CINXE.COM

Search results for: CubeSat

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: CubeSat</title> <meta name="description" content="Search results for: CubeSat"> <meta name="keywords" content="CubeSat"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="CubeSat" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="CubeSat"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: CubeSat</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Three Dimensional Analysis of Cubesat Thermal Vacuum Test </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maged%20Assem%20Soliman%20Mossallam">Maged Assem Soliman Mossallam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal vacuum testing target is to qualify the space system and ensure its operability under harsh space environment. The functionality of the cubesat was checked at extreme orbit conditions. Test was performed for operational and nonoperational modes. Analysis is done to simulate the cubesat thermal cycling inside thermal vacuum chamber. Comsol Multiphysics finite element is used to solve three dimensional problem for the cubesat inside TVAC. Three dimensional CAD model is done using Autodesk Inventor program. The boundary conditions were applied from the actual shroud temperature. The input heat load variation with time is considered to solve the transient three dimensional problem. Results show that the simulated temperature profiles are within an acceptable range from the real testing data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cubesat" title="cubesat">cubesat</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20vacuum%20test" title=" thermal vacuum test"> thermal vacuum test</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20simulation" title=" testing simulation"> testing simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis "> finite element analysis </a> </p> <a href="https://publications.waset.org/abstracts/128852/three-dimensional-analysis-of-cubesat-thermal-vacuum-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Thermal Vacuum Chamber Test Result for CubeSat Transmitter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fitri%20D.%20Jaswar">Fitri D. Jaswar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tharek%20A.%20Rahman"> Tharek A. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20A.%20Ahmad"> Yasser A. Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CubeSat in low earth orbit (LEO) mainly uses ultra high frequency (UHF) transmitter with fixed radio frequency (RF) output power to download the telemetry and the payload data. The transmitter consumes large amount of electrical energy during the transmission considering the limited satellite size of a CubeSat. A transmitter with power control ability is designed to achieve optimize the signal to noise ratio (SNR) and efficient power consumption. In this paper, the thermal vacuum chamber (TVAC) test is performed to validate the performance of the UHF band transmitter with power control capability. The TVAC is used to simulate the satellite condition in the outer space environment. The TVAC test was conducted at the Laboratory of Spacecraft Environment Interaction Engineering, Kyushu Institute of Technology, Japan. The TVAC test used 4 thermal cycles starting from +60°C to -20°C for the temperature setting. The pressure condition inside chamber was less than 10-5Pa. During the test, the UHF transmitter is integrated in a CubeSat configuration with other CubeSat subsystem such as on board computer (OBC), power module, and satellite structure. The system is validated and verified through its performance in terms of its frequency stability and the RF output power. The UHF band transmitter output power is tested from 0.5W to 2W according the satellite mode of operations and the satellite power limitations. The frequency stability is measured and the performance obtained is less than 2 ppm in the tested operating temperature range. The test demonstrates the RF output power is adjustable in a thermal vacuum condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication%20system" title="communication system">communication system</a>, <a href="https://publications.waset.org/abstracts/search?q=CubeSat" title=" CubeSat"> CubeSat</a>, <a href="https://publications.waset.org/abstracts/search?q=SNR" title=" SNR"> SNR</a>, <a href="https://publications.waset.org/abstracts/search?q=UHF%20transmitter" title=" UHF transmitter"> UHF transmitter</a> </p> <a href="https://publications.waset.org/abstracts/56669/thermal-vacuum-chamber-test-result-for-cubesat-transmitter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Tailoring of ECSS Standard for Space Qualification Test of CubeSat Nano-Satellite </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Tiseo">B. Tiseo</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Quaranta"> V. Quaranta</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bruno"> G. Bruno</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Sisinni"> G. Sisinni </a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an increasing demand of nano-satellite development among universities, small companies, and emerging countries. Low-cost and fast-delivery are the main advantages of such class of satellites achieved by the extensive use of commercial-off-the-shelf components. On the other side, the loss of reliability and the poor success rate are limiting the use of nano-satellite to educational and technology demonstration and not to the commercial purpose. Standardization of nano-satellite environmental testing by tailoring the existing test standard for medium/large satellites is then a crucial step for their market growth. Thus, it is fundamental to find the right trade-off between the improvement of reliability and the need to keep their low-cost/fast-delivery advantages. This is particularly even more essential for satellites of CubeSat family. Such miniaturized and standardized satellites have 10 cm cubic form and mass no more than 1.33 kilograms per 1 unit (1U). For this class of nano-satellites, the qualification process is mandatory to reduce the risk of failure during a space mission. This paper reports the description and results of the space qualification test campaign performed on Endurosat&rsquo;s CubeSat nano-satellite and modules. Mechanical and environmental tests have been carried out step by step: from the testing of the single subsystem up to the assembled CubeSat nano-satellite. Functional tests have been performed during all the test campaign to verify the functionalities of the systems. The test duration and levels have been selected by tailoring the European Space Agency standard ECSS-E-ST-10-03C and GEVS: GSFC-STD-7000A. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CubeSat" title="CubeSat">CubeSat</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-satellite" title=" nano-satellite"> nano-satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=shock" title=" shock"> shock</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/98373/tailoring-of-ecss-standard-for-space-qualification-test-of-cubesat-nano-satellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Field-Programmable Gate Array-Based Baseband Signals Generator of X-Band Transmitter for Micro Satellite/CubeSat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shih-Ming%20Wang">Shih-Ming Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Kai%20Yeh"> Chun-Kai Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Hwang%20Shie"> Ming-Hwang Shie</a>, <a href="https://publications.waset.org/abstracts/search?q=Tai-Wei%20Lin"> Tai-Wei Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chieh-Fu%20Chang"> Chieh-Fu Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a FPGA-based baseband signals generator (BSG) of X-band transmitter developed by National Space Organization (NSPO), Taiwan, for earth observation. In order to gain more flexibility for various applications, a number of modulation schemes, QPSK, DeQPSK and 8PSK 4D-TCM are included. For micro satellite scenario, the maximum symbol rate is up to 150Mbsps, and the EVM is as low as 1.9%. For CubeSat scenario, the maximum symbol rate is up to 60Mbsps, and the EVM is less than 1.7%. The maximum data rates are 412.5Mbps and 165Mbps, respectively. Besides, triple modular redundancy (TMR) scheme is implemented in order to reduce single event effect (SEE) induced by radiation. Finally, the theoretical error performance is provided based on comprehensive analysis, especially when BER is lower and much lower than 10⁻⁶ due to low error bit requirement of modern high-resolution earth remote-sensing instruments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X-band%20transmitter" title="X-band transmitter">X-band transmitter</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA%20%28Field-Programmable%20Gate%20Array%29" title=" FPGA (Field-Programmable Gate Array)"> FPGA (Field-Programmable Gate Array)</a>, <a href="https://publications.waset.org/abstracts/search?q=CubeSat" title=" CubeSat"> CubeSat</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20satellite" title=" micro satellite"> micro satellite</a> </p> <a href="https://publications.waset.org/abstracts/72514/field-programmable-gate-array-based-baseband-signals-generator-of-x-band-transmitter-for-micro-satellitecubesat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadir%20Atayev">Nadir Atayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehman%20Hasanov"> Mehman Hasanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cubesat" title="cubesat">cubesat</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20space%20optics" title=" free space optics"> free space optics</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20satellite" title=" nano satellite"> nano satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20laser%20communication." title=" optical laser communication."> optical laser communication.</a> </p> <a href="https://publications.waset.org/abstracts/165758/next-generation-laser-based-transponder-and-3d-switch-for-free-space-optics-in-nanosatellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anand%20K.%20Vinu">Anand K. Vinu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaishnav%20Vimal"> Vaishnav Vimal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasi%20Gopalan"> Sasi Gopalan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20cooling" title="passive cooling">passive cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=CubeSat" title=" CubeSat"> CubeSat</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite" title=" satellite"> satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20satellite" title=" stationary satellite"> stationary satellite</a> </p> <a href="https://publications.waset.org/abstracts/159472/solar-cell-packed-and-insulator-fused-panels-for-efficient-cooling-in-cubesat-and-satellites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Segmented Pupil Phasing with Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dumont%20Maxime">Dumont Maxime</a>, <a href="https://publications.waset.org/abstracts/search?q=Correia%20Carlos"> Correia Carlos</a>, <a href="https://publications.waset.org/abstracts/search?q=Sauvage%20Jean-Fran%C3%A7ois"> Sauvage Jean-François</a>, <a href="https://publications.waset.org/abstracts/search?q=Schwartz%20Noah"> Schwartz Noah</a>, <a href="https://publications.waset.org/abstracts/search?q=Gray%20Morgan"> Gray Morgan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wavefront%20sensing" title="wavefront sensing">wavefront sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deployable%20telescope" title=" deployable telescope"> deployable telescope</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20telescope" title=" space telescope"> space telescope</a> </p> <a href="https://publications.waset.org/abstracts/158372/segmented-pupil-phasing-with-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> A Blueprint for Responsible Launch of Small Satellites from a Debris Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeroen%20Rotteveel">Jeroen Rotteveel</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeger%20De%20Groot"> Zeger De Groot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The small satellite community is more and more aware of the need to start operating responsibly and sustainably in order to secure the use of outer space in the long run. On the technical side, many debris mitigation techniques have been investigated and demonstrated on board small satellites, showing that technically, a lot of things can be done to curb the growth of space debris and operate more responsible. However, in the absence of strict laws and constraints, one cannot help but wonder what the incentive is to incur significant costs (paying for debris mitigation systems and the launch mass of these systems) and to lose performance onboard resource limited small satellites (mass, volume, power)? Many small satellite developers are operating under tight budgets, either from their sponsors (in case of academic and research projects) or from their investors (in case of startups). As long as it is not mandatory to act more responsibly, we might need to consider the implementation of incentives to stimulate developers to accommodate deorbiting modules, etc. ISISPACE joined the NetZeroSpace initiative in 2021 with the aim to play its role in secure the use of low earth orbit for the next decades by facilitating more sustainable use of space. The company is in a good position as both a satellite builder, a rideshare launch provider, and a technology development company. ISISPACE operates under one of the stricter space laws in the world in terms of maximum orbital lifetime and has been active in various debris mitigation and debris removal in-orbit demonstration missions in the past 10 years. ISISPACE proposes to introduce together with launch partners and regulators an incentive scheme for CubeSat developers to baseline debris mitigation systems on board their CubeSats in such a way that is does not impose too many additional costs to the project. Much like incentives to switch to electric cars or install solar panels on your house, such an incentive can help to increase market uptake of behavior or solutions prior to legislation or bans of certain practices. This can be achieved by: Introducing an extended launch volume in CubeSat deployers to accommodate debris mitigation systems without compromising available payload space for the payload of the main mission Not charging the fee for the launch mass for the additional debris mitigation module Whenever possible, find ways to further co-fund the purchase price, or otherwise reduce the cost of flying debris mitigation modules onboard the CubeSats. The paper will outline the framework of such an incentive scheme and provides ISISPACE’s way forward to make this happen in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=netZerospace" title="netZerospace">netZerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=cubesats" title=" cubesats"> cubesats</a>, <a href="https://publications.waset.org/abstracts/search?q=debris%20mitigation" title=" debris mitigation"> debris mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20satellite%20community" title=" small satellite community"> small satellite community</a> </p> <a href="https://publications.waset.org/abstracts/144824/a-blueprint-for-responsible-launch-of-small-satellites-from-a-debris-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Numerical Analyses of Dynamics of Deployment of PW-Sat2 Deorbit Sail Compared with Results of Experiment under Micro-Gravity and Low Pressure Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Brunne">P. Brunne</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ciechowska"> K. Ciechowska</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gajc"> K. Gajc</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gawin"> K. Gawin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gawin"> M. Gawin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kania"> M. Kania</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kindracki"> J. Kindracki</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kusznierewicz"> Z. Kusznierewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20P%C4%85czkowska"> D. Pączkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Perczy%C5%84ski"> F. Perczyński</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Pilarski"> K. Pilarski</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Rafa%C5%82o"> D. Rafało</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ryszawa"> E. Ryszawa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sobiecki"> M. Sobiecki</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Uwarowa"> I. Uwarowa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Big amount of space debris constitutes nowadays a real thread for operating space crafts; therefore the main purpose of PW-Sat2’ team was to create a system that could help cleanse the Earth’s orbit after each small satellites’ mission. After 4 years of development, the motorless, low energy consumption and low weight system has been created. During series of tests, the system has shown high reliable efficiency. The PW-Sat2’s deorbit system is a square-shaped sail which covers an area of 4m². The sail surface is made of 6 μm aluminized Mylar film which is stretched across 4 diagonally placed arms, each consisting of two C-shaped flat springs and enveloped in Mylar sleeves. The sail is coiled using a special, custom designed folding stand that provides automation and repeatability of the sail unwinding tests and placed in a container with inner diameter of 85 mm. In the final configuration the deorbit system weights ca. 600 g and occupies 0.6U (in accordance with CubeSat standard). The sail’s releasing system requires minimal amount of power based on thermal knife that burns out the Dyneema wire, which holds the system before deployment. The Sail is being pushed out of the container within a safe distance (20 cm away) from the satellite. The energy for the deployment is completely assured by coiled C-shaped flat springs, which during the release, unfold the sail surface. To avoid dynamic effects on the satellite’s structure, there is the rotational link between the sail and satellite’s main body. To obtain complete knowledge about complex dynamics of the deployment, a number of experiments have been performed in varied environments. The numerical model of the dynamics of the Sail’s deployment has been built and is still under continuous development. Currently, the integration of the flight model and Deorbit Sail is performed. The launch is scheduled for February 2018. At the same time, in cooperation with United Nations Office for Outer Space Affairs, sail models and requested facilities are being prepared for the sail deployment experiment under micro-gravity and low pressure conditions at Bremen Drop Tower, Germany. Results of those tests will provide an ultimate and wide knowledge about deployment in space environment to which system will be exposed during its mission. Outcomes of the numerical model and tests will be compared afterwards and will help the team in building a reliable and correct model of a very complex phenomenon of deployment of 4 c-shaped flat springs with surface attached. The verified model could be used inter alia to investigate if the PW-Sat2’s sail is scalable and how far is it possible to go with enlarging when creating systems for bigger satellites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cubesat" title="cubesat">cubesat</a>, <a href="https://publications.waset.org/abstracts/search?q=deorbitation" title=" deorbitation"> deorbitation</a>, <a href="https://publications.waset.org/abstracts/search?q=sail" title=" sail"> sail</a>, <a href="https://publications.waset.org/abstracts/search?q=space" title=" space"> space</a>, <a href="https://publications.waset.org/abstracts/search?q=debris" title=" debris"> debris</a> </p> <a href="https://publications.waset.org/abstracts/78492/numerical-analyses-of-dynamics-of-deployment-of-pw-sat2-deorbit-sail-compared-with-results-of-experiment-under-micro-gravity-and-low-pressure-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Sizing and Thermal Analysis of Mechanically Pumped Fluid Loop Thermal Control Technique for Small Satellite Scientific Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shanmugasundaram%20Selvadurai">Shanmugasundaram Selvadurai</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20Chandran"> Amal Chandran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small satellites have become an alternative low-cost solution for several missions to accomplish specific missions such as Earth imaging, Technology demonstration, Education, and other commercial purposes. Small satellite missions focusing on Infrared imaging applications require lower temperature for scientific instruments and such low temperature can be achieved only using external cryocoolers but the disadvantage is that they generate a large amount of waste heat. Existing passive thermal control techniques are not capable to handle such large thermal loads and hence one of the traditional active Thermal Control System (TCS) is studied for a small satellite configuration. This work aims to downscale the existing Mechanically Pumped Fluid Loop (MPFL) TCS to a 27U CubeSat platform for an imaginary scientific instrument. The temperature-sensitive detector in the instrument considered to be maintained between 130K and 150K to reduce dark current noise and increase the data quality. A Single-Phase fluid based MPFL is chosen for this system-level study and this TCS consists of a microfluid pump, a micro-cryocooler, a fluid accumulator, external heaters, flow regulators, and sensors. This work also explains the thermal control system architecture with a conceptual design, arrangement of all the components, and thermal analysis for different low orbit conditions. Sizing and extensive trade studies for the components are conducted and the results have shown that the Single-phase MPFL system is able to handle the given thermal loads and maintain the satellite’s interface temperature within the desired limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20thermal%20control%20system" title="active thermal control system">active thermal control system</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20thermal" title=" satellite thermal"> satellite thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanically%20pumped%20fluid%20loop%20system" title=" mechanically pumped fluid loop system"> mechanically pumped fluid loop system</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenics" title=" cryogenics"> cryogenics</a>, <a href="https://publications.waset.org/abstracts/search?q=cryocooler" title=" cryocooler"> cryocooler</a> </p> <a href="https://publications.waset.org/abstracts/138359/sizing-and-thermal-analysis-of-mechanically-pumped-fluid-loop-thermal-control-technique-for-small-satellite-scientific-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loris%20Franchi">Loris Franchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniele%20Calvi"> Daniele Calvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Corpino"> Sabrina Corpino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concurrent%20engineering" title="concurrent engineering">concurrent engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=negotiation%20in%20engineering%20design" title=" negotiation in engineering design"> negotiation in engineering design</a>, <a href="https://publications.waset.org/abstracts/search?q=multidisciplinary%20optimization" title=" multidisciplinary optimization"> multidisciplinary optimization</a> </p> <a href="https://publications.waset.org/abstracts/105602/enhance-concurrent-design-approach-through-a-design-methodology-based-on-an-artificial-intelligence-framework-guiding-group-decision-making-to-balanced-preliminary-design-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10