CINXE.COM

Search results for: Ansys ICEPAK

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Ansys ICEPAK</title> <meta name="description" content="Search results for: Ansys ICEPAK"> <meta name="keywords" content="Ansys ICEPAK"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Ansys ICEPAK" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Ansys ICEPAK"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 444</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Ansys ICEPAK</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">444</span> Determination of Temperature Dependent Characteristic Material Properties of Commercial Thermoelectric Modules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Koyuncu">Ahmet Koyuncu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Berkan%20Erdogmus"> Abdullah Berkan Erdogmus</a>, <a href="https://publications.waset.org/abstracts/search?q=Orkun%20Dogu"> Orkun Dogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinan%20Uygur"> Sinan Uygur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoelectric modules are integrated to electronic components to keep their temperature in specific values in electronic cooling applications. They can be used in different ambient temperatures. The cold side temperatures of thermoelectric modules depend on their hot side temperatures, operation currents, and heat loads. Performance curves of thermoelectric modules are given at most two different hot surface temperatures in product catalogs. Characteristic properties are required to select appropriate thermoelectric modules in thermal design phase of projects. Generally, manufacturers do not provide characteristic material property values of thermoelectric modules to customers for confidentiality. Common commercial software applied like ANSYS ICEPAK, FloEFD, etc., include thermoelectric modules in their libraries. Therefore, they can be easily used to predict the effect of thermoelectric usage in thermal design. Some software requires only the performance values in different temperatures. However, others like ICEPAK require three temperature-dependent equations for material properties (Seebeck coefficient (α), electrical resistivity (β), and thermal conductivity (γ)). Since the number and the variety of thermoelectric modules are limited in this software, definitions of characteristic material properties of thermoelectric modules could be required. In this manuscript, the method of derivation of characteristic material properties from the datasheet of thermoelectric modules is presented. Material characteristics were estimated from two different performance curves by experimentally and numerically in this study. Numerical calculations are accomplished in ICEPAK by using a thermoelectric module exists in the ICEPAK library. A new experimental setup was established to perform experimental study. Because of similar results of numerical and experimental studies, it can be said that proposed equations are approved. This approximation can be suggested for the analysis includes different type or brand of TEC modules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title="electrical resistivity">electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20characteristics" title=" material characteristics"> material characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20coolers" title=" thermoelectric coolers"> thermoelectric coolers</a>, <a href="https://publications.waset.org/abstracts/search?q=seebeck%20coefficient" title=" seebeck coefficient"> seebeck coefficient</a> </p> <a href="https://publications.waset.org/abstracts/147420/determination-of-temperature-dependent-characteristic-material-properties-of-commercial-thermoelectric-modules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">443</span> Electronics Thermal Management Driven Design of an IP65-Rated Motor Inverter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Kamble">Sachin Kamble</a>, <a href="https://publications.waset.org/abstracts/search?q=Raghothama%20Anekal"> Raghothama Anekal</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivakumar%20Bhavi"> Shivakumar Bhavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal management of electronic components packaged inside an IP65 rated enclosure is of prime importance in industrial applications. Electrical enclosure protects the multiple board configurations such as inverter, power, controller board components, busbars, and various power dissipating components from harsh environments. Industrial environments often experience relatively warm ambient conditions, and the electronic components housed in the enclosure dissipate heat, due to which the enclosures and the components require thermal management as well as reduction of internal ambient temperatures. Design of Experiments based thermal simulation approach with MOSFET arrangement, Heat sink design, Enclosure Volume, Copper and Aluminum Spreader, Power density, and Printed Circuit Board (PCB) type were considered to optimize air temperature inside the IP65 enclosure to ensure conducive operating temperature for controller board and electronic components through the different modes of heat transfer viz. conduction, natural convection and radiation using Ansys ICEPAK. MOSFET&rsquo;s with the parallel arrangement, IP65 enclosure molded heat sink with rectangular fins on both enclosures, specific enclosure volume to satisfy the power density, Copper spreader to conduct heat to the enclosure, optimized power density value and selecting Aluminum clad PCB which improves the heat transfer were the contributors towards achieving a conducive operating temperature inside the IP-65 rated Motor Inverter enclosure. A reduction of 52 ℃ was achieved in internal ambient temperature inside the IP65 enclosure between baseline and final design parameters, which met the operative temperature requirements of the electronic components inside the IP-65 rated Motor Inverter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ansys%20ICEPAK" title="Ansys ICEPAK">Ansys ICEPAK</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium%20clad%20PCB" title=" aluminium clad PCB"> aluminium clad PCB</a>, <a href="https://publications.waset.org/abstracts/search?q=IP%2065%20enclosure" title=" IP 65 enclosure"> IP 65 enclosure</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20inverter" title=" motor inverter"> motor inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20simulation" title=" thermal simulation"> thermal simulation</a> </p> <a href="https://publications.waset.org/abstracts/130619/electronics-thermal-management-driven-design-of-an-ip65-rated-motor-inverter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">442</span> A Guide for Using Viscoelasticity in ANSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Fettahoglu">A. Fettahoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theory of viscoelasticity is used by many researchers to represent the behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell model and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Afterwards, a guide is illustrated to ease using of viscoelasticity tool in ANSYS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Maxwell%20model" title=" generalized Maxwell model"> generalized Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Prony%20series" title=" Prony series"> Prony series</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20material%20curve%20fitting" title=" viscoelastic material curve fitting"> viscoelastic material curve fitting</a> </p> <a href="https://publications.waset.org/abstracts/26863/a-guide-for-using-viscoelasticity-in-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">604</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">441</span> Axial Flux Permanent Magnet Motor Design and Optimization by Using Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tugce%20Talay">Tugce Talay</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Erkan"> Kadir Erkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the necessary steps for the design of axial flow permanent magnet motors are shown. The design and analysis of the engine were carried out based on ANSYS Maxwell program. The design parameters of the ANSYS Maxwell program and the artificial neural network system were established in MATLAB and the most efficient design parameters were found with the trained neural network. The results of the Maxwell program and the results of the artificial neural networks are compared and optimal working design parameters are found. The most efficient design parameters were submitted to the ANSYS Maxwell 3D design and the cogging torque was examined and design studies were carried out to reduce the cogging torque. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFPM" title="AFPM">AFPM</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20Maxwell" title=" ANSYS Maxwell"> ANSYS Maxwell</a>, <a href="https://publications.waset.org/abstracts/search?q=cogging%20torque" title=" cogging torque"> cogging torque</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20optimisation" title=" design optimisation"> design optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=NNTOOL" title=" NNTOOL"> NNTOOL</a> </p> <a href="https://publications.waset.org/abstracts/107516/axial-flux-permanent-magnet-motor-design-and-optimization-by-using-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">440</span> Simulation of Direct Solar Dryer with ANSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukhris%20Lahouari">Boukhris Lahouari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of solar dryers with ANSYS has revolutionized the way in which drying processes are optimized and analyzed in various industries. This advanced software allows engineers and researchers to simulate the behavior of a solar dryer under different conditions, helping to improve efficiency and reduce energy consumption. This work presents a numerical study of a direct solar dryer, which uses radiation and natural convection to dry agricultural products. The simulations were made in order to determine the dynamic and thermal fields under the influence of the variation in the size of the inlet and outlet opening. The conservation equations based on the standard k-ε turbulence model are solved by the finite volume method using the ANSYS-Fluent commercial code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20dryer" title="solar dryer">solar dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation" title=" solar radiation"> solar radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/191155/simulation-of-direct-solar-dryer-with-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">439</span> Multiphase Flow Model for 3D Numerical Model Using ANSYS for Flow over Stepped Cascade with End Sill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheyaa%20Wajid%20Abbood">Dheyaa Wajid Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Hussien%20Abood"> Hanan Hussien Abood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stepped cascade has been utilized as a hydraulic structure for years. It has proven to be the least costly aeration system in replenishing dissolved oxygen. Numerical modeling of stepped cascade with end sill is very complicated and challenging because of the high roughness and velocity re circulation regions. Volume of fluid multiphase flow model (VOF) is used .The realizable k-ξ model is chosen to simulate turbulence. The computational results are compared with lab-scale stepped cascade data. The lab –scale model was constructed in the hydraulic laboratory, Al-Mustansiriya University, Iraq. The stepped cascade was 0.23 m wide and consisted of 3 steps each 0.2m high and 0.6 m long with variable end sill. The discharge was varied from 1 to 4 l/s. ANSYS has been employed to simulate the experimental data and their related results. This study shows that ANSYS is able to predict results almost the same as experimental findings in some regions of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stepped%20cascade%20weir" title="stepped cascade weir">stepped cascade weir</a>, <a href="https://publications.waset.org/abstracts/search?q=aeration" title=" aeration"> aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow%20model" title=" multiphase flow model"> multiphase flow model</a>, <a href="https://publications.waset.org/abstracts/search?q=ansys" title=" ansys"> ansys</a> </p> <a href="https://publications.waset.org/abstracts/30556/multiphase-flow-model-for-3d-numerical-model-using-ansys-for-flow-over-stepped-cascade-with-end-sill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">438</span> Design of Saddle Support for Horizontal Pressure Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar">Vinod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Navin%20Kumar"> Navin Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Surjit%20Angra"> Surjit Angra</a>, <a href="https://publications.waset.org/abstracts/search?q=Prince%20Sharma"> Prince Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design analysis of saddle support of a horizontal pressure vessel. Since saddle have the vital role to support the pressure vessel and to maintain its stability, it should be designed in such a way that it can afford the vessel load and internal pressure of the vessel due to liquid contained in the vessel. A model of horizontal pressure vessel and saddle support is created in Ansys. Stresses are calculated using mathematical approach and Ansys software. The analysis reveals the zone of high localized stress at the junction part of the pressure vessel and saddle support due to operating conditions. The results obtained by both the methods are compared with allowable stress value for safe designing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20vessel" title=" pressure vessel"> pressure vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=saddle" title=" saddle"> saddle</a>, <a href="https://publications.waset.org/abstracts/search?q=support" title=" support"> support</a> </p> <a href="https://publications.waset.org/abstracts/14966/design-of-saddle-support-for-horizontal-pressure-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">743</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">437</span> Error Amount in Viscoelasticity Analysis Depending on Time Step Size and Method used in ANSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Fettahoglu">A. Fettahoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theory of viscoelasticity is used by many researchers to represent behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain like pavements of bridges can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell elements and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Subsequently, a practical problem, which has an analytical solution given in literature, is used to verify the applicability of viscoelasticity tool embedded in ANSYS. Finally, amount of error in the results of ANSYS is compared with the analytical results to indicate the influence of used method and time step size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20Maxwell%20model" title="generalized Maxwell model">generalized Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=prony%20series" title=" prony series"> prony series</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20step%20size" title=" time step size"> time step size</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/26862/error-amount-in-viscoelasticity-analysis-depending-on-time-step-size-and-method-used-in-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> Modeling and Computational Validation of Dispersion Curves of Guide Waves in a Pipe Using ANSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Perdomo">A. Perdomo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Bacca"> J. R. Bacca</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20E.%20Jabid"> Q. E. Jabid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, technological and investigative progress has been achieved in the area of monitoring of equipment and installation as a result of a deeper understanding of physical phenomenon associated with the non-destructive tests (NDT). The modal analysis proposes an efficient solution to determine the dispersion curves of an arbitrary waveguide cross-sectional. Dispersion curves are essential in the discontinuity localization based on guided waves. In this work, an isotropic hollow cylinder is dynamically analyzed in ANSYS to obtain resonant frequencies and mode shapes all of them associated with the dispersion curves. The numerical results provide the relation between frequency and wavelength which is the foundation of the dispersion curves. Results of the simulation process are validated with the software GUIGW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ansys%20APDL" title="ansys APDL">ansys APDL</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20curves" title=" dispersion curves"> dispersion curves</a>, <a href="https://publications.waset.org/abstracts/search?q=guide%20waves" title=" guide waves"> guide waves</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a> </p> <a href="https://publications.waset.org/abstracts/108272/modeling-and-computational-validation-of-dispersion-curves-of-guide-waves-in-a-pipe-using-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">435</span> Stress Analysis of Spider Gear Using Structural Steel on ANSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Kalvin">Roman Kalvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Anam%20Nadeem"> Anam Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Khushnood"> Shahab Khushnood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Differential is an integral part of four wheeled vehicle, and its main function is to transmit power from drive shaft to wheels. Differential assembly allows both rear wheels to turn at different speed along curved paths. It consists of four gears which are assembled together namely pinion, ring, spider and bevel gears. This research focused on the spider gear and its static structural analysis using ANSYS. The main aim was to evaluate the distribution of stresses on the teeth of the spider gear. This study also analyzed total deformation that may occur during its working along with bevel gear that is meshed with spider gear. Structural steel was chosen for spider gear in this research. Modeling and assembling were done on SolidWorks for both spider and bevel gear. They were assembled exactly same as in a differential assembly. This assembly was then imported to ANSYS. After observing results that maximum amount of stress and deformation was produced in the spider gear, it was concluded that structural steel material for spider gear possesses greater amount of strength to bear maximum stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=differential" title=" differential"> differential</a>, <a href="https://publications.waset.org/abstracts/search?q=spider%20gear" title=" spider gear"> spider gear</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20steel" title=" structural steel"> structural steel</a> </p> <a href="https://publications.waset.org/abstracts/96019/stress-analysis-of-spider-gear-using-structural-steel-on-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">434</span> Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Gherbi">A. Gherbi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Dahmani"> L. Dahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boudjemia"> A. Boudjemia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20pattern" title=" cracking pattern"> cracking pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=displacements" title=" displacements"> displacements</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20slab" title=" reinforced concrete slab"> reinforced concrete slab</a>, <a href="https://publications.waset.org/abstracts/search?q=smeared%20reinforcements" title=" smeared reinforcements"> smeared reinforcements</a> </p> <a href="https://publications.waset.org/abstracts/99709/study-on-two-way-reinforced-concrete-slab-using-ansys-with-different-boundary-conditions-and-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">433</span> Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Shanan">Mohamed A. Shanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20H.%20El-Zanaty"> Ashraf H. El-Zanaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20G.%20Metwally"> Kamal G. Metwally</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force &ndash; axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20compressive%20strength%20effect" title=" concrete compressive strength effect"> concrete compressive strength effect</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangularity%20ratio" title=" rectangularity ratio"> rectangularity ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/51557/effect-of-concrete-strength-and-aspect-ratio-on-strength-and-ductility-of-concrete-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Structural Analysis of Hydro-Turbine Head Cover Using Ansys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surjit%20Angra">Surjit Angra</a>, <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Kumari"> Manisha Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the Hydro Turbine Head Cover is to support the guide bearing, guide vane regulating mechanism and even in some design for generator thrust bearing support. Mechanical design of head cover deals with high static as well as fluctuating load acting on the structure. In the present work structural analysis of hydro turbine Head-cover using ANSYS software is carried out. Finite element method is used to calculate stresses on head cover. These calculations were done for the maximum possible loading under operating condition “LCI Quick Shut Down”. The results for equivalent Von-Mises stress, total deformation and directional deformation have been plotted and compared with the existing results whether the design is safe or not. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=head%20cover" title=" head cover"> head cover</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro-turbine" title=" hydro-turbine"> hydro-turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20deformation" title=" total deformation"> total deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Von-Mises%20stress" title=" Von-Mises stress"> Von-Mises stress</a> </p> <a href="https://publications.waset.org/abstracts/23056/structural-analysis-of-hydro-turbine-head-cover-using-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Design and Analysis of a Clustered Nozzle Configuration and Comparison of Its Thrust</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hadi%20Butt">Abdul Hadi Butt</a>, <a href="https://publications.waset.org/abstracts/search?q=Asfandyar%20Arshad"> Asfandyar Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to study the thrust variation in different configurations of clustered nozzles. It involves the design and analysis of clustered configuration of nozzles using Ansys fluent. Clustered nozzles with different configurations are simulated and compared on basis of effective exhaust thrust. Mixing length for the flow interaction is also calculated. Further clustered configurations are analyzed over different altitudes. An optimum value of the thrust among different configurations is proposed at the end of comparisons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CD%20nozzle" title="CD nozzle">CD nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster" title=" cluster"> cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent" title=" fluent"> fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/47169/design-and-analysis-of-a-clustered-nozzle-configuration-and-comparison-of-its-thrust" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Analysis of Plates with Varying Rigidities Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karan%20Modi">Karan Modi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar"> Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Katiyar"> Jyoti Katiyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Thusoo"> Shreya Thusoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents Finite Element Method (FEM) for analyzing the internal responses generated in thin rectangular plates with various edge conditions and rigidity conditions. Comparison has been made between the FEM (ANSYS software) results for displacement, stresses and moments generated with and without the consideration of hole in plate and different aspect ratios. In the end comparison for responses in plain and composite square plates has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=plates" title=" plates"> plates</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20analysis" title=" static analysis"> static analysis</a> </p> <a href="https://publications.waset.org/abstracts/24473/analysis-of-plates-with-varying-rigidities-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Accurate Calculation of the Penetration Depth of a Bullet Using ANSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eunsu%20Jang">Eunsu Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang%20Park"> Kang Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In developing an armored ground combat vehicle (AGCV), it is a very important step to analyze the vulnerability (or the survivability) of the AGCV against enemy’s attack. In the vulnerability analysis, the penetration equations are usually used to get the penetration depth and check whether a bullet can penetrate the armor of the AGCV, which causes the damage of internal components or crews. The penetration equations are derived from penetration experiments which require long time and great efforts. However, they usually hold only for the specific material of the target and the specific type of the bullet used in experiments. Thus, penetration simulation using ANSYS can be another option to calculate penetration depth. However, it is very important to model the targets and select the input parameters in order to get an accurate penetration depth. This paper performed a sensitivity analysis of input parameters of ANSYS on the accuracy of the calculated penetration depth. Two conflicting objectives need to be achieved in adopting ANSYS in penetration analysis: maximizing the accuracy of calculation and minimizing the calculation time. To maximize the calculation accuracy, the sensitivity analysis of the input parameters for ANSYS was performed and calculated the RMS error with the experimental data. The input parameters include mesh size, boundary condition, material properties, target diameter are tested and selected to minimize the error between the calculated result from simulation and the experiment data from the papers on the penetration equation. To minimize the calculation time, the parameter values obtained from accuracy analysis are adjusted to get optimized overall performance. As result of analysis, the followings were found: 1) As the mesh size gradually decreases from 0.9 mm to 0.5 mm, both the penetration depth and calculation time increase. 2) As diameters of the target decrease from 250mm to 60 mm, both the penetration depth and calculation time decrease. 3) As the yield stress which is one of the material property of the target decreases, the penetration depth increases. 4) The boundary condition with the fixed side surface of the target gives more penetration depth than that with the fixed side and rear surfaces. By using above finding, the input parameters can be tuned to minimize the error between simulation and experiments. By using simulation tool, ANSYS, with delicately tuned input parameters, penetration analysis can be done on computer without actual experiments. The data of penetration experiments are usually hard to get because of security reasons and only published papers provide them in the limited target material. The next step of this research is to generalize this approach to anticipate the penetration depth by interpolating the known penetration experiments. This result may not be accurate enough to be used to replace the penetration experiments, but those simulations can be used in the early stage of the design process of AGCV in modelling and simulation stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20parameters" title=" input parameters"> input parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20depth" title=" penetration depth"> penetration depth</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/37020/accurate-calculation-of-the-penetration-depth-of-a-bullet-using-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Development of Fem Code for 2-D Elasticity Problems Using Quadrilateral and Triangular Elements </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umar%20Kiani">Muhammad Umar Kiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Sakawat"> Waseem Sakawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the development of FEM code using Quadrilateral 4-Node (Q4) and Triangular 3-Node (T3) elements. Code is formulated using MATLAB language. Instead of using both elements in the same code, two separate codes are written. Quadrilateral element is difficult to handle directly, that is why natural coordinates (eta, ksi) are used. Due to this, Q4 code includes numerical integration (Gauss quadrature). In this case, complete numerical integration is performed using 2 points. On the other hand, T3 element can be modeled directly, by using direct stiffness approach. Axially loaded element, cantilever (special constraints) and Patch test cases were analyzed using both codes and the results were verified by using Ansys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM%20code" title="FEM code">FEM code</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20integration" title=" numerical integration"> numerical integration</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/2344/development-of-fem-code-for-2-d-elasticity-problems-using-quadrilateral-and-triangular-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> Prediction of Concrete Hydration Behavior and Cracking Tendency Based on Electrical Resistivity Measurement, Cracking Test and ANSYS Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaila%20Muazu%20Bawa">Samaila Muazu Bawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were separately monitored using non-contact electrical resistivity apparatus, a plastic ring mould and penetration resistance method respectively. The results show highest resistivity of C30 at the beginning until reaching the acceleration point when C50 accelerated and overtaken the others, and this period corresponds to its final setting time range, from resistivity derivative curve, hydration process can be divided into dissolution, induction, acceleration and deceleration periods, restrained shrinkage crack and setting time tests demonstrated the earliest cracking and setting time of C50, therefore, this method conveniently and rapidly determines the concrete’s crack potential. The highest inflection time (ti), the final setting time (tf) were obtained and used with crack time in coming up with mathematical models for the prediction of concrete’s cracking age for the range being considered. Finally, ANSYS numerical simulations supports the experimental findings in terms of the earliest crack age of C50 and the crack location that, highest stress concentration is always beneath the artificially introduced expansion joint of C50. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20hydration" title="concrete hydration">concrete hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title=" electrical resistivity"> electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=restrained%20shrinkage%20crack" title=" restrained shrinkage crack"> restrained shrinkage crack</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20simulation" title=" ANSYS simulation"> ANSYS simulation</a> </p> <a href="https://publications.waset.org/abstracts/49699/prediction-of-concrete-hydration-behavior-and-cracking-tendency-based-on-electrical-resistivity-measurement-cracking-test-and-ansys-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Numerical Investigation of Flow Past in a Staggered Tube Bundle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kerkouri%20Abdelkadir">Kerkouri Abdelkadir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical calculations of turbulent flows are one of the most prominent modern interests in various engineering applications. Due to the difficulty of predicting, following up and studying this flow for computational fluid dynamic (CFD), in this paper, we simulated numerical study of a flow past in a staggered tube bundle, using CFD Code ANSYS FLUENT with several models of turbulence following: k-ε, k-ω and SST approaches. The flow is modeled based on the experimental studies. The predictions of mean velocities are in very good agreement with detailed LDA (Laser Doppler Anemometry) measurements performed in 8 stations along the depth of the array. The sizes of the recirculation zones behind the cylinders are also predicted. The simulations are conducted for Reynolds numbers of 12858. The Reynolds number is set to depend experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow" title="flow">flow</a>, <a href="https://publications.waset.org/abstracts/search?q=tube%20bundle" title=" tube bundle"> tube bundle</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20Fluent" title=" ANSYS Fluent"> ANSYS Fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=LDA" title=" LDA"> LDA</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS%20%28k-%CE%B5" title=" RANS (k-ε"> RANS (k-ε</a>, <a href="https://publications.waset.org/abstracts/search?q=k-%CF%89" title=" k-ω"> k-ω</a>, <a href="https://publications.waset.org/abstracts/search?q=SST%29" title=" SST)"> SST)</a> </p> <a href="https://publications.waset.org/abstracts/99718/numerical-investigation-of-flow-past-in-a-staggered-tube-bundle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> Static Simulation of Pressure and Velocity Behaviour for NACA 0006 Blade Profile of Well’s Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chetan%20Apurav">Chetan Apurav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this journal the behavioural analysis of pressure and velocity has been done over the blade profile of Well’s turbine. The blade profile that has been taken into consideration is NACA 0006. The analysis has been done in Ansys Workbench under CFX module. The CAD model of the blade profile with certain dimensions has been made in CREO, and then is imported to Ansys for further analysis. The turbine model has been enclosed under a cylindrical body and has been analysed under a constant velocity of air at 5 m/s and zero relative pressure in static condition of the turbine. Further the results are represented in tabular as well as graphical form. It has been observed that the relative pressure of the blade profile has been stable throughout the radial length and hence will be suitable for practical usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Well%27s%20turbine" title="Well&#039;s turbine">Well&#039;s turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20water%20column" title=" oscillating water column"> oscillating water column</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean%20engineering" title=" ocean engineering"> ocean engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy" title=" wave energy"> wave energy</a>, <a href="https://publications.waset.org/abstracts/search?q=NACA%200006" title=" NACA 0006"> NACA 0006</a> </p> <a href="https://publications.waset.org/abstracts/108486/static-simulation-of-pressure-and-velocity-behaviour-for-naca-0006-blade-profile-of-wells-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Comparative Study of Free Vibrational Analysis and Modes Shapes of FSAE Car Frame Using Different FEM Modules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajat%20Jain">Rajat Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Pandey"> Himanshu Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Somesh%20Mehta"> Somesh Mehta</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravin%20P.%20Patil"> Pravin P. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formula SAE cars are the student designed and fabricated formula prototype cars, designed according to SAE INTERNATIONAL design rules which compete in the various national and international events. This paper shows a FEM based comparative study of free vibration analysis of different mode shapes of a formula prototype car chassis frame. Tubing sections of different diameters as per the design rules are designed in such a manner that the desired strength can be achieved. Natural frequency of first five mode was determined using finite element analysis method. SOLIDWORKS is used for designing the frame structure and SOLIDWORKS SIMULATION and ANSYS WORKBENCH 16.2 are used for the modal analysis. Mode shape results of ANSYS and SOLIDWORKS were compared. Fixed –fixed boundary conditions are used for fixing the A-arm wishbones. The simulation results were compared for the validation of the study. First five modes were compared and results were found within the permissible limits. The AISI4130 (CROMOLY- chromium molybdenum steel) material is used and the chassis frame is discretized with fine quality QUAD mesh followed by Fixed-fixed boundary conditions. The natural frequency of the chassis frame is 53.92-125.5 Hz as per the results of ANSYS which is found within the permissible limits. The study is concluded with the light weight and compact chassis frame without compensation with strength. This design allows to fabricate an extremely safe driver ergonomics, compact, dynamically stable, simple and light weight tubular chassis frame with higher strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM" title="FEM">FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=formula%20SAE%20cars" title=" formula SAE cars"> formula SAE cars</a>, <a href="https://publications.waset.org/abstracts/search?q=chassis%20frame" title=" chassis frame"> chassis frame</a>, <a href="https://publications.waset.org/abstracts/search?q=Ansys" title=" Ansys"> Ansys</a> </p> <a href="https://publications.waset.org/abstracts/51672/comparative-study-of-free-vibrational-analysis-and-modes-shapes-of-fsae-car-frame-using-different-fem-modules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Stress Analysis of Turbine Blades of Turbocharger Using Structural Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Kalvin">Roman Kalvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Anam%20Nadeem"> Anam Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Arif"> Saba Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbocharger is a device that is driven by the turbine and increases efficiency and power output of the engine by forcing external air into the combustion chamber. This study focused on the distribution of stress on the turbine blades and total deformation that may occur during its working along with turbocharger to carry out its static structural analysis of turbine blades. Structural steel was selected as the material for turbocharger. Assembly of turbocharger and turbine blades was designed on PRO ENGINEER. Furthermore, the structural analysis is performed by using ANSYS. This research concluded that by using structural steel, the efficiency of engine is improved and by increasing number of turbine blades, more waste heat from combustion chamber is emitted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbocharger" title="turbocharger">turbocharger</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blades" title=" turbine blades"> turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20steel" title=" structural steel"> structural steel</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/97552/stress-analysis-of-turbine-blades-of-turbocharger-using-structural-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Fluid Structure Interaction Study between Ahead and Angled Impact of AGM 88 Missile Entering Relatively High Viscous Fluid for K-Omega Turbulence Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Afree%20Andalib">Abu Afree Andalib</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiur%20Rahman"> Rafiur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Md%20Mezbah%20Uddin"> Md Mezbah Uddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this work is to anatomize on the various parameters of AGM 88 missile anatomized using FSI module in Ansys. Computational fluid dynamics is used for the study of fluid flow pattern and fluidic phenomenon such as drag, pressure force, energy dissipation and shockwave distribution in water. Using finite element analysis module of Ansys, structural parameters such as stress and stress density, localization point, deflection, force propagation is determined. Separate analysis on structural parameters is done on Abacus. State of the art coupling module is used for FSI analysis. Fine mesh is considered in every case for better result during simulation according to computational machine power. The result of the above-mentioned parameters is analyzed and compared for two phases using graphical representation. The result of Ansys and Abaqus are also showed. Computational Fluid Dynamics and Finite Element analyses and subsequently the Fluid-Structure Interaction (FSI) technique is being considered. Finite volume method and finite element method are being considered for modelling fluid flow and structural parameters analysis. Feasible boundary conditions are also utilized in the research. Significant change in the interaction and interference pattern while the impact was found. Theoretically as well as according to simulation angled condition was found with higher impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FSI%20%28Fluid%20Surface%20Interaction%29" title="FSI (Fluid Surface Interaction)">FSI (Fluid Surface Interaction)</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=missile" title=" missile"> missile</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20viscous%20fluid" title=" high viscous fluid"> high viscous fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20%28Computational%20Fluid%20Dynamics%29" title=" CFD (Computational Fluid Dynamics)"> CFD (Computational Fluid Dynamics)</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20%28Finite%20Element%20Analysis%29" title=" FEM (Finite Element Analysis)"> FEM (Finite Element Analysis)</a>, <a href="https://publications.waset.org/abstracts/search?q=FVM%20%28Finite%20Volume%20Method%29" title=" FVM (Finite Volume Method)"> FVM (Finite Volume Method)</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title=" fluid flow"> fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20pattern" title=" fluid pattern"> fluid pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=AGM-88" title=" AGM-88"> AGM-88</a>, <a href="https://publications.waset.org/abstracts/search?q=Ansys" title=" Ansys"> Ansys</a>, <a href="https://publications.waset.org/abstracts/search?q=Abaqus" title=" Abaqus"> Abaqus</a>, <a href="https://publications.waset.org/abstracts/search?q=meshing" title=" meshing"> meshing</a>, <a href="https://publications.waset.org/abstracts/search?q=k-omega" title=" k-omega"> k-omega</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a> </p> <a href="https://publications.waset.org/abstracts/80721/fluid-structure-interaction-study-between-ahead-and-angled-impact-of-agm-88-missile-entering-relatively-high-viscous-fluid-for-k-omega-turbulence-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> The Free Vibration Analysis of Honeycomb Sandwich Beam using 3D and Continuum Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCrkan%20%C5%9Eakar">Gürkan Şakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fevzi%20%C3%87akmak%20Bolat"> Fevzi Çakmak Bolat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study free vibration analysis of aluminum honeycomb sandwich structures were carried out experimentally and numerically. The natural frequencies and mode shapes of sandwich structures fabricated with different configurations for clamped-free boundary condition were determined. The effects of lower and upper face sheet thickness, the core material thickness, cell diameter, cell angle and foil thickness on the vibration characteristics were examined. The numerical studies were performed with ANSYS package. While the sandwich structures were modeled in ANSYS the continuum model was used. Later, the numerical results were compared with the experimental findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandwich%20structure" title="sandwich structure">sandwich structure</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=numeric%20analysis" title=" numeric analysis"> numeric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title=" 3D model"> 3D model</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20model" title=" continuum model"> continuum model</a> </p> <a href="https://publications.waset.org/abstracts/31180/the-free-vibration-analysis-of-honeycomb-sandwich-beam-using-3d-and-continuum-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Structural Analysis of an Active Morphing Wing for Enhancing UAV Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Kaygan">E. Kaygan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gatto"> A. Gatto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study of a design concept for actively controlling wing twist is described in this paper. The concept consists of morphing elements which were designed to provide a rigid and seamless skin while maintaining structural rigidity. The wing structure is first modeled in CATIA V5 then imported into ANSYS for structural analysis. Athena Vortex Lattice method (AVL) is used to estimate aerodynamic response as well as aerodynamic loads of morphing wings, afterwards a structural optimization performed via ANSYS Static. Overall, the results presented in this paper show that the concept provides efficient wing twist while preserving an aerodynamically smooth and compliant surface. Sufficient structural rigidity in bending is also obtained. This concept is suggested as a possible alternative for morphing skin applications.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=morphing" title=" morphing"> morphing</a>, <a href="https://publications.waset.org/abstracts/search?q=skin" title=" skin"> skin</a>, <a href="https://publications.waset.org/abstracts/search?q=twist" title=" twist"> twist</a> </p> <a href="https://publications.waset.org/abstracts/92569/structural-analysis-of-an-active-morphing-wing-for-enhancing-uav-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Deformation and Energy Absorption of Corrugated Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Rahim">Mohammad R. Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagil%20Akhtar"> Shagil Akhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prem%20K.%20Bharti"> Prem K. Bharti</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Muneeb%20Iqbal"> Syed Muneeb Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deformation and energy absorption studies with corrugated tubes where corrugation is perpendicular to the line of action which coincides exactly with the unstrained axis of the tubes. In the present study, several specimens with various geometric parameters are prepared and compressed quasi-statistically in ANSYS Workbench. It is observed that tubes with perpendicular corrugation alters the deformation condition considerably and culminates in a substantial escalation in energy absorption scope in juxtaposed with the tubes having a circular cross-section. This study will help automotive, aerospace and various other industries to design superior components with perpendicular corrugated tubes and will reduce the experimental trials by conducting the numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20Workbench" title="ANSYS Workbench">ANSYS Workbench</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20and%20energy%20absorption" title=" deformation and energy absorption"> deformation and energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated%20tubes" title=" corrugated tubes"> corrugated tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-static%20compression" title=" quasi-static compression"> quasi-static compression</a> </p> <a href="https://publications.waset.org/abstracts/69163/deformation-and-energy-absorption-of-corrugated-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> Investigation of the Kutta Condition Using Unsteady Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Bhojnadh">K. Bhojnadh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fiddler"> M. Fiddler</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Cheshire"> D. Cheshire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation into the Kutta effect on the trailing edge of a subsonic aerofoil was conducted which led to an analysis using Ansys Fluent to determine the effect of flow separation over a NACA 0012 aerofoil. This aerofoil was subjected to oscillations to create an unsteady flow over the aerofoil, therefore, creating turbulence, with unsteady aerodynamics playing a key role to determine the flow regimes when the aerofoil is subjected to different angles of attack along with varying Reynolds numbers. Many theories were evolved to determine the flow parameters of a 2-D aerofoil in these unsteady conditions because they behave unpredictably at the trailing edge when subjected to a different angle of attack. The shear area observed in the boundary layer at the trailing edge tends towards an unsteady turbulent flow even at small angles of attack, creating drag as the flow separates, reducing the aerodynamic performance of aerofoil. In this paper, research was conducted to determine the effect of Kutta circulation over the aerofoil and the effect of that circulation in reducing the effect of pressure and boundary layer distribution over the aerofoil. The effect of circulation is observed by using Ansys Fluent by using varying flow parameters and differential schemes to observe the flow behaviour on the aerofoil. Initially, steady flow analysis was conducted on the aerofoil to determine the effect of circulation, and it was noticed that the effect of circulation could only be properly observed when the aerofoil is subjected to oscillations. Therefore, that was modelled by using Ansys user-defined functions, which define the motion of the aerofoil by creating a dynamic mesh on the aerofoil. Initial results were observed, and further development of the dynamic mesh functions in Ansys is taking place. This research will determine the overall basic principles of unsteady flow aerodynamics applied to the investigation of Kutta related circulation, and gives an indication regarding the generation of vortices which is discussed further in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circulation" title="circulation">circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20seperation" title=" flow seperation"> flow seperation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20modelling" title=" turbulence modelling"> turbulence modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=vortices" title=" vortices "> vortices </a> </p> <a href="https://publications.waset.org/abstracts/84546/investigation-of-the-kutta-condition-using-unsteady-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> Computational Fluid Dynamic Investigation into the Relationship between Pressure and Velocity Distributions within a Microfluidic Feedback Oscillator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zara%20L.%20Sheady">Zara L. Sheady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluidic oscillators are being utilised in an increasing number of applications in a wide variety of areas; these include on-board vehicle cleaning systems, flow separation control on aircraft and in fluidic circuitry. With this increased use, there is a further understanding required for the mechanics of the fluidics of the fluidic oscillator and why they work in the manner that they do. ANSYS CFX has been utilized to visualise the pressure and velocity within a microfluidic feedback oscillator. The images demonstrate how the pressure vortices build within the oscillator at the points where the velocity is diverted from linear motion through the oscillator. With an enhanced understanding of the pressure and velocity distributions within a fluidic oscillator, it will enable users of microfluidics to more greatly tailor fluidic nozzles to their specification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20CFX" title="ANSYS CFX">ANSYS CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidic%20oscillators" title=" fluidic oscillators"> fluidic oscillators</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanics" title=" mechanics"> mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=relationship" title=" relationship"> relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a> </p> <a href="https://publications.waset.org/abstracts/86615/computational-fluid-dynamic-investigation-into-the-relationship-between-pressure-and-velocity-distributions-within-a-microfluidic-feedback-oscillator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Numerical Investigation into Capture Efficiency of Fibrous Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayotpaul%20Chaudhuri">Jayotpaul Chaudhuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Lutz%20Goedeke"> Lutz Goedeke</a>, <a href="https://publications.waset.org/abstracts/search?q=Torsten%20Hallenga"> Torsten Hallenga</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Ehrhard"> Peter Ehrhard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purification of gases from aerosols or airborne particles via filters is widely applied in the industry and in our daily lives. This separation especially in the micron and submicron size range is a necessary step to protect the environment and human health. Fibrous filters are often employed due to their low cost and high efficiency. For designing any filter the two most important performance parameters are capture efficiency and pressure drop. Since the capture efficiency is directly proportional to the pressure drop which leads to higher operating costs, a detailed investigation of the separation mechanism is required to optimize the filter designing, i.e., to have a high capture efficiency with a lower pressure drop. Therefore a two-dimensional flow simulation around a single fiber using Ansys CFX and Matlab is used to get insight into the separation process. Instead of simulating a solid fiber, the present Ansys CFX model uses a fictitious domain approach for the fiber by implementing a momentum loss model. This approach has been chosen to avoid creating a new mesh for different fiber sizes, thereby saving time and effort for re-meshing. In a first step, only the flow of the continuous fluid around the fiber is simulated in Ansys CFX and the flow field data is extracted and imported into Matlab and the particle trajectory is calculated in a Matlab routine. This calculation is a Lagrangian, one way coupled approach for particles with all relevant forces acting on it. The key parameters for the simulation in both Ansys CFX and Matlab are the porosity ε, the diameter ratio of particle and fiber D, the fluid Reynolds number Re, the Reynolds particle number Rep, the Stokes number St, the Froude number Fr and the density ratio of fluid and particle ρf/ρp. The simulation results were then compared to the single fiber theory from the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BBO-equation" title="BBO-equation">BBO-equation</a>, <a href="https://publications.waset.org/abstracts/search?q=capture%20efficiency" title=" capture efficiency"> capture efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=CFX" title=" CFX"> CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab" title=" Matlab"> Matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=fibrous%20filter" title=" fibrous filter"> fibrous filter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20trajectory" title=" particle trajectory"> particle trajectory</a> </p> <a href="https://publications.waset.org/abstracts/89211/numerical-investigation-into-capture-efficiency-of-fibrous-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> A Study on Implementation of Optimal Soldering Temperature Profile through Deformation Analysisin Infrared Lamp Soldering of Photovoltaic Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taejung%20Lho">Taejung Lho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonghwan%20Lee"> Jonghwan Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the photovoltaic (PV) module manufacturers have recently interested in reducing the manufacturing cost. One of available solution is the use of the thin photovoltaic cell because of reducing of raw material cost. Thin PV cells, however, are damaged large deformation which causes possible microcracks inside PV cell, leading to failure problem. In this paper, deformation characteristics by heat conduction in soldering process of PV cells are analyzed through ANSYS software tool. They have been tested for different PV cell thickness and soldering temperature profile. Accordingly optimal soldering process to minimize the deformation of PV cell has been suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20%28PV%29%20cell" title="photovoltaic (PV) cell">photovoltaic (PV) cell</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%28IR%29%20lamp%20soldering" title=" infrared(IR) lamp soldering"> infrared(IR) lamp soldering</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20soldering%20temperature%20profile" title=" optimal soldering temperature profile"> optimal soldering temperature profile</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20scanner" title=" 3D scanner"> 3D scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/1447/a-study-on-implementation-of-optimal-soldering-temperature-profile-through-deformation-analysisin-infrared-lamp-soldering-of-photovoltaic-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ansys%20ICEPAK&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ansys%20ICEPAK&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ansys%20ICEPAK&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ansys%20ICEPAK&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ansys%20ICEPAK&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ansys%20ICEPAK&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ansys%20ICEPAK&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ansys%20ICEPAK&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ansys%20ICEPAK&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ansys%20ICEPAK&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ansys%20ICEPAK&amp;page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ansys%20ICEPAK&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10