CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;45 of 45 results for author: <span class="mathjax">Malesani, D B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Malesani%2C+D+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Malesani, D B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Malesani%2C+D+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Malesani, D B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15162">arXiv:2410.15162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15162">pdf</a>, <a href="https://arxiv.org/format/2410.15162">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> GRB 211024B: an ultra-long GRB powered by magnetar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fu%2C+S">Shao-Yu Fu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+D">Dong Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lei%2C+W">Wei-Hua Lei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">Antonio de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">David Alexander Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P谩ll Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">Johan P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maiorano%2C+E">Elisabetta Maiorano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">Andrea Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paris%2C+D">Diego Paris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+X">Xing Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+S">Shuai-Qing Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+T">Tian-Hua Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+J">Jie An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+Z">Zi-Pei Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+X">Xing Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wei%2C+J">Jian-Yan Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15162v2-abstract-short" style="display: inline;"> Ultra-long gamma-ray bursts (ULGRBs) are characterized by exceptionally long-duration central engine activities, with characteristic timescales exceeding 1000 seconds. We present ground-based optical afterglow observations of the ultra-long gamma-ray burst GRB 211024B, detected by \textit{Swift}. Its X-ray light curve exhibits a characteristic ``internal plateau&#34; with a shallow decay phase lasting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15162v2-abstract-full').style.display = 'inline'; document.getElementById('2410.15162v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15162v2-abstract-full" style="display: none;"> Ultra-long gamma-ray bursts (ULGRBs) are characterized by exceptionally long-duration central engine activities, with characteristic timescales exceeding 1000 seconds. We present ground-based optical afterglow observations of the ultra-long gamma-ray burst GRB 211024B, detected by \textit{Swift}. Its X-ray light curve exhibits a characteristic ``internal plateau&#34; with a shallow decay phase lasting approximately $\sim 15$ ks, followed by a steep decline ($伪_{\rm drop}\sim-7.5$). Moreover, the early optical emission predicted by the late r-band optical afterglow is significantly higher than the observed value, indicating an external shock with energy injection. To explain these observations, we propose a magnetar central engine model. The magnetar collapse into a black hole due to spin-down or hyperaccretion, leading to the observed steep break in the X-ray light curve. The afterglow model fitting reveals that the afterglow injection luminosity varies with different assumptions of the circumburst medium density, implying different potential energy sources. For the interstellar medium (ISM) case with a fixed injection end time, the energy may originate from the magnetar&#39;s dipole radiation. However, in other scenarios, relativistic jets produced by the magnetar/black hole system could be the primary energy source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15162v2-abstract-full').style.display = 'none'; document.getElementById('2410.15162v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures, accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19056">arXiv:2409.19056</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19056">pdf</a>, <a href="https://arxiv.org/format/2409.19056">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The Einstein Probe transient EP240414a: Linking Fast X-ray Transients, Gamma-ray Bursts and Luminous Fast Blue Optical Transients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Dalen%2C+J+N+D">Joyce N. D. van Dalen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">Andrew J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">Peter G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">Luca Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarin%2C+N">Nikhil Sarin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Quirola-V%C3%A1squez%2C+J">Jonathan Quirola-V谩squez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=S%C3%A1nchez%2C+D+M">Daniel Mata S谩nchez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">Antonio de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Hoof%2C+A+P+C">Agnes P. C. van Hoof</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Torres%2C+M+A+P">Manuel A. P. Torres</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Littlefair%2C+S+P">Stuart P. Littlefair</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chrimes%2C+A">Ashley Chrimes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravasio%2C+M+E">Maria E. Ravasio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bauer%2C+F+E">Franz E. Bauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin-Carrillo%2C+A">Antonio Martin-Carrillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraser%2C+M">Morgan Fraser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">Alexander J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">Pall Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+P">Paul O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">Massimiliano De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pugliese%2C+G">Giovanna Pugliese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">Nial R. Tanvir</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19056v1-abstract-short" style="display: inline;"> Detections of fast X-ray transients (FXTs) have been accrued over the last few decades. However, their origin has remained mysterious. There is now rapid progress thanks to timely discoveries and localisations with the Einstein Probe mission. Early results indicate that FXTs may frequently, but not always, be associated with gamma-ray bursts (GRBs). Here, we report on the multi-wavelength counterp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19056v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19056v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19056v1-abstract-full" style="display: none;"> Detections of fast X-ray transients (FXTs) have been accrued over the last few decades. However, their origin has remained mysterious. There is now rapid progress thanks to timely discoveries and localisations with the Einstein Probe mission. Early results indicate that FXTs may frequently, but not always, be associated with gamma-ray bursts (GRBs). Here, we report on the multi-wavelength counterpart of FXT EP240414a, which has no reported gamma-ray counterpart. The transient is located 25.7~kpc in projection from a massive galaxy at $z=0.40$. We perform comprehensive photometric and spectroscopic follow-up. The optical light curve shows at least three distinct emission episodes with timescales of $\sim 1, 4$ and 15 days and peak absolute magnitudes of $M_R \sim -20$, $-21$, and $-19.5$, respectively. The optical spectrum at early times is extremely blue, inconsistent with afterglow emission. It may arise from the interaction of both jet and supernova shock waves with the stellar envelope and a dense circumstellar medium, as has been suggested for some Fast Blue Optical Transients (LFBOTs). At late times, the spectrum evolves to a broad-lined~Type~Ic supernova, similar to those seen in collapsar long-GRBs. This implies that the progenitor of EP240414a is a massive star creating a jet-forming supernova inside a dense envelope, resulting in an X-ray outburst with a luminosity of $\sim 10^{48}$ erg s$^{-1}$, and the complex observed optical/IR light curves. If correct, this argues for a causal link between the progenitors of long-GRBs, FXTs and LFBOTs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19056v1-abstract-full').style.display = 'none'; document.getElementById('2409.19056v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 13 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18754">arXiv:2406.18754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18754">pdf</a>, <a href="https://arxiv.org/format/2406.18754">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244098">10.1051/0004-6361/202244098 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rapid Response Mode observations of GRB 160203A: Looking for fine-structure line variability at z=3.52 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pugliese%2C+G">G. Pugliese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saccardi%2C+A">A. Saccardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elia%2C+V+D">V. D Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">S. D. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Savaglio%2C+S">S. Savaglio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaper%2C+L">L. Kaper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Cia%2C+A">A. De Cia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vejlgaard%2C+S">S. Vejlgaard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+L">L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Rest%2C+D">D. van Rest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Selsing%2C+J">J. Selsing</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiersema%2C+K">K. Wiersema</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgarella%2C+D">D. Burgarella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Japelj%2C+J">J. Japelj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18754v1-abstract-short" style="display: inline;"> Gamma-ray bursts are the most energetic known explosions. Despite fading rapidly, they allow to measure redshift and important properties of their host-galaxies. We report the photometric and spectroscopic study of GRB 160203A and its host-galaxy. Fine-structure absorption lines, detected in the afterglow at different epochs, allow us to investigate variability due to the strong fading background&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18754v1-abstract-full').style.display = 'inline'; document.getElementById('2406.18754v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18754v1-abstract-full" style="display: none;"> Gamma-ray bursts are the most energetic known explosions. Despite fading rapidly, they allow to measure redshift and important properties of their host-galaxies. We report the photometric and spectroscopic study of GRB 160203A and its host-galaxy. Fine-structure absorption lines, detected in the afterglow at different epochs, allow us to investigate variability due to the strong fading background source. We obtained two optical to near-infrared spectra of the afterglow with X-shooter on ESO/VLT, 18 min and 5.7 hrs after the burst, allowing us to investigate temporal changes of fine-structure absorption lines. We measured HI column density log N(HI/cm-2)=21.75+/-0.10, and several heavy-element ions along the GRB sight-line in the host-galaxy: SiII,AlII,AlIII,CII,NiII,SiIV,CIV,ZnII,FeII, and FeII and SiII fine structure transitions from energetic levels excited by the afterglow, at a redshift z=3.518. We measured [M/H]TOT=-0.78+/-0.13 and [Zn/Fe]FIT=0.69+/-0.15, representing the total(dust-corrected) metallicity and dust depletion, respectively. We detected additional intervening systems along the line of sight at z=1.03,z=1.26,z=1.98,z=1.99,z=2.20 and z=2.83. We could not measure significant variability in the fine-structure lines throughout all the observations and determined an upper limit for the GRB distance from the absorber of d&lt;300 pc, adopting the canonical UV pumping scenario. However, we note that the quality of our data is not sufficient to conclusively rule out collisions as an alternative mechanism. GRB 160203A belongs to a growing sample of GRBs with medium resolution spectroscopy, provided by the Swift/X-shooter legacy program, which enables detailed investigation of the interstellar medium in high-redshift GRB host-galaxies. In particular, this host galaxy shows relatively high metal enrichment and dust depletion already in place when the universe was only 1.8 Gyr old. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18754v1-abstract-full').style.display = 'none'; document.getElementById('2406.18754v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, 2 appendices, A&amp;A accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 690, A35 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16425">arXiv:2404.16425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.16425">pdf</a>, <a href="https://arxiv.org/format/2404.16425">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Soft X-ray prompt emission from a high-redshift gamma-ray burst EP240315a </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sun%2C+H">H. Sun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+D">D. Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Svinkin%2C+D+S">D. S. Svinkin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delaunay%2C+J">J. Delaunay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+H">H. Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+X+-">X. -F. Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+B">B. Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+W">W. Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+J">J. An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruni%2C+G">G. Bruni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frederiks%2C+D+D">D. D. Frederiks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hu%2C+J+-">J. -W. Hu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+A">A. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+C+-">C. -K. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+J+-">J. -D. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Piro%2C+L">L. Piro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raman%2C+G">G. Raman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ricci%2C+R">R. Ricci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Troja%2C+E">E. Troja</a> , et al. (170 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16425v1-abstract-short" style="display: inline;"> Long gamma-ray bursts (GRBs) are believed to originate from core collapse of massive stars. High-redshift GRBs can probe the star formation and reionization history of the early universe, but their detection remains rare. Here we report the detection of a GRB triggered in the 0.5--4 keV band by the Wide-field X-ray Telescope (WXT) on board the Einstein Probe (EP) mission, designated as EP240315a,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16425v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16425v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16425v1-abstract-full" style="display: none;"> Long gamma-ray bursts (GRBs) are believed to originate from core collapse of massive stars. High-redshift GRBs can probe the star formation and reionization history of the early universe, but their detection remains rare. Here we report the detection of a GRB triggered in the 0.5--4 keV band by the Wide-field X-ray Telescope (WXT) on board the Einstein Probe (EP) mission, designated as EP240315a, whose bright peak was also detected by the Swift Burst Alert Telescope and Konus-Wind through off-line analyses. At a redshift of $z=4.859$, EP240315a showed a much longer and more complicated light curve in the soft X-ray band than in gamma-rays. Benefiting from a large field-of-view ($\sim$3600 deg$^2$) and a high sensitivity, EP-WXT captured the earlier engine activation and extended late engine activity through a continuous detection. With a peak X-ray flux at the faint end of previously known high-$z$ GRBs, the detection of EP240315a demonstrates the great potential for EP to study the early universe via GRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16425v1-abstract-full').style.display = 'none'; document.getElementById('2404.16425v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 8 figures, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16350">arXiv:2404.16350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.16350">pdf</a>, <a href="https://arxiv.org/format/2404.16350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The fast X-ray transient EP240315a: a z ~ 5 gamma-ray burst in a Lyman continuum leaking galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">Andrew J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">Peter G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saccardi%2C+A">Andrea Saccardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele Bj酶rn Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">Nial R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">Luca Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">Kasper E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=S%C3%A1nchez%2C+D+M">Daniel Mata S谩nchez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Quirola-V%C3%A1squez%2C+J">Jonathan Quirola-V谩squez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Torres%2C+M+A+P">Manuel A. P. Torres</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">Susanna D. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">Andrea Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">Paolo D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B">Benjamin Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin-Carrillo%2C+A">Antonio Martin-Carrillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">Antonio de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schneider%2C+B">Benjamin Schneider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+W">Weimin Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ling%2C+Z">Zhixing Ling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+W">Wenjie Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mao%2C+X">Xuan Mao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sun%2C+H">Hui Sun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+D">Dong Xu</a> , et al. (51 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16350v1-abstract-short" style="display: inline;"> The nature of the minute-to-hour long Fast X-ray Transients (FXTs) localised by telescopes such as Chandra, Swift, and XMM-Newton remains mysterious, with numerous models suggested for the events. Here, we report multi-wavelength observations of EP240315a, a 1600 s long transient detected by the Einstein Probe, showing it to have a redshift of z=4.859. We measure a low column density of neutral hy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16350v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16350v1-abstract-full" style="display: none;"> The nature of the minute-to-hour long Fast X-ray Transients (FXTs) localised by telescopes such as Chandra, Swift, and XMM-Newton remains mysterious, with numerous models suggested for the events. Here, we report multi-wavelength observations of EP240315a, a 1600 s long transient detected by the Einstein Probe, showing it to have a redshift of z=4.859. We measure a low column density of neutral hydrogen, indicating that the event is embedded in a low-density environment, further supported by direct detection of leaking ionising Lyman-continuum. The observed properties are consistent with EP240315a being a long-duration gamma-ray burst, and these observations support an interpretation in which a significant fraction of the FXT population are lower-luminosity examples of similar events. Such transients are detectable at high redshifts by the Einstein Probe and, in the (near) future, out to even larger distances by SVOM, THESEUS, and Athena, providing samples of events into the epoch of reionisation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16350v1-abstract-full').style.display = 'none'; document.getElementById('2404.16350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 7 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13126">arXiv:2403.13126</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.13126">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Neutral Fraction of Hydrogen in the Intergalactic Medium Surrounding High-Redshift Gamma-Ray Burst 210905A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fausey%2C+H+M">H. M. Fausey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vejlgaard%2C+S">S. Vejlgaard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">A. J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiersema%2C+K">K. Wiersema</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">S. D. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saccardi%2C+A">A. Saccardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D">D. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">A. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin-Carrillo%2C+A">A. Martin-Carrillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmerio%2C+J">J. Palmerio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pugliese%2C+G">G. Pugliese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13126v1-abstract-short" style="display: inline;"> The Epoch of Reionization (EoR) is a key period of cosmological history in which the intergalactic medium (IGM) underwent a major phase change from being neutral to almost completely ionized. Gamma-ray bursts (GRBs) are luminous and unique probes of their environments that can be used to study the timeline for the progression of the EoR. Here we present a detailed analysis of the ESO Very Large Te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13126v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13126v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13126v1-abstract-full" style="display: none;"> The Epoch of Reionization (EoR) is a key period of cosmological history in which the intergalactic medium (IGM) underwent a major phase change from being neutral to almost completely ionized. Gamma-ray bursts (GRBs) are luminous and unique probes of their environments that can be used to study the timeline for the progression of the EoR. Here we present a detailed analysis of the ESO Very Large Telescope X-shooter spectrum of GRB 210905A, which resides at a redshift of z ~ 6.3. We focus on estimating the fraction of neutral hydrogen, xHI, on the line of sight to the host galaxy of GRB 210905A by fitting the shape of the Lyman-alpha damping wing of the afterglow spectrum. The X-shooter spectrum has a high signal to noise ratio, but the complex velocity structure of the host galaxy limits the precision of our conclusions. The statistically preferred model suggests a low neutral fraction with an 3-sigma upper limit of xHI &lt; 0.15, indicating that the IGM around the GRB host galaxy is mostly ionized. We discuss complications in current analyses and potential avenues for future studies of the progression of the EoR and its evolution with redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13126v1-abstract-full').style.display = 'none'; document.getElementById('2403.13126v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures, submitted to Monthly Notices of the Royal Astronomical Society</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00101">arXiv:2403.00101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00101">pdf</a>, <a href="https://arxiv.org/format/2403.00101">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348159">10.1051/0004-6361/202348159 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fires in the deep: The luminosity distribution of early-time gamma-ray-burst afterglows in light of the Gamow Explorer sensitivity requirements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=White%2C+N+E">N. E. White</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jelinek%2C+M">M. Jelinek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin-Carrillo%2C+A">A. Martin-Carrillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paek%2C+G+S+-">G. S. -H. Paek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blazek%2C+M">M. Blazek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thone%2C+C">C. Thone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fernandez%2C+J+F+A">J. F. Agui Fernandez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+T+-">T. -C. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+P">P. O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">D. A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Im%2C+M">M. Im</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+A">A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+C">C. Choi</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00101v1-abstract-short" style="display: inline;"> Gamma-ray bursts (GRBs) are ideal probes of the Universe at high redshift (z &gt; 5), pinpointing the locations of the earliest star-forming galaxies and providing bright backlights that can be used to spectrally fingerprint the intergalactic medium and host galaxy during the period of reionization. Future missions such as Gamow Explorer are being proposed to unlock this potential by increasing the r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00101v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00101v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00101v1-abstract-full" style="display: none;"> Gamma-ray bursts (GRBs) are ideal probes of the Universe at high redshift (z &gt; 5), pinpointing the locations of the earliest star-forming galaxies and providing bright backlights that can be used to spectrally fingerprint the intergalactic medium and host galaxy during the period of reionization. Future missions such as Gamow Explorer are being proposed to unlock this potential by increasing the rate of identification of high-z GRBs to rapidly trigger observations from 6-10 m ground telescopes, JWST, and the Extremely Large Telescopes. Gamow was proposed to the NASA 2021 Medium-Class Explorer (MIDEX) program as a fast-slewing satellite featuring a wide-field lobster-eye X-ray telescope (LEXT) to detect and localize GRBs, and a 30 cm narrow-field multi-channel photo-z infrared telescope (PIRT) to measure their photometric redshifts using the Lyman-alpha dropout technique. To derive the PIRT sensitivity requirement we compiled a complete sample of GRB optical-near-infrared afterglows from 2008 to 2021, adding a total of 66 new afterglows to our earlier sample, including all known high-z GRB afterglows. We performed full light-curve and spectral-energy-distribution analyses of these afterglows to derive their true luminosity at very early times. For all the light curves, where possible, we determined the brightness at the time of the initial finding chart of Gamow, at different high redshifts and in different NIR bands. We then followed the evolution of the luminosity to predict requirements for ground and space-based follow-up. We find that a PIRT sensitivity of 15 micro-Jy (21 mag AB) in a 500 s exposure simultaneously in five NIR bands within 1000s of the GRB trigger will meet the Gamow mission requirement to recover &gt; 80% of all redshifts at z &gt; 5. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00101v1-abstract-full').style.display = 'none'; document.getElementById('2403.00101v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 10 figures, 1 table. Accepted for publication in Astronomy and Astrophysics 15 Feb 2024. Abstract abridged for arXiv</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 686, A56 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10786">arXiv:2312.10786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.10786">pdf</a>, <a href="https://arxiv.org/format/2312.10786">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> XMM-Newton-discovered Fast X-ray Transients: Host galaxies and limits on contemporaneous detections of optical counterparts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Eappachen%2C+D">D. Eappachen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">P. G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Quirola-V%C3%A1squez%2C+J">J. Quirola-V谩squez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=S%C3%A1nchez%2C+D+M">D. Mata S谩nchez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Inkenhaag%2C+A">A. Inkenhaag</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraser%2C+M">M. Fraser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Torres%2C+M+A+P">M. A. P. Torres</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bauer%2C+F+E">F. E. Bauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chrimes%2C+A+A">A. A. Chrimes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stern%2C+D">D. Stern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">M. J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smartt%2C+S+J">S. J. Smartt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+K+W">K. W. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravasio%2C+M+E">M. E. Ravasio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zabludoff%2C+A+I">A. I. Zabludoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yue%2C+M">M. Yue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stoppa%2C+F">F. Stoppa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stone%2C+N+C">N. C. Stone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wen%2C+S">S. Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10786v1-abstract-short" style="display: inline;"> Extragalactic fast X-ray transients (FXTs) are a class of soft (0.3-10 keV) X-ray transients lasting a few hundred seconds to several hours. Several progenitor mechanisms have been suggested to produce FXTs, including supernova shock breakouts, binary neutron star mergers, or tidal disruptions involving an intermediate-mass black hole and a white dwarf. We present detailed host studies, including&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10786v1-abstract-full').style.display = 'inline'; document.getElementById('2312.10786v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10786v1-abstract-full" style="display: none;"> Extragalactic fast X-ray transients (FXTs) are a class of soft (0.3-10 keV) X-ray transients lasting a few hundred seconds to several hours. Several progenitor mechanisms have been suggested to produce FXTs, including supernova shock breakouts, binary neutron star mergers, or tidal disruptions involving an intermediate-mass black hole and a white dwarf. We present detailed host studies, including spectroscopic observations of the host galaxies of 7 XMM-Newton-discovered FXTs. The candidate hosts lie at redshifts 0.0928 $&lt; z &lt;$ 0.645 implying peak X-ray luminosities of 10$^{43}$ erg s$^{-1}$ $&lt; L_X &lt;$ 10$^{45}$ erg s$^{-1}$,and physical offsets of 1 kpc &lt; $r_\mathrm{proj}$ &lt; 22 kpc. These observations increase the number of FXTs with a spectroscopic redshift measurement by a factor of 2, although we note that one event is re-identified as a Galactic flare star. We infer host star formation rates and stellar masses by fitting the combined spectroscopic and archival photometric data. We also report on a contemporaneous optical counterpart search to the FXTs in Pan-STARRS and ATLAS by performing forced photometry at the position of the FXTs. We do not find any counterpart in our search. Given our constraints, including peak X-ray luminosities, optical limits, and host properties, we find that XRT 110621 is consistent with a SN SBO event. Spectroscopic redshifts of likely host galaxies for four events imply peak X-ray luminosities that are too high to be consistent with SN SBOs, but we are unable to discard either the BNS or WD-IMBH TDE scenarios for these FXTs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10786v1-abstract-full').style.display = 'none'; document.getElementById('2312.10786v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures, 6 tables. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04630">arXiv:2312.04630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04630">pdf</a>, <a href="https://arxiv.org/format/2312.04630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A Hubble Space Telescope Search for r-Process Nucleosynthesis in Gamma-ray Burst Supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rastinejad%2C+J+C">J. C. Rastinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">W. Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kilpatrick%2C+C+D">C. D. Kilpatrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">A. S. Fruchter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhirombhakdi%2C+K">K. Bhirombhakdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halevi%2C+G">G. Halevi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metzger%2C+B+D">B. D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Milvang-Jensen%2C+B">B. Milvang-Jensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pian%2C+E">E. Pian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pugliese%2C+G">G. Pugliese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siegel%2C+D+M">D. M. Siegel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singh%2C+P">P. Singh</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04630v2-abstract-short" style="display: inline;"> The existence of a secondary (in addition to compact object mergers) source of heavy element ($r$-process) nucleosynthesis, the core-collapse of rapidly-rotating and highly-magnetized massive stars, has been suggested by both simulations and indirect observational evidence. Here, we probe a predicted signature of $r$-process enrichment, a late-time ($\gtrsim 40$ days post-burst) distinct red color&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04630v2-abstract-full').style.display = 'inline'; document.getElementById('2312.04630v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04630v2-abstract-full" style="display: none;"> The existence of a secondary (in addition to compact object mergers) source of heavy element ($r$-process) nucleosynthesis, the core-collapse of rapidly-rotating and highly-magnetized massive stars, has been suggested by both simulations and indirect observational evidence. Here, we probe a predicted signature of $r$-process enrichment, a late-time ($\gtrsim 40$ days post-burst) distinct red color, in observations of GRB-supernovae (GRB-SNe) which are linked to these massive star progenitors. We present optical to near-IR color measurements of four GRB-SNe at $z \lesssim 0.4$, extending out to $&gt; 500$ days post-burst, obtained with the Hubble Space Telescope and large-aperture ground-based telescopes. Comparison of our observations to models indicates that GRBs 030329, 100316D and 130427A are consistent with both no enrichment and producing $0.01 - 0.15 M_{\odot}$ of $r$-process material if there is a low amount of mixing between the inner $r$-process ejecta and outer SN layers. GRB 190829A is not consistent with any models with $r$-process enrichment $\geq 0.01 M_{\odot}$. Taken together the sample of GRB-SNe indicates color diversity at late times. Our derived yields from GRB-SNe may be underestimated due to $r$-process material hidden in the SN ejecta (potentially due to low mixing fractions) or the limits of current models in measuring $r$-process mass. We conclude with recommendations for future search strategies to observe and probe the full distribution of $r$-process produced by GRB-SNe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04630v2-abstract-full').style.display = 'none'; document.getElementById('2312.04630v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Resubmission after comments. Accepted to ApJ. 36 pages, 7 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14310">arXiv:2310.14310</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14310">pdf</a>, <a href="https://arxiv.org/format/2310.14310">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Multi-band analyses of the bright GRB 230812B and the associated SN2023pel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hussenot-Desenonges%2C+T">T. Hussenot-Desenonges</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wouters%2C+T">T. Wouters</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guessoum%2C+N">N. Guessoum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abdi%2C+I">I. Abdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abulwfa%2C+A">A. Abulwfa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adami%2C+C">C. Adami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+J+F+A">J. F. Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">T. Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aivazyan%2C+V">V. Aivazyan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akl%2C+D">D. Akl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrade%2C+C+M">C. M. Andrade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antier%2C+S">S. Antier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ata%2C+S+A">S. A. Ata</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Azzam%2C+Y+A">Y. A. Azzam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baransky%2C+A">A. Baransky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blazek%2C+M">M. Blazek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bendjoya%2C+P">P. Bendjoya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beradze%2C+S">S. Beradze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boumis%2C+P">P. Boumis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bremer%2C+M">M. Bremer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brivio%2C+R">R. Brivio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buat%2C+V">V. Buat</a> , et al. (87 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14310v2-abstract-short" style="display: inline;"> GRB~230812B is a bright and relatively nearby ($z =0.36$) long gamma-ray burst (GRB) that has generated significant interest in the community and has thus been observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and sub-millimeter bands from the GRANDMA (Global Rapid Advanced Network for Multi-messenger Addicts) network of obs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14310v2-abstract-full').style.display = 'inline'; document.getElementById('2310.14310v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14310v2-abstract-full" style="display: none;"> GRB~230812B is a bright and relatively nearby ($z =0.36$) long gamma-ray burst (GRB) that has generated significant interest in the community and has thus been observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and sub-millimeter bands from the GRANDMA (Global Rapid Advanced Network for Multi-messenger Addicts) network of observatories and from observational partners. Adding complementary data from the literature, we then derive essential physical parameters associated with the ejecta and external properties (i.e. the geometry and environment) of the GRB and compare with other analyses of this event. We spectroscopically confirm the presence of an associated supernova, SN2023pel, and we derive a photospheric expansion velocity of v $\sim$ 17$\times10^3$ km s$^{-1}$. We analyze the photometric data first using empirical fits of the flux and then with full Bayesian Inference. We again strongly establish the presence of a supernova in the data, with a maximum (pseudo-)bolometric luminosity of $5.75 \times 10^{42}$ erg/s, at $15.76^{+0.81}_{-1.21}$ days (in the observer frame) after the trigger, with a half-max time width of 22.0 days. We compare these values with those of SN1998bw, SN2006aj, and SN2013dx. Our best-fit model favours a very low density environment ($\log_{10}({n_{\rm ISM}/{\rm cm}^{-3}}) = -2.38^{+1.45}_{-1.60}$) and small values for the jet&#39;s core angle $胃_{\rm core} = 1.54^{+1.02}_{-0.81} \ \rm{deg}$ and viewing angle $胃_{\rm obs} = 0.76^{+1.29}_{-0.76} \ \rm{deg}$. GRB 230812B is thus one of the best observed afterglows with a distinctive supernova bump. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14310v2-abstract-full').style.display = 'none'; document.getElementById('2310.14310v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.03000">arXiv:2309.03000</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.03000">pdf</a>, <a href="https://arxiv.org/format/2309.03000">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202347113">10.1051/0004-6361/202347113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A search for the afterglows, kilonovae, and host galaxies of two short GRBs: GRB 211106A and GRB 211227A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ferro%2C+M">M. Ferro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brivio%2C+R">R. Brivio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+L">L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dinatolo%2C+M">M. Dinatolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hussein%2C+S">S. Hussein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+M+G">M. G. Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">B. P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D">D. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin-Carrillo%2C+A">A. Martin-Carrillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nava%2C+L">L. Nava</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guelbenzu%2C+A+N">A. Nicuesa Guelbenzu</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.03000v1-abstract-short" style="display: inline;"> Context: GRB 211106A and GRB 211227A are recent gamma-ray bursts (GRBs) with initial X-ray positions suggesting associations with nearby galaxies (z &lt; 0.7). Their prompt emission characteristics indicate GRB 211106A is a short-duration GRB and GRB 211227A is a short GRB with extended emission, likely originating from compact binary mergers. However, classifying solely based on prompt emission can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03000v1-abstract-full').style.display = 'inline'; document.getElementById('2309.03000v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.03000v1-abstract-full" style="display: none;"> Context: GRB 211106A and GRB 211227A are recent gamma-ray bursts (GRBs) with initial X-ray positions suggesting associations with nearby galaxies (z &lt; 0.7). Their prompt emission characteristics indicate GRB 211106A is a short-duration GRB and GRB 211227A is a short GRB with extended emission, likely originating from compact binary mergers. However, classifying solely based on prompt emission can be misleading. Aims: These short GRBs in the local Universe offer opportunities to search for associated kilonova (KN) emission and study host galaxy properties in detail. Methods: We conducted deep optical and NIR follow-up using ESO-VLT FORS2, HAWK-I, and MUSE for GRB 211106A, and ESO-VLT FORS2 and X-Shooter for GRB 211227A, starting shortly after the X-ray afterglow detection. We performed photometric analysis to look for afterglow and KN emissions associated with the bursts, along with host galaxy imaging and spectroscopy. Optical/NIR results were compared with Swift X-Ray Telescope (XRT) and other high-energy data. Results: For both GRBs we placed deep limits to the optical/NIR afterglow and KN emission. Host galaxies were identified: GRB 211106A at photometric z = 0.64 and GRB 211227A at spectroscopic z = 0.228. Host galaxy properties aligned with typical short GRB hosts. We also compared the properties of the bursts with the S-BAT4 sample to further examined the nature of these events. Conclusions: Study of prompt and afterglow phases, along with host galaxy analysis, confirms GRB 211106A as a short GRB and GRB 211227A as a short GRB with extended emission. The absence of optical/NIR counterparts is likely due to local extinction for GRB 211106A and a faint kilonova for GRB 211227A. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03000v1-abstract-full').style.display = 'none'; document.getElementById('2309.03000v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to A&amp;A on 08 August 2023, 21 pages, 24 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 678, A142 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.02500">arXiv:2309.02500</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.02500">pdf</a>, <a href="https://arxiv.org/format/2309.02500">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-023-02073-y">10.1038/s41550-023-02073-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monthly quasi-periodic eruptions from repeated stellar disruption by a massive black hole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nixon%2C+C+J">C. J. Nixon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Charalampopoulos%2C+P">P. Charalampopoulos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">D. A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breeveld%2C+A+A">A. A. Breeveld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+K+L">K. L. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eyles-Ferris%2C+R+A+J">R. A. J. Eyles-Ferris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goad%2C+M+R">M. R. Goad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+P+T">P. T. O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osborne%2C+J+P">J. P. Osborne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sbarufatti%2C+B">B. Sbarufatti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.02500v1-abstract-short" style="display: inline;"> In recent years, searches of archival X-ray data have revealed galaxies exhibiting nuclear quasi-periodic eruptions with periods of several hours. These are reminiscent of the tidal disruption of a star by a supermassive black hole, and the repeated, partial stripping of a white dwarf in an eccentric orbit around a ~10^5 solar mass black hole provides an attractive model. A separate class of perio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02500v1-abstract-full').style.display = 'inline'; document.getElementById('2309.02500v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.02500v1-abstract-full" style="display: none;"> In recent years, searches of archival X-ray data have revealed galaxies exhibiting nuclear quasi-periodic eruptions with periods of several hours. These are reminiscent of the tidal disruption of a star by a supermassive black hole, and the repeated, partial stripping of a white dwarf in an eccentric orbit around a ~10^5 solar mass black hole provides an attractive model. A separate class of periodic nuclear transients, with significantly longer timescales, have recently been discovered optically, and may arise from the partial stripping of a main-sequence star by a ~10^7 solar mass black hole. No clear connection between these classes has been made. We present the discovery of an X-ray nuclear transient which shows quasi-periodic outbursts with a period of weeks. We discuss possible origins for the emission, and propose that this system bridges the two existing classes outlined above. This discovery was made possible by the rapid identification, dissemination and follow up of an X-ray transient found by the new live \swift-XRT transient detector, demonstrating the importance of low-latency, sensitive searches for X-ray transients. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02500v1-abstract-full').style.display = 'none'; document.getElementById('2309.02500v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in Nature Astronomy at 1600 BST on September 7th. This version for arXiv includes the main article, Methods and Supplementary Information combined into a single file</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14812">arXiv:2308.14812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.14812">pdf</a>, <a href="https://arxiv.org/format/2308.14812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202347418">10.1051/0004-6361/202347418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The cosmic build-up of dust and metals. Accurate abundances from GRB-selected star-forming galaxies at $1.7 &lt; z &lt; 6.3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Cia%2C+A">A. De Cia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Th%C3%B6ne%2C+C+C">C. C. Th枚ne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krogager%2C+J+-">J. -K. Krogager</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yates%2C+R+M">R. M. Yates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vejlgaard%2C+S">S. Vejlgaard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Konstantopoulou%2C+C">C. Konstantopoulou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D">D. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narayanan%2C+D">D. Narayanan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wilson%2C+S+N">S. N. Wilson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arabsalmani%2C+M">M. Arabsalmani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">A. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Q">Q. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Milvang-Jensen%2C+B">B. Milvang-Jensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B8ller%2C+P">P. M酶ller</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14812v1-abstract-short" style="display: inline;"> The chemical enrichment of dust and metals in the interstellar medium (ISM) of galaxies throughout cosmic time is one of the key driving processes of galaxy evolution. Here we study the evolution of the gas-phase metallicities, dust-to-gas (DTG), and dust-to-metal (DTM) ratios of 36 star-forming galaxies at $1.7 &lt; z &lt; 6.3$ probed by gamma-ray bursts (GRBs). We compile all GRB-selected galaxies wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14812v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14812v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14812v1-abstract-full" style="display: none;"> The chemical enrichment of dust and metals in the interstellar medium (ISM) of galaxies throughout cosmic time is one of the key driving processes of galaxy evolution. Here we study the evolution of the gas-phase metallicities, dust-to-gas (DTG), and dust-to-metal (DTM) ratios of 36 star-forming galaxies at $1.7 &lt; z &lt; 6.3$ probed by gamma-ray bursts (GRBs). We compile all GRB-selected galaxies with intermediate (R=7000) to high (R&gt;40,000) resolution spectroscopic data for which at least one refractory (e.g. Fe) and one volatile (e.g. S or Zn) element have been detected at S/N&gt;3. This is to ensure that accurate abundances and dust depletion patterns can be obtained. We first derive the redshift evolution of the dust-corrected, absorption-line based gas-phase metallicity [M/H]$_{\rm tot}$ in these galaxies, for which we determine a linear relation with redshift ${\rm [M/H]_{tot}}(z) = (-0.21\pm 0.04)z -(0.47\pm 0.14)$. We then examine the DTG and DTM ratios as a function of redshift and through three orders of magnitude in metallicity, quantifying the relative dust abundance both through the direct line-of-sight visual extinction $A_V$ and the derived depletion level. We use a novel method to derive the DTG and DTM mass ratios for each GRB sightline, summing up the mass of all the depleted elements in the dust-phase. We find that the DTG and DTM mass ratios are both strongly correlated with the gas-phase metallicity and show a mild evolution with redshift as well. While these results are subject to a variety of caveats related to the physical environments and the narrow pencil-beam sightlines through the ISM probed by the GRBs, they provide strong implications for studies of dust masses to infer the gas and metal content of high-redshift galaxies, and particularly demonstrate the large offset from the average Galactic value in the low-metallicity, high-redshift regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14812v1-abstract-full').style.display = 'none'; document.getElementById('2308.14812v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 679, A91 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10936">arXiv:2308.10936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10936">pdf</a>, <a href="https://arxiv.org/format/2308.10936">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A Radio Flare in the Long-Lived Afterglow of the Distant Short GRB 210726A: Energy Injection or a Reverse Shock from Shell Collisions? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Schroeder%2C+G">Genevieve Schroeder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhodes%2C+L">Lauren Rhodes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laskar%2C+T">Tanmoy Laskar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nugent%2C+A">Anya Nugent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Escorial%2C+A+R">Alicia Rouco Escorial</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rastinejad%2C+J+C">Jillian C. Rastinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">Wen-fai Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">Alexander J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Veres%2C+P">P茅ter Veres</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alexander%2C+K+D">Kate D. Alexander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andersson%2C+A">Alex Andersson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">Edo Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanchard%2C+P+K">Peter K. Blanchard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chastain%2C+S">Sarah Chastain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+L">Lise Christensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fender%2C+R">Rob Fender</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+D+A">David A. Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groot%2C+P">Paul Groot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heywood%2C+I">Ian Heywood</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Horesh%2C+A">Assaf Horesh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">Luca Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kilpatrick%2C+C+D">Charles D. Kilpatrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=K%C3%B6rding%2C+E">Elmar K枚rding</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lien%2C+A">Amy Lien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele B. Malesani</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10936v2-abstract-short" style="display: inline;"> We present the discovery of the radio afterglow of the short $纬$-ray burst (GRB) 210726A, localized to a galaxy at a photometric redshift of $z\sim 2.4$. While radio observations commenced $\lesssim 1~$day after the burst, no radio emission was detected until $\sim11~$days. The radio afterglow subsequently brightened by a factor of $\sim 3$ in the span of a week, followed by a rapid decay (a &#34;radi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10936v2-abstract-full').style.display = 'inline'; document.getElementById('2308.10936v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10936v2-abstract-full" style="display: none;"> We present the discovery of the radio afterglow of the short $纬$-ray burst (GRB) 210726A, localized to a galaxy at a photometric redshift of $z\sim 2.4$. While radio observations commenced $\lesssim 1~$day after the burst, no radio emission was detected until $\sim11~$days. The radio afterglow subsequently brightened by a factor of $\sim 3$ in the span of a week, followed by a rapid decay (a &#34;radio flare&#34;). We find that a forward shock afterglow model cannot self-consistently describe the multi-wavelength X-ray and radio data, and underpredicts the flux of the radio flare by a factor of $\approx 5$. We find that the addition of substantial energy injection, which increases the isotropic kinetic energy of the burst by a factor of $\approx 4$, or a reverse shock from a shell collision are viable solutions to match the broad-band behavior. At $z\sim 2.4$, GRB 210726A is among the highest redshift short GRBs discovered to date as well as the most luminous in radio and X-rays. Combining and comparing all previous radio afterglow observations of short GRBs, we find that the majority of published radio searches conclude by $\lesssim 10~$days after the burst, potentially missing these late rising, luminous radio afterglows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10936v2-abstract-full').style.display = 'none'; document.getElementById('2308.10936v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 10 figures, accepted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02098">arXiv:2307.02098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.02098">pdf</a>, <a href="https://arxiv.org/format/2307.02098">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06759-1">10.1038/s41586-023-06759-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST detection of heavy neutron capture elements in a compact object merger </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">A. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">B. P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salafia%2C+O+S">O. S. Salafia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulla%2C+M">M. Bulla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hotokezaka%2C+K">K. Hotokezaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravasio%2C+M+E">M. E. Ravasio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Escorial%2C+A+R">A. Rouco Escorial</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schneider%2C+B">B. Schneider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarin%2C+N">N. Sarin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">S. Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+G">G. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brammer%2C+G+B">G. B. Brammer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+L">L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhillon%2C+V+S">V. S. Dhillon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fausnaugh%2C+M">M. Fausnaugh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W+-">W. -F. Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">A. S. Fruchter</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02098v1-abstract-short" style="display: inline;"> The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs), sources of high-frequency gravitational waves and likely production sites for heavy element nucleosynthesis via rapid neutron capture (the r-process). These heavy elements include some of great geophysical, bi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02098v1-abstract-full').style.display = 'inline'; document.getElementById('2307.02098v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02098v1-abstract-full" style="display: none;"> The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs), sources of high-frequency gravitational waves and likely production sites for heavy element nucleosynthesis via rapid neutron capture (the r-process). These heavy elements include some of great geophysical, biological and cultural importance, such as thorium, iodine and gold. Here we present observations of the exceptionally bright gamma-ray burst GRB 230307A. We show that GRB 230307A belongs to the class of long-duration gamma-ray bursts associated with compact object mergers, and contains a kilonova similar to AT2017gfo, associated with the gravitational-wave merger GW170817. We obtained James Webb Space Telescope mid-infrared (mid-IR) imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns which we interpret as tellurium (atomic mass A=130), and a very red source, emitting most of its light in the mid-IR due to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy element nucleosynthesis across the Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02098v1-abstract-full').style.display = 'none'; document.getElementById('2307.02098v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted. Comments welcome! Nature (2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01771">arXiv:2307.01771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01771">pdf</a>, <a href="https://arxiv.org/format/2307.01771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> AT2023fhn (the Finch): a Luminous Fast Blue Optical Transient at a large offset from its host galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chrimes%2C+A+A">A. A. Chrimes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">P. G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppejans%2C+D+L">D. L. Coppejans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaspari%2C+N">N. Gaspari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">B. P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groot%2C+P+J">P. J. Groot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mummery%2C+A">A. Mummery</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanway%2C+E+R">E. R. Stanway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiersema%2C+K">K. Wiersema</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01771v2-abstract-short" style="display: inline;"> Luminous Fast Blue Optical Transients (LFBOTs) - the prototypical example being AT2018cow - are a rare class of events whose origins are poorly understood. They are characterised by rapid evolution, featureless blue spectra at early times, and luminous X-ray and radio emission. LFBOTs thus far have been found exclusively at small projected offsets from star-forming host galaxies. We present Hubble&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01771v2-abstract-full').style.display = 'inline'; document.getElementById('2307.01771v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01771v2-abstract-full" style="display: none;"> Luminous Fast Blue Optical Transients (LFBOTs) - the prototypical example being AT2018cow - are a rare class of events whose origins are poorly understood. They are characterised by rapid evolution, featureless blue spectra at early times, and luminous X-ray and radio emission. LFBOTs thus far have been found exclusively at small projected offsets from star-forming host galaxies. We present Hubble Space Telescope, Gemini, Chandra and Very Large Array observations of a new LFBOT, AT2023fhn. The Hubble Space Telescope data reveal a large offset (greater than 3.5 half-light radii) from the two closest galaxies, both at a redshift of 0.24. The location of AT2023fhn is in stark contrast with previous events, and demonstrates that LFBOTs can occur in a range of galactic environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01771v2-abstract-full').style.display = 'none'; document.getElementById('2307.01771v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRASL. 7 pages, 4 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01044">arXiv:2307.01044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01044">pdf</a>, <a href="https://arxiv.org/format/2307.01044">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Swift/UVOT discovery of Swift J221951-484240: a UV luminous ambiguous nuclear transient </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuin%2C+N+P+M">N. P. M. Kuin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">M. Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marshall%2C+F">F. Marshall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ridley%2C+E">E. Ridley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boutsia%2C+K">K. Boutsia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breeveld%2C+A+A">A. A. Breeveld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+D+A+H">D. A. H. Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. B. Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Edwards%2C+P+G">P. G. Edwards</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gromadzki%2C+M">M. Gromadzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gupta%2C+R">R. Gupta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laha%2C+S">S. Laha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morrell%2C+N">N. Morrell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orio%2C+M">M. Orio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pandey%2C+S+B">S. B. Pandey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+M+J">M. J. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+K+L">K. L. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Parsotan%2C+T">T. Parsotan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rau%2C+A">A. Rau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schady%2C+P">P. Schady</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stevens%2C+J">J. Stevens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+P+J">P. J. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01044v1-abstract-short" style="display: inline;"> We report the discovery of Swift J221951-484240 (hereafter: J221951), a luminous slow-evolving blue transient that was detected by the Neil Gehrels Swift Observatory Ultra-violet/Optical Telescope (Swift/UVOT) during the follow-up of Gravitational Wave alert S190930t, to which it is unrelated. Swift/UVOT photometry shows the UV spectral energy distribution of the transient to be well modelled by a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01044v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01044v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01044v1-abstract-full" style="display: none;"> We report the discovery of Swift J221951-484240 (hereafter: J221951), a luminous slow-evolving blue transient that was detected by the Neil Gehrels Swift Observatory Ultra-violet/Optical Telescope (Swift/UVOT) during the follow-up of Gravitational Wave alert S190930t, to which it is unrelated. Swift/UVOT photometry shows the UV spectral energy distribution of the transient to be well modelled by a slowly shrinking black body with an approximately constant temperature of T~2.5x10^4 K. At a redshift z=0.5205, J221951 had a peak absolute magnitude of M_u,AB = -23 mag, peak bolometric luminosity L_max=1.1x10^45 erg s^-1 and a total radiated energy of E&gt;2.6x10^52 erg. The archival WISE IR photometry shows a slow rise prior to a peak near the discovery date. Spectroscopic UV observations display broad absorption lines in N V and O VI, pointing toward an outflow at coronal temperatures. The lack of emission in the higher H~Lyman lines, N I and other neutral lines is consistent with a viewing angle close to the plane of the accretion or debris disc. The origin of J221951 can not be determined with certainty but has properties consistent with a tidal disruption event and the turn-on of an active galactic nucleus. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01044v1-abstract-full').style.display = 'none'; document.getElementById('2307.01044v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages (25 main + 12 supplementary), submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.16223">arXiv:2303.16223</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.16223">pdf</a>, <a href="https://arxiv.org/format/2303.16223">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A bright megaelectronvolt emission line in $纬$-ray burst GRB 221009A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ravasio%2C+M+E">Maria Edvige Ravasio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salafia%2C+O+S">Om Sharan Salafia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oganesyan%2C+G">Gor Oganesyan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mei%2C+A">Alessio Mei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">Giancarlo Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ascenzi%2C+S">Stefano Ascenzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerjee%2C+B">Biswajit Banerjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macera%2C+S">Samanta Macera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Branchesi%2C+M">Marica Branchesi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">Peter G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">Andrew J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mulrey%2C+K+B">Katharine B. Mulrey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giuliani%2C+A">Andrea Giuliani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Celotti%2C+A">Annalisa Celotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghisellini%2C+G">Gabriele Ghisellini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.16223v1-abstract-short" style="display: inline;"> The highly variable and energetic pulsed emission of a long gamma-ray burst (GRB) is thought to originate from local, rapid dissipation of kinetic or magnetic energy within an ultra-relativistic jet launched by a newborn compact object, formed during the collapse of a massive star. The spectra of GRB pulses are best modelled by power-law segments, indicating the dominance of non-thermal radiation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16223v1-abstract-full').style.display = 'inline'; document.getElementById('2303.16223v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.16223v1-abstract-full" style="display: none;"> The highly variable and energetic pulsed emission of a long gamma-ray burst (GRB) is thought to originate from local, rapid dissipation of kinetic or magnetic energy within an ultra-relativistic jet launched by a newborn compact object, formed during the collapse of a massive star. The spectra of GRB pulses are best modelled by power-law segments, indicating the dominance of non-thermal radiation processes. Spectral lines in the X-ray and soft $纬$-ray regime for the afterglow have been searched for intensively, but never confirmed. No line features ever been identified in the high energy prompt emission. Here we report the discovery of a highly significant ($&gt; 6 蟽$) narrow emission feature at around $10$ MeV in the brightest ever GRB 221009A. By modelling its profile with a Gaussian, we find a roughly constant width $蟽\sim 1$ MeV and temporal evolution both in energy ($\sim 12$ MeV to $\sim 6$ MeV) and luminosity ($\sim 10^{50}$ erg/s to $\sim 2 \times 10^{49}$ erg/s) over 80 seconds. We interpret this feature as a blue-shifted annihilation line of relatively cold ($k_\mathrm{B}T\ll m_\mathrm{e}c^2$) electron-positron pairs, which could have formed within the jet region where the brightest pulses of the GRB were produced. A detailed understanding of the conditions that can give rise to such a feature could shed light on the so far poorly understood GRB jet properties and energy dissipation mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16223v1-abstract-full').style.display = 'none'; document.getElementById('2303.16223v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12912">arXiv:2303.12912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.12912">pdf</a>, <a href="https://arxiv.org/format/2303.12912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21203/rs.3.rs-2298504/v1">10.21203/rs.3.rs-2298504/v1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A long-duration gamma-ray burst of dynamical origin from the nucleus of an ancient galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">Andrew J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">Benjamin P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nugent%2C+A+E">Anya E. Nugent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">Matt Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S">Samantha Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rastinejad%2C+J">Jillian Rastinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metzger%2C+B+D">Brian D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanway%2C+E+R">Elizabeth R. Stanway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Inkenhaag%2C+A">Anne Inkenhaag</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zafar%2C+T">Tayyaba Zafar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fernandez%2C+J+F+A">J. Feliciano Agui Fernandez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chrimes%2C+A">Ashley Chrimes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhirombhakdi%2C+K">Kornpob Bhirombhakdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">Antonio de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">Wen-fai Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">Andrew S. Fruchter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fragione%2C+G">Giacomo Fragione</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">Johan P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaspari%2C+N">Nicola Gaspari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">Kasper E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hjorth%2C+J">Jens Hjorth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">Pall Jakobsson</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12912v1-abstract-short" style="display: inline;"> The majority of long duration ($&gt;2$ s) gamma-ray bursts (GRBs) are believed to arise from the collapse of massive stars \cite{Hjorth+03}, with a small proportion created from the merger of compact objects. Most of these systems are likely formed via standard stellar evolution pathways. However, it has long been thought that a fraction of GRBs may instead be an outcome of dynamical interactions in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12912v1-abstract-full').style.display = 'inline'; document.getElementById('2303.12912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12912v1-abstract-full" style="display: none;"> The majority of long duration ($&gt;2$ s) gamma-ray bursts (GRBs) are believed to arise from the collapse of massive stars \cite{Hjorth+03}, with a small proportion created from the merger of compact objects. Most of these systems are likely formed via standard stellar evolution pathways. However, it has long been thought that a fraction of GRBs may instead be an outcome of dynamical interactions in dense environments, channels which could also contribute significantly to the samples of compact object mergers detected as gravitational wave sources. Here we report the case of GRB 191019A, a long GRB (T_90 = 64.4 +/- 4.5 s) which we pinpoint close (&lt;100 pc projected) to the nucleus of an ancient (&gt;1~Gyr old) host galaxy at z=0.248. The lack of evidence for star formation and deep limits on any supernova emission make a massive star origin difficult to reconcile with observations, while the timescales of the emission rule out a direct interaction with the supermassive black hole in the nucleus of the galaxy, We suggest that the most likely route for progenitor formation is via dynamical interactions in the dense nucleus of the host, consistent with the centres of such galaxies exhibiting interaction rates up to two orders of magnitude larger than typical field galaxies. The burst properties could naturally be explained via compact object mergers involving white dwarfs (WD), neutron stars (NS) or black holes (BH). These may form dynamically in dense stellar clusters, or originate in a gaseous disc around the supermassive black hole. Future electromagnetic and gravitational-wave observations in tandem thus offer a route to probe the dynamical fraction and the details of dynamical interactions in galactic nuclei and other high density stellar systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12912v1-abstract-full').style.display = 'none'; document.getElementById('2303.12912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Nature Astronomy. This is the submitted version and will differ from the published version due to modifications in the refereeing process</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.09982">arXiv:2303.09982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.09982">pdf</a>, <a href="https://arxiv.org/format/2303.09982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Optical and Near-infrared Observations of the Distant but Bright &#39;New Year&#39;s Burst&#39; GRB 220101A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+Z">Zi-Pei Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lei%2C+W">Wei-Hua Lei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fu%2C+S">Shao-Yu Fu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+D">Dong-Jie Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+D">Dong Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">Paolo D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+J+F+A">Jos茅 Feliciano Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">Johan P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+X">Xing Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guelbenzu%2C+A+N">Ana Nicuesa Guelbenzu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+S">Shuai-Qing Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">David Alexander Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klose%2C+S">Sylvio Klose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+J">Jin-Zhong Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+X">Xing Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">Massimiliano De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">Antonio de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stecklum%2C+B">Bringfried Stecklum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Th%2C+C">Christina Th</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Viuho%2C+J+K+M">Joonas Kari Markku Viuho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+Y">Yi-Nan Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+J">Jing-Da Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+H">He Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+T">Tian-Hua Lu</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.09982v1-abstract-short" style="display: inline;"> High-redshift gamma-ray bursts (GRBs) provide a powerful tool to probe the early universe, but still for relatively few do we have good observations of the afterglow. We here report the optical and near-infrared observations of the afterglow of a relatively high-redshift event, GRB\,220101A, triggered on New Year&#39;s Day of 2022. With the optical spectra obtained at XL2.16/BFOSC and NOT/ALFOSC, we d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09982v1-abstract-full').style.display = 'inline'; document.getElementById('2303.09982v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.09982v1-abstract-full" style="display: none;"> High-redshift gamma-ray bursts (GRBs) provide a powerful tool to probe the early universe, but still for relatively few do we have good observations of the afterglow. We here report the optical and near-infrared observations of the afterglow of a relatively high-redshift event, GRB\,220101A, triggered on New Year&#39;s Day of 2022. With the optical spectra obtained at XL2.16/BFOSC and NOT/ALFOSC, we determine the redshift of the burst at $z= 4.615$. Based on our optical and near-infrared data, combined with the X-ray data, we perform multiband fit with the python package \emph{afterglowpy}. A jet-break at $\sim$ 0.7 day post-burst is found to constrain the opening angle of the jet as $\sim$ 3.4 degree. We also determine circumburst density of $n_0 = 0.15\ {\rm cm}^{-3}$ as well as kinetic energy $E_{\rm K, iso} = 3.52\times 10^{54}$ erg. The optical afterglow is among the most luminous ever detected. We also find a ``mirror&#39;&#39; feature in the lightcurve during the prompt phase of the burst from 80 s to 120 s. The physical origin of such mirror feature is unclear. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09982v1-abstract-full').style.display = 'none'; document.getElementById('2303.09982v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07891">arXiv:2302.07891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.07891">pdf</a>, <a href="https://arxiv.org/format/2302.07891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The brightest GRB ever detected: GRB 221009A as a highly luminous event at z = 0.151 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmerio%2C+J">J. Palmerio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salafia%2C+O+S">O. S. Salafia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+J+F+A">J. F. Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chrimes%2C+A+A">A. A. Chrimes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaspari%2C+N">N. Gaspari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">B. P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hjorth%2C+J">J. Hjorth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07891v1-abstract-short" style="display: inline;"> Context: The extreme luminosity of gamma-ray bursts (GRBs) makes them powerful beacons for studies of the distant Universe. The most luminous bursts are typically detected at moderate/high redshift, where the volume for seeing such rare events is maximized and the star-formation activity is greater than at z = 0. For distant events, not all observations are feasible, such as at TeV energies. Aim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07891v1-abstract-full').style.display = 'inline'; document.getElementById('2302.07891v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07891v1-abstract-full" style="display: none;"> Context: The extreme luminosity of gamma-ray bursts (GRBs) makes them powerful beacons for studies of the distant Universe. The most luminous bursts are typically detected at moderate/high redshift, where the volume for seeing such rare events is maximized and the star-formation activity is greater than at z = 0. For distant events, not all observations are feasible, such as at TeV energies. Aims: Here we present a spectroscopic redshift measurement for the exceptional GRB 221009A, the brightest GRB observed to date with emission extending well into the TeV regime. Methods: We used the X-shooter spectrograph at the ESO Very Large Telescope (VLT) to obtain simultaneous optical to near-IR spectroscopy of the burst afterglow 0.5 days after the explosion. Results: The spectra exhibit both absorption and emission lines from material in a host galaxy at z = 0.151. Thus GRB 221009A was a relatively nearby burst with a luminosity distance of 745 Mpc. Its host galaxy properties (star-formation rate and metallicity) are consistent with those of LGRB hosts at low redshift. This redshift measurement yields information on the energy of the burst. The inferred isotropic energy release, $E_{\rm iso} &gt; 5 \times 10^{54}$ erg, lies at the high end of the distribution, making GRB 221009A one of the nearest and also most energetic GRBs observed to date. We estimate that such a combination (nearby as well as intrinsically bright) occurs between once every few decades to once per millennium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07891v1-abstract-full').style.display = 'none'; document.getElementById('2302.07891v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, submitted to Astronomy &amp; Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07761">arXiv:2302.07761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.07761">pdf</a>, <a href="https://arxiv.org/format/2302.07761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acc2c1">10.3847/2041-8213/acc2c1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The first JWST spectrum of a GRB afterglow: No bright supernova in observations of the brightest GRB of all time, GRB 221009A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schneider%2C+B">B. Schneider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hjorth%2C+J">J. Hjorth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zafar%2C+T">T. Zafar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sargent%2C+B">B. Sargent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mullally%2C+S+E">S. E. Mullally</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+J+F+A">J. F. Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barclay%2C+T">T. Barclay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+M+G">M. G. Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhirombhakdi%2C+K">K. Bhirombhakdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bremer%2C+M">M. Bremer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brivio%2C+R">R. Brivio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chrimes%2C+A+A">A. A. Chrimes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferro%2C+M">M. Ferro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">W. Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">A. S. Fruchter</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07761v2-abstract-short" style="display: inline;"> We present JWST and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. This includes the first mid-IR spectra of any GRB, obtained with JWST/NIRSPEC (0.6-5.5 micron) and MIRI (5-12 micron), 12 days after the burst. Assuming that the intrinsic spectral slope is a single power-law, with $F_谓 \propto 谓^{-尾}$, we obtain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07761v2-abstract-full').style.display = 'inline'; document.getElementById('2302.07761v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07761v2-abstract-full" style="display: none;"> We present JWST and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. This includes the first mid-IR spectra of any GRB, obtained with JWST/NIRSPEC (0.6-5.5 micron) and MIRI (5-12 micron), 12 days after the burst. Assuming that the intrinsic spectral slope is a single power-law, with $F_谓 \propto 谓^{-尾}$, we obtain $尾\approx 0.35$, modified by substantial dust extinction with $A_V = 4.9$. This suggests extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same segment of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal decay rates would only match a post jet-break model, with electron index $p&lt;2$, and with the jet expanding into a uniform ISM medium. The shape of the JWST spectrum is near-identical in the optical/nIR to X-shooter spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests that any accompanying supernova (SN) is either substantially fainter or bluer than SN 1998bw, the proto-type GRB-SN. Our HST observations also reveal a disc-like host galaxy, viewed close to edge-on, that further complicates the isolation of any supernova component. The host galaxy appears rather typical amongst long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07761v2-abstract-full').style.display = 'none'; document.getElementById('2302.07761v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication to the Astrophysical Journal Letters for the GRB 221009A Special Issue. The results of this paper are under press embargo until March 28, 18 UT. 19 pages, 8 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.11985">arXiv:2301.11985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.11985">pdf</a>, <a href="https://arxiv.org/format/2301.11985">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244917">10.1051/0004-6361/202244917 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The triple-peaked afterglow of GRB 210731A from X-ray to radio frequencies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=de+Wet%2C+S">S. de Wet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laskar%2C+T">T. Laskar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groot%2C+P+J">P. J. Groot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cavallaro%2C+F">F. Cavallaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guelbenzu%2C+A+N">A. Nicuesa Guelbenzu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chastain%2C+S">S. Chastain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">A. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Monageng%2C+I+M">I. M. Monageng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">A. J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+W">W. Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloemen%2C+S">S. Bloemen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippenko%2C+A+V">A. V. Filippenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klose%2C+S">S. Klose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pieterse%2C+D+L+A">D. L. A. Pieterse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rau%2C+A">A. Rau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vreeswijk%2C+P+M">P. M. Vreeswijk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Woudt%2C+P">P. Woudt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+Z+-">Z. -P. Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.11985v1-abstract-short" style="display: inline;"> GRB 210731A was a long-duration gamma-ray burst discovered by the Burst Alert Telescope (BAT) aboard the Neil Gehrels Swift observatory. Swift triggered the wide-field, robotic MeerLICHT optical telescope in Sutherland; it began observing the BAT error circle 286 seconds after the Swift trigger and discovered the optical afterglow of GRB 210731A in its first 60-second q-band exposure. Multi-colour&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11985v1-abstract-full').style.display = 'inline'; document.getElementById('2301.11985v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.11985v1-abstract-full" style="display: none;"> GRB 210731A was a long-duration gamma-ray burst discovered by the Burst Alert Telescope (BAT) aboard the Neil Gehrels Swift observatory. Swift triggered the wide-field, robotic MeerLICHT optical telescope in Sutherland; it began observing the BAT error circle 286 seconds after the Swift trigger and discovered the optical afterglow of GRB 210731A in its first 60-second q-band exposure. Multi-colour observations of the afterglow with MeerLICHT revealed a light curve that showed three peaks of similar brightness within the first four hours. We present the results of our follow-up campaign and interpret our observations in the framework of the synchrotron forward shock model. We performed temporal and spectral fits to determine the spectral regime and external medium density profile, and performed detailed multi-wavelength theoretical modelling of the afterglow following the last optical peak at 0.2 days to determine the intrinsic blast wave parameters. We find a preference for a stellar wind density profile consistent with a massive star origin, while our theoretical modelling results in fairly typical shock microphysics parameters. Based on the energy released in gamma-rays and the kinetic energy in the blast wave, we determine a low radiative efficiency of ~0.02. The first peak in the optical light curve is likely the onset of the afterglow. We find that energy injection into the forward shock offers the simplest explanation for the subsequent light curve evolution, and that the blast wave kinetic energy increasing by a factor of ~1000 from the first peak to the last peak is indicative of substantial energy injection. Our highest-likelihood theoretical model overpredicts the 1.4 GHz flux by a factor of approximately three with respect to our upper limits, possibly implying a population of thermal electrons within the shocked region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11985v1-abstract-full').style.display = 'none'; document.getElementById('2301.11985v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures, accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023, A&amp;A, 671, A116 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16524">arXiv:2211.16524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.16524">pdf</a>, <a href="https://arxiv.org/format/2211.16524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244205">10.1051/0004-6361/202244205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissecting the interstellar medium of a z=6.3 galaxy: X-shooter spectroscopy and HST imaging of the afterglow and environment of the Swift GRB 210905A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Saccardi%2C+A">A. Saccardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">S. D. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Cia%2C+A">A. De Cia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmerio%2C+J+T">J. T. Palmerio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petitjean%2C+P">P. Petitjean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+L">L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Konstantopoulou%2C+C">C. Konstantopoulou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B8ller%2C+P">P. M酶ller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramburuth-Hurt%2C+T">T. Ramburuth-Hurt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Th%C3%B6ne%2C+C+C">C. C. Th枚ne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vejlgaard%2C+S">S. Vejlgaard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schady%2C+P">P. Schady</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+J">D. J. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiersema%2C+K">K. Wiersema</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16524v2-abstract-short" style="display: inline;"> The study of the properties of galaxies in the first billion years after the Big Bang is one of the major topic of current astrophysics. Optical/near-infrared spectroscopy of the afterglows of long Gamma-ray bursts (GRBs) provide a powerful diagnostic tool to probe the interstellar medium (ISM) of their host galaxies and foreground absorbers, even up to the highest redshifts. We analyze the VLT/X-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16524v2-abstract-full').style.display = 'inline'; document.getElementById('2211.16524v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16524v2-abstract-full" style="display: none;"> The study of the properties of galaxies in the first billion years after the Big Bang is one of the major topic of current astrophysics. Optical/near-infrared spectroscopy of the afterglows of long Gamma-ray bursts (GRBs) provide a powerful diagnostic tool to probe the interstellar medium (ISM) of their host galaxies and foreground absorbers, even up to the highest redshifts. We analyze the VLT/X-shooter afterglow spectrum of GRB 210905A, triggered by the Swift Neil Gehrels Observatory, and detect neutral-hydrogen, low-ionization, high-ionization, and fine-structure absorption lines from a complex system at z=6.3118, that we associate with the GRB host galaxy. We study the ISM properties of the host system, revealing the metallicity, kinematics and chemical abundance pattern. The total metallicity of the z~6.3 system is [M/H]=-1.72+/-0.13, after correcting for dust-depletion and taking into account alpha-element enhancement. In addition, we determine the overall amount of dust and dust-to-metal mass ratio (DTM) ([Zn/Fe]_fit=0.33+/-0.09, DTM=0.18+/-0.03). We find indications of nucleosynthesis due to massive stars and evidence of peculiar over-abundance of aluminium. From the analysis of fine-structure lines, we determine distances of several kpc for the low-ionization gas clouds closest to the GRB. Those farther distances are possibly due to the high number of ionizing photons. Using the HST/F140W image of the GRB field, we show the GRB host galaxy as well as multiple objects within 2&#34; from the GRB. We discuss the galaxy structure and kinematics that could explain our observations, also taking into account a tentative detection of Lyman-alpha emission. Deep spectroscopic observations with VLT/MUSE and JWST will offer the unique possibility of combining our results with the ionized-gas properties, with the goal of better understanding how galaxies in the reionization era form and evolve. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16524v2-abstract-full').style.display = 'none'; document.getElementById('2211.16524v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted Publication (In Press on A&amp;A) - 22 pages, 10 figures, 6 tables - Appendix: 6 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 671, A84 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.06855">arXiv:2207.06855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.06855">pdf</a>, <a href="https://arxiv.org/format/2207.06855">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> An asymmetric electron-scattering photosphere around optical tidal disruption events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Leloudas%2C+G">Giorgos Leloudas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulla%2C+M">Mattia Bulla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cikota%2C+A">Aleksandar Cikota</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dai%2C+L">Lixin Dai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thomsen%2C+L+L">Lars L. Thomsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maund%2C+J+R">Justyn R. Maund</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Charalampopoulos%2C+P">Panos Charalampopoulos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roth%2C+N">Nathaniel Roth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arcavi%2C+I">Iair Arcavi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auchettl%2C+K">Katie Auchettl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">Matt Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramirez-Ruiz%2C+E">Enrico Ramirez-Ruiz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.06855v1-abstract-short" style="display: inline;"> A star crossing the tidal radius of a supermassive black hole will be spectacularly ripped apart with an accompanying burst of radiation. A few tens of such tidal disruption events (TDEs) have now been identified in the optical wavelengths, but the exact origin of the strong optical emission remains inconclusive. Here we report polarimetric observations of three TDEs. The continuum polarization is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06855v1-abstract-full').style.display = 'inline'; document.getElementById('2207.06855v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.06855v1-abstract-full" style="display: none;"> A star crossing the tidal radius of a supermassive black hole will be spectacularly ripped apart with an accompanying burst of radiation. A few tens of such tidal disruption events (TDEs) have now been identified in the optical wavelengths, but the exact origin of the strong optical emission remains inconclusive. Here we report polarimetric observations of three TDEs. The continuum polarization is independent of wavelength, while emission lines are partially depolarized. These signatures are consistent with optical photons being scattered and polarized in an envelope of free electrons. An almost axisymmetric photosphere viewed from different angles is in broad agreement with the data, but there is also evidence for deviations from axial symmetry before the peak of the flare and significant time evolution at early times, compatible with the rapid formation of an accretion disk. By combining a super-Eddington accretion model with a radiative transfer code we generate predictions for the degree of polarization as a function of disk mass and viewing angle, and we show that the predicted levels are compatible with the observations, for extended reprocessing envelopes of $\sim$1000 gravitational radii. Spectropolarimetry therefore constitutes a new observational test for TDE models, and opens an important new line of exploration in the study of TDEs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06855v1-abstract-full').style.display = 'none'; document.getElementById('2207.06855v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Author&#39;s version of paper to appear in Nature Astronomy. In the journal version the detailed discussion on the ISP determination will be moved from the Methods section to a Supplementary Information section. 58 pages in double spacing format, including 5 Figures, 10 Extended Data Figures and 2 Tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.05008">arXiv:2205.05008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.05008">pdf</a>, <a href="https://arxiv.org/format/2205.05008">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-022-01819-4">10.1038/s41550-022-01819-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The case for a minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">B. P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravasio%2C+M+E">M. E. Ravasio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">M. Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metzger%2C+B+D">B. D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">W. Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rastinejad%2C+J+C">J. C. Rastinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">P. G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+K+L">K. L. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pe%27er%2C+A">A. Pe&#39;er</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.05008v2-abstract-short" style="display: inline;"> For decades, gamma-ray bursts (GRBs) have been broadly divided into `long&#39;- and `short&#39;-duration bursts, lasting more or less than 2s, respectively. However, this dichotomy does not map perfectly to the two progenitor channels that are known to produce GRBs -- the merger of compact objects (merger-GRBs) or the collapse of massive stars (collapsar-GRBs). In particular, the merger-GRBs population ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05008v2-abstract-full').style.display = 'inline'; document.getElementById('2205.05008v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.05008v2-abstract-full" style="display: none;"> For decades, gamma-ray bursts (GRBs) have been broadly divided into `long&#39;- and `short&#39;-duration bursts, lasting more or less than 2s, respectively. However, this dichotomy does not map perfectly to the two progenitor channels that are known to produce GRBs -- the merger of compact objects (merger-GRBs) or the collapse of massive stars (collapsar-GRBs). In particular, the merger-GRBs population may also include bursts with a short, hard $\lesssim$2s spike and subsequent longer, softer extended emission (EE). The recent discovery of a kilonova -- the radioactive glow of heavy elements made in neutron star mergers -- in the 50s-duration GRB 211211A further demonstrates that mergers can drive long, complex GRBs that mimic the collapsar population. Here we present a detailed temporal and spectral analysis of the high-energy emission of GRB 211211A. We demonstrate that the emission has a purely synchrotron origin, with both the peak and cooling frequencies moving through the $纬$-ray band down to the X-rays, and that the rapidly-evolving spectrum drives the EE signature at late times. The identification of such spectral evolution in a merger-GRB opens avenues for diagnostics of the progenitor type. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05008v2-abstract-full').style.display = 'none'; document.getElementById('2205.05008v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Author&#39;s final submitted version. 6 figures, 5 tables. The Supplementary Information .tex file is included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10864">arXiv:2204.10864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.10864">pdf</a>, <a href="https://arxiv.org/format/2204.10864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05390-w">10.1038/s41586-022-05390-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Kilonova Following a Long-Duration Gamma-Ray Burst at 350 Mpc </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rastinejad%2C+J+C">J. C. Rastinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">B. P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">W. Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">M. Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nugent%2C+A+E">A. E. Nugent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kilpatrick%2C+C+D">C. D. Kilpatrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moore%2C+C+J">C. J. Moore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metzger%2C+B+D">B. D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravasio%2C+M+E">M. E. Ravasio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schroeder%2C+G">G. Schroeder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jencson%2C+J">J. Jencson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sand%2C+D+J">D. J. Sand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+N">N. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+J+F+A">J. F. Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">E. Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanchard%2C+P+K">P. K. Blanchard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chornock%2C+R">R. Chornock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cobb%2C+B+E">B. E. Cobb</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10864v3-abstract-short" style="display: inline;"> Here, we report the discovery of a kilonova associated with the nearby (350 Mpc) minute-duration GRB 211211A. In tandem with deep optical limits that rule out the presence of an accompanying supernova to $M_I &gt; -13$ mag at 17.7 days post-burst, the identification of a kilonova confirms that this burst&#39;s progenitor was a compact object merger. While the spectrally softer tail in GRB 211211A&#39;s gamma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10864v3-abstract-full').style.display = 'inline'; document.getElementById('2204.10864v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10864v3-abstract-full" style="display: none;"> Here, we report the discovery of a kilonova associated with the nearby (350 Mpc) minute-duration GRB 211211A. In tandem with deep optical limits that rule out the presence of an accompanying supernova to $M_I &gt; -13$ mag at 17.7 days post-burst, the identification of a kilonova confirms that this burst&#39;s progenitor was a compact object merger. While the spectrally softer tail in GRB 211211A&#39;s gamma-ray light curve is reminiscent of previous extended emission short GRBs (EE-SGRBs), its prompt, bright spikes last $\gtrsim 12$ s, separating it from past EE-SGRBs. GRB 211211A&#39;s kilonova has a similar luminosity, duration and color to AT2017gfo, the kilonova found in association with the gravitational wave (GW)-detected binary neutron star (BNS) merger GW170817. We find that the merger ejected $\approx 0.04 M_{\odot}$ of r-process-rich material, and is consistent with the merger of two neutron stars (NSs) with masses close to the canonical $1.4 M_{\odot}$. This discovery implies that GRBs with long, complex light curves can be spawned from compact object merger events and that a population of kilonovae following GRBs with durations $\gg 2$ s should be accounted for in calculations of the NS merger r-process contribution and rate. At 350 Mpc, the current network of GW interferometers at design sensitivity would have detected the merger precipitating GRB 211211A, had it been operating at the time of the event. Further searches for GW signals coincident with long GRBs are therefore a promising route for future multi-messenger astronomy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10864v3-abstract-full').style.display = 'none'; document.getElementById('2204.10864v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted. 69 pages, 11 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.04544">arXiv:2202.04544</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.04544">pdf</a>, <a href="https://arxiv.org/format/2202.04544">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243225">10.1051/0004-6361/202243225 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A blast from the infant Universe: the very high-z GRB 210905A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frederiks%2C+D+D">D. D. Frederiks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pian%2C+E">E. Pian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G">G. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guelbenzu%2C+A+N">A. Nicuesa Guelbenzu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">S. Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strausbaugh%2C+R">R. Strausbaugh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amati%2C+L">L. Amati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cucchiara%2C+A">A. Cucchiara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klose%2C+S">S. Klose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Starling%2C+R">R. Starling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stratta%2C+G">G. Stratta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tsvetkova%2C+A+E">A. E. Tsvetkova</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.04544v2-abstract-short" style="display: inline;"> We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z = 6.312 and its luminous X-ray and optical afterglow. We obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of Eiso = 1.27E54 erg, GRB&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04544v2-abstract-full').style.display = 'inline'; document.getElementById('2202.04544v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.04544v2-abstract-full" style="display: none;"> We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z = 6.312 and its luminous X-ray and optical afterglow. We obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of Eiso = 1.27E54 erg, GRB 210905A lies in the top ~7% of gamma-ray bursts (GRBs) in terms of energy released. Its afterglow is among the most luminous ever observed. It starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ~ 46.2+-16.3 d (~6.3 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to the contribution from the likely host galaxy, the fourth GRB host at z &gt; 6 known to date. We derived a half-opening angle of 8.4+-1.0 degrees, which is the highest ever measured for a z&gt;6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of 1E52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04544v2-abstract-full').style.display = 'none'; document.getElementById('2202.04544v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 12 figures, 5 tables, accepted in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 665, A125 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04759">arXiv:2112.04759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04759">pdf</a>, <a href="https://arxiv.org/format/2112.04759">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202141788">10.1051/0004-6361/202141788 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The supernova of the MAGIC GRB190114C </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pian%2C+E">E. Pian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guetta%2C+D">D. Guetta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mazzali%2C+P+A">P. A. Mazzali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benetti%2C+S">S. Benetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masetti%2C+N">N. Masetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palazzi%2C+E">E. Palazzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Savaglio%2C+S">S. Savaglio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amati%2C+L">L. Amati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashall%2C+C">C. Ashall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+M+G">M. G. Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carini%2C+R">R. Carini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippenko%2C+A+V">A. V. Filippenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">A. S. Fruchter</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04759v1-abstract-short" style="display: inline;"> We observed GRB190114C (redshift z = 0.4245), the first GRB ever detected at TeV energies, at optical and near-infrared wavelengths with several ground-based telescopes and the Hubble Space Telescope, with the primary goal of studying its underlying supernova, SN2019jrj. The monitoring spanned the time interval between 1.3 and 370 days after the burst, in the observer frame. We find that the after&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04759v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04759v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04759v1-abstract-full" style="display: none;"> We observed GRB190114C (redshift z = 0.4245), the first GRB ever detected at TeV energies, at optical and near-infrared wavelengths with several ground-based telescopes and the Hubble Space Telescope, with the primary goal of studying its underlying supernova, SN2019jrj. The monitoring spanned the time interval between 1.3 and 370 days after the burst, in the observer frame. We find that the afterglow emission can be modelled with a forward shock propagating in a uniform medium modified by time-variable extinction along the line of sight. A jet break could be present after 7 rest-frame days, and accordingly the maximum luminosity of the underlying SN ranges between that of stripped-envelope corecollapse supernovae (SNe) of intermediate luminosity, and that of the luminous GRB-associated SN2013dx. The observed spectral absorption lines of SN2019jrj are not as broad as in classical GRB-SNe, and are rather more similar to those of less-luminous core-collapse SNe. Taking the broad-lined stripped-envelope core-collapse SN2004aw as an analogue, we tentatively derive the basic physical properties of SN2019jrj. We discuss the possibility that a fraction of the TeV emission of this source might have had a hadronic origin and estimate the expected high-energy neutrino detection level with IceCube. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04759v1-abstract-full').style.display = 'none'; document.getElementById('2112.04759v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 659, A39 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00016">arXiv:2109.00016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.00016">pdf</a>, <a href="https://arxiv.org/format/2109.00016">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202142122">10.1051/0004-6361/202142122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A detailed spectroscopic study of Tidal Disruption Events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Charalampopoulos%2C+P">P. Charalampopoulos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leloudas%2C+G">G. Leloudas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wevers%2C+T">T. Wevers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arcavi%2C+I">I. Arcavi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">M. Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pursiainen%2C+M">M. Pursiainen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lawrence%2C+A">A. Lawrence</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+J+P">J. P. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benetti%2C+S">S. Benetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cannizzaro%2C+G">G. Cannizzaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+T+-">T. -W. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galbany%2C+L">L. Galbany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gromadzki%2C+M">M. Gromadzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guti%C3%A9rrez%2C+C+P">C. P. Guti茅rrez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Inserra%2C+C">C. Inserra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">P. G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%BCller-Bravo%2C+T+E">T. E. M眉ller-Bravo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Onori%2C+F">F. Onori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Short%2C+P">P. Short</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">J. Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Young%2C+D+R">D. R. Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00016v2-abstract-short" style="display: inline;"> Spectroscopically, TDEs are characterized by broad ( 10$^{4}$ km/s) emission lines and show large diversity as well as different line profiles. After carefully and consistently performing a series of data reduction tasks including host galaxy light subtraction, we present here the first detailed, spectroscopic population study of 16 optical/UV TDEs. We report a time lag between the peaks of the op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00016v2-abstract-full').style.display = 'inline'; document.getElementById('2109.00016v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00016v2-abstract-full" style="display: none;"> Spectroscopically, TDEs are characterized by broad ( 10$^{4}$ km/s) emission lines and show large diversity as well as different line profiles. After carefully and consistently performing a series of data reduction tasks including host galaxy light subtraction, we present here the first detailed, spectroscopic population study of 16 optical/UV TDEs. We report a time lag between the peaks of the optical light-curves and the peak luminosity of H$伪$ spanning between 7 - 45 days. If interpreted as light-echoes, these lags correspond to distances of 2 - 12 x 10$^{16}$ cm, one to two orders of magnitudes larger than the estimated blackbody radii (R$_{\rm BB}$) of the same TDEs and we discuss the possible origin of this surprisingly large discrepancy. We also report time lags for the peak luminosity of He I $位$5876 line; smaller than the ones of H$伪$ for H TDEs and similar or larger for N III Bowen TDEs. We report that N III Bowen TDEs have lower H$伪$ velocity widths compared to the rest of the TDEs in our sample and we also find that a strong X-ray to optical ratio might imply weakening of the line widths. Furthermore, we study the evolution of line luminosities and ratios with respect to their radii (R$_{\rm BB}$) and temperatures (T$_{\rm BB}$). We find a linear relationship between H$伪$ luminosity and the R$_{\rm BB}$ and potentially an inverse power-law relation with T$_{\rm BB}$ leading to weaker H$伪$ emission for T$_{\rm BB}$ $\geq$ 25000 K. The He II/He I ratio becomes large at the same temperatures possibly pointing to an ionization effect. The He II/H$伪$ ratio becomes larger as the photospheric radius recedes, implying a stratified photosphere where Helium lies deeper than Hydrogen. We suggest that the large diversity of the spectroscopic features seen in TDEs along with their X-ray properties, can potentially be attributed to viewing angle effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00016v2-abstract-full').style.display = 'none'; document.getElementById('2109.00016v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in A&amp;A (part of 2022 A&amp;A Highlights). 31 pages (10 of the Appendix), 21 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 659, A34 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12306">arXiv:2107.12306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.12306">pdf</a>, <a href="https://arxiv.org/format/2107.12306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2189">10.1093/mnras/stab2189 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Swift/UVOT follow-up of Gravitational Wave Alerts in the O3 era </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marshall%2C+F+E">F. E. Marshall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breeveld%2C+A+A">A. A. Breeveld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuin%2C+N+P+M">N. P. M. Kuin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+P+J">P. J. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fenney%2C+A+J">A. J. Fenney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gronwall%2C+C">C. Gronwall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kennea%2C+J+A">J. A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klingler%2C+N+J">N. J. Klingler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+M+J">M. J. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siegel%2C+M+H">M. H. Siegel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tohuvavohu%2C+A">A. Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+E">E. Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barthelmy%2C+S+D">S. D. Barthelmy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beardmore%2C+A+P">A. P. Beardmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+M+G">M. G. Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caputo%2C+R">R. Caputo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. B. Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cusumano%2C+G">G. Cusumano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27A%C3%AC%2C+A">A. D&#39;A矛</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12306v1-abstract-short" style="display: inline;"> In this paper, we report on the observational performance of the Swift Ultra-violet/Optical Telescope (UVOT) in response to the Gravitational Wave alerts announced by the Advanced Laser Interferometer Gravitational Wave Observatory and the Advanced Virgo detector during the O3 period. We provide the observational strategy for follow-up of GW alerts and provide an overview of the processing and ana&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12306v1-abstract-full').style.display = 'inline'; document.getElementById('2107.12306v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12306v1-abstract-full" style="display: none;"> In this paper, we report on the observational performance of the Swift Ultra-violet/Optical Telescope (UVOT) in response to the Gravitational Wave alerts announced by the Advanced Laser Interferometer Gravitational Wave Observatory and the Advanced Virgo detector during the O3 period. We provide the observational strategy for follow-up of GW alerts and provide an overview of the processing and analysis of candidate optical/UV sources. For the O3 period, we also provide a statistical overview and report on serendipitous sources discovered by Swift/UVOT. Swift followed 18 gravitational-wave candidate alerts, with UVOT observing a total of 424 deg^2. We found 27 sources that changed in magnitude at the 3 sigma level compared with archival u or g-band catalogued values. Swift/UVOT also followed up a further 13 sources reported by other facilities during the O3 period. Using catalogue information, we divided these 40 sources into five initial classifications: 11 candidate active galactic nuclei (AGN)/quasars, 3 Cataclysmic Variables (CVs), 9 supernovae, 11 unidentified sources that had archival photometry and 6 uncatalogued sources for which no archival photometry was available. We have no strong evidence to identify any of these transients as counterparts to the GW events. The 17 unclassified sources are likely a mix of AGN and a class of fast-evolving transient, and one source may be a CV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12306v1-abstract-full').style.display = 'none'; document.getElementById('2107.12306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 6 figures and 5 tables. Submitted to MNRAS. Supplementary contains 23 pages with 8 figures and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09314">arXiv:2105.09314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.09314">pdf</a>, <a href="https://arxiv.org/format/2105.09314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202140355">10.1051/0004-6361/202140355 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gamma-ray bursts as probes of high-redshift Lyman-alpha emitters and radiative transfer models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Vielfaure%2C+J+-">J. -B. Vielfaure</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">S. D. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gronke%2C+M">M. Gronke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Japelj%2C+J">J. Japelj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmerio%2C+J+T">J. T. Palmerio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Milvang-Jensen%2C+B">B. Milvang-Jensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09314v1-abstract-short" style="display: inline;"> We present the updated census and statistics of Lyman-$伪$ emitting long gamma-ray bursts host galaxies (LAE-LGRBs). We investigate the properties of a sub-sample of LAE-LGRBs and test the shell model commonly used to fit Lyman-$伪$ (Ly$伪$) emission line spectra. Among the LAE-LGRBs detected to date, we select a golden sample of four LAE-LGRBs allowing us to retrieve information on the host galaxy p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09314v1-abstract-full').style.display = 'inline'; document.getElementById('2105.09314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09314v1-abstract-full" style="display: none;"> We present the updated census and statistics of Lyman-$伪$ emitting long gamma-ray bursts host galaxies (LAE-LGRBs). We investigate the properties of a sub-sample of LAE-LGRBs and test the shell model commonly used to fit Lyman-$伪$ (Ly$伪$) emission line spectra. Among the LAE-LGRBs detected to date, we select a golden sample of four LAE-LGRBs allowing us to retrieve information on the host galaxy properties and of its interstellar medium gas. We fit their Ly$伪$ spectra using the shell model, and constrain its parameters with the observed values. From the comparison of the statistics and properties of LAE-LGRBs to those of LAE samples in the literature, we find evidences of Ly$伪$ suppression in dusty systems, and a fraction of LAE-LGRBs among the overall LGRB hosts lower than that found for Lyman-break galaxy (LBG) samples at similar redshift range. However, we find that LAE-LGRBs are representative of Ly$伪$ emission from the bulk of UV-selected galaxies at z~2. We find that the golden sample of LAE-LGRBs are complex systems characterized by multiple emission blobs and by signs of possible galaxy interactions. The fitting procedure fails in recovering the HI column densities (NHI) measured from the afterglow spectra, and the other properties described by the shell-model parameters in the cases with very high NHI. The afterglows of most LGRBs and LAE-LGRBs show high NHI, implying that statistically the bulk of Ly$伪$ photons expected to be produced by massive stars in the star-forming region hosting the GRB will be surrounded by such opaque lines of sight. We interpret our results in the context of more sophisticated models and of different dominant Ly$伪$ emitting regions. We also compare LAE-LGRBs to LAE Lyman continuum (LyC) leakers in the literature in terms of properties identified as possible indirect indicators of LyC leakage. [Abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09314v1-abstract-full').style.display = 'none'; document.getElementById('2105.09314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 12 figures. Abridged abstract. Submitted to A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 653, A83 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05384">arXiv:2012.05384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.05384">pdf</a>, <a href="https://arxiv.org/format/2012.05384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abd2c3">10.3847/1538-4357/abd2c3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Klingler%2C+N+J">N. J. Klingler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lien%2C+A">A. Lien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kennea%2C+J+A">J. A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tohuvavohu%2C+A">A. Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+B">B. Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+K+L">K. L. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. B. Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barthelmy%2C+S+D">S. D. Barthelmy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beardmore%2C+A+P">A. P. Beardmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+M+G">M. G. Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breeveld%2C+A+A">A. A. Breeveld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+P+J">P. J. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burrows%2C+D+N">D. N. Burrows</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cusumano%2C+G">G. Cusumano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27A%C3%AC%2C+A">A. D&#39;A矛</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Pasquale%2C+M">M. de Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emery%2C+S+W+K">S. W. K. Emery</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garcia%2C+J">J. Garcia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giommi%2C+P">P. Giommi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gronwall%2C+C">C. Gronwall</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05384v2-abstract-short" style="display: inline;"> On 2020 February 24, during their third observing run (&#34;O3&#34;), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration (LVC) detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized compact binary coalescences detected in O3 (with 50%/90% error regions of 13/72 deg$^2$), and so the Ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05384v2-abstract-full').style.display = 'inline'; document.getElementById('2012.05384v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05384v2-abstract-full" style="display: none;"> On 2020 February 24, during their third observing run (&#34;O3&#34;), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration (LVC) detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized compact binary coalescences detected in O3 (with 50%/90% error regions of 13/72 deg$^2$), and so the Neil Gehrels Swift Observatory performed rapid near-UV/X-ray follow-up observations. Swift-XRT and UVOT covered approximately 79.2% and 62.4% (respectively) of the GW error region, making S200224ca the BBH event most thoroughly followed-up in near-UV (u-band) and X-ray to date. No likely EM counterparts to the GW event were found by the Swift BAT, XRT, or UVOT, nor by other observatories. Here we report on the results of our searches for an EM counterpart, both in the BAT data near the time of the merger, and in follow-up UVOT/XRT observations. We also discuss the upper limits we can place on EM radiation from S200224ca, and the implications these limits have on the physics of BBH mergers. Namely, we place a shallow upper limit on the dimensionless BH charge, $\hat{q} &lt; 1.4 \times10^{-4}$, and an upper limit on the isotropic-equivalent energy of a blast wave $E &lt; 4.1\times10^{51}$ erg (assuming typical GRB parameters). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05384v2-abstract-full').style.display = 'none'; document.getElementById('2012.05384v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13804">arXiv:2009.13804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13804">pdf</a>, <a href="https://arxiv.org/format/2009.13804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3032">10.1093/mnras/staa3032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Swift-XRT follow-up of gravitational wave triggers during the third aLIGO/Virgo observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+K+L">K. L. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tohuvavohu%2C+A">A. Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kennea%2C+J+A">J. A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klingler%2C+N+J">N. J. Klingler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. B. Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+E">E. Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barthelmy%2C+S+D">S. D. Barthelmy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beardmore%2C+A+P">A. P. Beardmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+M+G">M. G. Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breeveld%2C+A+A">A. A. Breeveld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+P+J">P. J. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burrows%2C+D+N">D. N. Burrows</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caputo%2C+R">R. Caputo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cusumano%2C+G">G. Cusumano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Ai%2C+A">A. D&#39;Ai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emery%2C+S+W+K">S. W. K. Emery</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giommi%2C+P">P. Giommi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gronwall%2C+C">C. Gronwall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13804v2-abstract-short" style="display: inline;"> The Neil Gehrels Swift Observatory followed up 18 gravitational wave (GW) triggers from the LIGO/Virgo collaboration during the O3 observing run in 2019/2020, performing approximately 6500 pointings in total. Of these events, four were finally classified (if real) as binary black hole (BH) triggers, six as binary neutron star (NS) events, two each of NSBH and Mass Gap triggers, one an unmodelled (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13804v2-abstract-full').style.display = 'inline'; document.getElementById('2009.13804v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13804v2-abstract-full" style="display: none;"> The Neil Gehrels Swift Observatory followed up 18 gravitational wave (GW) triggers from the LIGO/Virgo collaboration during the O3 observing run in 2019/2020, performing approximately 6500 pointings in total. Of these events, four were finally classified (if real) as binary black hole (BH) triggers, six as binary neutron star (NS) events, two each of NSBH and Mass Gap triggers, one an unmodelled (Burst) trigger, and the remaining three were subsequently retracted. Thus far, four of these O3 triggers have been formally confirmed as real gravitational wave events. While no likely electromagnetic counterparts to any of these GW events have been identified in the X-ray data (to an average upper limit of 3.60 x 10^{-12} erg cm^{-2} s^{-1} over 0.3-10 keV), or at other wavelengths, we present a summary of all the Swift-XRT observations performed during O3, together with typical upper limits for each trigger observed. The majority of X-ray sources detected during O3 were previously uncatalogued; while some of these will be new (transient) sources, others are simply too faint to have been detected by earlier survey missions such as ROSAT. The all-sky survey currently being performed by eROSITA will be a very useful comparison for future observing runs, reducing the number of apparent candidate X-ray counterparts by up to 95 per cent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13804v2-abstract-full').style.display = 'none'; document.getElementById('2009.13804v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages (including 4 pages of references, and a 4 page table in the appendix), 5 figures (4 in colour), accepted for publication in MNRAS. (Replaced due to annoying spelling typo in the abstract.)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.09377">arXiv:2006.09377</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.09377">pdf</a>, <a href="https://arxiv.org/format/2006.09377">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202038316">10.1051/0004-6361/202038316 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lyman continuum leakage in faint star-forming galaxies at redshift z=3-3.5 probed by gamma-ray bursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Vielfaure%2C+J+-">J. -B. Vielfaure</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">S. D. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Japelj%2C+J">J. Japelj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gronke%2C+M">M. Gronke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petitjean%2C+P">P. Petitjean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmerio%2C+J+T">J. T. Palmerio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiersema%2C+K">K. Wiersema</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arabsalmani%2C+M">M. Arabsalmani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hammer%2C+F">F. Hammer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laskar%2C+T">T. Laskar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.09377v2-abstract-short" style="display: inline;"> We present the observations of Lyman continuum (LyC) emission in the afterglow spectra of GRB 191004B at $z=3.5055$, together with those of the other two previously known LyC-emitting long gamma-ray bursts (LGRB) (GRB 050908 at $z=3.3467$, and GRB 060607A at $z=3.0749$), to determine their LyC escape fraction and compare their properties. From the afterglow spectrum of GRB 191004B we determine a n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09377v2-abstract-full').style.display = 'inline'; document.getElementById('2006.09377v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.09377v2-abstract-full" style="display: none;"> We present the observations of Lyman continuum (LyC) emission in the afterglow spectra of GRB 191004B at $z=3.5055$, together with those of the other two previously known LyC-emitting long gamma-ray bursts (LGRB) (GRB 050908 at $z=3.3467$, and GRB 060607A at $z=3.0749$), to determine their LyC escape fraction and compare their properties. From the afterglow spectrum of GRB 191004B we determine a neutral hydrogen column density at the LGRB redshift of $\log(N_{\rm HI}/cm^{-2})= 17.2 \pm 0.15$, and negligible extinction ($A_{\rm V}=0.03 \pm 0.02$ mag). The only metal absorption lines detected are CIV and SiIV. In contrast to GRB 050908 and GRB 060607A, the host galaxy of GRB 191004B displays significant Ly$伪$ emission. From its Ly$伪$ emission and the non-detection of Balmer emission lines we constrain its star-formation rate (SFR) to $1 \leq$ SFR $\leq 4.7$ M$_{\odot}\ yr^{-1}$. We fit the Ly$伪$ emission with a shell model and find parameters values consistent with the observed ones. The absolute LyC escape fractions we find for GRB 191004B, GRB 050908 and GRB 060607A are of $0.35^{+0.10}_{-0.11}$, $0.08^{+0.05}_{-0.04}$ and $0.20^{+0.05}_{-0.05}$, respectively. We compare the LyC escape fraction of LGRBs to the values of other LyC emitters found from the literature, showing that LGRB afterglows can be powerful tools to study LyC escape for faint high-redshift star-forming galaxies. Indeed we could push LyC leakage studies to much higher absolute magnitudes. The host galaxies of the three LGRB presented here have all $M_{\rm 1600} &gt; -19.5$ mag, with the GRB 060607A host at $M_{\rm 1600} &gt; -16$ mag. LGRB hosts may therefore be particularly suitable for exploring the ionizing escape fraction in galaxies that are too faint or distant for conventional techniques. Furthermore the time investment is very small compared to galaxy studies. [Abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09377v2-abstract-full').style.display = 'none'; document.getElementById('2006.09377v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures. Abridged abstract. Final version published in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 641, A30 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.07251">arXiv:2006.07251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.07251">pdf</a>, <a href="https://arxiv.org/format/2006.07251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1754-6">10.1038/s41586-019-1754-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of inverse Compton emission from a long $纬$-ray burst </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Acciari%2C+V+A">V. A. Acciari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ansoldi%2C+S">S. Ansoldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Engels%2C+A+A">A. Arbet Engels</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baack%2C+D">D. Baack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Babi%C4%87%2C+A">A. Babi膰</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerjee%2C+B">B. Banerjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Almeida%2C+U+B">U. Barres de Almeida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrio%2C+J+A">J. A. Barrio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonz%C3%A1lez%2C+J+B">J. Becerra Gonz谩lez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bednarek%2C+W">W. Bednarek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellizzi%2C+L">L. Bellizzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+E">E. Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berti%2C+A">A. Berti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Besenrieder%2C+J">J. Besenrieder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhattacharyya%2C+W">W. Bhattacharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigongiari%2C+C">C. Bigongiari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biland%2C+A">A. Biland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanch%2C+O">O. Blanch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonnoli%2C+G">G. Bonnoli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bo%C5%A1njak%2C+%C5%BD">沤. Bo拧njak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Busetto%2C+G">G. Busetto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carosi%2C+R">R. Carosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ceribella%2C+G">G. Ceribella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chai%2C+Y">Y. Chai</a> , et al. (279 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.07251v1-abstract-short" style="display: inline;"> Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterised by an initial phase of bright and highly variable radiation in the keV-MeV band that is likely produced within the jet and lasts from milliseconds to minutes, known as the prompt emission. Subsequently, the interaction of the jet with the ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07251v1-abstract-full').style.display = 'inline'; document.getElementById('2006.07251v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.07251v1-abstract-full" style="display: none;"> Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterised by an initial phase of bright and highly variable radiation in the keV-MeV band that is likely produced within the jet and lasts from milliseconds to minutes, known as the prompt emission. Subsequently, the interaction of the jet with the external medium generates external shock waves, responsible for the afterglow emission, which lasts from days to months, and occurs over a broad energy range, from the radio to the GeV bands. The afterglow emission is generally well explained as synchrotron radiation by electrons accelerated at the external shock. Recently, an intense, long-lasting emission between 0.2 and 1 TeV was observed from the GRB 190114C. Here we present the results of our multi-frequency observational campaign of GRB~190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from $5\times10^{-6}$ up to $10^{12}$\,eV. We find that the broadband spectral energy distribution is double-peaked, with the TeV emission constituting a distinct spectral component that has power comparable to the synchrotron component. This component is associated with the afterglow, and is satisfactorily explained by inverse Compton upscattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed TeV component are not atypical, supporting the possibility that inverse Compton emission is commonly produced in GRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07251v1-abstract-full').style.display = 'none'; document.getElementById('2006.07251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 575 (2019) 459-463 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09722">arXiv:2001.09722</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.09722">pdf</a>, <a href="https://arxiv.org/format/2001.09722">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ab76d5">10.3847/2041-8213/ab76d5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The lowest of the low: discovery of SN 2019gsc and the nature of faint Iax supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Srivastav%2C+S">Shubham Srivastav</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smartt%2C+S+J">Stephen J. Smartt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leloudas%2C+G">Giorgos Leloudas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huber%2C+M+E">Mark E. Huber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chambers%2C+K">Ken Chambers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hjorth%2C+J">Jens Hjorth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gillanders%2C+J+H">James H. Gillanders</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schultz%2C+A">A. Schultz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sim%2C+S+A">Stuart A. Sim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auchettl%2C+K">Katie Auchettl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">Johan P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gall%2C+C">Christa Gall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McBrien%2C+O+R">Owen R. McBrien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rest%2C+A">Armin Rest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+K+W">Ken W. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wojtak%2C+R">Radoslaw Wojtak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Young%2C+D+R">David R. Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09722v2-abstract-short" style="display: inline;"> We present the discovery and optical follow-up of the faintest supernova-like transient known. The event (SN 2019gsc) was discovered in a star-forming host at 53\,Mpc by ATLAS. A detailed multi-colour light curve was gathered with Pan-STARRS1 and follow-up spectroscopy was obtained with the NOT and Gemini-North. The spectra near maximum light show narrow features at low velocities of 3000 to 4000&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09722v2-abstract-full').style.display = 'inline'; document.getElementById('2001.09722v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09722v2-abstract-full" style="display: none;"> We present the discovery and optical follow-up of the faintest supernova-like transient known. The event (SN 2019gsc) was discovered in a star-forming host at 53\,Mpc by ATLAS. A detailed multi-colour light curve was gathered with Pan-STARRS1 and follow-up spectroscopy was obtained with the NOT and Gemini-North. The spectra near maximum light show narrow features at low velocities of 3000 to 4000 km s$^{-1}$, similar to the extremely low luminosity SNe 2010ae and 2008ha, and the light curve displays a similar fast decline (\dmr $0.91 \pm 0.10$ mag). SNe 2010ae and 2008ha have been classified as type Iax supernovae, and together the three either make up a distinct physical class of their own or are at the extreme low luminosity end of this diverse supernova population. The bolometric light curve is consistent with a low kinetic energy of explosion ($E_{\rm k} \sim 10^{49}$ erg s$^{-1}$), a modest ejected mass ($M_{\rm ej} \sim 0.2$ \msol) and radioactive powering by $^{56}$Ni ($M_{\rm Ni} \sim 2 \times 10^{-3}$ \msol). The spectra are quite well reproduced with radiative transfer models (TARDIS) and a composition dominated by carbon, oxygen, magnesium, silicon and sulphur. Remarkably, all three of these extreme Iax events are in similar low-metallicity star-forming environments. The combination of the observational constraints for all three may be best explained by deflagrations of near $M_{\rm Ch}$ hybrid carbon-oxygen-neon white dwarfs which have short evolutionary pathways to formation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09722v2-abstract-full').style.display = 'none'; document.getElementById('2001.09722v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures, accepted to ApJL, minor changes to submitted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.14160">arXiv:1910.14160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.14160">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2900">10.1093/mnras/stz2900 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GRB171010A / SN2017htp: a GRB-SN at z=0.33 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Japelj%2C+J">J. Japelj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">S. D. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schady%2C+P">P. Schady</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carracedo%2C+A+S">A. Sagues Carracedo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+J+P">J. P. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbarino%2C+C">C. Barbarino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolmer%2C+J">J. Bolmer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breeveld%2C+A">A. Breeveld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calissendorff%2C+P">P. Calissendorff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cano%2C+Z">Z. Cano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carini%2C+R">R. Carini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=della+Valle%2C+M">M. della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gromadzki%2C+M">M. Gromadzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hammer%2C+F">F. Hammer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.14160v1-abstract-short" style="display: inline;"> The number of supernovae known to be connected with long-duration gamma-ray bursts is increasing and the link between these events is no longer exclusively found at low redshift ($z \lesssim 0.3$) but is well established also at larger distances. We present a new case of such a liaison at $z = 0.33$ between GRB\,171010A and SN\,2017htp. It is the second closest GRB with an associated supernova of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14160v1-abstract-full').style.display = 'inline'; document.getElementById('1910.14160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.14160v1-abstract-full" style="display: none;"> The number of supernovae known to be connected with long-duration gamma-ray bursts is increasing and the link between these events is no longer exclusively found at low redshift ($z \lesssim 0.3$) but is well established also at larger distances. We present a new case of such a liaison at $z = 0.33$ between GRB\,171010A and SN\,2017htp. It is the second closest GRB with an associated supernova of only three events detected by Fermi-LAT. The supernova is one of the few higher redshift cases where spectroscopic observations were possible and shows spectral similarities with the well-studied SN\,1998bw, having produced a similar Ni mass ($M_{\rm Ni}=0.33\pm0.02 ~\rm{M_{\odot}}$) with slightly lower ejected mass ($M_{\rm ej}=4.1\pm0.7~\rm{M_{\odot}}$) and kinetic energy ($E_{\rm K} = 8.1\pm2.5 \times 10^{51} ~\rm{erg}$). The host-galaxy is bigger in size than typical GRB host galaxies, but the analysis of the region hosting the GRB revealed spectral properties typically observed in GRB hosts and showed that the progenitor of this event was located in a very bright HII region of its face-on host galaxy, at a projected distance of $\sim$ 10 kpc from its galactic centre. The star-formation rate (SFR$_{GRB} \sim$ 0.2 M$_{\odot}$~yr$^{-1}$) and metallicity (12 + log(O/H) $\sim 8.15 \pm 0.10$) of the GRB star-forming region are consistent with those of the host galaxies of previously studied GRB-SN systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14160v1-abstract-full').style.display = 'none'; document.getElementById('1910.14160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication by MNRAS, 10 pages, 8 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.10510">arXiv:1910.10510</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.10510">pdf</a>, <a href="https://arxiv.org/format/1910.10510">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1676-3">10.1038/s41586-019-1676-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of strontium in the merger of two neutron stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D">Darach Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hansen%2C+C+J">Camilla J. Hansen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Selsing%2C+J">Jonatan Selsing</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koch%2C+A">Andreas Koch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andersen%2C+A+C">Anja C. Andersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">Johan P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arcones%2C+A">Almudena Arcones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bauswein%2C+A">Andreas Bauswein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">Stefano Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grado%2C+A">Aniello Grado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">Kasper E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hunt%2C+L">Leslie Hunt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">Chryssa Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leloudas%2C+G">Giorgos Leloudas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">Andrew Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mazzali%2C+P">Paolo Mazzali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pian%2C+E">Elena Pian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.10510v1-abstract-short" style="display: inline;"> Half of all the elements in the universe heavier than iron were created by rapid neutron capture. The theory for this astrophysical `$r$-process&#39; was worked out six decades ago and requires an enormous neutron flux to make the bulk of these elements. Where this happens is still debated. A key piece of missing evidence is the identification of freshly-synthesised $r$-process elements in an astrophy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10510v1-abstract-full').style.display = 'inline'; document.getElementById('1910.10510v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.10510v1-abstract-full" style="display: none;"> Half of all the elements in the universe heavier than iron were created by rapid neutron capture. The theory for this astrophysical `$r$-process&#39; was worked out six decades ago and requires an enormous neutron flux to make the bulk of these elements. Where this happens is still debated. A key piece of missing evidence is the identification of freshly-synthesised $r$-process elements in an astrophysical site. Current models and circumstantial evidence point to neutron star mergers as a probable $r$-process site, with the optical/infrared `kilonova&#39; emerging in the days after the merger a likely place to detect the spectral signatures of newly-created neutron-capture elements. The kilonova, AT2017gfo, emerging from the gravitational-wave--discovered neutron star merger, GW170817, was the first kilonova where detailed spectra were recorded. When these spectra were first reported it was argued that they were broadly consonant with an outflow of radioactive heavy elements, however, there was no robust identification of any element. Here we report the identification of the neutron-capture element strontium in a re-analysis of these spectra. The detection of a neutron-capture element associated with the collision of two extreme-density stars establishes the origin of $r$-process elements in neutron star mergers, and demonstrates that neutron stars contain neutron-rich matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10510v1-abstract-full').style.display = 'none'; document.getElementById('1910.10510v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.11586">arXiv:1909.11586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.11586">pdf</a>, <a href="https://arxiv.org/format/1909.11586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ab4ea2">10.3847/1538-4365/ab4ea2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Swift-XRT Follow-up of Gravitational Wave Triggers in the Second Advanced LIGO/Virgo Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Klingler%2C+N+J">N. J. Klingler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kennea%2C+J+A">J. A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tohuvavohu%2C+A">A. Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. B. Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barthelmy%2C+S+D">S. D. Barthelmy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beardmore%2C+A+P">A. P. Beardmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breeveld%2C+A+A">A. A. Breeveld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+P+J">P. J. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burrows%2C+D+N">D. N. Burrows</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cusumano%2C+G">G. Cusumano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27A%C3%AC%2C+A">A. D&#39;A矛</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Pasquale%2C+M">M. de Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emery%2C+S+W+K">S. W. K. Emery</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garcia%2C+J">J. Garcia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giommi%2C+P">P. Giommi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gronwall%2C+C">C. Gronwall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krimm%2C+H+A">H. A. Krimm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuin%2C+N+P+M">N. P. M. Kuin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lien%2C+A">A. Lien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.11586v2-abstract-short" style="display: inline;"> The Neil Gehrels Swift Observatory carried out prompt searches for gravitational wave (GW) events detected by the LIGO/Virgo Collaboration (LVC) during the second observing run (&#34;O2&#34;). Swift performed extensive tiling of eight LVC triggers, two of which had very low false-alarm rates (GW 170814 and the epochal GW 170817), indicating a high confidence of being astrophysical in origin; the latter wa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.11586v2-abstract-full').style.display = 'inline'; document.getElementById('1909.11586v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.11586v2-abstract-full" style="display: none;"> The Neil Gehrels Swift Observatory carried out prompt searches for gravitational wave (GW) events detected by the LIGO/Virgo Collaboration (LVC) during the second observing run (&#34;O2&#34;). Swift performed extensive tiling of eight LVC triggers, two of which had very low false-alarm rates (GW 170814 and the epochal GW 170817), indicating a high confidence of being astrophysical in origin; the latter was the first GW event to have an electromagnetic counterpart detected. In this paper we describe the follow-up performed during O2 and the results of our searches. No GW electromagnetic counterparts were detected; this result is expected, as GW 170817 remained the only astrophysical event containing at least one neutron star after LVC&#39;s later retraction of some events. A number of X-ray sources were detected, with the majority of identified sources being active galactic nuclei. We discuss the detection rate of transient X-ray sources and their implications in the O2 tiling searches. Finally, we describe the lessons learned during O2, and how these are being used to improve the \swift\ follow-up of GW events. In particular, we simulate a population of GRB afterglows to evaluate our source ranking system&#39;s ability to differentiate them from unrelated and uncatalogued X-ray sources. We find that $\approx$60-70% of afterglows whose jets are oriented towards Earth will be given high rank (i.e., &#34;interesting&#34; designation) by the completion of our second follow-up phase (assuming their location in the sky was observed), but that this fraction can be increased to nearly 100% by performing a third follow-up observation of sources exhibiting fading behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.11586v2-abstract-full').style.display = 'none'; document.getElementById('1909.11586v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures, 2 tables, accepted for publication in ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02159">arXiv:1905.02159</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.02159">pdf</a>, <a href="https://arxiv.org/format/1905.02159">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab38bb">10.3847/1538-4357/ab38bb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Short GRB 160821B: a reverse shock, a refreshed shock, and a well-sampled kilonova </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kawaguchi%2C+K">K. Kawaguchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corsi%2C+A">A. Corsi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B">B. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+K+L">K. L. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiersema%2C+K">K. Wiersema</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosswog%2C+S">S. Rosswog</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shibata%2C+M">M. Shibata</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanaka%2C+M">M. Tanaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">A. J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cano%2C+Z">Z. Cano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">A. S. Fruchter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greiner%2C+J">J. Greiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K">K. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Higgins%2C+A">A. Higgins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hjorth%2C+J">J. Hjorth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02159v3-abstract-short" style="display: inline;"> We report our identification of the optical afterglow and host galaxy of the short-duration gamma-ray burst GRB 160821B. The spectroscopic redshift of the host is $z=0.162$, making it one of the lowest redshift sGRBs identified by Swift. Our intensive follow-up campaign using a range of ground-based facilities as well as HST, XMM and Swift, shows evidence for a late-time excess of optical and near&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02159v3-abstract-full').style.display = 'inline'; document.getElementById('1905.02159v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02159v3-abstract-full" style="display: none;"> We report our identification of the optical afterglow and host galaxy of the short-duration gamma-ray burst GRB 160821B. The spectroscopic redshift of the host is $z=0.162$, making it one of the lowest redshift sGRBs identified by Swift. Our intensive follow-up campaign using a range of ground-based facilities as well as HST, XMM and Swift, shows evidence for a late-time excess of optical and near-infrared emission in addition to a complex afterglow. The afterglow light-curve at X-ray frequencies reveals a narrow jet, $胃_j\sim1.9^{+0.10}_{-0.03}$ deg, that is refreshed at $&gt;1$ day post-burst by a slower outflow with significantly more energy than the initial outflow that produced the main GRB. Observations of the 5 GHz radio afterglow shows a reverse shock into a mildly magnetised shell. The optical and near-infrared excess is fainter than AT2017gfo associated with GW170817, and is well explained by a kilonova with dynamic ejecta mass $M_{\rm dyn}=(1.0\pm0.6)\times10^{-3}$ M$_{\odot}$ and a secular (postmerger) ejecta mass with $M_{\rm pm}=(1.0\pm0.6)\times10^{-2}$ M$_\odot$, consistent with a binary neutron star merger resulting in a short-lived massive neutron star. This optical and near-infrared dataset provides the best-sampled kilonova light-curve without a gravitational wave trigger to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02159v3-abstract-full').style.display = 'none'; document.getElementById('1905.02159v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures, Version accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.03120">arXiv:1903.03120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.03120">pdf</a>, <a href="https://arxiv.org/format/1903.03120">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab5792">10.3847/1538-4357/ab5792 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The spectral evolution of AT 2018dyb and the presence of metal lines in tidal disruption events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Leloudas%2C+G">Giorgos Leloudas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dai%2C+L">Lixin Dai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arcavi%2C+I">Iair Arcavi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vreeswijk%2C+P+M">Paul M. Vreeswijk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mockler%2C+B">Brenna Mockler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roy%2C+R">Rupak Roy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wevers%2C+T">Thomas Wevers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraser%2C+M">Morgan Fraser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramirez-Ruiz%2C+E">Enrico Ramirez-Ruiz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auchettl%2C+K">Katie Auchettl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burke%2C+J">Jamison Burke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cannizzaro%2C+G">Giacomo Cannizzaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Charalampopoulos%2C+P">Panos Charalampopoulos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+T">Ting-Wan Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cikota%2C+A">Aleksandar Cikota</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">Massimo Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galbany%2C+L">Lluis Galbany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gromadzki%2C+M">Mariusz Gromadzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">Kasper E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hiramatsu%2C+D">Daichi Hiramatsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">Peter G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kostrzewa-Rutkowska%2C+Z">Zuzanna Kostrzewa-Rutkowska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maguire%2C+K">Kate Maguire</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.03120v2-abstract-short" style="display: inline;"> We present light curves and spectra of the tidal disruption event (TDE) ASASSN-18pg / AT 2018dyb spanning a period of one year. The event shows a plethora of strong emission lines, including the Balmer series, He II, He I and metal lines of O III $位$3760 and N III $位位$ 4100, 4640 (blended with He II). The latter lines are consistent with originating from the Bowen fluorescence mechanism. By analyz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03120v2-abstract-full').style.display = 'inline'; document.getElementById('1903.03120v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.03120v2-abstract-full" style="display: none;"> We present light curves and spectra of the tidal disruption event (TDE) ASASSN-18pg / AT 2018dyb spanning a period of one year. The event shows a plethora of strong emission lines, including the Balmer series, He II, He I and metal lines of O III $位$3760 and N III $位位$ 4100, 4640 (blended with He II). The latter lines are consistent with originating from the Bowen fluorescence mechanism. By analyzing literature spectra of past events, we conclude that these lines are common in TDEs. The spectral diversity of optical TDEs is thus larger than previously thought and includes N-rich events besides H- and He-rich events. We study how the spectral lines evolve with time, by means of their width, relative strength, and velocity offsets. The velocity width of the lines starts at $\sim$ 13000 km s$^{-1}$ and decreases with time. The ratio of He II to N III increases with time. The same is true for ASASSN-14li, which has a very similar spectrum to AT 2018dyb but its lines are narrower by a factor of $&gt;$2. We estimate a black hole mass of $M_{\rm BH}$ = $3.3^{+5.0}_{-2.0}\times 10^6$ $M_{\odot}$ by using the $M$-$蟽$ relation. This is consistent with the black hole mass derived using the MOSFiT transient fitting code. The detection of strong Bowen lines in the optical spectrum is an indirect proof for extreme ultraviolet and (reprocessed) X-ray radiation and favors an accretion origin for the TDE optical luminosity. A model where photons escape after multiple scatterings through a super-Eddington thick disk and its optically thick wind, viewed at an angle close to the disk plane, is consistent with the observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03120v2-abstract-full').style.display = 'none'; document.getElementById('1903.03120v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted version. Updated with new photometry and spectra, including an X-shooter spectrum used to determine the BH mass. Two more figures added and line measurements tabulated. No significant scientific updates and the conclusions remain unaffected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.05500">arXiv:1901.05500</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.05500">pdf</a>, <a href="https://arxiv.org/format/1901.05500">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-018-0826-3">10.1038/s41586-018-0826-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signatures of a jet cocoon in early spectra of a supernova associated with a $纬$-ray burst </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maeda%2C+K">K. Maeda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Th%C3%B6ne%2C+C+C">C. C. Th枚ne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carracedo%2C+A+S">A. Sagues Carracedo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Micha%C5%82owski%2C+M+J">M. J. Micha艂owski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schady%2C+P">P. Schady</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schmidl%2C+S">S. Schmidl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Selsing%2C+J">J. Selsing</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Starling%2C+R+L+C">R. L. C. Starling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suzuki%2C+A">A. Suzuki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bensch%2C+K">K. Bensch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolmer%2C+J">J. Bolmer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cano%2C+Z">Z. Cano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hjorth%2C+J">J. Hjorth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Japelj%2C+J">J. Japelj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kami%C5%84ski%2C+K">K. Kami艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaper%2C+L">L. Kaper</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.05500v1-abstract-short" style="display: inline;"> Long gamma-ray bursts mark the death of massive stars, as revealed by their association with energetic broad-lined stripped-envelope supernovae. The scarcity of nearby events and the brightness of the GRB afterglow, dominating the first days of emission, have so far prevented the study of the very early stages of the GRB-SN evolution. Here we present detailed, multi-epoch spectroscopic observation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.05500v1-abstract-full').style.display = 'inline'; document.getElementById('1901.05500v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.05500v1-abstract-full" style="display: none;"> Long gamma-ray bursts mark the death of massive stars, as revealed by their association with energetic broad-lined stripped-envelope supernovae. The scarcity of nearby events and the brightness of the GRB afterglow, dominating the first days of emission, have so far prevented the study of the very early stages of the GRB-SN evolution. Here we present detailed, multi-epoch spectroscopic observations of SN 2017iuk, associated with GRB 171205A which display features at extremely high expansion velocities of $\sim$ 100,000 km s$^{-1}$ within the first day after the burst. These high-velocity components are characterized by chemical abundances different from those observed in the ejecta of SN 2017iuk at later times. Using spectral synthesis models developed for the SN 2017iuk, we explain these early features as originating not from the supernova ejecta, but from a hot cocoon generated by the energy injection of a mildly-relativistic GRB jet expanding into the medium surrounding the progenitor star. This cocoon becomes rapidly transparent and is outshone by the supernova emission which starts dominating three days after the burst. These results proves that the jet plays an important role not only in powering the GRB event but also its associated supernova. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.05500v1-abstract-full').style.display = 'none'; document.getElementById('1901.05500v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 11 figures, 4 tables. Original author manuscript version of a Letter published in Nature journal. Full article available at https://goo.gl/7y9ZeM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11064">arXiv:1810.11064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.11064">pdf</a>, <a href="https://arxiv.org/format/1810.11064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201834246">10.1051/0004-6361/201834246 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cold gas in the early Universe. Survey for neutral atomic-carbon in GRB host galaxies at 1 &lt; z &lt; 6 from optical afterglow spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ledoux%2C+C">C. Ledoux</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Noterdaeme%2C+P">P. Noterdaeme</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krogager%2C+J+-">J. -K. Krogager</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolmer%2C+J">J. Bolmer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B8ller%2C+P">P. M酶ller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">S. D. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D">D. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zafar%2C+T">T. Zafar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Cia%2C+A">A. De Cia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Japelj%2C+J">J. Japelj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaper%2C+L">L. Kaper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11064v1-abstract-short" style="display: inline;"> We present a survey for neutral atomic-carbon (CI) along gamma-ray burst (GRB) sightlines, which probes the shielded neutral gas-phase in the interstellar medium (ISM) of GRB host galaxies at high redshift. We compile a sample of 29 medium- to high-resolution GRB optical afterglow spectra spanning a redshift range through most of cosmic time from $1 &lt; z &lt; 6$. We find that seven ($\approx 25\%$) of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11064v1-abstract-full').style.display = 'inline'; document.getElementById('1810.11064v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11064v1-abstract-full" style="display: none;"> We present a survey for neutral atomic-carbon (CI) along gamma-ray burst (GRB) sightlines, which probes the shielded neutral gas-phase in the interstellar medium (ISM) of GRB host galaxies at high redshift. We compile a sample of 29 medium- to high-resolution GRB optical afterglow spectra spanning a redshift range through most of cosmic time from $1 &lt; z &lt; 6$. We find that seven ($\approx 25\%$) of the GRBs entering our statistical sample have CI detected in absorption. It is evident that there is a strong excess of cold gas in GRB hosts compared to absorbers in quasar sightlines. We investigate the dust properties of the GRB CI absorbers and find that the amount of neutral carbon is positively correlated with the visual extinction, $A_V$, and the strength of the 2175 脜 dust extinction feature, $A_{\mathrm{bump}}$. GRBs with CI detected in absorption are all observed above a certain threshold of $\log N$(HI)$/\mathrm{cm}^{-2}$ + [X/H] &gt; 20.7 and a dust-phase iron column density of $\log N$(Fe)$_{\mathrm{dust}}/\mathrm{cm}^{-2}$ &gt; 16.2. In contrast to the SED-derived dust properties, the strength of the CI absorption does not correlate with the depletion-derived dust properties. This indicates that the GRB CI absorbers trace dusty systems where the dust composition is dominated by carbon-rich dust grains. The observed higher metal and dust column densities of the GRB CI absorbers compared to H$_2$- and CI-bearing quasar absorbers is mainly a consequence of how the two absorber populations are selected, but is also required in the presence of intense UV radiation fields in actively star-forming galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11064v1-abstract-full').style.display = 'none'; document.getElementById('1810.11064v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in A&amp;A. 14 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 621, A20 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.07393">arXiv:1806.07393</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.07393">pdf</a>, <a href="https://arxiv.org/format/1806.07393">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201833094">10.1051/0004-6361/201833094 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> X-shooter and ALMA spectroscopy of GRB 161023A - A study of metals and molecules in the line of sight towards a luminous GRB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Th%C3%B6ne%2C+C+C">C. C. Th枚ne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolmer%2C+J">J. Bolmer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">S. Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mart%C3%ADn%2C+S">S. Mart铆n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Selsing%2C+J">J. Selsing</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin-Carrillo%2C+A">A. Martin-Carrillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">D. A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">S. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=S%C3%A1nchez-Ram%C3%ADrez%2C+R">R. S谩nchez-Ram铆rez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guidorzi%2C+C">C. Guidorzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klotz%2C+A">A. Klotz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiersema%2C+K">K. Wiersema</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bauer%2C+F+E">F. E. Bauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bensch%2C+K">K. Bensch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cano%2C+Z">Z. Cano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coward%2C+D">D. Coward</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Cia%2C+A">A. De Cia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Gregorio-Monsalvo%2C+I">I. de Gregorio-Monsalvo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.07393v2-abstract-short" style="display: inline;"> Long gamma-ray bursts are produced during the dramatic deaths of massive stars with very short lifetimes, meaning that they explode close to the birth place of their progenitors. During a short period they become the most luminous objects observable in the Universe, being perfect beacons to study high-redshift star-forming regions. To use the afterglow of GRB 161023A at a redshift $z=2.710$ as a b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.07393v2-abstract-full').style.display = 'inline'; document.getElementById('1806.07393v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.07393v2-abstract-full" style="display: none;"> Long gamma-ray bursts are produced during the dramatic deaths of massive stars with very short lifetimes, meaning that they explode close to the birth place of their progenitors. During a short period they become the most luminous objects observable in the Universe, being perfect beacons to study high-redshift star-forming regions. To use the afterglow of GRB 161023A at a redshift $z=2.710$ as a background source to study the environment of the explosion and the intervening systems along its line-of-sight. r the first time, we complement UV/Optical/NIR spectroscopy with millimetre spectroscopy using ALMA, which allows us to probe the molecular content of the host galaxy. The X-shooter spectrum shows a plethora of absorption features including fine-structure and metastable transitions of Fe, Ni, Si, C and O. We present photometry ranging from 43 s to over 500 days after the burst. We infer a host-galaxy metallicity of [Zn/H] $=-1.11\pm0.07$, which corrected for dust depletion results in [X/H] $=-0.94\pm0.08$. We do not detect molecular features in the ALMA data, but we derive limits on the molecular content of $log(N_{CO}/cm^{-2})&lt;15.7$ and $log(N_{HCO+}/cm^{-2})&lt;13.2$, which are consistent with those that we obtain from the optical spectra, $log(N_{H_2}/cm^{-2})&lt;15.2$ and $log(N_{CO}/cm^{-2})&lt;14.5$. Within the host galaxy we detect three velocity systems through UV/Optical/NIR absorption spectroscopy, all with levels that were excited by the GRB afterglow. We determine the distance from these systems to the GRB to be in the range between 0.7 and 1.0 kpc. The sight-line to GRB 161023A shows 9 independent intervening systems, most of them with multiple components. (Abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.07393v2-abstract-full').style.display = 'none'; document.getElementById('1806.07393v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 19 pages main text, 9 pages appendix; accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 620, A119 (2018) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10