CINXE.COM
Search results for: growth parameters
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: growth parameters</title> <meta name="description" content="Search results for: growth parameters"> <meta name="keywords" content="growth parameters"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="growth parameters" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="growth parameters"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14450</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: growth parameters</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14450</span> Influence of Magnetic Bio-Stimulation Effects on Pre-Sown Hybrid Sunflower Seeds Germination, Growth, and on the Percentage of Antioxidant Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nighat%20Zia-ud-Den">Nighat Zia-ud-Den</a>, <a href="https://publications.waset.org/abstracts/search?q=Shazia%20Anwer%20Bukhari"> Shazia Anwer Bukhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, sunflower seeds were exposed to magnetic bio-stimulation at different milli Tesla, and their effects were studied. The present study addressed to establish the effectiveness of magnetic bio-stimulation on seed germination, growth, and other dynamics of crop growth. The changes in physiological characters, i.e. the growth parameters of seedlings (biomass, root and shoot length, fresh and dry weight of root shoot leaf and fruit, leaf area, the height of plants, number of leaves, and number of fruits per plant) and antioxidant activities were measured. The parameters related to germination and growth were measured under controlled conditions while they changed significantly compared with that of the control. These changes suggested that magnetic seed stimulator enhanced the inner energy of seeds, which contributed to the acceleration of the growth and development of seedlings. Moreover, pretreatment with a magnetic field was found to be a positive impact on sunflower seeds germination, growth, and other biochemical parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sunflower%20seeds" title="sunflower seeds">sunflower seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20priming%20method" title=" physical priming method"> physical priming method</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20parameters" title=" biochemical parameters"> biochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activities" title=" antioxidant activities"> antioxidant activities</a> </p> <a href="https://publications.waset.org/abstracts/131972/influence-of-magnetic-bio-stimulation-effects-on-pre-sown-hybrid-sunflower-seeds-germination-growth-and-on-the-percentage-of-antioxidant-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14449</span> Effect of Pre-treatment with Salicylic Acid on Vegetative Growth and Yield Components of Wheat under Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20M.%20Howladar">Saad M. Howladar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Dennett"> Mike Dennett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At first harvest, results showed that salinity (tap water, 100 and 200 mM NaCl) induced a significant decrease in all growth parameters in both Yecora Rojo and Paragon cultivars. The greatest effect of salinity was a decrease in leaf area. The same tendency was observed with specific leaf area, and total fresh and dry weights and their components. Green leaf and tiller numbers were reduced by the same extent in both cultivars. The corresponding final harvest, all growth parameters also reduced with increased salinity. Yield and yield components were also reduced by salinity with similar effects in both cultivars. Chlorophyll fluorescence, expressed as Fv/Fm, and gas exchange parameters were decreased significantly with increase in salinity in both cultivars. In contrast, seed protein content was increased significantly with increase in salinity. Salicylic acid (SA) application induced no significant improvements in growth parameters and yield components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylic%20acid" title=" salicylic acid"> salicylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20fluorescence" title=" chlorophyll fluorescence"> chlorophyll fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20exchange" title=" gas exchange"> gas exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/7202/effect-of-pre-treatment-with-salicylic-acid-on-vegetative-growth-and-yield-components-of-wheat-under-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14448</span> Effect of Pre-Treatment with Salicylic Acid on Vegetative Growth and Yield Components of Saudi’s Wheat under Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Howladar">Saad Howladar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Dennett"> Mike Dennett </a> </p> <p class="card-text"><strong>Abstract:</strong></p> At first harvest, results showed that salinity (tap water, 100 and 200 mM NaCl) induced a significant decrease in all growth parameters in both Yecora Rojo and Paragon cultivars. The greatest effect of salinity was a decrease in leaf area. The same tendency was observed with specific leaf area, and total fresh and dry weights and their components. Green leaf and tiller numbers were reduced by the same extent in both cultivars. The corresponding final harvest, all growth parameters also reduced with increased salinity. Yield and yield components were also reduced by salinity with similar effects in both cultivars. Chlorophyll fluorescence, expressed as Fv/Fm, and gas exchange parameters were decreased significantly with increase in salinity in both cultivars. In contrast, seed protein content was increased significantly with increase in salinity. Salicylic acid (SA) application induced no significant improvements in growth parameters and yield components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylic%20acid" title=" salicylic acid"> salicylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20fluorescence" title=" chlorophyll fluorescence"> chlorophyll fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20exchange" title=" gas exchange"> gas exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/10390/effect-of-pre-treatment-with-salicylic-acid-on-vegetative-growth-and-yield-components-of-saudis-wheat-under-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14447</span> Effects of Vitamin E and Vitamin on Growth, Survival and Some Haematological and Immunological Parameters of Caspian Brown Trout, Salmo trutta caspius Juveniles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Khara">Hossein Khara</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Sayyadborani"> Mahmoud Sayyadborani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sayyadborani"> Mohammad Sayyadborani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, we examined the effects of different dietary levels of ascorbic acid (vitamin C) and α-tocopherol (vitamin E) and their combinations on growth, survival and some haematological and immunological parameters of Caspian brown trout, Salmo trutta caspius juveniles. 15 experimental treatments and one control group with three replicates were considered for experiment. The experimental treatments were fish fed by experimental diets containing different levels of Vit C and E as follow: T1: Vit E (20 mg.kg diet -1) + Vit C (100 mg.kg diet -1), T2: Vit E (30 mg.kg diet -1) + Vit C (100 mg.kg diet -1), T3: Vit E (40 mg.kg diet -1) + Vit C (100 mg.kg diet -1), T4: Vit E (20 mg.kg diet -1) + Vit C (200 mg.kg diet -1), T5: Vit E (30 mg.kg diet -1) + Vit C (200 mg.kg diet -1), T6: Vit E (40 mg.kg diet -1) + Vit C (200 mg.kg diet -1), T7: Vit E (20 mg.kg diet -1) + Vit C (300 mg.kg diet -1), T8: Vit E (30 mg.kg diet -1) + Vit C (300 mg.kg diet -1), T9: Vit E (40 mg.kg diet -1) + Vit C (300 mg.kg diet -1), T10: Vit C (100 mg.kg diet -1), T11: Vit C (200 mg.kg diet -1), T12: Vit C (300 mg.kg diet -1), T13: Vit E (20 mg.kg diet -1), T14: Vit E (30 mg.kg diet -1) T15: Vit E (40 mg.kg diet -1). Also a non-vitamin supplemented was considered as control group. Growth parameters were measured monthly and serum parameters assayed at the end of the experiment. According to our results, Vit C and E improved survival and growth parameters including specific growth rate (SGR), weight gain percent (WG%) and biomass. The highest values of these parameters obtained in T8, T9 and T8 respectively. The lowest FCR obtained in T8. The haematological parameters including red blood cells (RBCs), white blood cells (WBCs), haematocrit (Hct) and haemoglobin (Hb) were higher in vitamin treated groups than control group with highest values in T8. In T13, WBC values were higher compared to other experimental groups. The immunological parameters including lysozyme activity, Immunoglobulin (IgM) and total immunoglobulin (TIg) were significantly higher in vitamin supplemented groups than in control group. In this regard the highest values of these parameters were found in T12. The lowest values of TIg and lysozyme activity were observed in control group and fish fed by only vitamin E i.e. T13, T14 and T15. In conclusion, our results show that Vit C and E in combination or only can improve growth, survival, haematological and immunological indices of Caspian brown trout. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vitamins%20E" title="vitamins E">vitamins E</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamins%20C" title=" vitamins C"> vitamins C</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a>, <a href="https://publications.waset.org/abstracts/search?q=haematological%20parameters" title=" haematological parameters"> haematological parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=immunological%20parameters" title=" immunological parameters"> immunological parameters</a> </p> <a href="https://publications.waset.org/abstracts/37646/effects-of-vitamin-e-and-vitamin-on-growth-survival-and-some-haematological-and-immunological-parameters-of-caspian-brown-trout-salmo-trutta-caspius-juveniles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14446</span> The Effect of Low Voltage Direct Current Applications on the Growth of Microalgae Chlorella Vulgaris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osman%20K%C3%B6k">Osman Kök</a>, <a href="https://publications.waset.org/abstracts/search?q=I%CC%87lhami%CC%87%20T%C3%BCz%C3%BCn"> İlhami̇ Tüzün</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya%C5%9Far%20Alu%C3%A7"> Yaşar Aluç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to explore the effect of direct current (DC) applications on the growth of microalgae Chlorella vulgaris KKU71, isolated from highly saline freshwater. Experiments were implemented based upon the cross-combinations of both the intensity and duration of electric applications, generating a full factorial design of 10V, 20V, 30V, and 5s, 30s, 60s, respectively. Growth parameters of cultures were monitored on Optical Density (OD), Cell Count (CC), Chlorophyll-a, b (Chl-a, b), and Total Carotenoids (TCar). All DC-assisted treatments stimulated the growth and thus led to higher values of growth parameters such as OD, CC, Chl-a, and TCar. Monotonically increasing with the intensity and duration of DC applications, wet and dry biomass yields of the harvested algae reached their highest level at 30V-60s in all sets of treatments. In addition, this increase between DC applications was listed as C(control)<10V<20V<30V and C<5s<30s<60s. As a result, direct current applications increased the biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20Vulgaris" title="Chlorella Vulgaris">Chlorella Vulgaris</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20current" title=" direct current"> direct current</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/149389/the-effect-of-low-voltage-direct-current-applications-on-the-growth-of-microalgae-chlorella-vulgaris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14445</span> Analysis of Fertilizer Effect in the Tilapia Growth of Mozambique (Oreochromis mossambicus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9rgio%20Afonso%20Mulema">Sérgio Afonso Mulema</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9s%20Carri%C3%B3n%20Garc%C3%ADa"> Andrés Carrión García</a>, <a href="https://publications.waset.org/abstracts/search?q=Vicente%20Ernesto"> Vicente Ernesto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyses the effect of fertilizer (organic and inorganic) in the growth of tilapia. An experiment was implemented in the Aquapesca Company of Mozambique; there were considered four different treatments. Each type of fertilizer was applied in two of these treatments; a feed was supplied to the third treatment, and the fourth was taken as control. The weight and length of the tilapia were used as the growth parameters, and to measure the water quality, the physical-chemical parameters were registered. The results show that the weight and length were different for tilapias cultivated in different treatments. These differences were evidenced mainly by organic and feed treatments, where there was the largest and smallest value of these parameters, respectively. In order to prove that these differences were caused only by applied treatment without interference for the aquatic environment, a Fisher discriminant analysis was applied, which confirmed that the treatments were exposed to the same environment condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title="fertilizer">fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=tilapia" title=" tilapia"> tilapia</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20methods" title=" statistical methods"> statistical methods</a> </p> <a href="https://publications.waset.org/abstracts/89898/analysis-of-fertilizer-effect-in-the-tilapia-growth-of-mozambique-oreochromis-mossambicus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14444</span> Influence of Sulphur and Boron on Growth, Quality Parameters and Productivity of Soybean (Glycine Max (L.) Merrill)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shital%20Bangar">Shital Bangar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20B.%20Khandagale"> G. B. Khandagale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimentation was carried out to study the influence of sulphur and boron on growth parameters and productivity of soybean in kharif season of 2009-2010 at Experimental Farm, Department of Agricultural Botany, Marathwada Agricultural University, Parbhani (M.S.). The object was to evaluate the impact of sulphur and boron on growth, development, grain yield and physiological aspects of soybean variety MAUS-81. Nine treatments consisted of three levels of sulphur i.e. 20, 30 and 40 Kg/ha as well as three levels boron i.e.10, 15 and 20 kg boron/ha and the combinations of these two mineral elements i.e. Sulphur @30 kg/ha + Borax @15 kg/ha and Sulphur @40 kg/ha + Borax @ 20 kg/ha with one control treatment in Randomized Block Design (RBD) with three replications. The effect of sulphur and boron on various growth parameters of soybean like relative growth rate (RGR) and net assimilation rate (NAR) were remained statistically on par with each other. However, the application of higher dose of Sulphur @40 kg/ha + Borax @ 20 kg/ha enhanced significantly all the growth parameters. Application of the nutrients increased the dry matter accumulation of the crop plant and hence, other growth indices like RGR and NAR also increased significantly. RGR and NAR values were recorded highest at the initial crop growth stages and decline thereafter. The application of sulphur @40 kg/ha + Borax @ 20 kg/ha recorded significantly higher content of chlorophyll ‘a’ than rest of the treatments and chlorophyll ‘b’ observed higher in boron @15 kg/ha as well as boron@20 kg/ha, whereas total chlorophyll content was maximum in sulphur @40 kg/ha. Oil content was not influenced significantly due to above fertilization. The highest seed yield and total biological yield were obtained with combination of Sulphur @40 kg/ha + Borax @ 20 kg/ha, single sulphur and boron application also showed a significant effect on seed and biological yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron" title="boron">boron</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20and%20sulphur" title=" soybean and sulphur"> soybean and sulphur</a> </p> <a href="https://publications.waset.org/abstracts/21799/influence-of-sulphur-and-boron-on-growth-quality-parameters-and-productivity-of-soybean-glycine-max-l-merrill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14443</span> Effect of Dietary Cellulose Levels on the Growth Parameters of Nile Tilapia Oreochromis Niloticus Fingerlings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keri%20Alhadi%20Ighwela">Keri Alhadi Ighwela</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Bin%20Ahmad"> Aziz Bin Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Abol-Munafi"> A. B. Abol-Munafi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three purified diets were formulated using fish meal, soya bean, wheat flour, palm oil, minerals and maltose. The carbohydrate in the diets was increased from 5 to 15% by changing the cellulose content to study the effect of dietary carbohydrate level on the growth parameters of Nile tilapia Oreochromis niloticus.The protein and the lipid contents were kept constant in all the diets. The results showed that, weight gain, protein efficiency ratio, net protein utilisation and hepatosomatic index of fish fed the diet containing 15% cellulose were the lowest among all groups. Addition, the fish fed the diet containing 5% cellulose had the best specific growth rate, and food conversion ratio. While, there was no effect of the dietary cellulose levels on condition factor and survival rate. These results indicate that Nile tilapia fingerlings are able to utilize dietary cellulose does not exceed 10% in their feed for optimum growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dietary%20cellulose" title="dietary cellulose">dietary cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20parameters" title=" growth parameters"> growth parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=oreochromis%20niloticus" title=" oreochromis niloticus"> oreochromis niloticus</a>, <a href="https://publications.waset.org/abstracts/search?q=purified%20diets" title=" purified diets"> purified diets</a> </p> <a href="https://publications.waset.org/abstracts/34481/effect-of-dietary-cellulose-levels-on-the-growth-parameters-of-nile-tilapia-oreochromis-niloticus-fingerlings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14442</span> Use of Predictive Food Microbiology to Determine the Shelf-Life of Foods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Tarlak">Fatih Tarlak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predictive microbiology can be considered as an important field in food microbiology in which it uses predictive models to describe the microbial growth in different food products. Predictive models estimate the growth of microorganisms quickly, efficiently, and in a cost-effective way as compared to traditional methods of enumeration, which are long-lasting, expensive, and time-consuming. The mathematical models used in predictive microbiology are mainly categorised as primary and secondary models. The primary models are the mathematical equations that define the growth data as a function of time under a constant environmental condition. The secondary models describe the effects of environmental factors, such as temperature, pH, and water activity (aw) on the parameters of the primary models, including the maximum specific growth rate and lag phase duration, which are the most critical growth kinetic parameters. The combination of primary and secondary models provides valuable information to set limits for the quantitative detection of the microbial spoilage and assess product shelf-life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shelf-life" title="shelf-life">shelf-life</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20model" title=" growth model"> growth model</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20microbiology" title=" predictive microbiology"> predictive microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/133723/use-of-predictive-food-microbiology-to-determine-the-shelf-life-of-foods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14441</span> Pre-Soaking Application of Salicylic Acid on Four Wheat Cultivars under Saline Concentrations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20M.%20Howladar">Saad M. Howladar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Dennett"> Mike Dennett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of salinity (0-200 mMNaCl) on wheat growth (leaf and tiller numbers, and fresh and dry weights) underseed soaking (6 and 24 hs) insalicylic acid (SA) was investigated. The impact of salinity was less pronounced in salt tolerant cultivars (Sakha 93 and S24) than Paragon and S24. Chlorophyll content was increased as a response to salinity stress. It was raised in 100 mMNaCl more than 200 mMNaCl. The same trend was found in 24 hs soaking, except chlorophyll content in Paragon and S24 under 200 mMNaCl was more than 100 mMNaCl. SA application induced a positive effect on growth parameters in some cultivars, particularly Paragon under saline and non-saline condition. Soaking for 6 hs was more effective than 24 hs soaking, especially in Paragon and Sakha 93. SA supply caused a slight effect on chlorophyll content but this was not significant and there was no significant difference between both soaking hs. The effect of SA on growth parameters and chlorophyll content depends on cultivar genotype and SA concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylic%20acid" title=" salicylic acid"> salicylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20parameters" title=" growth parameters"> growth parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20content" title=" chlorophyll content"> chlorophyll content</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20cultivars" title=" wheat cultivars"> wheat cultivars</a> </p> <a href="https://publications.waset.org/abstracts/8316/pre-soaking-application-of-salicylic-acid-on-four-wheat-cultivars-under-saline-concentrations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14440</span> Effect of Dietary Spirulina Powder on Growth Performance, Body Composition, Hematological, Biological and Immunological Parameters of Oscar Fish, Astronotus ocellatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negar%20Ghotbeddin">Negar Ghotbeddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the changes in survival, growth, body composition, hematological, biochemical and immunological parameters of oscar fish (Astronotus ocellatus) have been investigated with dietary spirulina powder supplementation. Total of 300 fish with an initial weight of 8.37 ± 0.36 was distributed to three treatments and one control (0%). The fish were fed 8 weeks with diets containing different concentrations of S. powder: (control (0%), 2.5%, 5%, and 10%). Then sampling was done, and different parameters were measured by standard methods. Growth performance such as weight gain (%), specific growth rate (SGR) and feed conversion ratio (FCR) significantly improved in fish fed with S. powder (p < 0.5). Crude protein significantly increased in the S. powder supplemented groups (p < 0.5). However, crude lipid decreased with the increasing of dietary S. powder levels. Total protein increased in fish fed with 10% S. powder. Triglycerides and cholesterol decreased with the increasing of dietary S. powder levels. Immunological parameters including C3 and C4 increased significantly with the increasing of dietary S. powder levels, and lysozyme was improved in 10% S. powder. Results of this study indicated that S. powder had positive effects on Oscar fish and the best values were observed at 10 % S. powder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spirulina%20powder" title="spirulina powder">spirulina powder</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=hematology" title=" hematology"> hematology</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=Astronotus%20ocellatus" title=" Astronotus ocellatus"> Astronotus ocellatus</a> </p> <a href="https://publications.waset.org/abstracts/104805/effect-of-dietary-spirulina-powder-on-growth-performance-body-composition-hematological-biological-and-immunological-parameters-of-oscar-fish-astronotus-ocellatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14439</span> Bayes Estimation of Parameters of Binomial Type Rayleigh Class Software Reliability Growth Model using Non-informative Priors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Singh">Rajesh Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kailash%20Kale"> Kailash Kale </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the Binomial process type occurrence of software failures is considered and failure intensity has been characterized by one parameter Rayleigh class Software Reliability Growth Model (SRGM). The proposed SRGM is mathematical function of parameters namely; total number of failures i.e. η-0 and scale parameter i.e. η-1. It is assumed that very little or no information is available about both these parameters and then considering non-informative priors for both these parameters, the Bayes estimators for the parameters η-0 and η-1 have been obtained under square error loss function. The proposed Bayes estimators are compared with their corresponding maximum likelihood estimators on the basis of risk efficiencies obtained by Monte Carlo simulation technique. It is concluded that both the proposed Bayes estimators of total number of failures and scale parameter perform well for proper choice of execution time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binomial%20process" title="binomial process">binomial process</a>, <a href="https://publications.waset.org/abstracts/search?q=non-informative%20prior" title=" non-informative prior"> non-informative prior</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimator%20%28MLE%29" title=" maximum likelihood estimator (MLE)"> maximum likelihood estimator (MLE)</a>, <a href="https://publications.waset.org/abstracts/search?q=rayleigh%20class" title=" rayleigh class"> rayleigh class</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20reliability%20growth%20model%20%28SRGM%29" title=" software reliability growth model (SRGM)"> software reliability growth model (SRGM)</a> </p> <a href="https://publications.waset.org/abstracts/8925/bayes-estimation-of-parameters-of-binomial-type-rayleigh-class-software-reliability-growth-model-using-non-informative-priors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14438</span> Effect of Silicon Sulphate and Silicic Acid Rates on Growth, Yield and Nutritional Status of Wheat (Triticum aestivum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20G.%20Shemi">R. G. Shemi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Abo%20Horish"> M. A. Abo Horish</a>, <a href="https://publications.waset.org/abstracts/search?q=Kh.%20M.%20A.%20Mekled"> Kh. M. A. Mekled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of silicon (Si) sources is a crucial agricultural tool that requires optimization to promote sustainable practices. The application of Si provides the implementation of biological mechanisms of plant nutrition, growth promotion, and protection. The aims of this experiment were to investigate the relative efficacy of Si sources and levels on the growth, yield, and mineral content of wheat. The study examined the effects of silicon sulphate and silicic acid levels on growth, spike characteristics, yield parameters, and macro- and micronutrient concentrations of wheat during the 2-season. The entire above-indicated parameters were significantly (p < 0.05) increased with increasing levels of silicon sulphate and silicic acid compared to the control. Foliar application of silicon sulphate 150 ppm and silicic acid 60 ppm statistically (p < 0.05) enhanced grain N concentration and the grain yield by 136.14 and 77.85%, 43.49 and 34.52% in the 1st season, and by 78.62 and 54.40%, 43.53 and 33.18% in the 2nd season, respectively, as compared with control. Overall, foliar applications of silicon sulphate at 150 ppm and silicic acid at 60 ppm were greatly efficient amongst all Si levels and sources in improving growth and spike characters, increasing yield parameters, and elevating grain nutrients. Finally, the treatment of silicon sulfate at 150 ppm was more effective than the treatment of silicic acid at 60 ppm in increasing growth, grain nutrients, and productivity of wheat and attaining agricultural sustainability under experiment conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20sulphate" title=" silicon sulphate"> silicon sulphate</a>, <a href="https://publications.waset.org/abstracts/search?q=silicic%20acid" title=" silicic acid"> silicic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20nutrients" title=" grain nutrients"> grain nutrients</a> </p> <a href="https://publications.waset.org/abstracts/192208/effect-of-silicon-sulphate-and-silicic-acid-rates-on-growth-yield-and-nutritional-status-of-wheat-triticum-aestivum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14437</span> Comparison of the Logistic and the Gompertz Growth Functions Considering a Periodic Perturbation in the Model Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avan%20Al-Saffar">Avan Al-Saffar</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun-Jin%20Kim"> Eun-Jin Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both the logistic growth model and the gompertz growth model are used to describe growth processes. Both models driven by perturbations in different cases are investigated using information theory as a useful measure of sustainability and the variability. Specifically, we study the effect of different oscillatory modulations in the system's parameters on the evolution of the system and Probability Density Function (PDF). We show the maintenance of the initial conditions for a long time. We offer Fisher information analysis in positive and/or negative feedback and explain its implications for the sustainability of population dynamics. We also display a finite amplitude solution due to the purely fluctuating growth rate whereas the periodic fluctuations in negative feedback can lead to break down the system's self-regulation with an exponentially growing solution. In the cases tested, the gompertz and logistic systems show similar behaviour in terms of information and sustainability although they develop differently in time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamical%20systems" title="dynamical systems">dynamical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fisher%20information" title=" fisher information"> fisher information</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20density%20function%20%28pdf%29" title=" probability density function (pdf)"> probability density function (pdf)</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/74758/comparison-of-the-logistic-and-the-gompertz-growth-functions-considering-a-periodic-perturbation-in-the-model-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14436</span> Isothermal Crystallization Kinetics of Lauric Acid Methyl Ester from DSC Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charine%20Faith%20H.%20Lagrimas">Charine Faith H. Lagrimas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rommel%20N.%20Galvan"> Rommel N. Galvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizalinda%20L.%20de%20Leon"> Rizalinda L. de Leon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An ongoing study, methyl laurate to be used as a refrigerant in an HVAC system, requires the crystallization kinetics of the said substance. Step-wise and normal forms of Avrami model parameters were used to describe the isothermal crystallization kinetics of methyl laurate at different temperatures from Differential Scanning Calorimetry (DSC) measurements. At 3 °C, parameters showed that methyl laurate exhibits a secondary crystallization. The primary crystallization occurred with instantaneous nuclei and spherulitic growth; followed by a secondary instantaneous nucleation with a lower growth of dimensionality, rod-like. At 4 °C to 6 °C, the exotherms from DSC implied that the system was under the isokinetic range. The kinetics behavior is the same which is instantaneous nucleation with one-dimensional growth. The differences for the isokinetic range temperatures are the activation energies (directly proportional to T) and nucleation rates (inversely proportional to T). From the images obtained during the crystallization of methyl laurate using an optical microscope, it is confirmed that the nucleation and crystal growth modes obtained from the optical microscope are consistent with the parameters from Avrami model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avrami%20model" title="Avrami model">Avrami model</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20crystallization" title=" isothermal crystallization"> isothermal crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids%20kinetics" title=" lipids kinetics"> lipids kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20laurate" title=" methyl laurate"> methyl laurate</a> </p> <a href="https://publications.waset.org/abstracts/27068/isothermal-crystallization-kinetics-of-lauric-acid-methyl-ester-from-dsc-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14435</span> Utilization of Two Kind of Recycling Greywater in Irrigation of Syngonium SP. Plants Grown Under Different Water Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20Ali%20Metwally">Sami Ali Metwally</a>, <a href="https://publications.waset.org/abstracts/search?q=Bedour%20Helmy%20Abou-Leila"> Bedour Helmy Abou-Leila</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussien%20I.Abdel-Shafy"> Hussien I.Abdel-Shafy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work was carried out at the greenhouse of National Research Centre, Pot experiment was carried out during of 2020 and 2021 seasons aimed to study the effect of two types of water (two recycling gray water treatments((SMR (Sequencing Batch Reactor) and MBR(Membrane Biology Reactor) and three watering intervals 15, 20 and 25 days on Syangonium plants growth. Examination of data cleared that, (MBR) recorded increase in vegetative growth parameters, osmotic pressure, transpiration rate chlorophyll a,b,carotenoids and carbohydrate)in compared with SBR.As for water, intervalsthe highest values of most growth parameters were obtained from plants irrigated with after (20 days) compared with other treatments.15 days irrigation intervals recorded significantly increased in osmotic pressure, transpiration rate and photosynthetic pigments, while carbohydrate values recorded decreased. Interaction between water type and water intervals(SBR) recorded the highest values of most growth parameters by irrigation after 20 days. While the treatment (MBR)and irrigated after 25 days showed the highest values on leaf area and leaves fresh weight compared with other treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grey%20water" title="grey water">grey water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20intervals" title=" water intervals"> water intervals</a>, <a href="https://publications.waset.org/abstracts/search?q=Syngonium%20plant" title=" Syngonium plant"> Syngonium plant</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling%20water" title=" recycling water"> recycling water</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetative%20growth" title=" vegetative growth"> vegetative growth</a> </p> <a href="https://publications.waset.org/abstracts/169919/utilization-of-two-kind-of-recycling-greywater-in-irrigation-of-syngonium-sp-plants-grown-under-different-water-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14434</span> A Crop Growth Subroutine for Watershed Resources Management (WRM) Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kingsley%20Nnaemeka%20Ogbu">Kingsley Nnaemeka Ogbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Constantine%20Mbajiorgu"> Constantine Mbajiorgu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20yield" title="crop yield">crop yield</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness%20coefficient" title=" roughness coefficient"> roughness coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=PAR" title=" PAR"> PAR</a>, <a href="https://publications.waset.org/abstracts/search?q=WRM%20model" title=" WRM model"> WRM model</a> </p> <a href="https://publications.waset.org/abstracts/68452/a-crop-growth-subroutine-for-watershed-resources-management-wrm-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14433</span> A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kingsley%20Nnaemeka%20Ogbu">Kingsley Nnaemeka Ogbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Constantine%20Mbajiorgu"> Constantine Mbajiorgu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=runoff" title="runoff">runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness%20coefficient" title=" roughness coefficient"> roughness coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=PAR" title=" PAR"> PAR</a>, <a href="https://publications.waset.org/abstracts/search?q=WRM%20model" title=" WRM model"> WRM model</a> </p> <a href="https://publications.waset.org/abstracts/56608/a-crop-growth-subroutine-for-watershed-resources-management-wrm-model-1-description" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14432</span> Growth Curves Genetic Analysis of Native South Caspian Sea Poultry Using Bayesian Statistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Fayazi">Jamal Fayazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Anoosheh"> Farhad Anoosheh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Ghorbani"> Mohammad R. Ghorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20R.%20Paydar"> Ali R. Paydar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, to determine the best non-linear regression model describing the growth curve of native poultry, 9657 chicks of generations 18, 19, and 20 raised in Mazandaran breeding center were used. Fowls and roosters of this center distributed in south of Caspian Sea region. To estimate the genetic variability of none linear regression parameter of growth traits, a Gibbs sampling of Bayesian analysis was used. The average body weight traits in the first day (BW1), eighth week (BW8) and twelfth week (BW12) were respectively estimated as 36.05, 763.03, and 1194.98 grams. Based on the coefficient of determination, mean squares of error and Akaike information criteria, Gompertz model was selected as the best growth descriptive function. In Gompertz model, the estimated values for the parameters of maturity weight (A), integration constant (B) and maturity rate (K) were estimated to be 1734.4, 3.986, and 0.282, respectively. The direct heritability of BW1, BW8 and BW12 were respectively reported to be as 0.378, 0.3709, 0.316, 0.389, 0.43, 0.09 and 0.07. With regard to estimated parameters, the results of this study indicated that there is a possibility to improve some property of growth curve using appropriate selection programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20heritability" title="direct heritability">direct heritability</a>, <a href="https://publications.waset.org/abstracts/search?q=Gompertz" title=" Gompertz"> Gompertz</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20traits" title=" growth traits"> growth traits</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity%20weight" title=" maturity weight"> maturity weight</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20poultry" title=" native poultry"> native poultry</a> </p> <a href="https://publications.waset.org/abstracts/91206/growth-curves-genetic-analysis-of-native-south-caspian-sea-poultry-using-bayesian-statistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14431</span> The Relationship between Fatigue Crack Growth and Residual Stress in Rails</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Husem">F. Husem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Turan"> M. E. Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Sun"> Y. Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahlatci"> H. Ahlatci</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Tozlu"> I. Tozlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residual stress and fatigue crack growth rates are important to determine mechanical behavior of rails. This study aims to make relationship between residual stress and fatigue crack growth values in rails. For this purpose, three R260 quality rails (0.6-0.8% C, 0.6-1.25 Mn) were chosen. Residual stress of samples was measured by cutting method that is related in railway standard. Then samples were machined for fatigue crack growth test and analyze was completed according to the ASTM E647 standard which gives information about parameters of rails for this test. Microstructure characterizations were examined by Light Optic Microscope (LOM). The results showed that residual stress change with fatigue crack growth rate. The sample has highest residual stress exhibits highest crack growth rate and pearlitic structure can be seen clearly for all samples by microstructure analyze. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title="residual stress">residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20growth" title=" fatigue crack growth"> fatigue crack growth</a>, <a href="https://publications.waset.org/abstracts/search?q=R260" title=" R260"> R260</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTM%20E647" title=" ASTM E647"> ASTM E647</a> </p> <a href="https://publications.waset.org/abstracts/56215/the-relationship-between-fatigue-crack-growth-and-residual-stress-in-rails" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14430</span> Effects of Intercropping Maize (Zea mays L.) with Jack Beans (Canavalia ensiformis L.) at Different Spacing and Weeding Regimes on Crops Productivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluseun%20S.%20Oyelakin">Oluseun S. Oyelakin</a>, <a href="https://publications.waset.org/abstracts/search?q=Olalekan%20W.%20Olaniyi"> Olalekan W. Olaniyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted at Ido town in Ido Local Government Area of Oyo state, Nigeria to determine the effects of intercropping maize (<em>Zea</em> <em>mays</em> L.) with Jack bean (<em>Canavalia</em> <em>ensiformis</em> L.) at different spacing and weeding regimes on crops productivity. The treatments were 2 x 2 x 3 factorial arrangement involving two spatial crop arrangements. Spacing of 75 cm x 50 cm and 90 cm x 42 cm (41.667 cm) with two plants per stand resulted in plant population of approximately 53,000 plants/hectare. Also, Randomized Complete Block Design (RCBD) with two cropping patterns (sole and intercrop), three weeding regimes (weedy check, weeds once, and weed twice) with three replicates was used. Data were analyzed with SAS (Statistical Analysis System) and statistical means separated using Least Significant Difference (LSD) (P ≤ 0.05). Intercropping and crop spacing did not have significant influence on the growth parameters and yield parameters. The maize grain yield of 1.11 t/ha obtained under sole maize was comparable to 1.05 t/ha from maize/jack beans. Weeding regime significantly influenced growth and yields of maize in intercropping with Jack beans. Weeding twice resulted in significantly higher growth than that of the other weeding regimes. Plant height at 6 Weeks After Sowing (WAS) under weeding twice regime (3 and 6 WAS) was 83.9 cm which was significantly different from 67.75 cm and 53.47 cm for weeding once (3 WAS) and no weeding regimes respectively. Moreover, maize grain yield of 1.3 t/ha obtained from plots weeded twice was comparable to that of 1.23 t/ha from single weeding and both were significantly higher than 0.71 t/ha maize grain yield obtained from the no weeding control. The dry matter production of Jack beans reduced at some growth stages due to intercropping of maize with Jack beans though with no significance effect on the other growth parameters of the crop. There was no effect on the growth parameters of Jack beans in maize/jack beans intercrop based on cropping spacing while comparable growth and dry matter production in Jack beans were produced in maize/Jack beans mixture with single weeding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20spacing" title="crop spacing">crop spacing</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping" title=" intercropping"> intercropping</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20parameter" title=" growth parameter"> growth parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=weeding%20regime" title=" weeding regime"> weeding regime</a>, <a href="https://publications.waset.org/abstracts/search?q=sole%20cropping" title=" sole cropping"> sole cropping</a>, <a href="https://publications.waset.org/abstracts/search?q=WAS" title=" WAS"> WAS</a>, <a href="https://publications.waset.org/abstracts/search?q=week%20after%20sowing" title=" week after sowing"> week after sowing</a> </p> <a href="https://publications.waset.org/abstracts/105218/effects-of-intercropping-maize-zea-mays-l-with-jack-beans-canavalia-ensiformis-l-at-different-spacing-and-weeding-regimes-on-crops-productivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14429</span> Substitution of Fish Meal by Local Vegetable Raw Materials in the Feed of Juvenile Nile Tilapia (Oreochromis Niloticus, Linne, 1758) in Senegal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamadou%20Sileye%20Niang">Mamadou Sileye Niang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is a contribution to the development of a feed for juvenile tilapia Oreochromis niloticus, from local raw materials in order to reduce the cost of feeding farmed tilapia in Senegal. Three feeds were formulated from local raw materials. The basic composition of the tested feeds is as follows: A1 (peanut meal, rice bran, millet bran, maize meal and no fish meal); A2 (peanut meal, rice bran, millet bran, maize meal and 10% fish meal) and A3 (peanut meal, rice bran, millet bran, maize meal and 25% fish meal). All feeds contain 31% protein. The trial compared three batches, in 2 replicates, with different diets. The initial weight of the juveniles was 0.37± 0.5g. The daily ration was distributed at 9 am and 4 pm. After 90 days of the experiment, the final mean weights were 2.45 ± 0.5g; 2.75±0.5g; and 4.67 ± 0.5g for A1, A2, and A3, respectively. A performance test, of which the objective was to compare growth parameters, was conducted. The results of the growth parameters of juveniles fed A3 were significantly higher (p < 0.05) than those fed A1 and A2. The weight growth study shows similar growth during the first month. However, from this date onwards, juveniles fed A3 show a faster growth, which is maintained throughout the experiment. On the other hand, the Protein Efficiency Coefficient and the Survival Rate showed no significant difference. The zootechnical parameters are not significantly different (p > 0.05) between the two tanks for the same feed treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nutrition" title="nutrition">nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=feed" title=" feed"> feed</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerlings" title=" fingerlings"> fingerlings</a>, <a href="https://publications.waset.org/abstracts/search?q=Oreochromis" title=" Oreochromis"> Oreochromis</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20raw%20materials" title=" local raw materials"> local raw materials</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20cost" title=" feed cost"> feed cost</a> </p> <a href="https://publications.waset.org/abstracts/162920/substitution-of-fish-meal-by-local-vegetable-raw-materials-in-the-feed-of-juvenile-nile-tilapia-oreochromis-niloticus-linne-1758-in-senegal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14428</span> Salinity Stress: Effects on Growth Biochemical Parameters and Ion Homeostasis in Spinach (Spinacia Oleracea L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umar%20Jaafar">Umar Jaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mungadi"> Mungadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant growth, biochemical parameters, cytotoxic ion sequestration and ionic in balance were determined for spinach in response to varied concentrations of NaCl. The plant show decline in all vegetative parameters measured. Free proline content increase with increasing salt concentration and differ significantly (p<0.05) while the glycine betaine insignificantly (p>0.05) affected by concentration of NaCl. Salinity increases the cytotoxic ions, sodium chlorine ion and calcium with corresponding decrease in potassium ion concentrations. The ionic balance (Na+/K+) is low due to high content of potassium ion in plant accumulation ranging from 7700 to 6500 mg/kg. It can be concluded that the osmolyte accumulations, high number of leaves are possible indicators of salt tolerance in the spinach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spinach" title="spinach">spinach</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=osmolyte" title=" osmolyte"> osmolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic" title=" cytotoxic"> cytotoxic</a> </p> <a href="https://publications.waset.org/abstracts/30650/salinity-stress-effects-on-growth-biochemical-parameters-and-ion-homeostasis-in-spinach-spinacia-oleracea-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14427</span> Effects of Raw Bee Propolis and Water or Ethanol Extract of Propolis on Performance, Immune System and Some Blood Parameters on Broiler Bredeers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Alp%20Sahin">Hasan Alp Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ergin%20Ozturk"> Ergin Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of raw bee propolis (RP) and water (WEP) or ethanol (EEP) extract of propolis on growth performance, selected immune parameters (IgA, IgY and IgM) and some blood parameters such as aspartate aminotransferase, alanine aminotransferase, trygliceride, total protein, albumin, calcium, phosphorus, total antioxidant status and total oxidant status were determined. The study was conducted between 15th and 20th weeks (6 weeks) and used a total of 48 broiler breeder pullets (Ross-308). The broiler breeder in control group was fed diet without propolis whereas the birds in RP, WEP and EEP groups were fed diets with RP, WEP and EEP at the level of 1200, 400 and 400 ppm, respectively. All pullets were fed mash form diet with 15% crude protein and 2800 ME kcal/kg. All propolis forms had not a beneficial effect on any studied parameters compared to control group (P > 0.05). The results of the study indicated that both the level of the active matters supplied from the bee propolis has no enough beneficial effect on performance, some immune and blood parameters on broiler breeders or they did not have such a level that would cause a beneficial effect on these variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=bee%20product" title=" bee product "> bee product </a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20breeders" title=" poultry breeders"> poultry breeders</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20parameters" title=" immune parameters"> immune parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20chemistry" title=" blood chemistry"> blood chemistry</a> </p> <a href="https://publications.waset.org/abstracts/51521/effects-of-raw-bee-propolis-and-water-or-ethanol-extract-of-propolis-on-performance-immune-system-and-some-blood-parameters-on-broiler-bredeers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14426</span> Garlic (Allium sativum) Extract Enhancing Protein Digestive Enzymes and Growth Performance in Marble Goby (Oxyleotris marmorata) Juvenile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaturong%20Matidtor">Jaturong Matidtor</a>, <a href="https://publications.waset.org/abstracts/search?q=Krisna%20R.%20Torrissen"> Krisna R. Torrissen</a>, <a href="https://publications.waset.org/abstracts/search?q=Saengtong%20%20Pongjareankit"> Saengtong Pongjareankit</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudaporn%20Tongsiri"> Sudaporn Tongsiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiraporn%20%20Rojtinnakorn"> Jiraporn Rojtinnakorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low survival rate has being particular problem in nursery of marble goby juvenile. The aim of this study was to investigate effect of garlic extract on protein digestive pancreatic enzymes, trypsin (T) and chymotrypsin (C). The marble goby were reared with commercial feed mixed garlic extract at concentration of 0 (control), 0.3, 0.5, 1.0, 3.0 and 5.0% (w/w) for 6 weeks. Analysis of the digestive enzymes at 2 and 6 weeks was performed. Growth parameters; weight gain (WG), specific growth rate (SGR) and feed efficiency (FE), were identified. For T, C and T/C at 2 weeks, values of T and T/C ratio of 0.3% (w/w) group showed significant difference (p < 0.05) with the highest values of 17685.64± 11981.77 U/mg protein and of 51.64 ± 27.46 U/mg protein, respectively. For C at 2 weeks, 0% (w/w) group showed the highest values of 16191.76± 2225.56 U/mg protein. Whereas value of T, C and T/C ratio at 6 weeks, there was no significant difference (p > 0.05). For growth performance, it significantly increased in all garlic extract fed groups (0.3-5.0%, w/w), both at 2 and 6 weeks. At 2 weeks, values of WG and SGR of 0.5% (w/w) group showed the highest values of 71.51 ± 1.60%, and 3.85 ± 0.07%, respectively. For FE, 0.3% (w/w) group showed the highest value of 60.21 ± 6.51%. At 6 weeks, it illustrated that all growth parameters of 5.0% (w/w) group were the highest values; WG = 35.06 ± 5.66%, SGR = 2.14 ± 0.30%, and FE = 5.86 ± 0.68%. We suggested that garlic extract could be available for protein digestive enzyme and growth enhancement in marble goby nursery with artificial feed. This result will be high benefit for commercial aquaculture of marble goby. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marble%20goby" title="marble goby">marble goby</a>, <a href="https://publications.waset.org/abstracts/search?q=nursery" title=" nursery"> nursery</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic%20extract" title=" garlic extract"> garlic extract</a>, <a href="https://publications.waset.org/abstracts/search?q=digestive%20enzyme" title=" digestive enzyme"> digestive enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a> </p> <a href="https://publications.waset.org/abstracts/64912/garlic-allium-sativum-extract-enhancing-protein-digestive-enzymes-and-growth-performance-in-marble-goby-oxyleotris-marmorata-juvenile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14425</span> Efficacy of Three Different Herbicides to the Control of Wild Barley (Hordeum spontaneum C. Koch) in Relation to Plant Growth Stage and Nitrogen Fertilizer Additive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Edrisi">Sh. Edrisi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moeeni"> M. Moeeni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Farahbakhsh"> A. Farahbakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the effect of nitrogenous additive spray solution on the efficacy of three herbicides i.e. pinoxaden (Trade name: Axial), sulfosulfuron+metsulfuron-methyl (Trade name: Total) and sulfosulfuron (Trade name: Apirus) in controlling wild barley (<em>Hordeum spontaneum</em> C. Koch), in different growth stages, a greenhouse experiment as a split plot in a completely randomized design in three replications was conducted. One month after treatments, all plants were harvested and growth parameters were determined. The data were analyzed with computer. The results showed that the herbicide applications with and without nitrogen additive caused significant reductions in growth parameters of wild barley at 2-4 leaf stage. However, the plants were not killed by this herbicide. Plants were killed completely due to applications of the two other herbicides i.e. Apirus and Total at 2-4 leaf. There was no significant difference between the effect of these two herbicides. There was no significant difference between the highest rate of each herbicide used alone and that of the lowest rate with nitrogenous additive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20stage" title="growth stage">growth stage</a>, <a href="https://publications.waset.org/abstracts/search?q=herbicide" title=" herbicide"> herbicide</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20barley" title=" wild barley"> wild barley</a> </p> <a href="https://publications.waset.org/abstracts/55036/efficacy-of-three-different-herbicides-to-the-control-of-wild-barley-hordeum-spontaneum-c-koch-in-relation-to-plant-growth-stage-and-nitrogen-fertilizer-additive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14424</span> Sublethal Effects of Thiamethoxam-Lambda Cyhalothrin on the Life Table Parameters and Population Projection of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and Its Parasitoid, Encarsia formosa (Hymenoptera: Aphelinidae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sevda%20Ddras">Sevda Ddras</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariba%20Mehrkhou"> Fariba Mehrkhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Atlihan"> Remzi Atlihan</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Fourouzan"> Maryam Fourouzan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), is one of the most important pest on vegetables and ornamental host plants. In this research, the sub-lethal concentration (LC30) of thiamethoxam-lambda cyhalothrin (TLC) on the biological properties, life table parameters and population projection of T. vaporarium and its parasitoid, Encarsia formosa Gahan, were studied at controlled condition (25 ±5 ℃, R.H. 60 ±10 % and a photoperiod of 16:8 h (L:D). Bioassays were conducted by dipping tomato leaves containing third instar nymphs of the whitefly T. vaporariorum, in the obtained LC30 concentration of eforia. The life table data were analyzed using the computer program TWOSEX–MSChart based on the age-stage, two-sex life table theory. The results showed that, usage of sublethal concentration of TLC effected the biological properties and population growth parameters of greenhouse whitefly by shortening the developmentl time, adult longevity, decreasing the fecundity and population growth paramters. Also, the LC30 concentration of TLC had negative effects on life history and life table parameters of E.formosa. The obtained results illustrated that the sublethal concentration of TLC resulted in prolonging of developmental time, decreasing of adult longevity, survival rate and population growth parameters of E.formosa. Additionally, the population projection results were accordance with the population growth rate of either greenhouse whitefly or E.formosa. We conclude that, TLC should not be used in integrated pest management programs where E. formosa exists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20whitefly" title="greenhouse whitefly">greenhouse whitefly</a>, <a href="https://publications.waset.org/abstracts/search?q=Encarsia%20formosa" title=" Encarsia formosa"> Encarsia formosa</a>, <a href="https://publications.waset.org/abstracts/search?q=thiamethoxam-lambda%20cyhalothrin" title=" thiamethoxam-lambda cyhalothrin"> thiamethoxam-lambda cyhalothrin</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20projection" title=" population projection"> population projection</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20table%20parameters" title=" life table parameters"> life table parameters</a> </p> <a href="https://publications.waset.org/abstracts/176584/sublethal-effects-of-thiamethoxam-lambda-cyhalothrin-on-the-life-table-parameters-and-population-projection-of-trialeurodes-vaporariorum-hemiptera-aleyrodidae-and-its-parasitoid-encarsia-formosa-hymenoptera-aphelinidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14423</span> Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed, and Temperature of Incubator Shaker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20M.%20Azoddein">A. A. M. Azoddein</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Yunus"> R. M. Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Sulaiman"> N. M. Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Bustary"> A. B. Bustary</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sabar"> K. Sabar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbes have been used to solve environmental problems for many years. The use microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Processes by which microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida, pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P.putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of Pseudomonas putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to reduce ionic mercury from mercury nitrate solution. The overall levels of mercury removal in this study were between 80% and 90%. The information obtained in this study is of fundamental for understanding of the survival of P.putida ATTC 49128 in mercury solution. Thus, microbial mercury environmental pollutants removal is a potential biological treatment for waste water treatment especially in petrochemical industries in Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20putida" title="Pseudomonas putida">Pseudomonas putida</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20kinetic" title=" growth kinetic"> growth kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury" title=" mercury"> mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20waste%20water" title=" petrochemical waste water"> petrochemical waste water</a> </p> <a href="https://publications.waset.org/abstracts/19360/mercury-removal-using-pseudomonas-putida-attc-49128-effect-of-acclimatization-time-speed-and-temperature-of-incubator-shaker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">667</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14422</span> 2D Monte Carlo Simulation of Grain Growth under Transient Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Phaneesh">K. R. Phaneesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anirudh%20Bhat"> Anirudh Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Mukherjee"> G. Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20T.%20Kashyap"> K. T. Kashyap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extensive Monte Carlo Potts model simulations were performed on 2D square lattice to investigate the effects of simulated higher temperatures effects on grain growth kinetics. A range of simulation temperatures (KTs) were applied on a matrix of size 10002 with Q-state 64, dispersed with a wide range of second phase particles, ranging from 0.001 to 0.1, and then run to 100,000 Monte Carlo steps. The average grain size, the largest grain size and the grain growth exponent were evaluated for all particle fractions and simulated temperatures. After evaluating several growth parameters, the critical temperature for a square lattice, with eight nearest neighbors, was found to be KTs = 0.4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=average%20grain%20size" title="average grain size">average grain size</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20temperature" title=" critical temperature"> critical temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20growth%20exponent" title=" grain growth exponent"> grain growth exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20steps" title=" Monte Carlo steps"> Monte Carlo steps</a> </p> <a href="https://publications.waset.org/abstracts/26332/2d-monte-carlo-simulation-of-grain-growth-under-transient-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14421</span> Energy Justice and Economic Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marinko%20Skare">Marinko Skare</a>, <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Porada%20Rochon"> Malgorzata Porada Rochon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper study the link between energy justice and economic growth. The link between energy justice and growth has not been extensively studied. Here we study the impact and importance of energy justice, as a part of the energy transition process, on economic growth. Our study shows energy justice growth is an important determinant of economic growth and development that should be addressed at the industry and economic levels. We use panel data modeling and causality testing to research the empirical link between energy justice and economic growth. Industry and economy-level policies designed to support energy justice initiatives are beneficial to economic growth. Energy justice is a necessary condition for green growth and sustainability targets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20justice" title="energy justice">energy justice</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title=" economic growth"> economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20data" title=" panel data"> panel data</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title=" energy transition"> energy transition</a> </p> <a href="https://publications.waset.org/abstracts/158297/energy-justice-and-economic-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20parameters&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20parameters&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20parameters&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20parameters&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20parameters&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20parameters&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20parameters&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20parameters&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20parameters&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20parameters&page=481">481</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20parameters&page=482">482</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20parameters&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>