CINXE.COM

Search results for: grid impact

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: grid impact</title> <meta name="description" content="Search results for: grid impact"> <meta name="keywords" content="grid impact"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="grid impact" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="grid impact"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11913</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: grid impact</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11643</span> Turbulence Modeling and Wave-Current Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Bennis">A. C. Bennis</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Dumas"> F. Dumas</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ardhuin"> F. Ardhuin</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Blanke"> B. Blanke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high-resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title="numerical modeling">numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-current%20interactions" title=" wave-current interactions"> wave-current interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20modeling" title=" turbulence modeling"> turbulence modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=rip%20currents" title=" rip currents "> rip currents </a> </p> <a href="https://publications.waset.org/abstracts/20848/turbulence-modeling-and-wave-current-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11642</span> Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridoy%20Das">Ridoy Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Myriam%20Neaimeh"> Myriam Neaimeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Wang"> Yue Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghanim%20Putrus"> Ghanim Putrus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20linear%20programming" title=" mixed integer linear programming"> mixed integer linear programming</a> </p> <a href="https://publications.waset.org/abstracts/129629/multi-objective-electric-vehicle-charge-coordination-for-economic-network-management-under-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11641</span> Investigation of Single Particle Breakage inside an Impact Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Ghasemi%20Ardi">E. Ghasemi Ardi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20J.%20Dong"> K. J. Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Yu"> A. B. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Y.%20Yang"> R. Y. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In current work, a numerical model based on the discrete element method (DEM) was developed which provided information about particle dynamic and impact event condition inside a laboratory scale impact mill (Fritsch). It showed that each particle mostly experiences three impacts inside the mill. While the first impact frequently happens at front surface of the rotor’s rib, the frequent location of the second impact is side surfaces of the rotor’s rib. It was also showed that while the first impact happens at small impact angle mostly varying around 35º, the second impact happens at around 70º which is close to normal impact condition. Also analyzing impact energy revealed that varying mill speed from 6000 to 14000 rpm, the ratio of first impact’s average impact energy and minimum required energy to break particle (Wₘᵢₙ) increased from 0.30 to 0.85. Moreover, it was seen that second impact poses intense impact energy on particle which can be considered as the main cause of particle splitting. Finally, obtained information from DEM simulation along with obtained data from conducted experiments was implemented in semi-empirical equations in order to find selection and breakage functions. Then, using a back-calculation approach, those parameters were used to predict the PSDs of ground particles under different impact energies. Results were compared with experiment results and showed reasonable accuracy and prediction ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20particle%20breakage" title="single particle breakage">single particle breakage</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20dynamic" title=" particle dynamic"> particle dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20balance%20model" title=" population balance model"> population balance model</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a> </p> <a href="https://publications.waset.org/abstracts/76339/investigation-of-single-particle-breakage-inside-an-impact-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11640</span> A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arshia%20Aflaki">Arshia Aflaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadis%20Karimipour"> Hadis Karimipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Anik%20Islam"> Anik Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20attack" title="generative adversarial attack">generative adversarial attack</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title=" deep reinforcement learning"> deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=IIoT" title=" IIoT"> IIoT</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20networks" title=" generative adversarial networks"> generative adversarial networks</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system" title=" power system"> power system</a> </p> <a href="https://publications.waset.org/abstracts/188908/a-deep-reinforcement-learning-based-secure-framework-against-adversarial-attacks-in-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11639</span> Energy Trading for Cooperative Microgrids with Renewable Energy Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziaullah">Ziaullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Wahab%20Ali"> Shah Wahab Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20energy%20management" title="distributed energy management">distributed energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20and%20communication%20technologies" title=" information and communication technologies"> information and communication technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid" title=" microgrid"> microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a> </p> <a href="https://publications.waset.org/abstracts/81024/energy-trading-for-cooperative-microgrids-with-renewable-energy-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11638</span> Control Scheme for Single-Stage Boost Inverter for Grid-Connected Photovoltaic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Ebrahimi">Mohammad Reza Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Behnaz%20Mahdaviani"> Behnaz Mahdaviani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing renewable sources such photovoltaic are the reason of environmental pollution. Because photovoltaic generates power in low voltage, first, generated power should increase. Usually, distributed generation injects their power to AC-Grid, hence after voltage increasing an inverter is needed to convert DC power to AC power. This results in utilization two series converter that grows cost, complexity, and low efficiency. In this paper a single stage inverter is utilized to boost and invert in one stage. Control of this scheme is easier, and its initial cost decreases comparing to conventional double stage inverters. A simple control scheme is used to control active power as well as minimum total harmonic distortion (THD) in injected current. Simulations in MATLAB demonstrate better outputs comparing with conventional approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point%20tracking" title="maximum power point tracking">maximum power point tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=boost%20inverter" title=" boost inverter"> boost inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20strategy" title=" control strategy"> control strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20phase%20inverter" title=" three phase inverter"> three phase inverter</a> </p> <a href="https://publications.waset.org/abstracts/47543/control-scheme-for-single-stage-boost-inverter-for-grid-connected-photovoltaic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11637</span> Analysis of the Environmental Impact of Selected Small Heat and Power Plants Operating in Poland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Stelmachowski">M. Stelmachowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Wojtczak"> M. Wojtczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the work was to assess the environmental impact of the selected small and medium-sized companies supplying heat and electricity to the cities with a population of about 50,000 inhabitants. Evaluation and comparison of the impact on the environment have been carried out for the three plants producing heat and two CHP plants with particular attention to emissions into the atmosphere and the impact of introducing a system of trading carbon emissions of these companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title="CO2 emission">CO2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=district%20heating" title=" district heating"> district heating</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20power%20plant" title=" heat and power plant"> heat and power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20on%20environment" title=" impact on environment"> impact on environment</a> </p> <a href="https://publications.waset.org/abstracts/21037/analysis-of-the-environmental-impact-of-selected-small-heat-and-power-plants-operating-in-poland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11636</span> DC Bus Voltage Ripple Control of Photo Voltaic Inverter in Low Voltage Ride-Trough Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Kadri">Afshin Kadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using Renewable Energy Resources (RES) as a type of DG unit is developing in distribution systems. The connection of these generation units to existing AC distribution systems changes the structure and some of the operational aspects of these grids. Most of the RES requires to power electronic-based interfaces for connection to AC systems. These interfaces consist of at least one DC/AC conversion unit. Nowadays, grid-connected inverters must have the required feature to support the grid under sag voltage conditions. There are two curves in these conditions that show the magnitude of the reactive component of current as a function of voltage drop value and the required minimum time value, which must be connected to the grid. This feature is named low voltage ride-through (LVRT). Implementing this feature causes problems in the operation of the inverter that increases the amplitude of high-frequency components of the injected current and working out of maximum power point in the photovoltaic panel connected inverters are some of them. The important phenomenon in these conditions is ripples in the DC bus voltage that affects the operation of the inverter directly and indirectly. The losses of DC bus capacitors which are electrolytic capacitors, cause increasing their temperature and decreasing its lifespan. In addition, if the inverter is connected to the photovoltaic panels directly and has the duty of maximum power point tracking, these ripples cause oscillations around the operating point and decrease the generating energy. Using a bidirectional converter in the DC bus, which works as a buck and boost converter and transfers the ripples to its DC bus, is the traditional method to eliminate these ripples. In spite of eliminating the ripples in the DC bus, this method cannot solve the problem of reliability because it uses an electrolytic capacitor in its DC bus. In this work, a control method is proposed which uses the bidirectional converter as the fourth leg of the inverter and eliminates the DC bus ripples using an injection of unbalanced currents into the grid. Moreover, the proposed method works based on constant power control. In this way, in addition, to supporting the amplitude of grid voltage, it stabilizes its frequency by injecting active power. Also, the proposed method can eliminate the DC bus ripples in deep voltage drops, which cause increasing the amplitude of the reference current more than the nominal current of the inverter. The amplitude of the injected current for the faulty phases in these conditions is kept at the nominal value and its phase, together with the phase and amplitude of the other phases, are adjusted, which at the end, the ripples in the DC bus are eliminated, however, the generated power decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20resources" title="renewable energy resources">renewable energy resources</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20drop%20value" title=" voltage drop value"> voltage drop value</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20bus%20ripples" title=" DC bus ripples"> DC bus ripples</a>, <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20converter" title=" bidirectional converter"> bidirectional converter</a> </p> <a href="https://publications.waset.org/abstracts/163833/dc-bus-voltage-ripple-control-of-photo-voltaic-inverter-in-low-voltage-ride-trough-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11635</span> Competition and Cooperation of Prosumers in Cournot Games with Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong-Heng%20Shi">Yong-Heng Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Hao"> Peng Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bai-Chen%20Xie"> Bai-Chen Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar prosumers are playing increasingly prominent roles in the power system. However, its uncertainty affects the outcomes and functions of the power market, especially in the asymmetric information environment. Therefore, an important issue is how to take effective measures to reduce the impact of uncertainty on market equilibrium. We propose a two-level stochastic differential game model to explore the Cournot decision problem of prosumers. In particular, we study the impact of punishment and cooperation mechanisms on the efficiency of the Cournot game in which prosumers face uncertainty. The results show that under the penalty mechanism of fixed and variable rates, producers and consumers tend to take conservative actions to hedge risks, and the variable rates mechanism is more reasonable. Compared with non-cooperative situations, prosumers can improve the efficiency of the game through cooperation, which we attribute to the superposition of market power and uncertainty reduction. In addition, the market environment of asymmetric information intensifies the role of uncertainty. It reduces social welfare but increases the income of prosumers. For regulators, promoting alliances is an effective measure to realize the integration, optimization, and stable grid connection of producers and consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cournot%20games" title="Cournot games">Cournot games</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20market" title=" power market"> power market</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=prosumer%20cooperation" title=" prosumer cooperation"> prosumer cooperation</a> </p> <a href="https://publications.waset.org/abstracts/163232/competition-and-cooperation-of-prosumers-in-cournot-games-with-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11634</span> Design of Transformerless Electric Energy Router in Smart Home</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weidong%20Fu">Weidong Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingsong%20Wang"> Qingsong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Hua"> Wei Hua</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Cheng"> Ming Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Buja"> Giuseppe Buja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A single-phase transformerless electric energy router (TL-EER) is proposed for renewable energy management and power quality improvement in smart homes. The proposed TL-EER only contains four semiconductor switching devices, which reduces costs greatly compared to traditional electric energy routers. TL-EER functions as intelligent systems that optimize the flow and distribution of energy within a grid, enabling seamless interaction between generation, storage, and consumption. In addition, TL-EER operates in multiple modes and could be converted to diverse topologies by changing the states of relays. As for power quality, voltage and current compensating methods are adapted. Thus, high-quality electrical energy could be transferred to the load, and the grid-side power factor could be improved. Finally, laboratory prototypes are established to validate the effectiveness of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transformerless" title="transformerless">transformerless</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20energy%20router" title=" electric energy router"> electric energy router</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20flow" title=" power flow"> power flow</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20factor" title=" power factor"> power factor</a> </p> <a href="https://publications.waset.org/abstracts/193534/design-of-transformerless-electric-energy-router-in-smart-home" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11633</span> ICT for Smart Appliances: Current Technology and Identification of Future ICT Trend</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20Uba%20Ibrahim">Abubakar Uba Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Haruna%20Shanono"> Ibrahim Haruna Shanono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart metering and demand response are gaining ground in industrial and residential applications. Smart Appliances have been given concern towards achieving Smart home. The success of Smart grid development relies on the successful implementation of Information and Communication Technology (ICT) in power sector. Smart Appliances have been the technology under development and many new contributions to its realization have been reported in the last few years. The role of ICT here is to capture data in real time, thereby allowing bi-directional flow of information/data between producing and utilization point; that lead a way for the attainment of Smart appliances where home appliances can communicate between themselves and provide a self-control (switch on and off) using the signal (information) obtained from the grid. This paper depicts the background on ICT for smart appliances paying a particular attention to the current technology and identifying the future ICT trends for load monitoring through which smart appliances can be achieved to facilitate an efficient smart home system which promote demand response program. This paper grouped and reviewed the recent contributions, in order to establish the current state of the art and trends of the technology, so that the reader can be provided with a comprehensive and insightful review of where ICT for smart appliances stands and is heading to. The paper also presents a brief overview of communication types, and then narrowed the discussion to the load monitoring (Non-intrusive Appliances Load Monitoring ‘NALM’). Finally, some future trends and challenges in the further development of the ICT framework are discussed to motivate future contributions that address open problems and explore new possibilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication%20technology%20between%20appliances" title="communication technology between appliances">communication technology between appliances</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20response" title=" demand response"> demand response</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20monitoring" title=" load monitoring"> load monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20appliances" title=" smart appliances"> smart appliances</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/32985/ict-for-smart-appliances-current-technology-and-identification-of-future-ict-trend" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">613</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11632</span> A New Instrumented Drop-Weight Test Machine for Studying the Impact Behaviour of Reinforced Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Al-Farttoosi">M. Al-Farttoosi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Rafiq"> M. Y. Rafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Summerscales"> J. Summerscales</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Williams"> C. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structures can be subjected to impact loading from various sources like earthquake, tsunami, missiles and explosions. The impact loading can cause different degrees of damage to concrete structures. The demand for strengthening and rehabilitation of damaged structures is increasing. In recent years, Car0bon Fibre Reinforced Polymer (CFRP) matrix composites has gain more attention for strengthening and repairing these structures. To study the impact behaviour of the reinforced concrete (RC) beams strengthened or repaired using CFRP, a heavy impact test machine was designed and manufactured .The machine included a newly designed support system for beams together with various instrumentation. This paper describes the support design configuration of the impact test machine, instrumentation and dynamic analysis of the concrete beams. To evaluate the efficiency of the new impact test machine, experimental impact tests were conducted on simple supported reinforced concrete beam. Different methods were used to determine the impact force and impact response of the RC beams in terms of inertia force, maximum deflection, reaction force and fracture energy. The manufactured impact test machine was successfully used in testing RC beams under impact loading and used successfully to test the reinforced concrete beams strengthened or repaired using CFRP under impact loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam" title="beam">beam</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=machine" title=" machine"> machine</a> </p> <a href="https://publications.waset.org/abstracts/35977/a-new-instrumented-drop-weight-test-machine-for-studying-the-impact-behaviour-of-reinforced-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11631</span> Estimation of Soil Erosion and Sediment Yield for ONG River Using GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Behera">Sanjay Kumar Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanhu%20Charan%20Patra"> Kanhu Charan Patra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A GIS-based method has been applied for the determination of soil erosion and sediment yield in a small watershed in Ong River basin, Odisha, India. The method involves spatial disintegration of the catchment into homogenous grid cells to capture the catchment heterogeneity. The gross soil erosion in each cell was calculated using Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio is used to route surface erosion from each of the discretized cells to the catchment outlet. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. The effect of DEM resolution on sediment yield is analyzed using two different resolutions of DEM. The spatial discretization of the catchment and derivation of the physical parameters related to erosion in the cell are performed through GIS techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEM" title="DEM">DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio" title=" sediment delivery ratio"> sediment delivery ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a> </p> <a href="https://publications.waset.org/abstracts/21590/estimation-of-soil-erosion-and-sediment-yield-for-ong-river-using-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11630</span> Direct Power Control Applied on 5-Level Diode Clamped Inverter Powered by a Renewable Energy Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elnady">A. Elnady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an improved Direct Power Control (DPC) scheme applied to the multilevel inverter that forms a Distributed Generation Unit (DGU). This paper demonstrates the performance of active and reactive power injected by the DGU to the smart grid. The DPC is traditionally operated by the hysteresis controller with the Space Vector Modulation (SVM) which is applied on the 2-level inverters or 3-level inverters. In this paper, the DPC is operated by the PI controller with the Phase-Disposition Pulse Width Modulation (PD-PWM) applied to the 5-level diode clamped inverter. The new combination of the DPC, PI controller, PD-PWM and multilevel inverter proves that its performance is much better than the conventional hysteresis-SVM based DPC. Simulations results have been presented to validate the performance of the suggested control scheme in the grid-connected mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20power%20control" title="direct power control">direct power control</a>, <a href="https://publications.waset.org/abstracts/search?q=PI%20controller" title=" PI controller"> PI controller</a>, <a href="https://publications.waset.org/abstracts/search?q=PD-PWM" title=" PD-PWM"> PD-PWM</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20power%20control" title=" and power control"> and power control</a> </p> <a href="https://publications.waset.org/abstracts/85059/direct-power-control-applied-on-5-level-diode-clamped-inverter-powered-by-a-renewable-energy-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11629</span> Determining Efficiency of Frequency Control System of Karkheh Power Plant in Main Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferydon%20Salehifar">Ferydon Salehifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Safarikia"> Hassan Safarikia</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Boromandfar"> Hossein Boromandfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Karkheh plant in Iran's Khuzestan province and is located in the city Andimeshk. The plant has a production capacity of 400 MW units with water and three hours. One of the important parameters of each country's power grid stability is the stability of the power grid is affected by the voltage and frequency In plants, the amount of active power frequency control is done so that when the unit is placed in the frequency control their productivity is a function of frequency and output power varies with frequency. Produced by hydroelectric power plants with the water level behind the dam has a direct relationship And to decrease and increase the water level behind the dam in order to reduce the power output increases But these changes have a different interval is due to some mechanical problems such as turbine cavitation and vibration are limited. In this study, the range of the frequency control can be Karkheh manufacturing plants have been identified and their effectiveness has been determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karkheh%20power" title="Karkheh power">Karkheh power</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20control%20system" title=" frequency control system"> frequency control system</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20power" title=" active power"> active power</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/25787/determining-efficiency-of-frequency-control-system-of-karkheh-power-plant-in-main-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">620</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11628</span> Investigation of Building Pounding during Earthquake and Calculation of Impact Force between Two Adjacent Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Naderpour">H. Naderpour</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Barros"> R. C. Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Khatami"> S. M. Khatami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic excitation is naturally caused large horizontal relative displacements, which is able to provide collisions between two adjacent buildings due to insufficient separation distance and severe damages are occurred due to impact especially in tall buildings. In this paper, an impact is numerically simulated and two needed parameters are calculated, including impact force and energy absorption. In order to calculate mentioned parameters, mathematical study needs to model an unreal link element, which is logically assumed to be spring and dashpot to determine lateral displacement and damping ratio of impact. For the determination of dynamic response of impact, a new equation of motion is theoretically suggested to evaluate impact force and energy dissipation. In order to confirm the rendered equation, a series of parametric study are performed and the accuracy of formula is confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pounding" title="pounding">pounding</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipated%20energy" title=" dissipated energy"> dissipated energy</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20restitution" title=" coefficient of restitution"> coefficient of restitution</a> </p> <a href="https://publications.waset.org/abstracts/43715/investigation-of-building-pounding-during-earthquake-and-calculation-of-impact-force-between-two-adjacent-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11627</span> Prediction of Heavy-Weight Impact Noise and Vibration of Floating Floor Using Modified Impact Spectrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Hyung%20Kim">Ju-Hyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Ho%20Mun"> Dae-Ho Mun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Gun%20Park"> Hong-Gun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When an impact is applied to a floating floor, noise and vibration response of high-frequency range is reduced effectively, while amplifies the response at low-frequency range. This means floating floor can make worse noise condition when heavy-weight impact is applied. The amplified response is the result of interaction between finishing layer (mortar plate) and concrete slab. Because an impact force is not directly delivered to concrete slab, the impact force waveform or spectrum can be changed. In this paper, the changed impact spectrum was derived from several floating floor vibration tests. Based on the measured data, numerical modeling can describe the floating floor response, especially at low-frequency range. As a result, heavy-weight impact noise can be predicted using modified impact spectrum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20floor" title="floating floor">floating floor</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-weight%20impact" title=" heavy-weight impact"> heavy-weight impact</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/60227/prediction-of-heavy-weight-impact-noise-and-vibration-of-floating-floor-using-modified-impact-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11626</span> Design, Control and Implementation of 300Wp Single Phase Photovoltaic Micro Inverter for Village Nano Grid Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20P.">Ramesh P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Aby%20Joseph"> Aby Joseph</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro Inverters provide Module Embedded Solution for harvesting energy from small-scale solar photovoltaic (PV) panels. In addition to higher modularity & reliability (25 years of life), the MicroInverter has inherent advantages such as avoidance of long DC cables, eliminates module mismatch losses, minimizes partial shading effect, improves safety and flexibility in installations etc. Due to the above-stated benefits, the renewable energy technology with Solar Photovoltaic (PV) Micro Inverter becomes more widespread in Village Nano Grid application ensuring grid independence for rural communities and areas without access to electricity. While the primary objective of this paper is to discuss the problems related to rural electrification, this concept can also be extended to urban installation with grid connectivity. This work presents a comprehensive analysis of the power circuit design, control methodologies and prototyping of 300Wₚ Single Phase PV Micro Inverter. This paper investigates two different topologies for PV Micro Inverters, based on the first hand on Single Stage Flyback/ Forward PV Micro-Inverter configuration and the other hand on the Double stage configuration including DC-DC converter, H bridge DC-AC Inverter. This work covers Power Decoupling techniques to reduce the input filter capacitor size to buffer double line (100 Hz) ripple energy and eliminates the use of electrolytic capacitors. The propagation of the double line oscillation reflected back to PV module will affect the Maximum Power Point Tracking (MPPT) performance. Also, the grid current will be distorted. To mitigate this issue, an independent MPPT control algorithm is developed in this work to reject the propagation of this double line ripple oscillation to PV side to improve the MPPT performance and grid side to improve current quality. Here, the power hardware topology accepts wide input voltage variation and consists of suitably rated MOSFET switches, Galvanically Isolated gate drivers, high-frequency magnetics and Film capacitors with a long lifespan. The digital controller hardware platform inbuilt with the external peripheral interface is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the PV Micro Inverter is written in C language and was developed using code composer studio Integrated Development Environment (IDE). In this work, the prototype hardware for the Single Phase Photovoltaic Micro Inverter with Double stage configuration was developed and the comparative analysis between the above mentioned configurations with experimental results will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20line%20oscillation" title="double line oscillation">double line oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20inverter" title=" micro inverter"> micro inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=MPPT" title=" MPPT"> MPPT</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20grid" title=" nano grid"> nano grid</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20decoupling" title=" power decoupling"> power decoupling</a> </p> <a href="https://publications.waset.org/abstracts/88165/design-control-and-implementation-of-300wp-single-phase-photovoltaic-micro-inverter-for-village-nano-grid-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11625</span> Concept, Modules and Objectives of the Syllabus Course: Small Power Plants and Renewable Energy Sources </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rade%20M.%20Ciric">Rade M. Ciric</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikola%20L.%20J.%20Rajakovic"> Nikola L. J. Rajakovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a curriculum of the subject small power plants and renewable energy sources, dealing with the concept of distributed generation, renewable energy sources, hydropower, wind farms, geothermal power plants, cogeneration plants, biogas plants of agriculture and animal origin, solar power and fuel cells. The course is taught the manner of connecting small power plants to the grid, the impact of small generators on the distribution system, as well as economic, environmental and legal aspects of operation of distributed generators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title="distributed generation">distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title=" renewable energy sources"> renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title=" energy policy"> energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=curriculum" title=" curriculum"> curriculum</a> </p> <a href="https://publications.waset.org/abstracts/44109/concept-modules-and-objectives-of-the-syllabus-course-small-power-plants-and-renewable-energy-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11624</span> Evaluation of a 50MW Two-Axis Tracking Photovoltaic Power Plant for Al-Jagbob, Libya: Energetic, Economic, and Environmental Impact Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Aldali">Yasser Aldali</a>, <a href="https://publications.waset.org/abstracts/search?q=Farag%20Ahwide"> Farag Ahwide</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the application of large scale (LS-PV) two-axis tracking photovoltaic power plant in Al-Jagbob, Libya. A 50MW PV-grid connected (two-axis tracking) power plant design in Al-Jagbob, Libya has been carried out presently. A hetero-junction with intrinsic thin layer (HIT) type PV module has been selected and modeled. A Microsoft Excel-VBA program has been constructed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency for this system, for tracking system. The results for energy production show that the total energy output is 128.5 GWh/year. The average module efficiency is 16.6%. The electricity generation capacity factor (CF) and solar capacity factor (SCF) were found to be 29.3% and 70.4% respectively. A 50MW two axis tracking power plant with a total energy output of 128.5 GWh/year would reduce CO2 pollution by 85,581 tonnes of each year. The payback time for the proposed LS-PV photovoltaic power plant was found to be 4 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20PV%20power%20plant" title="large PV power plant">large PV power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-axis%20tracking%20system" title=" dual-axis tracking system"> dual-axis tracking system</a> </p> <a href="https://publications.waset.org/abstracts/1903/evaluation-of-a-50mw-two-axis-tracking-photovoltaic-power-plant-for-al-jagbob-libya-energetic-economic-and-environmental-impact-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11623</span> High-Pressure Steam Turbine for Medium-Scale Concentrated Solar Power Plants </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambra%20Giovannelli">Ambra Giovannelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Coriolano%20Salvini"> Coriolano Salvini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many efforts have been spent in the design and development of Concentrated Solar Power (CPS) Plants worldwide. Most of them are for on-grid electricity generation and they are large plants which can benefit from the economies of scale. Nevertheless, several potential applications for Small and Medium-Scale CSP plants can be relevant in the industrial sector as well as for off-grid purposes (i.e. in rural contexts). In a wide range of industrial processes, CSP technologies can be used for heat generation replacing conventional primary sources. For such market, proven technologies (usually hybrid solutions) already exist: more than 100 installations, especially in developing countries, are in operation and performance can be verified. On the other hand, concerning off-grid applications, solar technologies are not so mature. Even if the market offers a potential deployment of such systems, especially in countries where the access to grid is strongly limited, optimized solutions have not been developed yet. In this context, steam power plants can be taken into consideration for medium scale installations, due to the recent results achieved with direct steam generation systems based on paraboloidal dish or Fresnel lens solar concentrators. Steam at 4.0-4.5 MPa and 500°C can be produced directly by means of innovative solar receivers (some prototypes already exist). Although it could seem a promising technology, presently, steam turbines commercially available do not cover the required cycle specifications. In particular, while low-pressure turbines already exist on the market, high-pressure groups, necessary for the abovementioned applications, are not available. The present paper deals with the preliminary design of a high-pressure steam turbine group for a medium-scale CSP plant (200-1000 kWe). Such a group is arranged in a single geared package composed of four radial expander wheels. Such wheels have been chosen on the basis of automotive turbocharging technology and then modified to take the new requirements into account. Results related to the preliminary geometry selection and to the analysis of the high-pressure turbine group performance are reported and widely discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrated%20solar%20power%20%28CSP%29%20plants" title="concentrated solar power (CSP) plants">concentrated solar power (CSP) plants</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20turbine" title=" steam turbine"> steam turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20turbine" title=" radial turbine"> radial turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=medium-scale%20power%20plants" title=" medium-scale power plants "> medium-scale power plants </a> </p> <a href="https://publications.waset.org/abstracts/46732/high-pressure-steam-turbine-for-medium-scale-concentrated-solar-power-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11622</span> 3D Numerical Studies and Design Optimization of a Swallowtail Butterfly with Twin Tail</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arunkumar%20Balamurugan">Arunkumar Balamurugan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Soundharya%20Lakshmi"> G. Soundharya Lakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Thenmozhi"> V. Thenmozhi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jegannath"> M. Jegannath</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerodynamics of insects is of topical interest in aeronautical industries due to its wide applications on various types of Micro Air Vehicles (MAVs). Note that the MAVs are having smaller geometric dimensions operate at significantly lower speeds on the order of 10 m/s and their Reynolds numbers range is approximately 1,50,000 or lower. In this paper, numerical study has been carried out to capture the flow physics of a biological inspired Swallowtail Butterfly with fixed wing having twin tail at a flight speed of 10 m/s. Comprehensive numerical simulations have been carried out on swallow butterfly with twin tail flying at a speed of 10 m/s with uniform upper and lower angles of attack in both lateral and longitudinal position for identifying the best wing orientation with better aerodynamic efficiency. Grid system in the computational domain is selected after a detailed grid refinement exercises. Parametric analytical studies have been carried out with different lateral and longitudinal angles of attack for finding the better aerodynamic efficiency at the same flight speed. The results reveal that lift coefficient significantly increases with marginal changes in the longitudinal angle and vice versa. But in the case of drag coefficient the conventional changes have been noticed, viz., drag increases at high longitudinal angles. We observed that the change of twin tail section has a significant impact on the formation of vortices and aerodynamic efficiency of the MAV’s. We concluded that for every lateral angle there is an exact longitudinal orientation for the existence of an aerodynamically efficient flying condition of any MAV. This numerical study is a pointer towards for the design optimization of Twin tail MAVs with flapping wings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20insects" title="aerodynamics of insects">aerodynamics of insects</a>, <a href="https://publications.waset.org/abstracts/search?q=MAV" title=" MAV"> MAV</a>, <a href="https://publications.waset.org/abstracts/search?q=swallowtail%20butterfly" title=" swallowtail butterfly"> swallowtail butterfly</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20tail%20MAV%20design" title=" twin tail MAV design"> twin tail MAV design</a> </p> <a href="https://publications.waset.org/abstracts/69861/3d-numerical-studies-and-design-optimization-of-a-swallowtail-butterfly-with-twin-tail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11621</span> Data Management and Analytics for Intelligent Grid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Julius%20P.%20Roy">G. Julius P. Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Saxena"> Prateek Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Singh"> Sanjeev Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20management" title="data management">data management</a>, <a href="https://publications.waset.org/abstracts/search?q=analytics" title=" analytics"> analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20data%20analytics" title=" energy data analytics"> energy data analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20utilities" title=" smart utilities "> smart utilities </a> </p> <a href="https://publications.waset.org/abstracts/27445/data-management-and-analytics-for-intelligent-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">779</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11620</span> A Continuous Switching Technique for a Single Phase Bridgeless and Transformer-Less Active Rectifier with High Power Factor and Voltage Stabilization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Ganpat%20Mapari">Rahul Ganpat Mapari</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20G.%20Wakde"> D. G. Wakde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a proposed approach to improve the power factor of single-phase rectifiers and to regulate the output voltage against the change in grid voltage and load is presented. This converter topology is evaluated on the basis of performance and its salient features like simplicity, low cost and high performance are discussed to analyze its applicability. The proposed control strategy is bridgeless, transformer-less and output current sensor-less and consists of only two Bi-directional IGBTs and two diodes. The voltage regulation is achieved by a simple voltage divider to communicate to a controller to control the duty cycles of PWM. A control technique and operational procedure are also developed, both theoretically and experimentally. The experimental results clearly verify the theoretical analysis from the prototype connected to grid unity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Active%20Rectifier%20%28AC-DC%29" title="Active Rectifier (AC-DC)">Active Rectifier (AC-DC)</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20factor" title=" power factor"> power factor</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20phase" title=" single phase"> single phase</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20regulation" title=" voltage regulation"> voltage regulation</a> </p> <a href="https://publications.waset.org/abstracts/3045/a-continuous-switching-technique-for-a-single-phase-bridgeless-and-transformer-less-active-rectifier-with-high-power-factor-and-voltage-stabilization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11619</span> Inferring the Ecological Quality of Seagrass Beds from Using Composition and Configuration Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabrice%20Houngnandan">Fabrice Houngnandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Celia%20Fery"> Celia Fery</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Bockel"> Thomas Bockel</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20Deter"> Julie Deter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Getting water cleaner and stopping global biodiversity loss requires indices to measure changes and evaluate the achievement of objectives. The endemic and protected seagrass species Posidonia oceanica is a biological indicator used to monitor the ecological quality of marine Mediterranean waters. One ecosystem index (EBQI), two biotic indices (PREI, Bipo), and several landscape indices, which measure the composition and configuration of the P. oceanica seagrass at the population scale have been developed. While the formers are measured at monitoring sites, the landscape indices can be calculated for the entire seabed covered by this ecosystem. This present work aims to search on the link between these indices and the best scale to be used in order to maximize this link. We used data collected between 2014 to 2019 along the French Mediterranean coastline to calculate EBQI, PREI, and Bipo at 100 sites. From the P. oceanica seagrass distribution map, configuration and composition indices around these different sites in 6 different grid sizes (100 m x 100 to 1000 m x 1000 m) were determined. Correlation analyses were first used to find out the grid size presenting the strongest and most significant link between the different types of indices. Finally, several models were compared basis on various metrics to identify the one that best explains the nature of the link between these indices. Our results showed a strong and significant link between biotic indices and the best correlations between biotic and landscape indices within the 600 m x 600 m grid cells. These results showed that the use of landscape indices is possible to monitor the health of seagrass beds at a large scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecological%20indicators" title="ecological indicators">ecological indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=decline" title=" decline"> decline</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20aquatic%20vegetation" title=" submerged aquatic vegetation"> submerged aquatic vegetation</a> </p> <a href="https://publications.waset.org/abstracts/125961/inferring-the-ecological-quality-of-seagrass-beds-from-using-composition-and-configuration-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11618</span> Performance Analysis of N-Tier Grid Protocol for Resource Constrained Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jai%20Prakash%20Prasad">Jai Prakash Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Chandra%20Mohan"> Suresh Chandra Mohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern wireless sensor networks (WSN) consist of small size, low cost devices which are networked through tight wireless communications. WSN fundamentally offers cooperation, coordination among sensor networks. Potential applications of wireless sensor networks are in healthcare, natural disaster prediction, data security, environmental monitoring, home appliances, entertainment etc. The design, development and deployment of WSN based on application requirements. The WSN design performance is optimized to improve network lifetime. The sensor node resources constrain such as energy and bandwidth imposes the limitation on efficient resource utilization and sensor node management. The proposed N-Tier GRID routing protocol focuses on the design of energy efficient large scale wireless sensor network for improved performance than the existing protocol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient" title="energy efficient">energy efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20lifetime" title=" network lifetime"> network lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20networks" title=" sensor networks"> sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication" title=" wireless communication"> wireless communication</a> </p> <a href="https://publications.waset.org/abstracts/43897/performance-analysis-of-n-tier-grid-protocol-for-resource-constrained-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11617</span> Optimizing Microgrid Operations: A Framework of Adaptive Model Predictive Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruben%20Lopez-Rodriguez">Ruben Lopez-Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a microgrid, diverse energy sources (both renewable and non-renewable) are combined with energy storage units to form a localized power system. Microgrids function as independent entities, capable of meeting the energy needs of specific areas or communities. This paper introduces a Model Predictive Control (MPC) approach tailored for grid-connected microgrids, aiming to optimize their operation. The formulation employs Mixed-Integer Programming (MIP) to find optimal trajectories. This entails the fulfillment of continuous and binary constraints, all while accounting for commutations between various operating conditions such as storage unit charge/discharge, import/export from/towards the main grid, as well as asset connection/disconnection. To validate the proposed approach, a microgrid case study is conducted, and the simulation results are compared with those obtained using a rule-based strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microgrids" title="microgrids">microgrids</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20logical%20dynamical%20systems" title=" mixed logical dynamical systems"> mixed logical dynamical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-integer%20optimization" title=" mixed-integer optimization"> mixed-integer optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a> </p> <a href="https://publications.waset.org/abstracts/185228/optimizing-microgrid-operations-a-framework-of-adaptive-model-predictive-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11616</span> Optimising GIS in Cushioning the Environmental Impact of Infrastructural Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akerele%20Akintunde%20Hareef">Akerele Akintunde Hareef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GIS is an integrating tool for storing, retrieving, manipulating, and analyzing spatial data. It is a tool which defines an area with respect to features and other relevant thematic delineations. On the other hand, Environmental Impact Assessment in short is both positive and negative impact of an infrastructure on an environment. Impact of infrastructural projects on the environment is an aspect of development that barely get extensive portion of pre-project execution phase and when they do, the effects are most times not implemented to cushion the impact they have on human and the environment. In this research, infrastructural projects like road constructions, water reticulation projects, building constructions, bridge etc. have immense impact on the environment and the people that reside in location of construction. Hence, the need for this research tends to portray the relevance of Environmental Impact assessment in calculating the vulnerability of human and the environment to imbalance necessitated by this infrastructural development and how the use of GIS application can be optimally applied to annul or minimize the effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact%20assessment%20%28EIA%29" title="environmental impact assessment (EIA)">environmental impact assessment (EIA)</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system%20%28GIS%29" title=" geographic information system (GIS)"> geographic information system (GIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructural%20projects" title=" infrastructural projects"> infrastructural projects</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment "> environment </a> </p> <a href="https://publications.waset.org/abstracts/22890/optimising-gis-in-cushioning-the-environmental-impact-of-infrastructural-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11615</span> Adaptable Path to Net Zero Carbon: Feasibility Study of Grid-Connected Rooftop Solar PV Systems with Rooftop Rainwater Harvesting to Decrease Urban Flooding in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Mukhopadhyay"> Ananya Mukhopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India has seen enormous urbanization in recent years, resulting in increased energy consumption and water demand in its metropolitan regions. Adoption of grid-connected solar rooftop systems and rainwater collection has gained significant popularity in urban areas to address these challenges while also boosting sustainability and environmental consciousness. Grid-connected solar rooftop systems offer a long-term solution to India's growing energy needs. Solar panels are erected on the rooftops of residential and commercial buildings to generate power by utilizing the abundant solar energy available across the country. Solar rooftop systems generate clean, renewable electricity, reducing reliance on fossil fuels and lowering greenhouse gas emissions. This is compatible with India's goal of reducing its carbon footprint. Urban residents and companies can save money on electricity by generating their own and possibly selling excess power back to the grid through net metering arrangements. India gives several financial incentives (subsidies 40% for system capacity 1 kW to 3 kW) to stimulate the building of solar rooftop systems, making them an economically viable option for city dwellers. India provides subsidies up to 70% to special states such as Uttarakhand, Sikkim, Himachal Pradesh, Jammu & Kashmir, and Lakshadweep. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating pressure on traditional energy sources and improving air quality. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating demand on existing energy sources and improving power supply reliability. Rainwater harvesting is another key component of India's sustainable urban development. It comprises collecting and storing rainwater for use in non-potable water applications such as irrigation, toilet flushing, and groundwater recharge. Rainwater gathering 2 helps to conserve water resources by lowering the demand for freshwater sources. This technology is crucial in water-stressed areas to ensure a sustainable water supply. Excessive rainwater runoff in metropolitan areas can lead to Urban flooding. Solar PV system with Rooftop Rainwater harvesting systems absorb and channel excess rainwater, which helps to reduce flooding and waterlogging in Smart cities. Rainwater harvesting systems are inexpensive and quick to set up, making them a tempting option for city dwellers and businesses looking to save money on water. Rainwater harvesting systems are now compulsory in several Indian states for specified types of buildings (bye law, Rooftop space ≥ 300 sq. m.), ensuring widespread adoption. Finally, grid-connected solar rooftop systems and rainwater collection are important to India's long-term urban development. They not only reduce the environmental impact of urbanization, but also empower individuals and businesses to control their energy and water requirements. The G20 summit will focus on green financing, fossil fuel phaseout, and renewable energy transition. The G20 Summit in New Delhi reaffirmed India's commitment to battle climate change by doubling renewable energy capacity. To address climate change and mitigate global warming, India intends to attain 280 GW of solar renewable energy by 2030 and Net Zero carbon emissions by 2070. With continued government support and increased awareness, these strategies will help India develop a more resilient and sustainable urban future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grid-connected%20solar%20PV%20system" title="grid-connected solar PV system">grid-connected solar PV system</a>, <a href="https://publications.waset.org/abstracts/search?q=rooftop%20rainwater%20harvesting" title=" rooftop rainwater harvesting"> rooftop rainwater harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flood" title=" urban flood"> urban flood</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flooding" title=" urban flooding"> urban flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20zero%20carbon%20emission" title=" net zero carbon emission"> net zero carbon emission</a> </p> <a href="https://publications.waset.org/abstracts/172670/adaptable-path-to-net-zero-carbon-feasibility-study-of-grid-connected-rooftop-solar-pv-systems-with-rooftop-rainwater-harvesting-to-decrease-urban-flooding-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11614</span> Integration of Smart Grid Technologies with Smart Phones for Energy Monitoring and Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arjmand%20Khaliq">Arjmand Khaliq</a>, <a href="https://publications.waset.org/abstracts/search?q=Pemra%20Sohaib"> Pemra Sohaib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is increasing trend of use of smart devices in the present age. The growth of computing techniques and advancement in hardware has also brought the use of sensors and smart devices to a high degree during the course of time. So use of smart devices for control, management communication and optimization has become very popular. This paper gives proposed methodology which involves sensing and switching unite for load, two way communications between utility company and smart phones of consumers using cellular techniques and price signaling resulting active participation of user in energy management .The goal of this proposed control methodology is active participation of user in energy management with accommodation of renewable energy resource. This will provide load adjustment according to consumer’s choice, increased security and reliability for consumer, switching of load according to consumer need and monitoring and management of energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20networks" title="cellular networks">cellular networks</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20source" title=" renewable energy source"> renewable energy source</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid%20technology" title=" smart grid technology"> smart grid technology</a> </p> <a href="https://publications.waset.org/abstracts/40863/integration-of-smart-grid-technologies-with-smart-phones-for-energy-monitoring-and-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grid%20impact&amp;page=9" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grid%20impact&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grid%20impact&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grid%20impact&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grid%20impact&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grid%20impact&amp;page=9">9</a></li> <li class="page-item active"><span class="page-link">10</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grid%20impact&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grid%20impact&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grid%20impact&amp;page=13">13</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grid%20impact&amp;page=397">397</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grid%20impact&amp;page=398">398</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=grid%20impact&amp;page=11" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10