CINXE.COM

Search results for: CBI continuum

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: CBI continuum</title> <meta name="description" content="Search results for: CBI continuum"> <meta name="keywords" content="CBI continuum"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="CBI continuum" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="CBI continuum"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 231</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: CBI continuum</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Continuum of Maternal Care in Non Empowered Action Group States of India: Evidence from District Level Household Survey-IV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasikha%20Ramanand">Rasikha Ramanand</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Dixit"> Priyanka Dixit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Continuum of maternal care which includes antenatal care, delivery care and postnatal care aids in averting maternal deaths. The objective of this paper is to identify the association between previous experiences of child death on Continuum of Care (CoC) of recent child. Further, the study aimed at understanding where the drop-out rate was high in the continuum. Methods: The study was based on the Nation-wide District Level Household and Facility Survey (DLHS-4) conducted during 2012-13, which provides information on antenatal care, delivery care, percentage of women who received JSY benefits, percentage of women who had any pregnancy, delivery, the place of delivery etc. The sample included women who were selected from the non-EAG states who delivered at least two children. The data were analyzed using SPSS 20.Binary Logistic regression was applied to the data in which the Continuum of Care (CoC) was the dependent variable while the independent variables were entered as the covariates. Results: A major finding of the study was the antenatal to delivery care period where the drop-out rates were high. Also, it was found that a large proportion of women did not receive any of the services along the continuum. Conclusions: This study has clearly established the relationship between previous history of child loss and continuum of maternal care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenatal%20care" title="antenatal care">antenatal care</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20of%20care" title=" continuum of care"> continuum of care</a>, <a href="https://publications.waset.org/abstracts/search?q=child%20loss" title=" child loss"> child loss</a>, <a href="https://publications.waset.org/abstracts/search?q=delivery%20care" title=" delivery care"> delivery care</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a>, <a href="https://publications.waset.org/abstracts/search?q=maternal%20health%20care" title=" maternal health care"> maternal health care</a>, <a href="https://publications.waset.org/abstracts/search?q=postnatal%20care" title=" postnatal care"> postnatal care</a> </p> <a href="https://publications.waset.org/abstracts/90551/continuum-of-maternal-care-in-non-empowered-action-group-states-of-india-evidence-from-district-level-household-survey-iv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Continuum-Based Modelling Approaches for Cell Mechanics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20D.%20Bansod">Yogesh D. Bansod</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Bursa"> Jiri Bursa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quantitative study of cell mechanics is of paramount interest since it regulates the behavior of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as a combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20mechanics" title="cell mechanics">cell mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20models" title=" computational models"> computational models</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20approach" title=" continuum approach"> continuum approach</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20models" title=" mechanical models"> mechanical models</a> </p> <a href="https://publications.waset.org/abstracts/29027/continuum-based-modelling-approaches-for-cell-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Plasticity in Matrix Dominated Metal-Matrix Composite with One Active Slip Based Dislocation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Takele%20Kasa">Temesgen Takele Kasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of this paper is to suggest one active slip based continuum dislocation approach to matrix dominated MMC plasticity analysis. The approach centered the free energy principles through the continuum behavior of dislocations combined with small strain continuum kinematics. The analytical derivation of this method includes the formulation of one active slip system, the thermodynamic approach of dislocations, determination of free energy, and evolution of dislocations. In addition zero and non-zero energy dissipation analysis of dislocation evolution is also formulated by using varational energy minimization method. In general, this work shows its capability to analyze the plasticity of matrix dominated MMC with inclusions. The proposed method is also found to be capable of handling plasticity of MMC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20slip" title="active slip">active slip</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20dislocation" title=" continuum dislocation"> continuum dislocation</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion" title=" distortion"> distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=dominated" title=" dominated"> dominated</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20dominated" title=" matrix dominated"> matrix dominated</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a> </p> <a href="https://publications.waset.org/abstracts/66664/plasticity-in-matrix-dominated-metal-matrix-composite-with-one-active-slip-based-dislocation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Investigation of Damage in Glass Subjected to Static Indentation Using Continuum Damage Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Ismail">J. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Za%C3%AFri"> F. Zaïri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Na%C3%AFt-Abdelaziz"> M. Naït-Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Azari"> Z. Azari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a combined approach of continuum damage mechanics (CDM) and fracture mechanics is applied to model a glass plate behavior under static indentation. A spherical indenter is used and a CDM based constitutive model with an anisotropic damage tensor was selected and implemented into a finite element code to study the damage of glass. Various regions with critical damage values were predicted in good agreement with the experimental observations in the literature. In these regions, the directions of crack propagation, including both cracks initiating on the surface as well as in the bulk, were predicted using the strain energy density factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title="finite element modeling">finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20damage%20mechanics" title=" continuum damage mechanics"> continuum damage mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=indentation" title=" indentation"> indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=cracks" title=" cracks"> cracks</a> </p> <a href="https://publications.waset.org/abstracts/13462/investigation-of-damage-in-glass-subjected-to-static-indentation-using-continuum-damage-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qijiao%20He">Qijiao He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuum%20and%20rarefied%20gas%20flows" title="continuum and rarefied gas flows">continuum and rarefied gas flows</a>, <a href="https://publications.waset.org/abstracts/search?q=discontinuous%20Galerkin%20method" title=" discontinuous Galerkin method"> discontinuous Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20hydrodynamic%20equations" title=" generalized hydrodynamic equations"> generalized hydrodynamic equations</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/96484/micro-channel-flows-simulation-based-on-nonlinear-coupled-constitutive-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> The Free Vibration Analysis of Honeycomb Sandwich Beam using 3D and Continuum Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCrkan%20%C5%9Eakar">Gürkan Şakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fevzi%20%C3%87akmak%20Bolat"> Fevzi Çakmak Bolat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study free vibration analysis of aluminum honeycomb sandwich structures were carried out experimentally and numerically. The natural frequencies and mode shapes of sandwich structures fabricated with different configurations for clamped-free boundary condition were determined. The effects of lower and upper face sheet thickness, the core material thickness, cell diameter, cell angle and foil thickness on the vibration characteristics were examined. The numerical studies were performed with ANSYS package. While the sandwich structures were modeled in ANSYS the continuum model was used. Later, the numerical results were compared with the experimental findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandwich%20structure" title="sandwich structure">sandwich structure</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=numeric%20analysis" title=" numeric analysis"> numeric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title=" 3D model"> 3D model</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20model" title=" continuum model"> continuum model</a> </p> <a href="https://publications.waset.org/abstracts/31180/the-free-vibration-analysis-of-honeycomb-sandwich-beam-using-3d-and-continuum-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Formation of Physicalist and Mental Consciousness from a Continuous Four-Dimensional Continuum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nick%20Alex">Nick Alex</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Consciousness is inseparably connected with energy. Based on panpsychism, consciousness is a fundamental substance that emerged with the birth of the Universe from a continuous four-dimensional continuum. It consists of a physicalist form of consciousness characteristic of all matter and a mental form characteristic of neural networks. Due to the physicalist form of consciousness, metabolic processes were formed, and life in the form of living matter emerged. It is the same for all living matter. Mental consciousness began to develop 3000 million years after the birth of the Universe due to the physicalist form of consciousness, with the emergence of neural networks. Mental consciousness is individualized in contrast to physicalist consciousness. It is characterized by cognitive abilities, self-identity, and the ability to influence the world around us. Each level of consciousness is in its own homeostasis environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuum" title="continuum">continuum</a>, <a href="https://publications.waset.org/abstracts/search?q=physicalism" title=" physicalism"> physicalism</a>, <a href="https://publications.waset.org/abstracts/search?q=neurons" title=" neurons"> neurons</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism"> metabolism</a> </p> <a href="https://publications.waset.org/abstracts/191094/formation-of-physicalist-and-mental-consciousness-from-a-continuous-four-dimensional-continuum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Model of Cosserat Continuum Dispersion in a Half-Space with a Scatterer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Velez">Francisco Velez</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20David%20Gomez"> Juan David Gomez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dispersion effects on the Scattering for a semicircular canyon in a micropolar continuum are analyzed, by using a computational finite element scheme. The presence of microrotational waves and the dispersive SV waves affects the propagation of elastic waves. Here, a contrast with the classic model is presented, and the dependence with the micropolar parameters is studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scattering" title="scattering">scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=semicircular%20canyon" title=" semicircular canyon"> semicircular canyon</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20dispersion" title=" wave dispersion"> wave dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar%20medium" title=" micropolar medium"> micropolar medium</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20modeling" title=" FEM modeling"> FEM modeling</a> </p> <a href="https://publications.waset.org/abstracts/11667/model-of-cosserat-continuum-dispersion-in-a-half-space-with-a-scatterer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Hedonistic Utilitarianism: The Strategic Use of Digital Media along the Online-Offline Continuum of Sexualised Violence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katharina%20Kargel">Katharina Kargel</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederic%20Vobbe"> Frederic Vobbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study examines how offenders targeting children and adolescents strategically use digital media when committing acts of sexualised violence along the online-offline continuum. Even offenders who are previously known to their victims use digital media extensively. The choice to instrumentalise digital media in order to initiate, threaten, exploit and humiliate victims demonstrates the rationale of offenders when committing acts of digitally supported violence. Through digital media, offenders can assume the power of interpretation over their victims’ situations. The ways in which digital media is used to commit violence along the online-offline continuum are a direct manifestation of the hedonistic utilitarianism demonstrated by offenders: a disposition characterised by the weighing of pleasures (“mental states”) and intrinsic value expected from using digital media against the risk of an outcome subjectively experienced as uncomfortable. Thus, sexualised violence using digital media goes beyond the traditional understanding of sexual online grooming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sexualized%20violence" title="sexualized violence">sexualized violence</a>, <a href="https://publications.waset.org/abstracts/search?q=offender%20strategy" title=" offender strategy"> offender strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=grooming" title=" grooming"> grooming</a>, <a href="https://publications.waset.org/abstracts/search?q=children%20and%20adolescents" title=" children and adolescents"> children and adolescents</a>, <a href="https://publications.waset.org/abstracts/search?q=qualitative%20research" title=" qualitative research"> qualitative research</a>, <a href="https://publications.waset.org/abstracts/search?q=methodology" title=" methodology"> methodology</a> </p> <a href="https://publications.waset.org/abstracts/139518/hedonistic-utilitarianism-the-strategic-use-of-digital-media-along-the-online-offline-continuum-of-sexualised-violence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Applying the Crystal Model to Different Nuclear Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Amar">A. Amar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The angular distributions of the nuclear systems under consideration have been analyzed in the framework of the optical model (OM), where the real part was taken in the crystal model form. A crystal model (CM) has been applied to deuteron elastically scattered by ⁶,⁷Li and ⁹Be. A crystal model (CM) + distorted-wave Born approximation (DWBA) + dynamic polarization potential (DPP) potential has been applied to deuteron elastically scattered by ⁶,⁷Li and 9Be. Also, a crystal model has been applied to ⁶Li elastically scattered by ¹⁶O and ²⁸Sn in addition to the ⁷Li+⁷Li system and the ¹²C(alpha,⁸Be) ⁸Be reaction. The continuum-discretized coupled-channels (CDCC) method has been applied to the ⁷Li+⁷Li system and agreement between the crystal model and the continuum-discretized coupled-channels (CDCC) method has been observed. In general, the models succeeded in reproducing the differential cross sections at the full angular range and for all the energies under consideration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20model%20%28OM%29" title="optical model (OM)">optical model (OM)</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20model%20%28CM%29" title=" crystal model (CM)"> crystal model (CM)</a>, <a href="https://publications.waset.org/abstracts/search?q=distorted-wave%20born%20approximation%20%28DWBA%29" title=" distorted-wave born approximation (DWBA)"> distorted-wave born approximation (DWBA)</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20polarization%20potential%20%28DPP%29" title=" dynamic polarization potential (DPP)"> dynamic polarization potential (DPP)</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20continuum-discretized%20coupled-channels%20%28CDCC%29%20method" title=" the continuum-discretized coupled-channels (CDCC) method"> the continuum-discretized coupled-channels (CDCC) method</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20deuteron%20elastically%20scattered%20by%20%E2%81%B6" title=" and deuteron elastically scattered by ⁶"> and deuteron elastically scattered by ⁶</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%81%B7Li%20and%20%E2%81%B9Be" title="⁷Li and ⁹Be">⁷Li and ⁹Be</a> </p> <a href="https://publications.waset.org/abstracts/177307/applying-the-crystal-model-to-different-nuclear-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Continuity of Place-Identity: Identifying Regional Components of Kerala Architecture through 1805-1950</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20K.%20Kumar">Manoj K. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepthi%20Bathala"> Deepthi Bathala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Man has the need to know and feel as a part of the historical continuum and it is this continuum that reinforces his identity. Architecture and the built environment contribute to this identity as established by the various identity theories exploring the relationship between the two. Architecture which is organic has been successful in maintaining a continuum of identity until the advent of globalization when the world saw a drastic shift to architecture of ‘placelessness’. The answer to the perfect synthesis of ‘universalization’ and ‘regionalism’ is an ongoing quest. However, history has established a smooth transition from vernacular to colonial to modern unlike the architecture of today. The traditional Kerala architecture has evolved from the tropical climate, geography, local needs, materials, skills and foreign influences. It is unique in contrast to the architecture of the neighboring states as a result of the geographical barriers however influenced by the architecture of the Orient due to trade relations. Through 1805 to 1950, the European influence on the architecture of Kerala resulted in the emergence of the colonial style which managed to establish a continuum of the traditional architecture. The paper focuses on the identification of the components of architecture that established the continuity of place-identity in the architecture of Kerala and examines the transition from the traditional Kerala architecture to colonial architecture during the colonial period. Visual surveys based on the principles of urban design, cognitive mapping, typology analysis followed by the strong understanding of the morphological and built environment along with the matrix method are the research tools used. The understanding of these components of continuity can be useful in creating buildings which people can relate to in the present day. South-Asia shares the history of colonialism and the understanding of these components can pave the way for further research on how to establish a regional identity in the era of globalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colonial" title="colonial">colonial</a>, <a href="https://publications.waset.org/abstracts/search?q=identity" title=" identity"> identity</a>, <a href="https://publications.waset.org/abstracts/search?q=place" title=" place"> place</a>, <a href="https://publications.waset.org/abstracts/search?q=regional" title=" regional"> regional</a> </p> <a href="https://publications.waset.org/abstracts/67228/continuity-of-place-identity-identifying-regional-components-of-kerala-architecture-through-1805-1950" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Multiscale Hub: An Open-Source Framework for Practical Atomistic-To-Continuum Coupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Safdari">Masoud Safdari</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Fish"> Jacob Fish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite vast amount of existing theoretical knowledge, the implementation of a universal multiscale modeling, analysis, and simulation software framework remains challenging. Existing multiscale software and solutions are often domain-specific, closed-source and mandate a high-level of experience and skills in both multiscale analysis and programming. Furthermore, tools currently existing for Atomistic-to-Continuum (AtC) multiscaling are developed with the assumptions such as accessibility of high-performance computing facilities to the users. These issues mentioned plus many other challenges have reduced the adoption of multiscale in academia and especially industry. In the current work, we introduce Multiscale Hub (MsHub), an effort towards making AtC more accessible through cloud services. As a joint effort between academia and industry, MsHub provides a universal web-enabled framework for practical multiscaling. Developed on top of universally acclaimed scientific programming language Python, the package currently provides an open-source, comprehensive, easy-to-use framework for AtC coupling. MsHub offers an easy to use interface to prominent molecular dynamics and multiphysics continuum mechanics packages such as LAMMPS and MFEM (a free, lightweight, scalable C++ library for finite element methods). In this work, we first report on the design philosophy of MsHub, challenges identified and issues faced regarding its implementation. MsHub takes the advantage of a comprehensive set of tools and algorithms developed for AtC that can be used for a variety of governing physics. We then briefly report key AtC algorithms implemented in MsHub. Finally, we conclude with a few examples illustrating the capabilities of the package and its future directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomistic" title="atomistic">atomistic</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum" title=" continuum"> continuum</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale" title=" multiscale"> multiscale</a> </p> <a href="https://publications.waset.org/abstracts/75008/multiscale-hub-an-open-source-framework-for-practical-atomistic-to-continuum-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Peridynamic Modeling of an Isotropic Plate under Tensile and Flexural Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eda%20G%C3%B6k">Eda Gök</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Peridynamics is a new modeling concept of non-local interactions for solid structures. The formulations of Peridynamic (PD) theory are based on integral equations rather than differential equations. Through, undefined equations of associated problems are avoided. PD theory might be defined as continuum version of molecular dynamics. The medium is usually modeled with mass particles bonded together. Particles interact with each other directly across finite distances through central forces named as bonds. The main assumption of this theory is that the body is composed of material points which interact with other material points within a finite distance. Although, PD theory developed for discontinuities, it gives good results for structures which have no discontinuities. In this paper, displacement control of the isotropic plate under the effect of tensile and bending loading has been investigated by means of PD theory. A MATLAB code is generated to create PD bonds and corresponding surface correction factors. Using generated MATLAB code the geometry of the specimen is generated, and the code is implemented in Finite Element Software. The results obtained from non-local continuum theory are compared with the Finite Element Analysis results and analytical solution. The results show good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-local%20continuum%20mechanics" title="non-local continuum mechanics">non-local continuum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=peridynamic%20theory" title=" peridynamic theory"> peridynamic theory</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20structures" title=" solid structures"> solid structures</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20loading" title=" tensile loading"> tensile loading</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20loading" title=" flexural loading"> flexural loading</a> </p> <a href="https://publications.waset.org/abstracts/111268/peridynamic-modeling-of-an-isotropic-plate-under-tensile-and-flexural-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> A Proper Continuum-Based Reformulation of Current Problems in Finite Strain Plasticity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ladislav%20%C3%89csi">Ladislav Écsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Jan%C4%8Do"> Roland Jančo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contemporary multiplicative plasticity models assume that the body's intermediate configuration consists of an assembly of locally unloaded neighbourhoods of material particles that cannot be reassembled together to give the overall stress-free intermediate configuration since the neighbourhoods are not necessarily compatible with each other. As a result, the plastic deformation gradient, an inelastic component in the multiplicative split of the deformation gradient, cannot be integrated, and the material particle moves from the initial configuration to the intermediate configuration without a position vector and a plastic displacement field when plastic flow occurs. Such behaviour is incompatible with the continuum theory and the continuum physics of elastoplastic deformations, and the related material models can hardly be denoted as truly continuum-based. The paper presents a proper continuum-based reformulation of current problems in finite strain plasticity. It will be shown that the incompatible neighbourhoods in real material are modelled by the product of the plastic multiplier and the yield surface normal when the plastic flow is defined in the current configuration. The incompatible plastic factor can also model the neighbourhoods as the solution of the system of differential equations whose coefficient matrix is the above product when the plastic flow is defined in the intermediate configuration. The incompatible tensors replace the compatible spatial plastic velocity gradient in the former case or the compatible plastic deformation gradient in the latter case in the definition of the plastic flow rule. They act as local imperfections but have the same position vector as the compatible plastic velocity gradient or the compatible plastic deformation gradient in the definitions of the related plastic flow rules. The unstressed intermediate configuration, the unloaded configuration after the plastic flow, where the residual stresses have been removed, can always be calculated by integrating either the compatible plastic velocity gradient or the compatible plastic deformation gradient. However, the corresponding plastic displacement field becomes permanent with both elastic and plastic components. The residual strains and stresses originate from the difference between the compatible plastic/permanent displacement field gradient and the prescribed incompatible second-order tensor characterizing the plastic flow in the definition of the plastic flow rule, which becomes an assignment statement rather than an equilibrium equation. The above also means that the elastic and plastic factors in the multiplicative split of the deformation gradient are, in reality, gradients and that there is no problem with the continuum physics of elastoplastic deformations. The formulation is demonstrated in a numerical example using the regularized Mooney-Rivlin material model and modified equilibrium statements where the intermediate configuration is calculated, whose analysis results are compared with the identical material model using the current equilibrium statements. The advantages and disadvantages of each formulation, including their relationship with multiplicative plasticity, are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20strain%20plasticity" title="finite strain plasticity">finite strain plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20formulation" title=" continuum formulation"> continuum formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=regularized%20Mooney-Rivlin%20material%20model" title=" regularized Mooney-Rivlin material model"> regularized Mooney-Rivlin material model</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibility" title=" compatibility"> compatibility</a> </p> <a href="https://publications.waset.org/abstracts/158269/a-proper-continuum-based-reformulation-of-current-problems-in-finite-strain-plasticity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Unified Gas-Kinetic Scheme for Gas-Particle Flow in Shock-Induced Fluidization of Particles Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Wang">Zhao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Yan"> Hong Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a unified-gas kinetic scheme (UGKS) for the gas-particle flow is constructed. UGKS is a direct modeling method for both continuum and rarefied flow computations. The dynamics of particle and gas are described as rarefied and continuum flow, respectively. Therefore, we use the Bhatnagar-Gross-Krook (BGK) equation for the particle distribution function. For the gas phase, the gas kinetic scheme for Navier-Stokes equation is solved. The momentum transfer between gas and particle is achieved by the acceleration term added to the BGK equation. The new scheme is tested by a 2cm-in-thickness dense bed comprised of glass particles with 1.5mm in diameter, and reasonable agreement is achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas-particle%20flow" title="gas-particle flow">gas-particle flow</a>, <a href="https://publications.waset.org/abstracts/search?q=unified%20gas-kinetic%20scheme" title=" unified gas-kinetic scheme"> unified gas-kinetic scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum%20transfer" title=" momentum transfer"> momentum transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=shock-induced%20fluidization" title=" shock-induced fluidization"> shock-induced fluidization</a> </p> <a href="https://publications.waset.org/abstracts/94993/unified-gas-kinetic-scheme-for-gas-particle-flow-in-shock-induced-fluidization-of-particles-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> An Atomistic Approach to Define Continuum Mechanical Quantities in One Dimensional Nanostructures at Finite Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smriti">Smriti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajeet%20Kumar"> Ajeet Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a variant of the Irving-Kirkwood procedure to obtain the microscopic expressions of the cross-section averaged continuum fields such as internal force and moment in one-dimensional nanostructures in the non-equilibrium setting. In one-dimensional continuum theories for slender bodies, we deal with quantities such as mass, linear momentum, angular momentum, and strain energy densities, all defined per unit length. These quantities are obtained by integrating the corresponding pointwise (per unit volume) quantities over the cross-section of the slender body. However, no well-defined cross-section exists for these nanostructures at finite temperature. We thus define the cross-section of a nanorod to be an infinite plane which is fixed in space even when time progresses and defines the above continuum quantities by integrating the pointwise microscopic quantities over this infinite plane. The method yields explicit expressions of both the potential and kinetic parts of the above quantities. We further specialize in these expressions for helically repeating one-dimensional nanostructures in order to use them in molecular dynamics study of extension, torsion, and bending of such nanostructures. As, the Irving-Kirkwood procedure does not yield expressions of stiffnesses, we resort to a thermodynamic equilibrium approach to obtain the expressions of axial force, twisting moment, bending moment, and the associated stiffnesses by taking the first and second derivatives of the Helmholtz free energy with respect to conjugate strain measures. The equilibrium approach yields expressions independent of kinetic terms. We then establish the equivalence of the expressions obtained using the two approaches. The derived expressions are used to understand the extension, torsion, and bending of single-walled carbon nanotubes at non-zero temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoelasticity" title="thermoelasticity">thermoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20dimensional%20nanostructures" title=" one dimensional nanostructures"> one dimensional nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotube%20buckling" title=" nanotube buckling"> nanotube buckling</a> </p> <a href="https://publications.waset.org/abstracts/114810/an-atomistic-approach-to-define-continuum-mechanical-quantities-in-one-dimensional-nanostructures-at-finite-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> The Content-Based Classroom: Perspectives on Integrating Language and Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Ben%20Bennani">Mourad Ben Bennani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Views of language and language learning have undergone a tremendous change over the last decades. Language is no longer seen as a set of structured rules. It is rather viewed as a tool of interaction and communication. This shift in views has resulted in change in viewing language learning, which gave birth to various approaches and methodologies of language teaching. Two of these approaches are content-based instruction and content and language integrated learning (CLIL). These are similar approaches which integrate content and foreign/second language learning through various methodologies and models as a result of different implementations around the world. This presentation deals with sociocultural view of CBI and CLIL. It also defines language and content as vital components of CBI and CLIL. Next it reviews the origins of CBI and the continuum perspectives and CLIL definitions and models featured in the literature. Finally it summarizes current aspects around research in program evaluation with a focus on the benefits and challenges of these innovative approaches for second language teaching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBI" title="CBI">CBI</a>, <a href="https://publications.waset.org/abstracts/search?q=CLIL" title=" CLIL"> CLIL</a>, <a href="https://publications.waset.org/abstracts/search?q=CBI%20continuum" title=" CBI continuum"> CBI continuum</a>, <a href="https://publications.waset.org/abstracts/search?q=CLIL%20models" title=" CLIL models"> CLIL models</a> </p> <a href="https://publications.waset.org/abstracts/40898/the-content-based-classroom-perspectives-on-integrating-language-and-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Quality of Life Assessment across the Cancer Continuum: Understanding the Role of an Exercise Rehabilitation Programme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernat-Carles%20Serd%C3%A0%20Ferrer">Bernat-Carles Serdà Ferrer</a>, <a href="https://publications.waset.org/abstracts/search?q=Arantza%20Del%20Valle%20G%C3%B3mez"> Arantza Del Valle Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Quality of Life (QoL) paradigm is multidimensional, dynamic and modular and its definition differs across the cancer continuum. The challenge in the interpretation of QoL data in clinical research is that QoL is influenced by psychological phenomena such as adaptation to illness. This research aims to obtain a valid and sensitive assessment of QoL change over the continuum disease, and to evaluate a rehabilitation programme aimed at inverting the observed decrease in QoL when patients return to daily living activities. The sample comprised 66 men. Patients were first assessed to establish a baseline (P1-diagnosis). This was followed by a post-test (P2-discharge) and a then-test measurement (P3-retrospective evaluation) and after returning home patients were randomized in experimental and control groups. The experimental group attended a rehabilitation programme over 24 weeks (P4). Results show that from baseline to post-test, QoL decreased significantly. The recalibration then-test confirmed a low QoL in all periods evaluated. Significant differences between the experimental and control groups prove the positive effect of the Exercise Rehabilitation Programme (ERP) on QoL. Understanding the real dynamic of QoL over time would help to adapt rehabilitation programmes by improving sensitivity and efficacy and provide professionals with a more accurate perception of the impact of treatment and side effects on patients&rsquo; QoL. Our results underline the importance of changing the approach adopted by health professionals towards one of watchful waiting on patients&rsquo; QoL until their complete recovery in daily life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exercise" title="exercise">exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation%20programme" title=" rehabilitation programme"> rehabilitation programme</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20shift" title=" response shift"> response shift</a> </p> <a href="https://publications.waset.org/abstracts/82220/quality-of-life-assessment-across-the-cancer-continuum-understanding-the-role-of-an-exercise-rehabilitation-programme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Analytical Description of Disordered Structures in Continuum Models of Pattern Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyula%20I.%20T%C3%B3th">Gyula I. Tóth</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaho%20Abdalla"> Shaho Abdalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though numerical simulations indeed have a significant precursory/supportive role in exploring the disordered phase displaying no long-range order in pattern formation models, studying the stability properties of this phase and determining the order of the ordered-disordered phase transition in these models necessitate an analytical description of the disordered phase. First, we will present the results of a comprehensive statistical analysis of a large number (1,000-10,000) of numerical simulations in the Swift-Hohenberg model, where the bulk disordered (or amorphous) phase is stable. We will show that the average free energy density (over configurations) converges, while the variance of the energy density vanishes with increasing system size in numerical simulations, which suggest that the disordered phase is a thermodynamic phase (i.e., its properties are independent of the configuration in the macroscopic limit). Furthermore, the structural analysis of this phase in the Fourier space suggests that the phase can be modeled by a colored isotropic Gaussian noise, where any instant of the noise describes a possible configuration. Based on these results, we developed the general mathematical framework of finding a pool of solutions to partial differential equations in the sense of continuous probability measure, which we will present briefly. Applying the general idea to the Swift-Hohenberg model we show, that the amorphous phase can be found, and its properties can be determined analytically. As the general mathematical framework is not restricted to continuum theories, we hope that the proposed methodology will open a new chapter in studying disordered phases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fundamental%20theory" title="fundamental theory">fundamental theory</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20physics" title=" mathematical physics"> mathematical physics</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20models" title=" continuum models"> continuum models</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20description" title=" analytical description"> analytical description</a> </p> <a href="https://publications.waset.org/abstracts/112130/analytical-description-of-disordered-structures-in-continuum-models-of-pattern-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Household Food Insecurity and Associated Coping Strategies in Urban, Peri-Urban and Rural Settings: A Case of Morogoro and Iringa Towns, Tanzania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Tumaini">U. Tumaini</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Msuya"> J. Msuya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food insecurity is a worrying challenge worldwide with sub-Saharan Africa including Tanzania being the most affected. Although factors that influence household food access security status and ways of coping with such factors have been examined, little has been reported on how these coping strategies vary along the urban-rural continuum especially in medium-sized towns. The purpose of this study was to identify food insecurity coping strategies employed by households and assess whether they are similar along the urban-rural continuum. The study was cross-sectional in design whereby a random sample of 279 households was interviewed using structured questionnaire. Data were analysed using Statistical Package for Social Sciences (SPSS) Version 20 software. It was revealed that the proportion of households relying on less preferred and quality foods, eating fewer meals per day, undertaking work for food or money, performing farm and off-farm activities, and selling fall back assets was higher in rural settings compared to urban and peri-urban areas. Similarly, more households in urban and peri-urban areas cope with food access insecurity by having strict food budgets compared to those in rural households (p &le; 0.001). The study concludes that food insecurity coping strategies vary significantly from one spatial entity to another. It is thereby recommended that poor, particularly rural households should be supported to diversify their income-generating activities not only for food security purposes during times of food shortage but also as businesses aimed at increasing their household incomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20coping%20strategies" title="food coping strategies">food coping strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=household%20food%20insecurity" title=" household food insecurity"> household food insecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=medium-sized%20towns" title=" medium-sized towns"> medium-sized towns</a>, <a href="https://publications.waset.org/abstracts/search?q=urban-rural%20continuum" title=" urban-rural continuum"> urban-rural continuum</a> </p> <a href="https://publications.waset.org/abstracts/61648/household-food-insecurity-and-associated-coping-strategies-in-urban-peri-urban-and-rural-settings-a-case-of-morogoro-and-iringa-towns-tanzania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anny%20Zambrano">Anny Zambrano</a>, <a href="https://publications.waset.org/abstracts/search?q=German%20Gonzalez"> German Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Yair%20Quintero"> Yair Quintero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuum%20damage" title="continuum damage">continuum damage</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20fractures" title=" hydraulic fractures"> hydraulic fractures</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fractures" title=" natural fractures"> natural fractures</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20fracture%20network" title=" complex fracture network"> complex fracture network</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a> </p> <a href="https://publications.waset.org/abstracts/67818/application-of-continuum-damage-concept-to-simulation-of-the-interaction-between-hydraulic-fractures-and-natural-fractures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Mathematical Model for Interaction Energy of Toroidal Molecules and Other Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakhapoom%20Sarapat">Pakhapoom Sarapat</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20M.%20Hill"> James M. Hill</a>, <a href="https://publications.waset.org/abstracts/search?q=Duangkamon%20Baowan"> Duangkamon Baowan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotori provide several properties such as high tensile strength and heat resistance. They are promised to be ideal structures for encapsulation, and their encapsulation ability can be determined by the interaction energy between the carbon nanotori and the encapsulated nanostructures. Such interaction energy is evaluated using Lennard-Jones potential and continuum approximation. Here, four problems relating to toroidal molecules are determined in order to find the most stable configuration. Firstly, the interaction energy between a carbon nanotorus and an atom is examined. The second problem relates to the energy of a fullerene encapsulated inside a carbon nanotorus. Next, the interaction energy between two symmetrically situated and parallel nanotori is considered. Finally, the classical mechanics is applied to model the interaction energy between the toroidal structure of cyclodextrin and the spherical DNA molecules. These mathematical models might be exploited to study a number of promising devices for future developments in bio and nanotechnology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotori" title="carbon nanotori">carbon nanotori</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20approximation" title=" continuum approximation"> continuum approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20energy" title=" interaction energy"> interaction energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Lennard-Jones%20potential" title=" Lennard-Jones potential"> Lennard-Jones potential</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology "> nanotechnology </a> </p> <a href="https://publications.waset.org/abstracts/109061/mathematical-model-for-interaction-energy-of-toroidal-molecules-and-other-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Development of International Entry-Level Nursing Competencies to Address the Continuum of Substance Use </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheyenne%20Johnson">Cheyenne Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Samantha%20Robinson"> Samantha Robinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20%20Chant"> Christina Chant</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann%20M.%20Mitchell"> Ann M. Mitchell</a>, <a href="https://publications.waset.org/abstracts/search?q=Carol%20Price"> Carol Price</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmel%20Clancy"> Carmel Clancy</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Searby"> Adam Searby</a>, <a href="https://publications.waset.org/abstracts/search?q=Deborah%20S.%20Finnell"> Deborah S. Finnell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Substance use along the continuum from at-risk use to a substance use disorder (SUD) contributes substantially to the burden of disease and related harms worldwide. There is a growing body of literature that highlights the lack of substance use related content in nursing curricula. Furthermore, there is also a lack of consensus on key competencies necessary for entry-level nurses. Globally, there is a lack of established nursing competencies related to prevention, health promotion, harm reduction and treatment of at-risk substance use and SUDs. At a critical time in public health, this gap in nursing curricula contributes to a lack of preparation for entry-level nurses to support people along the continuum of substance use. Thus, in practice, early opportunities for screening, support, and interventions may be missed. To address this gap, an international committee was convened to develop international entry-level nursing competencies specifying the knowledge, skills, and abilities that all nurses should possess in order to address the continuum of substance use. Methodology: An international steering committee, including representation from Canada, United States, United Kingdom, and Australia was established to lead this work over a one-year time period. The steering committee conducted a scoping review, undertaken to examine nursing competency frameworks, and to inform a competency structure that would guide this work. The next steps were to outline key competency areas and establish leaders for working groups to develop the competencies. In addition, a larger international committee was gathered to contribute to competency working groups, review the collective work and concur on the final document. Findings: A comprehensive framework was developed with competencies covering a wide spectrum of substance use across the lifespan and in the context of prevention, health promotion, harm reduction and treatment, including special populations. The development of this competency-based framework meets an identified need to provide guidance for universities, health authorities, policy makers, nursing regulators and other organizations that provide and support nursing education which focuses on care for patients and families with at-risk substance use and SUDs. Conclusion: Utilizing these global competencies as expected outcomes of an educational and skill building curricula for entry-level nurses holds great promise for incorporating evidence-informed training in the care and management of people across the continuum of substance use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=addiction%20nursing" title="addiction nursing">addiction nursing</a>, <a href="https://publications.waset.org/abstracts/search?q=addiction%20nursing%20curriculum" title=" addiction nursing curriculum"> addiction nursing curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=competencies" title=" competencies"> competencies</a>, <a href="https://publications.waset.org/abstracts/search?q=substance%20use" title=" substance use"> substance use</a> </p> <a href="https://publications.waset.org/abstracts/87026/development-of-international-entry-level-nursing-competencies-to-address-the-continuum-of-substance-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> Evaluation of the Effectiveness of a Sewage Treatment Plant in Oman: Samail Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azza%20Mohsin%20Al-Hashami">Azza Mohsin Al-Hashami</a>, <a href="https://publications.waset.org/abstracts/search?q=Reginald%20Victor"> Reginald Victor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Treatment of wastewater involves physical, chemical, and biological processes to remove the pollutants from wastewater. This study evaluates of the effectiveness of sewage treatment plants (STP) in Samail, Oman. Samail STP has tertiary treatment using conventional activated sludge with surface aeration. The collection of wastewater is through a network with a total length of about 60 km and also by tankers for the areas outside the network. Treated wastewater from this STP is used for the irrigation of vegetation in the STP premises and as a backwash for sand filters. Some treated water is supplied to the Samail municipality, which uses it for the landscaping, road construction, and 'the Million Date Palms' project. In this study, homogenous samples were taken from eight different treatment stages along the treatment continuum for one year, at a frequency of once a month, to evaluate the physical, chemical, and biological parameters. All samples were analyzed using the standard methods for the examination of water and wastewater. The spatial variations in water quality along the continuum are discussed. Despite these variations, the treated wastewater from Samail STP was of good quality, and most of the parameters are within class A category in Oman Standards for wastewater reuse and discharge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=STP" title=" STP"> STP</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=processes" title=" processes"> processes</a> </p> <a href="https://publications.waset.org/abstracts/119536/evaluation-of-the-effectiveness-of-a-sewage-treatment-plant-in-oman-samail-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> Temporal Delays along the Neurosurgical Care Continuum for Traumatic Brain Injury Patients in Mulago Hospital in Kampala Uganda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silvia%20D.%20Vaca">Silvia D. Vaca</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20J.%20Kuo"> Benjamin J. Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Joao%20Ricardo%20N.%20Vissoci"> Joao Ricardo N. Vissoci</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20A.%20Staton"> Catherine A. Staton</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20W.%20Xu"> Linda W. Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Muhumuza"> Michael Muhumuza</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Ssenyonjo"> Hussein Ssenyonjo</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Mukasa"> John Mukasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Kiryabwire"> Joel Kiryabwire</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20E.%20Rice"> Henry E. Rice</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerald%20A.%20Grant"> Gerald A. Grant</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20M.%20Haglund"> Michael M. Haglund</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: While delays to care exist in resource rich settings, greater delays are seen along the care continuum in low- and middle-income countries (LMICs) largely due to limited healthcare capacity to address the disproportional rates of traumatic brain injury (TBI) in Sub Saharan Africa (SSA). While many LMICs have government subsidized systems to offset surgical costs, the burden of securing funds by the patients for medications, supplies, and CT diagnostics poses a significant challenge to timely surgical interventions. In Kampala Uganda, the challenge of obtaining timely CT scans is twofold. First, due to a lack of a functional CT scanner at the tertiary hospital, patients need to arrange their own transportation to the nearby private facility for CT scans. Second, self-financing for the private CT scans ranges from $80 - $130, which is near the average monthly income in Kampala. These bottlenecks contribute significantly to the care continuum delays and are associated with poor TBI outcomes. Objective: The objectives of this study are to 1) describe the temporal delays through a modified three delays model that fits the context of neurosurgical interventions for TBI patients in Kampala and 2) investigate the association between delays and mortality. Methods: Prospective data were collected for 563 TBI patients presenting to a tertiary hospital in Kampala from 1 June – 30 November 2016. Four time intervals were constructed along five time points: injury, hospital arrival, neurosurgical evaluation, CT results, and definitive surgery. Time interval differences among mild, moderate and severe TBI and their association with mortality were analyzed. Results: The mortality rate of all TBI patients presenting to MNRH was 9.6%, which ranged from 4.7% for mild and moderate TBI patients receiving surgery to 81.8% for severe TBI patients who failed to receive surgery. The duration from injury to surgery varied considerably across TBI severity with the largest gap seen between mild TBI (174 hours) and severe TBI (69 hours) patients. Further analysis revealed care continuum differences for interval 3 (neurosurgical evaluation to CT result) and 4 (CT result to surgery) between severe TBI patients (7 hours for interval 3 and 24 hours for interval 4) and mild TBI patients (19 hours for interval 3, and 96 hours for interval 4). These post-arrival delays were associated with mortality for mild (p=0.05) and moderate TBI (p=0.03) patients. Conclusions: To our knowledge, this is the first analysis using a modified ‘three delays’ framework to analyze the care continuum of TBI patients in Uganda from injury to surgery. We found significant associations between delays and mortality for mild and moderate TBI patients. As it currently stands, poorer outcomes were observed for these mild and moderate TBI patients who were managed non-operatively or failed to receive surgery while surgical services were shunted to more severely ill patients. While well intentioned, high mortality rates were still observed for the severe TBI patients managed surgically. These results suggest the need for future research to optimize triage practices, understand delay contributors, and improve pre-hospital logistical referral systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=care%20continuum" title="care continuum">care continuum</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20neurosurgery" title=" global neurosurgery"> global neurosurgery</a>, <a href="https://publications.waset.org/abstracts/search?q=Kampala%20Uganda" title=" Kampala Uganda"> Kampala Uganda</a>, <a href="https://publications.waset.org/abstracts/search?q=LMIC" title=" LMIC"> LMIC</a>, <a href="https://publications.waset.org/abstracts/search?q=Mulago" title=" Mulago"> Mulago</a>, <a href="https://publications.waset.org/abstracts/search?q=prospective%20registry" title=" prospective registry"> prospective registry</a>, <a href="https://publications.waset.org/abstracts/search?q=traumatic%20brain%20injury" title=" traumatic brain injury"> traumatic brain injury</a> </p> <a href="https://publications.waset.org/abstracts/77360/temporal-delays-along-the-neurosurgical-care-continuum-for-traumatic-brain-injury-patients-in-mulago-hospital-in-kampala-uganda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Traumatic Brain Injury Neurosurgical Care Continuum Delays in Mulago Hospital in Kampala Uganda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silvia%20D.%20Vaca">Silvia D. Vaca</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20J.%20Kuo"> Benjamin J. Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Joao%20Ricardo%20Nickenig%20Vissoci"> Joao Ricardo Nickenig Vissoci</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20A.%20Staton"> Catherine A. Staton</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20W.%20Xu"> Linda W. Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Muhumuza"> Michael Muhumuza</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Ssenyonjo"> Hussein Ssenyonjo</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Mukasa"> John Mukasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Kiryabwire"> Joel Kiryabwire</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20E.%20Rice"> Henry E. Rice</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerald%20A.%20Grant"> Gerald A. Grant</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20M.%20Haglund"> Michael M. Haglund</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Patients with traumatic brain injury (TBI) can develop rapid neurological deterioration from swelling and intracranial hematomas, which can result in focal tissue ischemia, brain compression, and herniation. Moreover, delays in management increase the risk of secondary brain injury from hypoxemia and hypotension. Therefore, in TBI patients with subdural hematomas (SDHs) and epidural hematomas (EDHs), surgical intervention is both necessary and time sensitive. Significant delays are seen along the care continuum in low- and middle-income countries (LMICs) largely due to limited healthcare capacity to address the disproportional rates of TBI in Sub Saharan Africa (SSA). While many LMICs have subsidized systems to offset surgical costs, the burden of securing funds by the patients for medications, supplies, and CT diagnostics poses a significant challenge to timely surgical interventions. In Kampala Uganda, the challenge of obtaining timely CT scans is twofold: logistical and financial barriers. These bottlenecks contribute significantly to the care continuum delays and are associated with poor TBI outcomes. Objective: The objectives of this study are to 1) describe the temporal delays through a modified three delays model that fits the context of neurosurgical interventions for TBI patients in Kampala and 2) investigate the association between delays and mortality. Methods: Prospective data were collected for 563 TBI patients presenting to a tertiary hospital in Kampala from 1 June – 30 November 2016. Four time intervals were constructed along five time points: injury, hospital arrival, neurosurgical evaluation, CT results, and definitive surgery. Time interval differences among mild, moderate and severe TBI and their association with mortality were analyzed. Results: The mortality rate of all TBI patients presenting to MNRH was 9.6%, which ranged from 4.7% for mild and moderate TBI patients receiving surgery to 81.8% for severe TBI patients who failed to receive surgery. The duration from injury to surgery varied considerably across TBI severity with the largest gap seen between mild TBI (174 hours) and severe TBI (69 hours) patients. Further analysis revealed care continuum differences for interval 3 (neurosurgical evaluation to CT result) and 4 (CT result to surgery) between severe TBI patients (7 hours for interval 3 and 24 hours for interval 4) and mild TBI patients (19 hours for interval 3, and 96 hours for interval 4). These post-arrival delays were associated with mortality for mild (p=0.05) and moderate TBI (p=0.03) patients. Conclusions: To our knowledge, this is the first analysis using a modified 'three delays' framework to analyze the care continuum of TBI patients in Uganda from injury to surgery. We found significant associations between delays and mortality for mild and moderate TBI patients. As it currently stands, poorer outcomes were observed for these mild and moderate TBI patients who were managed non-operatively or failed to receive surgery while surgical services were shunted to more severely ill patients. While well intentioned, high mortality rates were still observed for the severe TBI patients managed surgically. These results suggest the need for future research to optimize triage practices, understand delay contributors, and improve pre-hospital logistical referral systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=care%20continuum" title="care continuum">care continuum</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20neurosurgery" title=" global neurosurgery"> global neurosurgery</a>, <a href="https://publications.waset.org/abstracts/search?q=Kampala%20Uganda" title=" Kampala Uganda"> Kampala Uganda</a>, <a href="https://publications.waset.org/abstracts/search?q=LMIC" title=" LMIC"> LMIC</a>, <a href="https://publications.waset.org/abstracts/search?q=Mulago" title=" Mulago"> Mulago</a>, <a href="https://publications.waset.org/abstracts/search?q=traumatic%20brain%20injury" title=" traumatic brain injury"> traumatic brain injury</a> </p> <a href="https://publications.waset.org/abstracts/79860/traumatic-brain-injury-neurosurgical-care-continuum-delays-in-mulago-hospital-in-kampala-uganda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Modeling Anisotropic Damage Algorithms of Metallic Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahar%20Ayhan">Bahar Ayhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper is concerned with the numerical modeling of the inelastic behavior of the anisotropically damaged ductile materials, which are based on a generalized macroscopic theory within the framework of continuum damage mechanics. Kinematic decomposition of the strain rates into elastic, plastic and damage parts is basis for accomplishing the structure of continuum theory. The evolution of the damage strain rate tensor is detailed with the consideration of anisotropic effects. Helmholtz free energy functions are constructed separately for the elastic and inelastic behaviors in order to be able to address the plastic and damage process. Additionally, the constitutive structure, which is based on the standard dissipative material approach, is elaborated with stress tensor, a yield criterion for plasticity and a fracture criterion for damage besides the potential functions of each inelastic phenomenon. The finite element method is used to approximate the linearized variational problem. Stress and strain outcomes are solved by using the numerical integration algorithm based on operator split methodology with a plastic and damage (multiplicator) variable separately. Numerical simulations are proposed in order to demonstrate the efficiency of the formulation by comparing the examples in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20damage" title="anisotropic damage">anisotropic damage</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a> </p> <a href="https://publications.waset.org/abstracts/75980/modeling-anisotropic-damage-algorithms-of-metallic-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Contact-Impact Analysis of Continuum Compliant Athletic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theddeus%20Tochukwu%20Akano">Theddeus Tochukwu Akano</a>, <a href="https://publications.waset.org/abstracts/search?q=Omotayo%20Abayomi%20Fakinlede"> Omotayo Abayomi Fakinlede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proper understanding of the behavior of compliant mechanisms use by athletes is important in order to avoid catastrophic failure. Such compliant mechanisms like the flex-run require the knowledge of their dynamic response and deformation behavior under quickly varying loads. The modeling of finite deformations of the compliant athletic system is described by Neo-Hookean model under contact-impact conditions. The dynamic impact-contact governing equations for both the target and impactor are derived based on the updated Lagrangian approach. A method where contactor and target are considered as a united body is applied in the formulation of the principle of virtual work for the bodies. In this paper, methods of continuum mechanics and nonlinear finite element method were deployed to develop a model that could capture the behavior of the compliant athletic system under quickly varying loads. A hybrid system of symbolic algebra (AceGEN) and a compiled back end (AceFEM) were employed, leveraging both ease of use and computational efficiency. The simulated results reveal the effect of the various contact-impact conditions on the deformation behavior of the impacting compliant mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalue%20problems" title="eigenvalue problems">eigenvalue problems</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=robin%20boundary%20condition" title=" robin boundary condition"> robin boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=sturm-liouville%20problem" title=" sturm-liouville problem"> sturm-liouville problem</a> </p> <a href="https://publications.waset.org/abstracts/37921/contact-impact-analysis-of-continuum-compliant-athletic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> A Review on the Problems of Constructing a Theory of Quantum Gravity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amber%20Jamal">Amber Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Siddiqui"> Imran Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Tanveer%20Iqbal"> Syed Tanveer Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This review is aimed to shed some light on problems constructing a theory of spacetime and geometry in terms of all quantum degrees of freedom called ‘Quantum Gravity’. Such a theory, which is effective at all scales of distances and energies, describes the enigma of the beginning of the Universe, its possible end, and reducing to general relativity at large distances but in a semi-classical approximation. Furthermore, the theory of quantum gravity also describes the Universe as a whole and provides a description of most fundamental questions that have puzzled scientists for decades, such as: what is space, what is time, and what is the fundamental structure of the Universe, is the spacetime discrete, if it is, where does the continuum of spacetime come from at low energies and macroscopic scales and where does it emerge from its fundamentally discrete building blocks? Quantum Field Theory (QFT) is a framework which describes the microscopic properties and dynamics of the basic building blocks of any condensed matter system. In QFT, atoms are quanta of continuous fields. At smaller scales or higher energies, the continuum description of spacetime fails. Therefore, a new description is required in terms of microscopic constituents (atoms or molecules). The objective of this scientific endeavor is to discuss the above-mentioned problems rigorously and to discuss possible way-out of the problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=QFT" title="QFT">QFT</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20degrees%20of%20freedom" title=" quantum degrees of freedom"> quantum degrees of freedom</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20gravity" title=" quantum gravity"> quantum gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-classical%20approximation" title=" semi-classical approximation"> semi-classical approximation</a> </p> <a href="https://publications.waset.org/abstracts/130610/a-review-on-the-problems-of-constructing-a-theory-of-quantum-gravity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Effect of Velocity-Slip in Nanoscale Electroosmotic Flows: Molecular and Continuum Transport Perspectives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alper%20T.%20Celebi">Alper T. Celebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Beskok"> Ali Beskok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electroosmotic (EO) slip flows in nanochannels are investigated using non-equilibrium molecular dynamics (MD) simulations, and the results are compared with analytical solution of Poisson-Boltzmann and Stokes (PB-S) equations with slip contribution. The ultimate objective of this study is to show that well-known continuum flow model can accurately predict the EO velocity profiles in nanochannels using the slip lengths and apparent viscosities obtained from force-driven flow simulations performed at various liquid-wall interaction strengths. EO flow of aqueous NaCl solution in silicon nanochannels are simulated under realistic electrochemical conditions within the validity region of Poisson-Boltzmann theory. A physical surface charge density is determined for nanochannels based on dissociations of silanol functional groups on channel surfaces at known salt concentration, temperature and local pH. First, we present results of density profiles and ion distributions by equilibrium MD simulations, ensuring that the desired thermodynamic state and ionic conditions are satisfied. Next, force-driven nanochannel flow simulations are performed to predict the apparent viscosity of ionic solution between charged surfaces and slip lengths. Parabolic velocity profiles obtained from force-driven flow simulations are fitted to a second-order polynomial equation, where viscosity and slip lengths are quantified by comparing the coefficients of the fitted equation with continuum flow model. Presence of charged surface increases the viscosity of ionic solution while the velocity-slip at wall decreases. Afterwards, EO flow simulations are carried out under uniform electric field for different liquid-wall interaction strengths. Velocity profiles present finite slips near walls, followed with a conventional viscous flow profile in the electrical double layer that reaches a bulk flow region in the center of the channel. The EO flow enhances with increased slip at the walls, which depends on wall-liquid interaction strength and the surface charge. MD velocity profiles are compared with the predictions from analytical solutions of the slip modified PB-S equation, where the slip length and apparent viscosity values are obtained from force-driven flow simulations in charged silicon nano-channels. Our MD results show good agreements with the analytical solutions at various slip conditions, verifying the validity of PB-S equation in nanochannels as small as 3.5 nm. In addition, the continuum model normalizes slip length with the Debye length instead of the channel height, which implies that enhancement in EO flows is independent of the channel height. Further MD simulations performed at different channel heights also shows that the flow enhancement due to slip is independent of the channel height. This is important because slip enhanced EO flow is observable even in micro-channels experiments by using a hydrophobic channel with large slip and high conductivity solutions with small Debye length. The present study provides an advanced understanding of EO flows in nanochannels. Correct characterization of nanoscale EO slip flow is crucial to discover the extent of well-known continuum models, which is required for various applications spanning from ion separation to drug delivery and bio-fluidic analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroosmotic%20flow" title="electroosmotic flow">electroosmotic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20length" title=" slip length"> slip length</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity-slip" title=" velocity-slip"> velocity-slip</a> </p> <a href="https://publications.waset.org/abstracts/95064/effect-of-velocity-slip-in-nanoscale-electroosmotic-flows-molecular-and-continuum-transport-perspectives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CBI%20continuum&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CBI%20continuum&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CBI%20continuum&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CBI%20continuum&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CBI%20continuum&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CBI%20continuum&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CBI%20continuum&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=CBI%20continuum&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10