justice and (ii) the performance of the function and the implementation of schemes as may be entrusted to them including those in relation to the matters listed in the twelfth schedule. The three tier structure of the Indian Government i.e. Union, State & Local Self Government is the scenario of the Indian constitution. Local Self Government performs or renders many services under the direct control of state government. They (local bodies) possess autonomy within its limited sphere, raise revenue through local taxation and spend its income on local services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=financial%20administration" title="financial administration">financial administration</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20local%20bodies" title=" urban local bodies"> urban local bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20self%20government" title=" local self government"> local self government</a>, <a href="https://publications.waset.org/abstracts/search?q=constitution" title=" constitution "> constitution </a> </p> <a href="https://publications.waset.org/abstracts/14896/financial-administration-of-urban-local-governance-a-comparative-study-of-ahmedabad-municipal-corporation-amc-and-bhavnagar-municipal-corporationbmc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4478</span> Energy and Exergy Analysis of Anode-Supported and Electrolyte–Supported Solid Oxide Fuel Cells Gas Turbine Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrazzak%20Akroot">Abdulrazzak Akroot</a>, <a href="https://publications.waset.org/abstracts/search?q=Lutfu%20Namli"> Lutfu Namli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid oxide fuel cells (SOFCs) are one of the most promising technologies since they can produce electricity directly from fuel and generate a lot of waste heat that is generally used in the gas turbines to promote the general performance of the thermal power plant. In this study, the energy, and exergy analysis of a solid oxide fuel cell/gas turbine hybrid system was proceed in MATLAB to examine the performance characteristics of the hybrid system in two different configurations: anode-supported model and electrolyte-supported model. The obtained results indicate that if the fuel utilization factor reduces from 0.85 to 0.65, the overall efficiency decreases from 64.61 to 59.27% for the anode-supported model whereas it reduces from 58.3 to 56.4% for the electrolyte-supported model. Besides, the overall exergy reduces from 53.86 to 44.06% for the anode-supported model whereas it reduces from 39.96 to 33.94% for the electrolyte-supported model. Furthermore, increasing the air utilization factor has a negative impact on the electrical power output and the efficiencies of the overall system due to the reduction in the O₂ concentration at the cathode-electrolyte interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide%20fuel%20cell" title="solid oxide fuel cell">solid oxide fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=anode-supported%20model" title=" anode-supported model"> anode-supported model</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyte-supported%20model" title=" electrolyte-supported model"> electrolyte-supported model</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20analysis" title=" energy analysis"> energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title=" exergy analysis"> exergy analysis</a> </p> <a href="https://publications.waset.org/abstracts/104800/energy-and-exergy-analysis-of-anode-supported-and-electrolyte-supported-solid-oxide-fuel-cells-gas-turbine-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4477</span> An Efficient Hybrid Feedstock Pretreatment Technique for the Release of Fermentable Sugar from Cassava Peels for Biofuel Production </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Sanjo%20Aruwajoye">Gabriel Sanjo Aruwajoye</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20B.%20Gueguim%20Kana"> E. B. Gueguim Kana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural residues present a low-cost feedstock for bioenergy production around the world. Cassava peels waste are rich in organic molecules that can be readily converted to value added products such as biomaterials and biofuels. However, due to the presence of high proportion of structural carbohydrates and lignin, the hydrolysis of this feedstock is imperative to achieve maximum substrate utilization and energy yield. This study model and optimises the release of Fermentable Sugar (FS) from cassava peels waste using the Response Surface Methodology. The investigated pretreatment input parameters consisted of soaking temperature (oC), soaking time (hours), autoclave duration (minutes), acid concentration (% v/v), substrate solid loading (% w/v) within the range of 30 to 70, 0 to 24, 5 to 20, 0 to 5 and 2 to 10 respectively. The Box-Behnken design was used to generate 46 experimental runs which were investigated for FS release. The obtained data were used to fit a quadratic model. A coefficient of determination of 0.87 and F value of 8.73 was obtained indicating the good fitness of the model. The predicted optimum pretreatment conditions were 69.62 oC soaking temperature, 2.57 hours soaking duration, 5 minutes autoclave duration, 3.68 % v/v HCl and 9.65 % w/v solid loading corresponding to FS yield of 91.83g/l (0.92 g/g cassava peels) thus 58% improvement on the non-optimised pretreatment. Our findings demonstrate an efficient pretreatment model for fermentable sugar release from cassava peels waste for various bioprocesses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feedstock%20pretreatment" title="feedstock pretreatment">feedstock pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=cassava%20peels" title=" cassava peels"> cassava peels</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentable%20sugar" title=" fermentable sugar"> fermentable sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/64193/an-efficient-hybrid-feedstock-pretreatment-technique-for-the-release-of-fermentable-sugar-from-cassava-peels-for-biofuel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4476</span> Supercritical Hydrothermal and Subcritical Glycolysis Conversion of Biomass Waste to Produce Biofuel and High-Value Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiu-Hsuan%20Lee">Chiu-Hsuan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Hao%20Yuan"> Min-Hao Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun-Cheng%20Lin"> Kun-Cheng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiao-Yin%20Tsai"> Qiao-Yin Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Jie%20Lu"> Yun-Jie Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Jhen%20Wang"> Yi-Jhen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin-Yi%20Lin"> Hsin-Yi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Hua%20Hsu"> Chih-Hua Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia-Rong%20Jhou"> Jia-Rong Jhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Si-Ying%20Li"> Si-Ying Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Hung%20Chen"> Yi-Hung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Je-Lueng%20Shie"> Je-Lueng Shie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raw food waste has a high-water content. If it is incinerated, it will increase the cost of treatment. Therefore, composting or energy is usually used. There are mature technologies for composting food waste. Odor, wastewater, and other problems are serious, but the output of compost products is limited. And bakelite is mainly used in the manufacturing of integrated circuit boards. It is hard to directly recycle and reuse due to its hard structure and also difficult to incinerate and produce air pollutants due to incomplete incineration. In this study, supercritical hydrothermal and subcritical glycolysis thermal conversion technology is used to convert biomass wastes of bakelite and raw kitchen wastes to carbon materials and biofuels. Batch carbonization tests are performed under high temperature and pressure conditions of solvents and different operating conditions, including wet and dry base mixed biomass. This study can be divided into two parts. In the first part, bakelite waste is performed as dry-based industrial waste. And in the second part, raw kitchen wastes (lemon, banana, watermelon, and pineapple peel) are used as wet-based biomass ones. The parameters include reaction temperature, reaction time, mass-to-solvent ratio, and volume filling rates. The yield, conversion, and recovery rates of products (solid, gas, and liquid) are evaluated and discussed. The results explore the benefits of synergistic effects in thermal glycolysis dehydration and carbonization on the yield and recovery rate of solid products. The purpose is to obtain the optimum operating conditions. This technology is a biomass-negative carbon technology (BNCT); if it is combined with carbon capture and storage (BECCS), it can provide a new direction for 2050 net zero carbon dioxide emissions (NZCDE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20food%20waste" title=" raw food waste"> raw food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=bakelite" title=" bakelite"> bakelite</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20hydrothermal" title=" supercritical hydrothermal"> supercritical hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=subcritical%20glycolysis" title=" subcritical glycolysis"> subcritical glycolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuels" title=" biofuels"> biofuels</a> </p> <a href="https://publications.waset.org/abstracts/154870/supercritical-hydrothermal-and-subcritical-glycolysis-conversion-of-biomass-waste-to-produce-biofuel-and-high-value-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4475</span> Concentration of Waste Waters by Enzyme-Assisted Low-Temperature Evaporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahokas%20Mikko">Ahokas Mikko</a>, <a href="https://publications.waset.org/abstracts/search?q=Taskila%20Sanna"> Taskila Sanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Varrio%20Kalle"> Varrio Kalle</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanskanen%20Juha"> Tanskanen Juha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research aimed at the development of an energy efficient process for the concentration of starchy waste waters. The selected principle is mechanical vapor recompression evaporation (MVR) which leads to concentrated solid material and evaporated water phase. Evaporation removes water until a certain viscosity limit is reached. Materials with high viscosity cannot be concentrated using standard evaporators due to limitations of pumps and other constraints, such as wetting. Control of viscosity is thus essential for efficient evaporation. This applies especially to fluids in which due starch or other compounds the viscosity tends to increase via removal of water. In the present research, the effect of enzymes on evaporation of highly viscous starch industry waste waters was investigated. Wastewater samples were received from starch industry at pH of 4.8. Response surface methodology (RSM) was applied for the investigation of factor effects on the behaviour of concentrate during evaporation. The RSM was prepared using quadratic face-centered central composite design (CCF). The evaporation performance was evaluated by monitoring the viscosity of fluid during processing. Based on viscosity curves, the addition of glucoamylase reduced the viscosity during evaporation. This assumption was confirmed by CCF, suggesting that the use of starch decomposing glucoamylase allowed evaporation of the starchy wastewater to a relatively high total solid concentration without a detrimental increase in the viscosity. The results suggest that use of enzymes for reduction of viscosity during the evaporation allows more effective concentration of the wastewater and thereby recovery of potable water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscous" title="viscous">viscous</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a> </p> <a href="https://publications.waset.org/abstracts/66441/concentration-of-waste-waters-by-enzyme-assisted-low-temperature-evaporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4474</span> Application of Customized Bioaugmentation Inocula to Alleviate Ammonia Toxicity in CSTR Anaerobic Digesters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yixin%20Yan">Yixin Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao%20Yan"> Miao Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Irini%20Angelidaki"> Irini Angelidaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Fotidis"> Ioannis Fotidis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ammonia, which derives from the degradation of urea and protein-substrates, is the major toxicant of the commercial anaerobic digestion reactors causing loses of up to 1/3 of their practical biogas production, which reflects directly on the overall revenue of the plants. The current experimental work is aiming to alleviate the ammonia inhibition in anaerobic digestion (AD) process by developing an innovative bioaugmentation method of ammonia tolerant methanogenic consortia. The ammonia tolerant consortia were cultured in batch reactors and immobilized together with biochar in agar (customized inocula). Three continuous stirred-tank reactors (CSTR), fed with the organic fraction of municipal solid waste at a hydraulic retention time of 15 days and operated at thermophilic (55°C) conditions were assessed. After an ammonia shock of 4 g NH4+-N L-1, the customized inocula were bioaugmented into the CSTR reactors to alleviate ammonia toxicity effect on AD process. Recovery rate of methane production and methanogenic activity will be assessed to evaluate the bioaugmentation performance, while 16s rRNA gene sequence will be used to reveal the difference of microbial community changes through bioaugmentation. At the microbial level, the microbial community structures of the four reactors will be analysed to find the mechanism of bioaugmentation. Changes in hydrogen formation potential will be used to predict direct interspecies electron transfer (DIET) between ammonia tolerant methanogens and syntrophic bacteria. This experimental work is expected to create bioaugmentation inocula that will be easy to obtain, transport, handled and bioaugment in AD reactors to efficiently alleviate the ammonia toxicity, without alternating any of the other operational parameters including the ammonia-rich feedstocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artisanal%20fishing%20waste" title="artisanal fishing waste">artisanal fishing waste</a>, <a href="https://publications.waset.org/abstracts/search?q=acidogenesis" title=" acidogenesis"> acidogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20fatty%20acids" title=" volatile fatty acids"> volatile fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%2Fsubstrate%20ratio" title=" inoculum/substrate ratio"> inoculum/substrate ratio</a> </p> <a href="https://publications.waset.org/abstracts/125008/application-of-customized-bioaugmentation-inocula-to-alleviate-ammonia-toxicity-in-cstr-anaerobic-digesters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4473</span> Influence of Ground Granulated Blast Furnace Slag on Geotechnical Characteristics of Jarosite Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chayan%20Gupta">Chayan Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Prasad"> Arun Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quick evolution of industrialization causes the scarcity of precious land. Thus, it is vital need to influence the R&D societies to achieve sustainable, economic and social benefits from huge utilization of waste for universal aids. The current study promotes the influence of steel industries waste i.e. ground granulated blast furnace slag (GGBS) in geotechnical properties of jarosite waste (solid waste residues produced from hydrometallurgy operations involved in extraction of Zinc). Numerous strengths tests (unconfined compression (qu) and splitting tensile strength (qt)) are conducted on jarosite-GGBS blends (GGBS, 10-30%) with different curing periods (7, 28 & 90 days). The results indicate that both qu and qt increase with the increase in GGBS content along with curing periods. The increased strength with the addition of GGBS is also observed from microstructural study, which illustrates the occurrence of larger agglomeration of jarosite-GGBS blend particles. The Freezing-Thawing (F-T) durability analysis is also conducted for all the jarosite-GGBS blends and found that the reduction in unconfined compressive strength after five successive F-T cycles enhanced from 62% (natural jarosite) to 48, 42 and 34% at 7, 14 and 28 days curing periods respectively for stabilized jarosite-GGBS samples containing 30% GGBS content. It can be concluded from this study that blending of cementing additives (GGBS) with jarosite waste resulted in a significant improvement in geotechnical characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jarosite" title="jarosite">jarosite</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20characteristics" title=" strength characteristics"> strength characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructural%20study" title=" microstructural study"> microstructural study</a>, <a href="https://publications.waset.org/abstracts/search?q=durability%20analysis" title=" durability analysis"> durability analysis</a> </p> <a href="https://publications.waset.org/abstracts/76206/influence-of-ground-granulated-blast-furnace-slag-on-geotechnical-characteristics-of-jarosite-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4472</span> Sintered Phosphate Cement for HLW Encapsulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20M.%20Nelwamondo">S. M. M. Nelwamondo</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20C.%20M.%20H.%20Meyer"> W. C. M. H. Meyer</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Krieg"> H. Krieg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of volatile radionuclides in high level waste (HLW) in the nuclear industry limits the use of high temperature encapsulation technologies (glass and ceramic). Chemically bonded phosphate cement (CBPC) matrixes can be used for encapsulation of low level waste. This waste form is however not suitable for high level waste due to the radiolysis of water in these matrixes. In this research, the sintering behavior of the magnesium potassium phosphate cement waste forms was investigated. The addition of sintering aids resulted in the sintering of these phosphate cement matrixes into dense monoliths containing no water. Experimental evidence will be presented that this waste form can now be considered as a waste form for volatile radionuclides and high level waste as radiation studies indicated no chemical phase transition or physical degradation of this waste form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemically%20bonded%20phosphate%20cements" title="chemically bonded phosphate cements">chemically bonded phosphate cements</a>, <a href="https://publications.waset.org/abstracts/search?q=HLW%20encapsulation" title=" HLW encapsulation"> HLW encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20stability" title=" radiation stability"> radiation stability</a> </p> <a href="https://publications.waset.org/abstracts/30155/sintered-phosphate-cement-for-hlw-encapsulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">638</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4471</span> Design of Low-Maintenance Sewer Pump Stations with High-Security Measures for Municipal Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20V.%20Smit">H. V. Smit</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20H.%20J.%20de%20Wet"> V. H. J. de Wet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> South African municipalities are dealing with aging and dilapidated infrastructure while faced with challenges in the form of expanding informal settlements, vandalism, theft, and a lack of maintenance which place even more pressure on existing infrastructure. The existing infrastructure was never designed to cater to these challenges, and this becomes evident when evaluating the current state of many municipal sewer pump stations. A need has thus arisen to develop a sewer pump station design concept that will address these challenges and allow for a long-term sustainable solution. This article deals with the design concepts which have been developed for sewer pump stations for an effective reduction in maintenance, improved grit handling, improvement to the operation and maintenance working conditions, and the adoption of high-security design philosophy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20security" title="high security">high security</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20maintenance" title=" low maintenance"> low maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20application" title=" municipal application"> municipal application</a>, <a href="https://publications.waset.org/abstracts/search?q=sewer%20pump%20station" title=" sewer pump station"> sewer pump station</a> </p> <a href="https://publications.waset.org/abstracts/153369/design-of-low-maintenance-sewer-pump-stations-with-high-security-measures-for-municipal-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4470</span> Evaluation of Corrosion in Steel Reinforced Concrete with Brick Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julieta%20Daniela%20Chelaru">Julieta Daniela Chelaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Gorea"> Maria Gorea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The massive demolition of old buildings in recent years has generated tons of waste, especially brick waste. Thus, a concern of recent research is the use of this waste for the production of environmentally friendly concrete. At the same time, corrosion in classical concrete is a current problem. In this context, in the present paper a study was carried out on the corrosion of metal reinforcement in cement mortars with brick waste. The corrosion process was analyzed on four compositions of mortars without and with 15 %, 25 % and 35 % bricks waste replacing the sand. The brick waste has a majority content in SiO2, Al₂O₃, FeO₃ and CaO. The grain size distribution of brick waste was close to that of the sand (dₘₐₓ = 3 mm). The preparation method of the samples was similar to ordinary mortars. The corrosion properties of concrete, at different waste bricks concentrations, on rebar, were investigated by electrochemical measurements (Tafel curves and EIS) at 1 and 6 months. The results obtained at 6 months revealed that the addition of the bricks waste in mortar are improved the anticorrosion properties, in the case of all samples compared with the sample with 0% bricks waste. The best results were obtained in the case of the sample with 15% bricks waste (the efficiency was ≈ 90 %). The corrosion intermediary layer formed on the rebar surface was determined by SEM-EDX. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EIS" title="EIS">EIS</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20corrosion" title=" steel corrosion"> steel corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20reinforced%20concrete" title=" steel reinforced concrete"> steel reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20materials" title=" waste materials"> waste materials</a> </p> <a href="https://publications.waset.org/abstracts/137552/evaluation-of-corrosion-in-steel-reinforced-concrete-with-brick-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4469</span> Combinated Effect of Cadmium and Municipal Solid Waste Compost Addition on Physicochemical and Biochemical Proprieties of Soil and Lolium Perenne Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Mbarki%20Marian%20Brestic">Sonia Mbarki Marian Brestic</a>, <a href="https://publications.waset.org/abstracts/search?q=Artemio%20Cerda%20Naceur%20Jedidi"> Artemio Cerda Naceur Jedidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Antonnio%20Pascual%20Chedly%20Abdelly"> Jose Antonnio Pascual Chedly Abdelly </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the effect addition bio-amendment as compost to an agricultural soil for growing plant lolium perenne irrigated with a CdCl2 solution at 50 µM on physicochemical soils characteristics and plant production in laboratory condition. Even microbial activity indexes (acid phosphatase, β-glucosidase, urease, and dehydrogenase) was determined. Basal respiration was the most affected index, while enzymatic activities and microbial biomass showed a decrease due to the cadmium treatments. We noticed that this clay soil with higher pH showed inhibition of basal respiration. Our results provide evidence for the importance of ameliorating effect compost on plant growth even when soil was added with cadmium solution at 50 µmoml.l-1. Soil heavy metal concentrations depended on heavy metals types, increased substantially with cadmium increase and with compost addition, but the recorded values were below the toxicity limits in soils and plants except for cadmium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20activity" title=" enzymatic activity"> enzymatic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=lolium%20perenne" title=" lolium perenne"> lolium perenne</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a> </p> <a href="https://publications.waset.org/abstracts/65607/combinated-effect-of-cadmium-and-municipal-solid-waste-compost-addition-on-physicochemical-and-biochemical-proprieties-of-soil-and-lolium-perenne-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4468</span> Simulation and Experimental of Solid Mixing of Free Flowing Material Using Solid Works in V-Blender</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Bouhaouche">Amina Bouhaouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Kaoua"> Zineb Kaoua</a>, <a href="https://publications.waset.org/abstracts/search?q=Lila%20Lahreche"> Lila Lahreche</a>, <a href="https://publications.waset.org/abstracts/search?q=Sid%20Ali%20Kaoua"> Sid Ali Kaoua</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Daoud"> Kamel Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to present a novel approach for analyzing the solid dispersion and mixing performance by a numerical simulation method using solid works software of a monodisperse particles for a large span of time reached 20 minutes. To assure the viability of a numerical simulation, an experimental study of a binary mixture of monodiperse particles taken as free flowing material in a V blender was developed on the basis of relative standard deviation curves, and the arrangement of the particles in the vessel. The experimental results were discussed and compared to the numerical simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-cohesive%20material" title="non-cohesive material">non-cohesive material</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20mixing" title=" solid mixing"> solid mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20works" title=" solid works"> solid works</a>, <a href="https://publications.waset.org/abstracts/search?q=v-blender" title=" v-blender"> v-blender</a> </p> <a href="https://publications.waset.org/abstracts/38632/simulation-and-experimental-of-solid-mixing-of-free-flowing-material-using-solid-works-in-v-blender" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4467</span> Performance in the Delivery of Environmental Management Programs of the Local Government Unit of Malay, Aklan, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomas%20O.%20Ortega">Tomas O. Ortega</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20T.%20Reyes"> Cecilia T. Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecile%20O.%20Legaspi"> Cecile O. Legaspi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cylde%20G.%20Abayon"> Cylde G. Abayon</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Mae%20C.%20Relingo"> Anna Mae C. Relingo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20Eden%20M.%20Teruel"> Mary Eden M. Teruel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted to evaluate the performance in the delivery of environmental management programs of the local government of Malay, Aklan, Philippines. The samples were determined by adopting the Multi-Stage Random Probability Sampling technique. The 150 respondents were drawn from barangays with larger shares of the population based on the Philippine Statistical Authority’s Data on Census Population and Housing for the year 2015. The qualified sample respondents were selected using the Kish Grid. Female respondents were targeted for even numbered questionnaires while male respondents were targeted for odd numbers. The four major core concepts namely awareness, availment, satisfaction and need for action were used in measuring the rating of the respondents and presented in frequency and percentage distributions. The reasons for their response were likewise gathered. The study inferred that a large portion of the respondents was profoundly aware of the environmental management programs implemented by their local government unit especially the solid waste management and the clean-up programs/projects. Programs to control air pollution and waste water management obtained the least awareness ratings from the respondents. A high percentage of respondents had availed of environmental management programs, particularly solid waste management. Overall, majority of the respondents were satisfied with the environmental management programs rendered by the local government unit and therefore needs less action. It is recommended that the local government unit must strengthen air pollution control program. Appropriate action must be taken to support the people’s interest in this program most particularly to the individuals who burn their garbage. Seminars and training-workshops about appropriate waste disposal will most likely help settle this issue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=availment" title="availment">availment</a>, <a href="https://publications.waset.org/abstracts/search?q=awareness" title=" awareness"> awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20management" title=" environmental management"> environmental management</a>, <a href="https://publications.waset.org/abstracts/search?q=need%20for%20action" title=" need for action"> need for action</a>, <a href="https://publications.waset.org/abstracts/search?q=satisfaction" title=" satisfaction"> satisfaction</a> </p> <a href="https://publications.waset.org/abstracts/77526/performance-in-the-delivery-of-environmental-management-programs-of-the-local-government-unit-of-malay-aklan-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4466</span> Eco-Friendly Electricity Production from the Waste Heat of Air Conditioners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anvesh%20Rajak">Anvesh Rajak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This is a new innovation that can be developed. Here I am going to use the waste heat of air conditioner so as to produce the electricity by using the Stirling engine because this waste heat creates the thermal pollution in the environment. The waste heat from the air conditioners has caused a temperature rise of 1°–2°C or more on weekdays in the Tokyo office areas. This heating promotes the heat-island phenomenon in Tokyo on weekdays. Now these air conditioners creates the thermal pollution in the environment and hence rising the temperature of the environment. Air conditioner generally emit the waste heat air whose temperature is about 50°C which heat the environment. Today the demand of energy is increasing tremendously, but available energy lacks in supply. Hence, there is no option for proper and efficient utilization and conservation of energy. In this paper the main stress is given on energy conservation by using technique of utilizing waste heat from Air-conditioning system. Actually the focus is on the use of the waste heat rather than improving the COP of the air- conditioners; if also we improve the COP of air conditioners gradually it would emit some waste heat so I want that waste heat to be used up. As I have used air conditioner’s waste heat to produce electricity so similarly there are various other appliances which emit the waste heat in the surrounding so here also we could use the Stirling engines and Geothermal heat pump concept to produce the electricity and hence can reduce the thermal pollution in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stirling%20engine" title="stirling engine">stirling engine</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20heat%20pumps" title=" geothermal heat pumps"> geothermal heat pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20heat" title=" waste heat"> waste heat</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20conditioners" title=" air conditioners"> air conditioners</a> </p> <a href="https://publications.waset.org/abstracts/21473/eco-friendly-electricity-production-from-the-waste-heat-of-air-conditioners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste&amp;page=9" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste&amp;page=9">9</a></li> <li class="page-item active"><span class="page-link">10</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste&amp;page=13">13</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste&amp;page=158">158</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste&amp;page=159">159</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste&amp;page=11" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10