CINXE.COM

Search results for: atmospheric carbonyls

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: atmospheric carbonyls</title> <meta name="description" content="Search results for: atmospheric carbonyls"> <meta name="keywords" content="atmospheric carbonyls"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="atmospheric carbonyls" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="atmospheric carbonyls"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 664</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: atmospheric carbonyls</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">664</span> Atmospheric Oxidation of Carbonyls: Insight to Mechanism, Kinetic and Thermodynamic Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olumayede%20Emmanuel%20Gbenga">Olumayede Emmanuel Gbenga</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeniyi%20Azeez%20Adebayo"> Adeniyi Azeez Adebayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbonyls are the first-generation products from tropospheric degradation reactions of volatile organic compounds (VOCs). This computational study examined the mechanism of removal of carbonyls from the atmosphere via hydroxyl radical. The kinetics of the reactions were computed from the activation energy (using enthalpy (ΔH**) and Gibbs free energy (ΔG**). The minimum energy path (MEP) analysis reveals that in all the molecules, the products have more stable energy than the reactants, which implies that the forward reaction is more thermodynamically favorable. The hydrogen abstraction of the aromatic aldehyde, especially without methyl substituents, is more kinetically favorable compared with the other aldehydes in the order of aromatic (without methyl or meta methyl) > alkene (short chain) > diene > long-chain aldehydes. The activation energy is much lower for the forward reaction than the backward, indicating that the forward reactions are more kinetically stable than their backward reaction. In terms of thermodynamic stability, the aromatic compounds are found to be less favorable in comparison to the aliphatic. The study concludes that the chemistry of the carbonyl bond of the aldehyde changed significantly from the reactants to the products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbonyls" title="atmospheric carbonyls">atmospheric carbonyls</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic" title=" thermodynamic"> thermodynamic</a> </p> <a href="https://publications.waset.org/abstracts/184338/atmospheric-oxidation-of-carbonyls-insight-to-mechanism-kinetic-and-thermodynamic-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">663</span> Neuronal Networks for the Study of the Effects of Cosmic Rays on Climate Variations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jossitt%20Williams%20Vargas%20Cruz">Jossitt Williams Vargas Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Aura%20Jazm%C3%ADn%20P%C3%A9rez%20R%C3%ADos"> Aura Jazmín Pérez Ríos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The variations of solar dynamics have become a relevant topic of study due to the effects of climate changes generated on the earth. One of the most disconcerting aspects is the variability that the sun has on the climate is the role played by sunspots (extra-atmospheric variable) in the modulation of the Cosmic Rays CR (extra-atmospheric variable). CRs influence the earth's climate by affecting cloud formation (atmospheric variable), and solar cycle influence is associated with the presence of solar storms, and the magnetic activity is greater, resulting in less CR entering the earth's atmosphere. The different methods of climate prediction in Colombia do not take into account the extra-atmospheric variables. Therefore, correlations between atmospheric and extra-atmospheric variables were studied in order to implement a Python code based on neural networks to make the prediction of the extra-atmospheric variable with the highest correlation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlations" title="correlations">correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20rays" title=" cosmic rays"> cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=sun" title=" sun"> sun</a>, <a href="https://publications.waset.org/abstracts/search?q=sunspots%20and%20variations." title=" sunspots and variations."> sunspots and variations.</a> </p> <a href="https://publications.waset.org/abstracts/163231/neuronal-networks-for-the-study-of-the-effects-of-cosmic-rays-on-climate-variations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">662</span> Atmospheric Plasma Treatment to Improve Water and Oil Repellent Finishing for PET and PET/Spandex Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehtap%20%C3%87al%C4%B1%C5%9Fkan">Mehtap Çalışkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nil%C3%BCfer%20Y%C4%B1ld%C4%B1z%20Varan"> Nilüfer Yıldız Varan</a>, <a href="https://publications.waset.org/abstracts/search?q=Volkan%20Kaplan"> Volkan Kaplan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of an atmospheric plasma treatment on the durability of water and oil repellent finishes of PET and PET/Spandex fabrics were tested. Fabrics were treated with a low-frequency atmospheric pressure glow discharge. After plasma treatments, the water and oil repellent finishes were applied using pad-dry-cure method. It was observed that plasma treatments improved the durability finish for all fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20plasma" title="atmospheric plasma">atmospheric plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=durable%20coating" title=" durable coating"> durable coating</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20repellency" title=" oil repellency"> oil repellency</a>, <a href="https://publications.waset.org/abstracts/search?q=PET%2Fspandex%20fabrics" title=" PET/spandex fabrics"> PET/spandex fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20repellency" title=" water repellency"> water repellency</a> </p> <a href="https://publications.waset.org/abstracts/68560/atmospheric-plasma-treatment-to-improve-water-and-oil-repellent-finishing-for-pet-and-petspandex-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">661</span> Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.W.%20Kan">C.W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Learning%20materials" title="Learning materials">Learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20pressure%20plasma%20treatment" title=" atmospheric pressure plasma treatment"> atmospheric pressure plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title=" hydrophobic"> hydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilic" title=" hydrophilic"> hydrophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=surface" title=" surface"> surface</a> </p> <a href="https://publications.waset.org/abstracts/49534/learning-materials-of-atmospheric-pressure-plasma-process-turning-hydrophilic-surface-to-hydrophobic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">660</span> Atmospheric Circulation Drivers Of Nationally-Aggregated Wind Energy Production Over Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kostas%20Philippopoulos">Kostas Philippopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20G.%20Tzanis"> Chris G. Tzanis</a>, <a href="https://publications.waset.org/abstracts/search?q=Despina%20Deligiorgi"> Despina Deligiorgi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change adaptation requires the exploitation of renewable energy sources such as wind. However, climate variability can affect the regional wind energy potential and consequently the available wind power production. The goal of the research project is to examine the impact of atmospheric circulation on wind energy production over Greece. In the context of synoptic climatology, the proposed novel methodology employs Self-Organizing Maps for grouping and classifying the atmospheric circulation and nationally-aggregated capacity factor time series for a 30-year period. The results indicate the critical effect of atmospheric circulation on the national aggregated wind energy production values and therefore address the issue of optimum distribution of wind farms for a specific region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20circulation" title=" atmospheric circulation"> atmospheric circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20factor" title=" capacity factor"> capacity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=self-organizing%20maps" title=" self-organizing maps"> self-organizing maps</a> </p> <a href="https://publications.waset.org/abstracts/146188/atmospheric-circulation-drivers-of-nationally-aggregated-wind-energy-production-over-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">659</span> Major Mechanisms of Atmospheric Moisture Transport and Their Role in Precipitation Extreme Events in the Amazonia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20Gimeno">Luis Gimeno</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosmeri%20da%20Rocha"> Rosmeri da Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquel%20Nieto"> Raquel Nieto</a>, <a href="https://publications.waset.org/abstracts/search?q=Tercio%20Ambrizzi"> Tercio Ambrizzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Ramos"> Alex Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20Drumond"> Anita Drumond</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transport of moisture from oceanic sources to the continents represents the atmospheric branch of the water cycle, forming the connection between evaporation from the ocean and precipitation over the continents. In this regard two large scale dynamical/meteorological structures appear to play a key role, namely Low Level Jet (LLJ) systems and Atmospheric Rivers (ARs). The former are particularly important in tropical and subtropical regions; the latter is mostly confined to extratropical regions. A key question relates to the anomalies in the transport of moisture observed during natural hazards related to extremes of precipitation (i.e., drought or wet spells). In this study we will be focused on these two major atmospheric moisture transport mechanisms (LLJs and ARs) and its role in precipitation extreme events (droughts and wet spells) in the Amazonia paying particular attention to i) intensification (decreasing) of moisture transport by them and its role in wet spells (droughts), and ii) changes in their positions and occurrence with associated flooding and wet spells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droughts" title="droughts">droughts</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20spells" title=" wet spells"> wet spells</a>, <a href="https://publications.waset.org/abstracts/search?q=amazonia" title=" amazonia"> amazonia</a>, <a href="https://publications.waset.org/abstracts/search?q=LLJs" title=" LLJs"> LLJs</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20rivers" title=" atmospheric rivers"> atmospheric rivers</a> </p> <a href="https://publications.waset.org/abstracts/38231/major-mechanisms-of-atmospheric-moisture-transport-and-their-role-in-precipitation-extreme-events-in-the-amazonia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">658</span> Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yilei%20Song">Yilei Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Linlin%20Tian"> Linlin Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Zhao"> Ning Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large-eddy%20simulation" title="large-eddy simulation">large-eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stably-stratified%20atmospheric%20boundary%20layer" title=" stably-stratified atmospheric boundary layer"> stably-stratified atmospheric boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20model" title=" wake model"> wake model</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20wake" title=" wind turbine wake"> wind turbine wake</a> </p> <a href="https://publications.waset.org/abstracts/111209/wind-turbine-wake-prediction-and-validation-under-a-stably-stratified-atmospheric-boundary-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">657</span> The Effect of Global Solar Variations on the Performance of n- AlGaAs/ p-GaAs Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Guechi">A. Guechi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Chegaar"> M. Chegaar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates how AlGaAs/GaAs thin film solar cells perform under varying global solar spectrum due to the changes of environmental parameters such as the air mass and the atmospheric turbidity. The solar irradiance striking the solar cell is simulated using the spectral irradiance model SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) for clear skies on the site of Setif (Algeria). The results show a reduction in the short circuit current due to increasing atmospheric turbidity, it is 63.09% under global radiation. However increasing air mass leads to a reduction in the short circuit current of 81.73%.The efficiency decrease with increasing atmospheric turbidity and air mass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlGaAs%2FGaAs" title="AlGaAs/GaAs">AlGaAs/GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20parameters" title=" environmental parameters"> environmental parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20variation" title=" spectral variation"> spectral variation</a>, <a href="https://publications.waset.org/abstracts/search?q=SMARTS" title=" SMARTS"> SMARTS</a> </p> <a href="https://publications.waset.org/abstracts/13863/the-effect-of-global-solar-variations-on-the-performance-of-n-algaas-p-gaas-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">656</span> Determination of Iodine and Heavy Metals in Two Brands of Iodised Salt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20O.%20Apotiola">Z. O. Apotiola</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20Fashakin"> J. F. Fashakin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted to investigate the storage stability of Mr Chef and Annapurna salts. The salts were bought from Mile 12 market in Lagos State and were stored for a period of six months. The stability of the iodine content was then investigated by storing some at ambient temperature (24-30oC) and some at atmospheric temperature (21-35 oC), and from each storage condition, a sample each was taken every month to analyze for the iodine and moisture contents. The result shows that there was a significant difference between Mr Chef and the standard and Annapurna and the standard. The iodine content of Mr Chef stored at ambient and atmospheric temperature decreases progressively from 48.70±0.00-37.00±0.00 and 47.60±0.00-11.60±0.00 respectively. And that of Annapurna at both ambient and atmospheric temperature also decreases progressively from 47.60±0.00-36.60±0.00 and 47.60±0.00-10.60±0.00 respectively. Also, the moisture content of both salts at the zero month to the sixth month both at room temperature and atmospheric temperature increases from 1.11±0.00-1.70±0.00 and 1.11±0.00-2.40±0.00 respectively. The results of the heavy metals shows that only Copper, Zinc and Cobalt were detected at the first and the sixth month in both Mr Chef and Annapurna which ranges from 0.15±0.00-0.38±0.00 and 0.18±0.00 - 3.50±0.00 respectively. Hence, the stability of iodine in salt is influenced by the storage conditions it is subjected to and the length of time it is been stored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salt" title="salt">salt</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine" title=" iodine"> iodine</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient" title=" ambient"> ambient</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20temperature" title=" atmospheric temperature"> atmospheric temperature</a> </p> <a href="https://publications.waset.org/abstracts/20724/determination-of-iodine-and-heavy-metals-in-two-brands-of-iodised-salt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">655</span> Determination of Direct Solar Radiation Using Atmospheric Physics Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pattra%20Pukdeekiat">Pattra Pukdeekiat</a>, <a href="https://publications.waset.org/abstracts/search?q=Siriluk%20Ruangrungrote"> Siriluk Ruangrungrote</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work was originated to precisely determine direct solar radiation by using atmospheric physics models since the accurate prediction of solar radiation is necessary and useful for solar energy applications including atmospheric research. The possible models and techniques for a calculation of regional direct solar radiation were challenging and compulsory for the case of unavailable instrumental measurement. The investigation was mathematically governed by six astronomical parameters i.e. declination (δ), hour angle (ω), solar time, solar zenith angle (θz), extraterrestrial radiation (Iso) and eccentricity (E0) along with two atmospheric parameters i.e. air mass (mr) and dew point temperature at Bangna meteorological station (13.67° N, 100.61° E) in Bangkok, Thailand. Analyses of five models of solar radiation determination with the assumption of clear sky were applied accompanied by three statistical tests: Mean Bias Difference (MBD), Root Mean Square Difference (RMSD) and Coefficient of determination (R2) in order to validate the accuracy of obtainable results. The calculated direct solar radiation was in a range of 491-505 Watt/m2 with relative percentage error 8.41% for winter and 532-540 Watt/m2 with relative percentage error 4.89% for summer 2014. Additionally, dataset of seven continuous days, representing both seasons were considered with the MBD, RMSD and R2 of -0.08, 0.25, 0.86 and -0.14, 0.35, 3.29, respectively, which belong to Kumar model for winter and CSR model for summer. In summary, the determination of direct solar radiation based on atmospheric models and empirical equations could advantageously provide immediate and reliable values of the solar components for any site in the region without a constraint of actual measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20physics%20models" title="atmospheric physics models">atmospheric physics models</a>, <a href="https://publications.waset.org/abstracts/search?q=astronomical%20parameters" title=" astronomical parameters"> astronomical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20parameters" title=" atmospheric parameters"> atmospheric parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=clear%20sky%20condition" title=" clear sky condition"> clear sky condition</a> </p> <a href="https://publications.waset.org/abstracts/38352/determination-of-direct-solar-radiation-using-atmospheric-physics-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">654</span> New Insights Into Fog Role In Atmospheric Deposition Using Satellite Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suruchi">Suruchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to examine the spatial and temporal patterns of fog occurrences across Czech Republic. It utilizes satellite imagery and other data sources to achieve this goal. The main objective is to understand the role of fog in atmospheric deposition processes and its potential impact on the environment and ecosystems. Through satellite image analysis, the study will identify and categorize different types of fog, including radiation fog, orographic fog, and mountain fog. Fog detection algorithms and cloud type products will be evaluated to assess the frequency and distribution of fog events throughout the Czech Republic. Furthermore, the regions covered by fog will be classified based on their fog type and associated pollution levels. This will provide insights into the variability in fog characteristics and its implications for atmospheric deposition. Spatial analysis techniques will be used to pinpoint areas prone to frequent fog events and evaluate their pollution levels. Statistical methods will be employed to analyze patterns in fog occurrence over time and its connection with environmental factors. The ultimate goal of this research is to offer fresh perspectives on fog's role in atmospheric deposition processes, enhancing our understanding of its environmental significance and informing future research and environmental management initiatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollution" title="pollution">pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=FOG" title=" FOG"> FOG</a>, <a href="https://publications.waset.org/abstracts/search?q=satellie" title=" satellie"> satellie</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition" title=" atmospheric deposition"> atmospheric deposition</a> </p> <a href="https://publications.waset.org/abstracts/191540/new-insights-into-fog-role-in-atmospheric-deposition-using-satellite-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">653</span> Optimizing the Efficiency of Measuring Instruments in Ouagadougou-Burkina Faso</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses%20Emetere">Moses Emetere</a>, <a href="https://publications.waset.org/abstracts/search?q=Marvel%20Akinyemi"> Marvel Akinyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Sanni"> S. E. Sanni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At the moment, AERONET or AMMA database shows a large volume of data loss. With only about 47% data set available to the scientist, it is evident that accurate nowcast or forecast cannot be guaranteed. The calibration constants of most radiosonde or weather stations are not compatible with the atmospheric conditions of the West African climate. A dispersion model was developed to incorporate salient mathematical representations like a Unified number. The Unified number was derived to describe the turbulence of the aerosols transport in the frictional layer of the lower atmosphere. Fourteen years data set from Multi-angle Imaging SpectroRadiometer (MISR) was tested using the dispersion model. A yearly estimation of the atmospheric constants over Ouagadougou using the model was obtained with about 87.5% accuracy. It further revealed that the average atmospheric constant for Ouagadougou-Niger is a_1 = 0.626, a_2 = 0.7999 and the tuning constants is n_1 = 0.09835 and n_2 = 0.266. Also, the yearly atmospheric constants affirmed the lower atmosphere of Ouagadougou is very dynamic. Hence, it is recommended that radiosonde and weather station manufacturers should constantly review the atmospheric constant over a geographical location to enable about eighty percent data retrieval. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosols%20retention" title="aerosols retention">aerosols retention</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosols%20loading" title=" aerosols loading"> aerosols loading</a>, <a href="https://publications.waset.org/abstracts/search?q=statistics" title=" statistics"> statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20technique" title=" analytical technique"> analytical technique</a> </p> <a href="https://publications.waset.org/abstracts/55320/optimizing-the-efficiency-of-measuring-instruments-in-ouagadougou-burkina-faso" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">652</span> AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Monahan">Thomas Monahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Gorius"> Nicolas Gorius</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanh%20Nguyen"> Thanh Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20network" title=" generative adversarial network"> generative adversarial network</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20computing" title=" edge computing"> edge computing</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20parameters%20retrieval" title=" atmospheric parameters retrieval"> atmospheric parameters retrieval</a> </p> <a href="https://publications.waset.org/abstracts/143382/aiml-atmospheric-parameters-retrieval-using-the-atmospheric-retrievals-conditional-generative-adversarial-network-arcgan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">651</span> Atmospheric Pressure Microwave Plasma System and Its Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waqas%20A.%20Toor">Waqas A. Toor</a>, <a href="https://publications.waset.org/abstracts/search?q=Anis%20U.%20Baig"> Anis U. Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuaman%20Shafqat"> Nuaman Shafqat</a>, <a href="https://publications.waset.org/abstracts/search?q=Raafia%20Irfan"> Raafia Irfan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ashraf"> Muhammad Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 2.45GHz microwave plasma system and its few applications have been developed. Argon and helium plasma is produced by metallic nozzle and also in a quartz tube at atmospheric pressure, using WR-340 waveguide and its tapered version. The waveguide applicator is also simulated in HFSS and field patterns are analyzed for maximum power absorption in the load. The system is tuned to operate at less than 10% reflected power. Various experimental techniques are used to initiate and sustain the plasma at atmospheric pressure. Plasma of atmospheric air is also produced without using any other shielding gas. The plasma flame is also characterized by its spectrum. Spectral analyses of plasma flame can be used for online analysis of combustion gases produced in industry. The applications of the system include glass and quartz processing, vitrification, emission spectroscopy, plasma coating. Low pressure plasma applications of the system include intense UV light for water purification and ozone generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HFSS%20high%20frequency%20structure%20simulator" title="HFSS high frequency structure simulator">HFSS high frequency structure simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=Microwave%20plasma" title=" Microwave plasma"> Microwave plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20ultraviolet" title=" UV ultraviolet"> UV ultraviolet</a>, <a href="https://publications.waset.org/abstracts/search?q=WR%20rectangular%20waveguide" title=" WR rectangular waveguide"> WR rectangular waveguide</a> </p> <a href="https://publications.waset.org/abstracts/91066/atmospheric-pressure-microwave-plasma-system-and-its-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">650</span> Utilizing Waste Heat from Thermal Power Plants to Generate Power by Modelling an Atmospheric Vortex Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Nabeel%20Khan">Mohammed Nabeel Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Perisamy"> C. Perisamy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Convective vortices are normal highlights of air that ingest lower-entropy-energy at higher temperatures than they dismiss higher-entropy-energy to space. By means of the thermodynamic proficiency, it has been anticipated that the force of convective vortices relies upon the profundity of the convective layer. The atmospheric vortex engine is proposed as a gadget for delivering mechanical energy by methods for artificially produced vortex. The task of the engine is in view of the certainties that the environment is warmed from the base and cooled from the top. By generation of the artificial vortex, it is planned to take out the physical solar updraft tower and decrease the capital of the solar chimney power plants. The study shows the essentials of the atmospheric vortex engine, furthermore, audits the cutting edge in subject. Moreover, the study talks about a thought on using the solar energy as heat source to work the framework. All in all, the framework is attainable and promising for electrical power production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AVE" title="AVE">AVE</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20vortex%20engine" title=" atmospheric vortex engine"> atmospheric vortex engine</a>, <a href="https://publications.waset.org/abstracts/search?q=atmosphere" title=" atmosphere"> atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=updraft" title=" updraft"> updraft</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a> </p> <a href="https://publications.waset.org/abstracts/102553/utilizing-waste-heat-from-thermal-power-plants-to-generate-power-by-modelling-an-atmospheric-vortex-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">649</span> Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kan">C. W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20materials" title="learning materials">learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20pressure%20plasma%20treatment" title=" atmospheric pressure plasma treatment"> atmospheric pressure plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkle-resistant" title=" wrinkle-resistant"> wrinkle-resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=BTCA" title=" BTCA"> BTCA</a> </p> <a href="https://publications.waset.org/abstracts/49532/learning-materials-of-atmospheric-pressure-plasma-process-application-in-wrinkle-resistant-finishing-of-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">648</span> Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hechmi%20Saidi">Hechmi Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Hamdi"> Noureddine Hamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20space%20optical" title="free space optical">free space optical</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20gamma%20channel" title=" gamma gamma channel"> gamma gamma channel</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency" title=" radio frequency"> radio frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=decode%20and%20forward" title=" decode and forward"> decode and forward</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20pointing" title=" error pointing"> error pointing</a>, <a href="https://publications.waset.org/abstracts/search?q=M-ary%20pulse%20position%20modulation" title=" M-ary pulse position modulation"> M-ary pulse position modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=symbol%20error%20rate" title=" symbol error rate"> symbol error rate</a> </p> <a href="https://publications.waset.org/abstracts/90571/performance-analysis-of-a-hybrid-df-af-hybrid-rffso-system-under-gamma-gamma-atmospheric-turbulence-channel-using-mppm-modulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">647</span> A Statistical Analysis on Relationship between Temperature Variations with Latitude and Altitude regarding Total Amount of Atmospheric Carbon Dioxide in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Moghbel">Masoumeh Moghbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, carbon dioxide which is produced by human activities is considered as the main effective factor in the global warming occurrence. Regarding to the role of CO2 and its ability in trapping the heat, the main objective of this research is study the effect of atmospheric CO2 (which is recorded in Manaloa) on variations of temperature parameters (daily mean temperature, minimum temperature and maximum temperature) in 5 meteorological stations in Iran which were selected according to the latitude and altitude in 40 years statistical period. Firstly, the trend of temperature parameters was studied by Regression and none-graphical Man-Kendal methods. Then, relation between temperature variations and CO2 were studied by Correlation technique. Also, the impact of CO2 amount on temperature in different atmospheric levels (850 and 500 hpa) was analyzed. The results illustrated that correlation coefficient between temperature variations and CO2 in low latitudes and high altitudes is more significant rather than other regions. it is important to note that altitude as the one of the main geographic factor has limitation in affecting the temperature variations, so that correlation coefficient between these two parameters in 850 hpa (r=0.86) is more significant than 500 hpa (r = 0.62). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=altitude" title="altitude">altitude</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbon%20dioxide" title=" atmospheric carbon dioxide"> atmospheric carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=latitude" title=" latitude"> latitude</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20variations" title=" temperature variations"> temperature variations</a> </p> <a href="https://publications.waset.org/abstracts/34560/a-statistical-analysis-on-relationship-between-temperature-variations-with-latitude-and-altitude-regarding-total-amount-of-atmospheric-carbon-dioxide-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">646</span> Simulation and Performance Evaluation of Transmission Lines with Shield Wire Segmentation against Atmospheric Discharges Using ATPDraw</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcio%20S.%20da%20Silva">Marcio S. da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Mauricio%20de%20B.%20Bezerra"> Jose Mauricio de B. Bezerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20E.%20de%20A.%20Nogueira"> Antonio E. de A. Nogueira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to make a performance analysis of shield wire transmission lines against atmospheric discharges when it is made the option of sectioning the shield wire and verify if the tolerability of the change. As a goal of this work, it was established to make complete modeling of a transmission line in the ATPDraw program with shield wire grounded in all the towers and in some towers. The methodology used to make the proposed evaluation was to choose an actual transmission line that served as a case study. From the choice of transmission line and verification of all its topology and materials, complete modeling of the line using the ATPDraw software was performed. Then several atmospheric discharges were simulated by striking the grounded shield wires in each tower. These simulations served to identify the behavior of the existing line against atmospheric discharges. After this first analysis, the same line was reconsidered with shield wire segmentation. The shielding wire segmentation technique aims to reduce induced losses in shield wires and is adopted in some transmission lines in Brazil. With the same conditions of atmospheric discharge the transmission line, this time with shield wire segmentation was again evaluated. The results obtained showed that it is possible to obtain similar performances against atmospheric discharges between a shield wired line in multiple towers and the same line with shield wire segmentation if some precautions are adopted as verification of the ground resistance of the wire segmented shield, adequacy of the maximum length of the segmented gap, evaluation of the separation length of the electrodes of the insulator spark, among others. As a conclusion, it is verified that since the correct assessment and adopted the correct criteria of adjustment a transmission line with shielded wire segmentation can perform very similar to the traditional use with multiple earths. This solution contributes in a very important way to the reduction of energy losses in transmission lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20discharges" title="atmospheric discharges">atmospheric discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=ATPDraw" title=" ATPDraw"> ATPDraw</a>, <a href="https://publications.waset.org/abstracts/search?q=shield%20wire" title=" shield wire"> shield wire</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20lines" title=" transmission lines"> transmission lines</a> </p> <a href="https://publications.waset.org/abstracts/103131/simulation-and-performance-evaluation-of-transmission-lines-with-shield-wire-segmentation-against-atmospheric-discharges-using-atpdraw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">645</span> Estimation Atmospheric parameters for Weather Study and Forecast over Equatorial Regions Using Ground-Based Global Position System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmamaw%20Yehun">Asmamaw Yehun</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsegaye%20Kassa"> Tsegaye Kassa</a>, <a href="https://publications.waset.org/abstracts/search?q=Addisu%20Hunegnaw"> Addisu Hunegnaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Vermeer"> Martin Vermeer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are various models to estimate the neutral atmospheric parameter values, such as in-suite and reanalysis datasets from numerical models. Accurate estimated values of the atmospheric parameters are useful for weather forecasting and, climate modeling and monitoring of climate change. Recently, Global Navigation Satellite System (GNSS) measurements have been applied for atmospheric sounding due to its robust data quality and wide horizontal and vertical coverage. The Global Positioning System (GPS) solutions that includes tropospheric parameters constitute a reliable set of data to be assimilated into climate models. The objective of this paper is, to estimate the neutral atmospheric parameters such as Wet Zenith Delay (WZD), Precipitable Water Vapour (PWV) and Total Zenith Delay (TZD) using six selected GPS stations in the equatorial regions, more precisely, the Ethiopian GPS stations from 2012 to 2015 observational data. Based on historic estimated GPS-derived values of PWV, we forecasted the PWV from 2015 to 2030. During data processing and analysis, we applied GAMIT-GLOBK software packages to estimate the atmospheric parameters. In the result, we found that the annual averaged minimum values of PWV are 9.72 mm for IISC and maximum 50.37 mm for BJCO stations. The annual averaged minimum values of WZD are 6 cm for IISC and maximum 31 cm for BDMT stations. In the long series of observations (from 2012 to 2015), we also found that there is a trend and cyclic patterns of WZD, PWV and TZD for all stations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmosphere" title="atmosphere">atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=GNSS" title=" GNSS"> GNSS</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20atmosphere" title=" neutral atmosphere"> neutral atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitable%20water%20vapour" title=" precipitable water vapour"> precipitable water vapour</a> </p> <a href="https://publications.waset.org/abstracts/176074/estimation-atmospheric-parameters-for-weather-study-and-forecast-over-equatorial-regions-using-ground-based-global-position-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">644</span> Optical Parametric Oscillators Lidar Sounding of Trace Atmospheric Gases in the 3-4 µm Spectral Range </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20V.%20Kharchenko">Olga V. Kharchenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3&ndash;4 &micro;m is studied in this work. A technique based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS) is developed for lidar sounding of trace atmospheric gases (TAG). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmosphere" title="atmosphere">atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=lidar%20sounding" title=" lidar sounding"> lidar sounding</a>, <a href="https://publications.waset.org/abstracts/search?q=DIAL" title=" DIAL"> DIAL</a>, <a href="https://publications.waset.org/abstracts/search?q=DOAS" title=" DOAS"> DOAS</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20gases" title=" trace gases"> trace gases</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20crystal" title=" nonlinear crystal"> nonlinear crystal</a> </p> <a href="https://publications.waset.org/abstracts/46707/optical-parametric-oscillators-lidar-sounding-of-trace-atmospheric-gases-in-the-3-4-m-spectral-range" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">643</span> The Energy Consumption by the Sector of Transport and His Impact on the Atmospheric Pollution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mme%20Hamani%20N%C3%A9e%20Guessas%20Ghaniya">Mme Hamani Née Guessas Ghaniya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transport is the base of the development of the exchanges and the business, being both a recognized determiner of the economic and social development. The development of the transport is in the center of the big challenges of development of countries, but it is also at the heart of big contradictions, since we integrate the environmental issues which are bound to him, in particular through the questions of energy. Indeed, the energy consumption by the sector of transport is one of bigger concerns, because it is increasing and it has a big impact on our environment. The main consequences are, the atmospheric pollution causing an increase of the greenhouse effect which causes a global warming. These global warming risks to engender a partial cast iron of polar caps so raising the level of seas, flooding the low coastal zones, certain islands and the deltas. Thus, the purpose of this communication is to present the impact of the energy consumption by the sector of transport on the air quality, showing its effect on the health and on the global warming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=sector%20of%20transport" title=" sector of transport"> sector of transport</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title=" air quality"> air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20pollution" title=" atmospheric pollution"> atmospheric pollution</a> </p> <a href="https://publications.waset.org/abstracts/11918/the-energy-consumption-by-the-sector-of-transport-and-his-impact-on-the-atmospheric-pollution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">642</span> Effects of Climate Change and Land Use, Land Cover Change on Atmospheric Mercury</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiliang%20Wu">Shiliang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Huanxin%20Zhang"> Huanxin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mercury has been well-known for its negative effects on wildlife, public health as well as the ecosystem. Once emitted into atmosphere, mercury can be transformed into different forms or enter the ecosystem through dry deposition or wet deposition. Some fraction of the mercury will be reemitted back into the atmosphere and be subject to the same cycle. In addition, the relatively long lifetime of elemental mercury in the atmosphere enables it to be transported long distances from source regions to receptor regions. Global change such as climate change and land use/land cover change impose significant challenges for mercury pollution control besides the efforts to regulate mercury anthropogenic emissions. In this study, we use a global chemical transport model (GEOS-Chem) to examine the potential impacts from changes in climate and land use/land cover on the global budget of mercury as well as its atmospheric transport, chemical transformation, and deposition. We carry out a suite of sensitivity model simulations to separate the impacts on atmospheric mercury associated with changes in climate and land use/land cover. Both climate change and land use/land cover change are found to have significant impacts on global mercury budget but through different pathways. Land use/land cover change primarily increase mercury dry deposition in northern mid-latitudes over continental regions and central Africa. Climate change enhances the mobilization of mercury from soil and ocean reservoir to the atmosphere. Also, dry deposition is enhanced over most continental areas while a change in future precipitation dominates the change in mercury wet deposition. We find that 2000-2050 climate change could increase the global atmospheric burden of mercury by 5% and mercury deposition by up to 40% in some regions. Changes in land use and land cover also increase mercury deposition over some continental regions, by up to 40%. The change in the lifetime of atmospheric mercury has important implications for long-range transport of mercury. Our case study shows that changes in climate and land use and cover could significantly affect the source-receptor relationships for mercury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mercury" title="mercury">mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20pollutant" title=" toxic pollutant"> toxic pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20transport" title=" atmospheric transport"> atmospheric transport</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/24245/effects-of-climate-change-and-land-use-land-cover-change-on-atmospheric-mercury" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">641</span> Examination of Corrosion Durability Related to Installed Environments of Steel Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Hee%20Ahn">Jin-Hee Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok-Hyeon%20Jeon"> Seok-Hyeon Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Bin%20Lee"> Young-Bin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Gyun%20Ha"> Min-Gyun Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chan%20Hong"> Yu-Chan Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion durability of steel bridges can be generally affected by atmospheric environments of bridge installation, since corrosion problem is related to environmental factors such as humidity, temperature, airborne salt, chemical components as SO₂, chlorides, etc. Thus, atmospheric environment condition should be measured to estimate corrosion condition of steel bridges as well as measurement of actual corrosion damage of structural members of steel bridge. Even in the same atmospheric environment, the corrosion environment may be different depending on the installation direction of structural members. In this study, therefore, atmospheric corrosion monitoring was conducted using atmospheric corrosion monitoring sensor, hygrometer, thermometer and airborne salt collection device to examine the corrosion durability of steel bridges. As a target steel bridge for corrosion durability monitoring, a cable-stayed bridge with truss steel members was selected. This cable-stayed bridge was located on the coast to connect the islands with the islands. Especially, atmospheric corrosion monitoring was carried out depending on structural direction of a cable-stayed bridge with truss type girders since it consists of structural members with various directions. For atmospheric corrosion monitoring, daily average electricity (corrosion current) was measured at each monitoring members to evaluate corrosion environments and corrosion level depending on structural members with various direction which have different corrosion environment in the same installed area. To compare corrosion durability connected with monitoring data depending on corrosion monitoring members, monitoring steel plate was additionally installed in same monitoring members. Monitoring steel plates of carbon steel was fabricated with dimension of 60mm width and 3mm thickness. And its surface was cleaned for removing rust on the surface by blasting, and its weight was measured before its installation on each structural members. After a 3 month exposure period on real atmospheric corrosion environment at bridge, surface condition of atmospheric corrosion monitoring sensors and monitoring steel plates were observed for corrosion damage. When severe deterioration of atmospheric corrosion monitoring sensors or corrosion damage of monitoring steel plates were found, they were replaced or collected. From 3month exposure tests in the actual steel bridge with various structural member with various direction, the rust on the surface of monitoring steel plate was found, and the difference in the corrosion rate was found depending on the direction of structural member from their visual inspection. And daily average electricity (corrosion current) was changed depending on the direction of structural member. However, it is difficult to identify the relative differences in corrosion durability of steel structural members using short-term monitoring results. After long exposure tests in this corrosion environments, it can be clearly evaluated the difference in corrosion durability depending on installed conditions of steel bridges. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028755). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20environments" title=" atmospheric environments"> atmospheric environments</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20bridge" title=" steel bridge"> steel bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a> </p> <a href="https://publications.waset.org/abstracts/84877/examination-of-corrosion-durability-related-to-installed-environments-of-steel-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">640</span> Direct Synthesis of Composite Materials Type MCM-41/ZSM-5 by Hydrothermal at Atmospheric Pressure in Sealed Pyrex Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zoubida%20Lounis">Zoubida Lounis</a>, <a href="https://publications.waset.org/abstracts/search?q=Naouel%20Boumesla"> Naouel Boumesla</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20El%20Kader%20Bengueddach"> Abd El Kader Bengueddach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to synthesize a composite materials by direct synthesis at atmospheric pression having the MFI structure and MCM-41 by using double structuring. In the first part of this work we are interested in the study of the synthesis parameters, in addition to temperature, the crystallization time and pH. The second part of this work is to vary the ratio of the concentrations of both structuring C9 [C9H19(CH3)3NBr] and C16 [C16H33(CH3)3NBr] and determining the area of formation of the two materials (microporous and mesoporous at same time), for this reason we performed a battery of experiments ranging from 0 to 100% for both structural. To enhance the economic purposes of this study, the experiments were carried out by using very cheap and simple process, the pyrex tubes were used instead of the reactors, and the synthesis were done at atmospheric pressure and moderate temperature. The final products (composite materials) were obtained at high and pure quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=syntheisis" title=" syntheisis"> syntheisis</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysts" title=" catalysts"> catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20materials" title=" mesoporous materials"> mesoporous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=microporous%20materials" title=" microporous materials"> microporous materials</a> </p> <a href="https://publications.waset.org/abstracts/14563/direct-synthesis-of-composite-materials-type-mcm-41zsm-5-by-hydrothermal-at-atmospheric-pressure-in-sealed-pyrex-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">639</span> Effect of UV Radiation to Change the Properties of the Composite PA+GF</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Markovi%C4%8Dov%C3%A1">Lenka Markovičová</a>, <a href="https://publications.waset.org/abstracts/search?q=Viera%20Zatkal%C3%ADkov%C3%A1"> Viera Zatkalíková</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Garbacz"> Tomasz Garbacz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Some composites also exhibit great resistance to high-temperature corrosion, oxidation, and wear. Polymers are widely used indoors and outdoors, therefore they are exposed to a chemical environment which may include atmospheric oxygen, acidic fumes, acidic rain, moisture heat and thermal shock, ultra-violet light, high energy radiation, etc. Different polymers are affected differently by these factors even though the amorphous polymers are more sensitive. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, micro-organisms and other atmospheric factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites%20with%20glass%20fibers" title="composites with glass fibers">composites with glass fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polyamides" title=" polyamides"> polyamides</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20degradation" title=" UV degradation"> UV degradation</a> </p> <a href="https://publications.waset.org/abstracts/31313/effect-of-uv-radiation-to-change-the-properties-of-the-composite-pagf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">638</span> Urban Boundary Layer and Its Effects on Haze Episode in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bualert">S. Bualert</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Duangmal"> K. Duangmal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric boundary layer shows effects of land cover on atmospheric characteristic in term of temperature gradient and wind profile. They are key factors to control atmospheric process such as atmospheric dilution and mixing via thermal and mechanical turbulent. Bangkok, ChiangMai, and Hatyai are major cities of central, southern and northern of Thailand, respectively. The different of them are location, geography and size of the city, Bangkok is the most urbanized city and classified as mega city compared to ChiangMai and HatYai, respectively. They have been suffering from air pollution episode such as transboundary haze. The worst period of the northern part of Thailand was occurred at the end of February through April of each year. The particulate matter less than 10 micrometer (PM10) concentrations were higher than Thai’s ambient air quality standard (120 micrograms per cubic meter) more than two times. Radiosonde technique and air pollutant (CO, PM10, TSP, O3, NOx) measurements were used to identify characteristics of urban boundary layer and air pollutions problems in the cities. Furthermore, air pollutant profiles showed good relationship to characteristic’s urban boundary layer especially on daytime temperature inversion on 29 February 2009 caused two times higher than normal concentrations of CO and particulate matter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=haze%20episode" title="haze episode">haze episode</a>, <a href="https://publications.waset.org/abstracts/search?q=micrometeorology" title=" micrometeorology"> micrometeorology</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20inversion" title=" temperature inversion"> temperature inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20boundary%20layer" title=" urban boundary layer"> urban boundary layer</a> </p> <a href="https://publications.waset.org/abstracts/43172/urban-boundary-layer-and-its-effects-on-haze-episode-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">637</span> Environmental Assessment of Single-Industry Towns in Kazakhstan in the Context of Sustainable Development Goals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Almira%20Daulbayeva">Almira Daulbayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhauhar%20Yessenkulova"> Zhauhar Yessenkulova</a>, <a href="https://publications.waset.org/abstracts/search?q=Rassima%20Salimbayeva"> Rassima Salimbayeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the regularities of the modern spatial and temporal distribution of main pollutants in the air space of single-industry towns are considered, and the level of pollutant emissions into the atmospheric air by urban areas of the Karaganda region is determined. We selected such cities as Temirtau, Abay, Saran, and Balkhash. Ecological and hygienic assessment of atmospheric air pollution in these cities for 2020 - 2023 and the beginning of 2024 was carried out on the materials of annual Information Bulletins on the state of the environment of the Republic of Kazakhstan, bulletins ‘On the state of atmospheric air in Karaganda region’. The general assessment of atmospheric air pollution in the territory was high, especially in 2020 and 2021, and corresponded to the level of ‘tense’. According to the results of the analysis of atmospheric air pollution, it was revealed that enterprises of thermal power engineering and mining industry (mines, enrichment plants, metallurgical production of ‘ArcelorMittal’ JSC) carry out emission of significant amounts of pollutants, particulate matter, and heavy metals into the atmosphere. The total number of ingredients present in the atmosphere of the city exceeds dozens, many of which belong to the first and second categories of hazard. The main pollutants were sulphur dioxide, carbon oxides, and nitrogen dioxide, as well as suspended solids. We have also considered and studied some types of major diseases of the population living in the region in different conditions in recent years. According to the results of the study, the cities with the highest rates and levels of morbidity were identified: Temirtau, Shakhtinsk, Abay, located in Karaganda region, where the main industrial facilities are concentrated, emitting harmful pollutants from ‘Corporation Kazakhmys’ LLP, ‘Arcelor Mittal’ JSC, Balkhash Mining and Metallurgical Combine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20air" title="atmospheric air">atmospheric air</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutants" title=" pollutants"> pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=single-industry%20towns" title=" single-industry towns"> single-industry towns</a>, <a href="https://publications.waset.org/abstracts/search?q=Karaganda%20region" title=" Karaganda region"> Karaganda region</a>, <a href="https://publications.waset.org/abstracts/search?q=morbidity" title=" morbidity"> morbidity</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/192065/environmental-assessment-of-single-industry-towns-in-kazakhstan-in-the-context-of-sustainable-development-goals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">636</span> Apparent Ageing Mechanism of Polyurethane Coating in Typical Atmospheric Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Gao">Jin Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Zhang"> Jin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaogang%20Li"> Xiaogang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Outdoor exposure experiments were conducted in three extreme environments, namely the Chinese plateau mountain environment (Lhasa), the cold–temperate environment (Mohe), and the marine atmospheric environment (Wanning), to track a new long-life environment-friendly polyurethane coating. The relationship between apparent properties, namely gloss and microstructural changes, was analyzed, and the influence of typical climatic environment on the aging mechanism of polyurethane coatings was discussed. Results show that the UV radiation in the Lhasa area causes photoaging degradation, micropores are formed on the coating surface, and the powdering phenomenon is obvious. Photodegradation occurs in the Wanning area, and a hydrolysis reaction is observed. The hydrolysis reaction catalyzes the photoaging, the coating surface becomes yellow, and the powdering becomes serious. Photoaging is also present in the Mohe area, but it is mainly due to temperature changes that in turn change the internal stress of the coating. Microcracks and bumps form on the coating surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aging" title="aging">aging</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20environment" title=" atmospheric environment"> atmospheric environment</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20exposure" title=" outdoor exposure"> outdoor exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane%20coating" title=" polyurethane coating"> polyurethane coating</a> </p> <a href="https://publications.waset.org/abstracts/117712/apparent-ageing-mechanism-of-polyurethane-coating-in-typical-atmospheric-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">635</span> Extracting the Atmospheric Carbon Dioxide and Convert It into Useful Minerals at the Room Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muthana%20A.%20M.%20Jamel%20Al-Gburi">Muthana A. M. Jamel Al-Gburi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elimination of carbon dioxide (CO2) gas from our atmosphere is very important but complicated, and since there is always an increase in the gas amounts of the other greenhouse ones in our atmosphere, causes by both some of the human activities and the burning of the fossil fuels, which leads to the Global Warming phenomena i.e., increasing the earth temperature to a higher level, creates desertification, tornadoes and storms. In our present research project, we constructed our own system to extract carbon dioxide directly from the atmospheric air at the room conditions and investigated how to convert the gas into a useful mineral or Nano scale fibers made of carbon by using several chemical processes and chemical reactions leading to a valuable building material and also to mitigate the environmental negative change. In the present water pool system (Carbone Dioxide Domestic Extractor), the ocean-sea water was used to dissolve the CO2 gas from the room and converted into carbonate minerals by using a number of additives like shampoo, clay and MgO. Note that the atmospheric air includes CO2 gas has circulated within the sea water by air pump connected to a perforated tubes fixed deep on the pool base. Those chemical agents were mixed with the ocean-sea water to convert the formed acid from the water-CO2 reaction into a useful mineral. After we successfully constructed the system, we did intense experiments and investigations on the CO2 gas reduction level and found which is the optimum active chemical agent to work in the atmospheric conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title="global warming">global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20gas" title=" CO₂ gas"> CO₂ gas</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean-sea%20water" title=" ocean-sea water"> ocean-sea water</a>, <a href="https://publications.waset.org/abstracts/search?q=additives" title=" additives"> additives</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility%20level" title=" solubility level"> solubility level</a> </p> <a href="https://publications.waset.org/abstracts/166931/extracting-the-atmospheric-carbon-dioxide-and-convert-it-into-useful-minerals-at-the-room-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbonyls&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbonyls&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbonyls&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbonyls&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbonyls&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbonyls&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbonyls&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbonyls&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbonyls&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbonyls&amp;page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbonyls&amp;page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbonyls&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10