CINXE.COM
Кружно движење — Википедија
<!doctype html> <html class="client-nojs mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="mk" dir="ltr"> <head> <base href="https://mk.m.wikipedia.org/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5"> <meta charset="UTF-8"> <title>Кружно движење — Википедија</title> <script>(function(){var className="client-js mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )mkwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","јануари","февруари","март","април","мај","јуни","јули","август","септември","октомври","ноември","декември"],"wgRequestId":"1c800407-6cf8-4ccf-80a3-5a81d0205e3c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Кружно_движење","wgTitle":"Кружно движење", "wgCurRevisionId":4998523,"wgRevisionId":4998523,"wgArticleId":1212104,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"mk","wgPageContentLanguage":"mk","wgPageContentModel":"wikitext","wgRelevantPageName":"Кружно_движење","wgRelevantArticleId":1212104,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":2}}},"wgStableRevisionId":4998523,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"mk","pageLanguageDir":"ltr","pageVariantFallbacks":"mk"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true, "watchlist":true,"tagline":true,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym": "авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bg","autonym":"български","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bo","autonym": "བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"dag","autonym": "dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"fr","autonym":"français","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym" :"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht", "autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"}, {"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang": "lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym": "кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nl","autonym":"Nederlands","dir":"ltr"},{"lang":"nn","autonym":"norsk nynorsk","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"}, {"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{ "lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"ro","autonym":"română","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی", "dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sr","autonym":"српски / srpski","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"sv","autonym":"svenska","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th", "autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo", "autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb", "ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd", "se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q715746","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false, "donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":false,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":false},"wgMinervaDownloadNamespaces":[0],"wgSiteNoticeId":"2.1"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=[ "ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=mk&modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.codex.messagebox.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async src="/w/load.php?lang=mk&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Кружно движење — Википедија"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Уреди" href="/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Википедија (mk)"> <link rel="EditURI" type="application/rsd+xml" href="//mk.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://mk.wikipedia.org/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.mk"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="//login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.WgGHrg8C9fE.O/am=DgY/d=1/rs=AN8SPfpNfjzpGCAsUUJ5X-GCaxSfec_Eng/m=corsproxy" data-sourceurl="https://mk.m.wikipedia.org/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.WgGHrg8C9fE.O/am=DgY/d=1/exm=corsproxy/ed=1/rs=AN8SPfpNfjzpGCAsUUJ5X-GCaxSfec_Eng/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://mk.m.wikipedia.org/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Кружно_движење rootpage-Кружно_движење stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.WgGHrg8C9fE.O/am=DgY/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfpNfjzpGCAsUUJ5X-GCaxSfec_Eng/m=navigationui" data-environment="prod" data-proxy-url="https://mk-m-wikipedia-org.translate.goog" data-proxy-full-url="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-source-url="https://mk.m.wikipedia.org/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="mk" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mk.m.wikipedia.org/wiki/%25D0%259A%25D1%2580%25D1%2583%25D0%25B6%25D0%25BD%25D0%25BE_%25D0%25B4%25D0%25B2%25D0%25B8%25D0%25B6%25D0%25B5%25D1%259A%25D0%25B5&anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%93%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Почетна</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D1%98%D0%BD%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Случајна</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%92%D0%BE%D0%91%D0%BB%D0%B8%D0%B7%D0%B8%D0%BD%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Во близина</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9D%D0%B0%D1%98%D0%B0%D0%B2%D1%83%D0%B2%D0%B0%D1%9A%D0%B5&returnto=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE+%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Најава</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9C%D0%BE%D0%B1%D0%B8%D0%BB%D0%BD%D0%B8%D0%9F%D0%BE%D1%81%D1%82%D0%B0%D0%B2%D0%BA%D0%B8&returnto=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE+%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Нагодувања</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source%3Ddonate%26utm_medium%3Dsidebar%26utm_campaign%3DC13_mk.wikipedia.org%26uselang%3Dmk%26utm_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Дарување</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%97%D0%B0_%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">За Википедија</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%9E%D0%B4%D1%80%D0%B5%D0%BA%D1%83%D0%B2%D0%B0%D1%9A%D0%B5_%D0%BE%D0%B4_%D0%BE%D0%B4%D0%B3%D0%BE%D0%B2%D0%BE%D1%80%D0%BD%D0%BE%D1%81%D1%82?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Одрекување од одговорност</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%93%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-sr.svg" alt="Википедија" width="125" height="23" style="width: 7.8125em; height: 1.4375em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Специјална:Барај"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Пребарајте по Википедија" aria-label="Пребарајте по Википедија" autocapitalize="sentences" title="Пребарај низ Википедија [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Пребарај</span> </button> </form> <nav class="minerva-user-navigation" aria-label="Кориснички прегледник"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Кружно движење</span></h1> <div class="tagline"></div> </div> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Јазик" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Јазик</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9D%D0%B0%D1%98%D0%B0%D0%B2%D1%83%D0%B2%D0%B0%D1%9A%D0%B5&returnto=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE+%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Набљудувај</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Уреди</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="mk" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <style data-mw-deduplicate="TemplateStyles:r4539682">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:#f8f9fa;border:1px solid #aaa;padding:0.2em;border-spacing:0.4em 0;text-align:center;line-height:1.4em;font-size:88%;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar a{white-space:nowrap}.mw-parser-output .sidebar-wraplinks a{white-space:normal}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding-bottom:0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em 0}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding-top:0.2em;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding-top:0.4em;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.4em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding-top:0}.mw-parser-output .sidebar-image{padding:0.2em 0 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em}.mw-parser-output .sidebar-content{padding:0 0.1em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.4em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%}.mw-parser-output .sidebar-collapse .sidebar-navbar{padding-top:0.6em}.mw-parser-output .sidebar-list-title{text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{text-align:center;margin:0 3.3em}@media(max-width:720px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}</style> <p>Во <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Физика">физиката</a>, <b>кружно движење</b> е движење на објектот по <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9E%D0%B1%D0%B5%D0%BC_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D0%B0)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Обем (геометрија)">обемот</a> на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%B8%D1%86%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Кружница">кругот</a> или <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D1%80%D1%82%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Вртење">ротација</a> по кружна патека. Тоа може да е рамномерно, со константна аголна стапка на ротација и постојана брзина, или не-рамномерно со менување на стапката на ротација. Р<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D1%80%D1%82%D0%B5%D1%9A%D0%B5_%D0%BE%D0%BA%D0%BE%D0%BB%D1%83_%D0%BD%D0%B5%D0%BF%D0%BE%D0%B4%D0%B2%D0%B8%D0%B6%D0%BD%D0%B0_%D0%BE%D1%81%D0%BA%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Вртење околу неподвижна оска">отација околу фиксна оска</a> на три-димензионални тело вклучува кружни движења на неговите делови. Равенките на движење опишува движење на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A2%D0%B5%D0%B6%D0%B8%D1%88%D1%82%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Тежиште">центарот на маса</a> на телото.</p> <p>Примери на кружни движења вклучуваат: вештачки сателити кои кружат околу Земјата во постојана висина, а тавански вентилаторски ножеви ротираат околу еден центар, камен кој е врзан за јаже и се нишаше во кругови, автомобил, вртење преку крива во тркачка патека, електрон се движи нормално на рамномерно <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%BD%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Магнетно поле">магнетно поле</a>, и опрема која се движи внатре во механизамот.</p> <p>Предметот со вектор на брзина постојано ја менува насоката на движење, предметот во движење е во процес на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%97%D0%B0%D0%B1%D1%80%D0%B7%D1%83%D0%B2%D0%B0%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Забрзување">акцелерација</a> со <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A6%D0%B5%D0%BD%D1%82%D1%80%D0%B8%D0%BF%D0%B5%D1%82%D0%B0%D0%BB%D0%BD%D0%B0_%D1%81%D0%B8%D0%BB%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Центрипетална сила">центрипетална сила</a> во насока на центарот на ротација. Без оваа забрзување, предметот ќе се движи во права линија, според <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%8A%D1%83%D1%82%D0%BD%D0%BE%D0%B2%D0%B8_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Њутнови закони">Њутн законите на движење</a>.</p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="mk" dir="ltr"> <h2 id="mw-toc-heading">Содржина</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%D0%A0%D0%B0%D0%BC%D0%BD%D0%BE%D0%BC%D0%B5%D1%80%D0%BD%D0%BE_%D0%BA%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%BE"><span class="tocnumber">1</span> <span class="toctext">Рамномерно кружно движењо</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B8"><span class="tocnumber">1.1</span> <span class="toctext">Формули</span></a> <ul> <li class="toclevel-3 tocsection-3"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%D0%92%D0%BE_%D0%BF%D0%BE%D0%BB%D0%B0%D1%80%D0%BD%D0%B8_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D0%B8"><span class="tocnumber">1.1.1</span> <span class="toctext">Во поларни координати</span></a></li> <li class="toclevel-3 tocsection-4"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%D0%9A%D0%BE%D1%80%D0%B8%D1%81%D1%82%D0%B5%D1%9A%D0%B5_%D0%BD%D0%B0_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%B8_%D0%B1%D1%80%D0%BE%D0%B5%D0%B2%D0%B8"><span class="tocnumber">1.1.2</span> <span class="toctext">Користење на комплексни броеви</span></a></li> <li class="toclevel-3 tocsection-5"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%D0%91%D1%80%D0%B7%D0%B8%D0%BD%D0%B0"><span class="tocnumber">1.1.3</span> <span class="toctext">Брзина</span></a></li> <li class="toclevel-3 tocsection-6"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%D0%9F%D1%80%D0%BE%D0%BC%D0%B5%D0%BD%D0%BB%D0%B8%D0%B2%D0%B8_%D0%BA%D1%80%D1%83%D0%B6%D0%BD%D0%B8_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B0"><span class="tocnumber">1.1.4</span> <span class="toctext">Променливи кружни движења</span></a></li> <li class="toclevel-3 tocsection-7"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%D0%97%D0%B0%D0%B1%D1%80%D0%B7%D1%83%D0%B2%D0%B0%D1%9A%D0%B5"><span class="tocnumber">1.1.5</span> <span class="toctext">Забрзување</span></a></li> </ul></li> </ul></li> <li class="toclevel-1 tocsection-8"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%D0%9D%D0%B5%D1%80%D0%B0%D0%BC%D0%BD%D0%BE%D0%BC%D0%B5%D1%80%D0%BD%D0%BE"><span class="tocnumber">2</span> <span class="toctext">Нерамномерно</span></a></li> <li class="toclevel-1 tocsection-9"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%D0%90%D0%BF%D0%BB%D0%B8%D0%BA%D0%B0%D1%86%D0%B8%D0%B8"><span class="tocnumber">3</span> <span class="toctext">Апликации</span></a></li> <li class="toclevel-1 tocsection-10"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%D0%9F%D0%BE%D0%B2%D1%80%D0%B7%D0%B0%D0%BD%D0%BE"><span class="tocnumber">4</span> <span class="toctext">Поврзано</span></a></li> <li class="toclevel-1 tocsection-11"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%D0%9D%D0%B0%D0%B2%D0%BE%D0%B4%D0%B8"><span class="tocnumber">5</span> <span class="toctext">Наводи</span></a></li> <li class="toclevel-1 tocsection-12"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#%D0%9D%D0%B0%D0%B4%D0%B2%D0%BE%D1%80%D0%B5%D1%88%D0%BD%D0%B8_%D0%B2%D1%80%D1%81%D0%BA%D0%B8"><span class="tocnumber">6</span> <span class="toctext">Надворешни врски</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Рамномерно_кружно_движењо"><span id=".D0.A0.D0.B0.D0.BC.D0.BD.D0.BE.D0.BC.D0.B5.D1.80.D0.BD.D0.BE_.D0.BA.D1.80.D1.83.D0.B6.D0.BD.D0.BE_.D0.B4.D0.B2.D0.B8.D0.B6.D0.B5.D1.9A.D0.BE"></span>Рамномерно кружно движењо</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit&section=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Уреди го одделот „Рамномерно кружно движењо“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <figure typeof="mw:File/Thumb"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Uniform_circular_motion.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Uniform_circular_motion.svg/180px-Uniform_circular_motion.svg.png" decoding="async" width="180" height="203" class="mw-file-element" data-file-width="495" data-file-height="558"> </noscript><span class="lazy-image-placeholder" style="width: 180px;height: 203px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Uniform_circular_motion.svg/180px-Uniform_circular_motion.svg.png" data-width="180" data-height="203" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Uniform_circular_motion.svg/271px-Uniform_circular_motion.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/71/Uniform_circular_motion.svg/360px-Uniform_circular_motion.svg.png 2x" data-class="mw-file-element"> </span></a> <figcaption> Слика 1: Брзина <b>v</b> и забрзување <b>а</b> при рамномерно кружно движење со аголна стапка ω; брзина е константна, но брзината е секогаш тангента на орбитата; забрзувањето е постојана големината, но секогаш е насочена кон центарот на ротација. </figcaption> </figure> <figure class="mw-halign-right" typeof="mw:File/Thumb"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Velocity-acceleration.PNG?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Velocity-acceleration.PNG/250px-Velocity-acceleration.PNG" decoding="async" width="250" height="185" class="mw-file-element" data-file-width="695" data-file-height="513"> </noscript><span class="lazy-image-placeholder" style="width: 250px;height: 185px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Velocity-acceleration.PNG/250px-Velocity-acceleration.PNG" data-width="250" data-height="185" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Velocity-acceleration.PNG/375px-Velocity-acceleration.PNG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Velocity-acceleration.PNG/500px-Velocity-acceleration.PNG 2x" data-class="mw-file-element"> </span></a> <figcaption> Слика 2:Векторите на брзина во времето <i>t</i> и време <i>t</i> + <i>dt</i> се пресели од орбитата на лево на нова позиција каде што нивните опашки се поклопуваат, на десно. Бидејќи брзината е постојана со големина на <i>v</i> = <i>r</i> ω, векторите на брзина, исто така, се придвижуваат надвор од кружната патека со аголна брзина ω. Ако <i>dt</i> → 0, векторот на забрзување <b>а</b> станува нормален на <b>v</b>, што значи е насочен кон центарот на орбитата во кругот на левата страна. Агол ω <i>dt</i> е многу мал агол помеѓу две брзини и се стреми кон нула како <i>dt</i>→ 0. </figcaption> </figure> <figure typeof="mw:File/Thumb"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Breaking_String.PNG?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Breaking_String.PNG/300px-Breaking_String.PNG" decoding="async" width="300" height="197" class="mw-file-element" data-file-width="933" data-file-height="613"> </noscript><span class="lazy-image-placeholder" style="width: 300px;height: 197px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Breaking_String.PNG/300px-Breaking_String.PNG" data-width="300" data-height="197" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Breaking_String.PNG/450px-Breaking_String.PNG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Breaking_String.PNG/600px-Breaking_String.PNG 2x" data-class="mw-file-element"> </span></a> <figcaption> Слика 3: (Лево) Топката во кружно движење – јажето обезбедува центрипетална сила да се задржи топката во круг (Десно) Јажето се сече и топката продолжува во права линија со брзина во време на сечењење на јажето, според Њутновите закони на инерција, бидејќи центрипеталната сила не е веќе таму. </figcaption> </figure> <p>Во <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Физика">физиката</a>, <b>рамномерното</b> <b>кружно движењо</b> опишува движење на телото кое поминува по некој <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%B8%D1%86%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Кружница">кружен</a> пат со постојана брзина. Бидејќи телото се одликува со кружни движења, неговoто растојание од оската на вртење останува константна во сите времиња. Иако телото е со константна брзина, неговата <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%91%D1%80%D0%B7%D0%B8%D0%BD%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Брзина">брзина</a> не е константна: брзина, <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Вектор">вектор</a> количина, зависи и од брзината на телото и насоката на движење. Оваа промена на брзината, укажува на присуство на забрзување; ова<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%97%D0%B0%D0%B1%D1%80%D0%B7%D1%83%D0%B2%D0%B0%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Забрзување"> центрипетално забрзување</a> е со постојана големина и во насока кон оската на вртење. Ова забрзување е, пак, произведено од страна на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A6%D0%B5%D0%BD%D1%82%D1%80%D0%B8%D0%BF%D0%B5%D1%82%D0%B0%D0%BB%D0%BD%D0%B0_%D1%81%D0%B8%D0%BB%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Центрипетална сила">центрипетална сила</a> која е исто така постојана и насочени кон оската на вртење.</p> <p>Во случај на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D1%80%D1%82%D0%B5%D1%9A%D0%B5_%D0%BE%D0%BA%D0%BE%D0%BB%D1%83_%D0%BD%D0%B5%D0%BF%D0%BE%D0%B4%D0%B2%D0%B8%D0%B6%D0%BD%D0%B0_%D0%BE%D1%81%D0%BA%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Вртење околу неподвижна оска">ротација околу фиксна оска</a> на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A2%D0%B2%D1%80%D0%B4%D0%BE_%D1%82%D0%B5%D0%BB%D0%BE?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Тврдо тело">цврсто тело</a> што не е многу мало во однос со полупречник на патот, секоја честица од телото опишува константно кружно движење со истата аголна брзина, но со брзина и забрзување кои варираат во однос на позицијата на оската. </p> <div class="mw-heading mw-heading3"> <h3 id="Формули"><span id=".D0.A4.D0.BE.D1.80.D0.BC.D1.83.D0.BB.D0.B8"></span>Формули</h3><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit&section=2&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Уреди го одделот „Формули“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <figure class="mw-halign-right" typeof="mw:File/Thumb"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Circular_motion_vectors.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Circular_motion_vectors.svg/293px-Circular_motion_vectors.svg.png" decoding="async" width="293" height="187" class="mw-file-element" data-file-width="780" data-file-height="499"> </noscript><span class="lazy-image-placeholder" style="width: 293px;height: 187px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Circular_motion_vectors.svg/293px-Circular_motion_vectors.svg.png" data-width="293" data-height="187" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/Circular_motion_vectors.svg/440px-Circular_motion_vectors.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/38/Circular_motion_vectors.svg/586px-Circular_motion_vectors.svg.png 2x" data-class="mw-file-element"> </span></a> <figcaption> Слика 1: Вектор односи за константни кружни движења; вектор <b>ω</b> претставува ротација е нормална на рамнината на орбитата. </figcaption> </figure> <p>За движење во кругот на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%BB%D1%83%D0%BF%D1%80%D0%B5%D1%87%D0%BD%D0%B8%D0%BA?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Полупречник">полупречник</a> <i>r</i>, на обемот на кругот е <i>C</i> = 2π <i>р</i>. Ако периодот за една ротација е <i>Т</i>, аголна стапка на ротација, исто така познат како <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%90%D0%B3%D0%BE%D0%BB%D0%BD%D0%B0_%D0%B1%D1%80%D0%B7%D0%B8%D0%BD%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Аголна брзина">аголна брзина</a>, ω е:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ={\frac {2\pi }{T}}=2\pi f={\frac {d\theta }{dt}}\ }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ω<!-- ω --> </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn> 2 </mn> <mi> π<!-- π --> </mi> </mrow> <mi> T </mi> </mfrac> </mrow> <mo> = </mo> <mn> 2 </mn> <mi> π<!-- π --> </mi> <mi> f </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mi> θ<!-- θ --> </mi> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \omega ={\frac {2\pi }{T}}=2\pi f={\frac {d\theta }{dt}}\ } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dafc970cdb5e21d402edb93d8cb8a42f7a6b332" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.568ex; height:5.509ex;" alt="{\displaystyle \omega ={\frac {2\pi }{T}}=2\pi f={\frac {d\theta }{dt}}\ }"> </noscript><span class="lazy-image-placeholder" style="width: 21.568ex;height: 5.509ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dafc970cdb5e21d402edb93d8cb8a42f7a6b332" data-alt="{\displaystyle \omega ={\frac {2\pi }{T}}=2\pi f={\frac {d\theta }{dt}}\ }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> и единици се rad/s </dd> </dl> <p>Брзината на предметот кој патува по кругот е:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v={\frac {2\pi r}{T}}=\omega r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn> 2 </mn> <mi> π<!-- π --> </mi> <mi> r </mi> </mrow> <mi> T </mi> </mfrac> </mrow> <mo> = </mo> <mi> ω<!-- ω --> </mi> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v={\frac {2\pi r}{T}}=\omega r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d779be46b45bf2597acbd9c491bc5584ae19636" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.198ex; height:5.176ex;" alt="{\displaystyle v={\frac {2\pi r}{T}}=\omega r}"> </noscript><span class="lazy-image-placeholder" style="width: 14.198ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d779be46b45bf2597acbd9c491bc5584ae19636" data-alt="{\displaystyle v={\frac {2\pi r}{T}}=\omega r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>Аголот θ во времето <i>t</i> е:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta =2\pi {\frac {t}{T}}=\omega t\,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> θ<!-- θ --> </mi> <mo> = </mo> <mn> 2 </mn> <mi> π<!-- π --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> t </mi> <mi> T </mi> </mfrac> </mrow> <mo> = </mo> <mi> ω<!-- ω --> </mi> <mi> t </mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \theta =2\pi {\frac {t}{T}}=\omega t\,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e589057994bb110655c1b17b66c712ff6060c1ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.927ex; height:5.176ex;" alt="{\displaystyle \theta =2\pi {\frac {t}{T}}=\omega t\,}"> </noscript><span class="lazy-image-placeholder" style="width: 14.927ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e589057994bb110655c1b17b66c712ff6060c1ea" data-alt="{\displaystyle \theta =2\pi {\frac {t}{T}}=\omega t\,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>На <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%90%D0%B3%D0%BE%D0%BB%D0%BD%D0%BE_%D0%B7%D0%B0%D0%B1%D1%80%D0%B7%D1%83%D0%B2%D0%B0%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Аголно забрзување">аголна забрзување</a>, <i>α</i>, на честички е:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ={\frac {d\omega }{dt}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> α<!-- α --> </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mi> ω<!-- ω --> </mi> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \alpha ={\frac {d\omega }{dt}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d74ed1b36112c1096f5398c490469be030425553" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.084ex; height:5.509ex;" alt="{\displaystyle \alpha ={\frac {d\omega }{dt}}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.084ex;height: 5.509ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d74ed1b36112c1096f5398c490469be030425553" data-alt="{\displaystyle \alpha ={\frac {d\omega }{dt}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>Во случај на константно кружно движење, α ќе биде нула.</p> <p>Забрзување поради промена во насока е:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a={\frac {v^{2}}{r}}=\omega ^{2}r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> a </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> r </mi> </mfrac> </mrow> <mo> = </mo> <msup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a={\frac {v^{2}}{r}}=\omega ^{2}r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18d73d1c83f7a79104daaf183aaccce1c6ebf7c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.993ex; height:5.676ex;" alt="{\displaystyle a={\frac {v^{2}}{r}}=\omega ^{2}r}"> </noscript><span class="lazy-image-placeholder" style="width: 13.993ex;height: 5.676ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18d73d1c83f7a79104daaf183aaccce1c6ebf7c1" data-alt="{\displaystyle a={\frac {v^{2}}{r}}=\omega ^{2}r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A6%D0%B5%D0%BD%D1%82%D1%80%D0%B8%D0%BF%D0%B5%D1%82%D0%B0%D0%BB%D0%BD%D0%B0_%D1%81%D0%B8%D0%BB%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Центрипетална сила">Центрипеталната</a> и <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A6%D0%B5%D0%BD%D1%82%D1%80%D0%B8%D1%84%D1%83%D0%B3%D0%B0%D0%BB%D0%BD%D0%B0_%D1%81%D0%B8%D0%BB%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Центрифугална сила">центрифугалната</a> сила исто така, може да се најдат со користење на забрзувањето:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{c}={\dot {p}}\ {\overset {{\dot {m}}=0}{=}}\ ma={\frac {mv^{2}}{r}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> c </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> p </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo> = </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> m </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mn> 0 </mn> </mrow> </mover> </mrow> <mtext> </mtext> <mi> m </mi> <mi> a </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> m </mi> <msup> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mi> r </mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F_{c}={\dot {p}}\ {\overset {{\dot {m}}=0}{=}}\ ma={\frac {mv^{2}}{r}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b090d2a84b97e06c6c37ea6bc9b103165ee30cf3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.028ex; height:5.676ex;" alt="{\displaystyle F_{c}={\dot {p}}\ {\overset {{\dot {m}}=0}{=}}\ ma={\frac {mv^{2}}{r}}}"> </noscript><span class="lazy-image-placeholder" style="width: 23.028ex;height: 5.676ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b090d2a84b97e06c6c37ea6bc9b103165ee30cf3" data-alt="{\displaystyle F_{c}={\dot {p}}\ {\overset {{\dot {m}}=0}{=}}\ ma={\frac {mv^{2}}{r}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>Вектор односи се прикажани на Слика 1. Оската на вртење е прикажано како вектор <b>ω</b> нормално на рамнината на орбитата и со големината ω = <i>d</i>θ / <i>dt</i>. Насока на <b>ω</b> е избрана со користење на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D0%BE_%D0%BD%D0%B0_%D0%B4%D0%B5%D1%81%D0%BD%D0%B0_%D1%80%D0%B0%D0%BA%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Правило на десна рака">правилото на десна рака.</a> Со оваа конвенција за прикажување на ротација, брзината е дадена со вектор нус производ како</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} ={\boldsymbol {\omega }}\times \mathbf {r} \ ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mtext> </mtext> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} ={\boldsymbol {\omega }}\times \mathbf {r} \ ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f79f6dd7ff66c46bdf8f386f780bfe1504beef79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.348ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} ={\boldsymbol {\omega }}\times \mathbf {r} \ ,}"> </noscript><span class="lazy-image-placeholder" style="width: 11.348ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f79f6dd7ff66c46bdf8f386f780bfe1504beef79" data-alt="{\displaystyle \mathbf {v} ={\boldsymbol {\omega }}\times \mathbf {r} \ ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>кој е вектор нормален и на <b>ω</b> и на <b>r</b>(<i>t</i>), тангенцијален на орбита, и на големината ω <i>r</i>. Исто така, забрзувањето е дадена со</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ={\boldsymbol {\omega }}\times \mathbf {v} ={\boldsymbol {\omega }}\times \left({\boldsymbol {\omega }}\times \mathbf {r} \right)\ ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {a} ={\boldsymbol {\omega }}\times \mathbf {v} ={\boldsymbol {\omega }}\times \left({\boldsymbol {\omega }}\times \mathbf {r} \right)\ ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a209f9d64e940fa829364960663f7cf22f675826" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.961ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} ={\boldsymbol {\omega }}\times \mathbf {v} ={\boldsymbol {\omega }}\times \left({\boldsymbol {\omega }}\times \mathbf {r} \right)\ ,}"> </noscript><span class="lazy-image-placeholder" style="width: 26.961ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a209f9d64e940fa829364960663f7cf22f675826" data-alt="{\displaystyle \mathbf {a} ={\boldsymbol {\omega }}\times \mathbf {v} ={\boldsymbol {\omega }}\times \left({\boldsymbol {\omega }}\times \mathbf {r} \right)\ ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>кој е вектор нормален и на <b>ω</b> и на <b>v</b>(<i>t</i>) на големината ω |<b>v</b>| = ω<sup>2</sup> <i>r</i> и спротивен на <b>r</b>(<i>t</i>).<sup id="cite_ref-1" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></p> <p>Во наједноставен случај брзината, масата и полупречникот се постојани.</p> <p>Размислете за тело од еден килограм, се движат во круг со <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%BB%D1%83%D0%BF%D1%80%D0%B5%D1%87%D0%BD%D0%B8%D0%BA?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Полупречник">полупречник</a> еден метар, со <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%90%D0%B3%D0%BE%D0%BB%D0%BD%D0%B0_%D0%B1%D1%80%D0%B7%D0%B8%D0%BD%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Аголна брзина">аголна брзина</a> на еден <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A0%D0%B0%D0%B4%D0%B8%D1%98%D0%B0%D0%BD?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Радијан">rad/s</a>.</p> <ul> <li>Брзината е еден метар во секунда.</li> <li>На <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%97%D0%B0%D0%B1%D1%80%D0%B7%D1%83%D0%B2%D0%B0%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Забрзување">забрзување</a> од еден метар квадратен на секунда, v<sup>2</sup>/r.</li> <li>Тоа е предмет на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A6%D0%B5%D0%BD%D1%82%D1%80%D0%B8%D0%BF%D0%B5%D1%82%D0%B0%D0%BB%D0%BD%D0%B0_%D1%81%D0%B8%D0%BB%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Центрипетална сила">центрипетална сила</a> на еден килограм по метар квадратен на секунда, што е еден <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%8A%D1%83%D1%82%D0%BD_(%D0%B5%D0%B4%D0%B8%D0%BD%D0%B8%D1%86%D0%B0)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Њутн (единица)">њутн</a>.</li> <li><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%98%D0%BC%D0%BF%D1%83%D0%BB%D1%81_(%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Импулс (механика)">Импулсот</a> на телото е еден kg·m·s<sup>−1</sup>.</li> <li><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Момент на инерција">Моментот на инерција</a> е еден kg·m<sup>2</sup>.</li> <li><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%81%D0%BE%D1%82?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Момент на импулсот">Аголен импулс</a> е еден kg·m<sup>2</sup>·s<sup>−1</sup>.</li> <li><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D1%87%D0%BA%D0%B0_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Кинетичка енергија">Кинетичката енергија</a> е 1/2 <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%8F%D1%83%D0%BB?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Џул">joule</a>.</li> <li><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9E%D0%B1%D0%B5%D0%BC_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D0%B0)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Обем (геометрија)">Обемот</a> на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9E%D1%80%D0%B1%D0%B8%D1%82%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Орбита">орбита</a> е 2<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%B8?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Пи">π</a> (~6.283) метри.</li> <li>Периодот на движење е 2π секунди по 2π rad.</li> <li>На <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A7%D0%B5%D1%81%D1%82%D0%BE%D1%82%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Честота">честота</a> (2π)<sup>−1</sup> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A5%D0%B5%D1%80%D1%86?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Херц">херц</a>и.</li> </ul> <div class="mw-heading mw-heading4"> <h4 id="Во_поларни_координати"><span id=".D0.92.D0.BE_.D0.BF.D0.BE.D0.BB.D0.B0.D1.80.D0.BD.D0.B8_.D0.BA.D0.BE.D0.BE.D1.80.D0.B4.D0.B8.D0.BD.D0.B0.D1.82.D0.B8"></span>Во поларни координати</h4><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit&section=3&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Уреди го одделот „Во поларни координати“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>За време на кружно движење на телото се движи на крива која може да биде опишана во <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%BB%D0%B0%D1%80%D0%B5%D0%BD_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82%D0%B5%D0%BD_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Поларен координатен систем">поларен координатен систем</a> како фиксен растојание <i>R</i> од центарот на орбита зема како основа, ориентирани во еден агол θ(<i>t</i>) од некја референта насока. Види Слика 4. Поместениот <i>вектор</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> е радијален вектор од основата на локацијата на честичката:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}(t)=R{\hat {u}}_{R}(t)\ ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> r </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> R </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {r}}(t)=R{\hat {u}}_{R}(t)\ ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2ef7a36515bc1bf883476701c2c4e826fdc314f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.42ex; height:2.843ex;" alt="{\displaystyle {\vec {r}}(t)=R{\hat {u}}_{R}(t)\ ,}"> </noscript><span class="lazy-image-placeholder" style="width: 15.42ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2ef7a36515bc1bf883476701c2c4e826fdc314f" data-alt="{\displaystyle {\vec {r}}(t)=R{\hat {u}}_{R}(t)\ ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> е единичнен вектор паралелно со полупречник вектор во времето <i>t</i> и насочен од рамнината. Тоа е погодно да се воведе ортогонален единичен вектор каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>. Тоа е вообичаено да се ориентираат <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> до точка во насока на движење на орбитата.</p> <p>Брзината е временски дериват на поместувањето:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}(t)={\frac {d}{dt}}{\vec {r}}(t)={\frac {dR}{dt}}{\hat {u}}_{R}(t)+R{\frac {d{\hat {u}}_{R}}{dt}}\ .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> d </mi> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> r </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mi> R </mi> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msub> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {v}}(t)={\frac {d}{dt}}{\vec {r}}(t)={\frac {dR}{dt}}{\hat {u}}_{R}(t)+R{\frac {d{\hat {u}}_{R}}{dt}}\ .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75816e6a37ce162cdbea7597e0655a7583c791c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:36.752ex; height:5.509ex;" alt="{\displaystyle {\vec {v}}(t)={\frac {d}{dt}}{\vec {r}}(t)={\frac {dR}{dt}}{\hat {u}}_{R}(t)+R{\frac {d{\hat {u}}_{R}}{dt}}\ .}"> </noscript><span class="lazy-image-placeholder" style="width: 36.752ex;height: 5.509ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75816e6a37ce162cdbea7597e0655a7583c791c5" data-alt="{\displaystyle {\vec {v}}(t)={\frac {d}{dt}}{\vec {r}}(t)={\frac {dR}{dt}}{\hat {u}}_{R}(t)+R{\frac {d{\hat {u}}_{R}}{dt}}\ .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>Бидејќи полупречникот на кругот е константен, радијалната компонента на брзината е нула. Единичниот вектор <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> има време-неменливи големина на единство, така што времето варира неговиот врв секогаш се наоѓа на кругот на единица полупречник, со агол θ исто како и аголот на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>. Ако честичката ротира со агол <i>d</i>θ за време <i>dt</i>, па и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>, опишувајќи лак на кружницата со големина <i>d</i>θ. Види кружницата во долниот лев агол на Слика 4. Оттука:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d{\hat {u}}_{R}}{dt}}={\frac {d\theta }{dt}}{\hat {u}}_{\theta }(t)\ ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msub> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mi> θ<!-- θ --> </mi> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {d{\hat {u}}_{R}}{dt}}={\frac {d\theta }{dt}}{\hat {u}}_{\theta }(t)\ ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b50c125f4e3f5505c6ce212ff4f743d26a25d2ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.312ex; height:5.509ex;" alt="{\displaystyle {\frac {d{\hat {u}}_{R}}{dt}}={\frac {d\theta }{dt}}{\hat {u}}_{\theta }(t)\ ,}"> </noscript><span class="lazy-image-placeholder" style="width: 17.312ex;height: 5.509ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b50c125f4e3f5505c6ce212ff4f743d26a25d2ec" data-alt="{\displaystyle {\frac {d{\hat {u}}_{R}}{dt}}={\frac {d\theta }{dt}}{\hat {u}}_{\theta }(t)\ ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>каде насоката на промена мора да биде нормално да <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> (или, со други зборови, заедно <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>затоа што секоја промена <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> во насока на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> ќе се промени големината на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>. Знакот е позитивен, затоа што претставува зголемување во <i>d</i>θ на објектот и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> се преселија во насока на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>. Оттука брзината станува:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}(t)={\frac {d}{dt}}{\vec {r}}(t)=R{\frac {d{\hat {u}}_{R}}{dt}}=R{\frac {d\theta }{dt}}{\hat {u}}_{\theta }(t)=R\omega {\hat {u}}_{\theta }(t)\ .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> d </mi> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> r </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msub> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mo> = </mo> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mi> θ<!-- θ --> </mi> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> R </mi> <mi> ω<!-- ω --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {v}}(t)={\frac {d}{dt}}{\vec {r}}(t)=R{\frac {d{\hat {u}}_{R}}{dt}}=R{\frac {d\theta }{dt}}{\hat {u}}_{\theta }(t)=R\omega {\hat {u}}_{\theta }(t)\ .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90f2543c921cbc10176f5856481b85546e820b7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:48.915ex; height:5.509ex;" alt="{\displaystyle {\vec {v}}(t)={\frac {d}{dt}}{\vec {r}}(t)=R{\frac {d{\hat {u}}_{R}}{dt}}=R{\frac {d\theta }{dt}}{\hat {u}}_{\theta }(t)=R\omega {\hat {u}}_{\theta }(t)\ .}"> </noscript><span class="lazy-image-placeholder" style="width: 48.915ex;height: 5.509ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90f2543c921cbc10176f5856481b85546e820b7b" data-alt="{\displaystyle {\vec {v}}(t)={\frac {d}{dt}}{\vec {r}}(t)=R{\frac {d{\hat {u}}_{R}}{dt}}=R{\frac {d\theta }{dt}}{\hat {u}}_{\theta }(t)=R\omega {\hat {u}}_{\theta }(t)\ .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>Забрзувањето на телото, исто така може да биде скршен во радијална и тангентна компонента. Забрзувањето е временски дериват од брзината:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\vec {a}}(t)&={\frac {d}{dt}}{\vec {v}}(t)={\frac {d}{dt}}\left(R\omega {\hat {u}}_{\theta }(t)\right)\\&=R\left({\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)+\omega {\frac {d{\hat {u}}_{\theta }}{dt}}\right)\ .\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> a </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> d </mi> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> d </mi> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mrow> <mo> ( </mo> <mrow> <mi> R </mi> <mi> ω<!-- ω --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mi> R </mi> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mi> ω<!-- ω --> </mi> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\vec {a}}(t)&={\frac {d}{dt}}{\vec {v}}(t)={\frac {d}{dt}}\left(R\omega {\hat {u}}_{\theta }(t)\right)\\&=R\left({\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)+\omega {\frac {d{\hat {u}}_{\theta }}{dt}}\right)\ .\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e2645952bd072950bc608967bf66b8a145cf123" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.992ex; margin-bottom: -0.179ex; width:32.066ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}{\vec {a}}(t)&={\frac {d}{dt}}{\vec {v}}(t)={\frac {d}{dt}}\left(R\omega {\hat {u}}_{\theta }(t)\right)\\&=R\left({\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)+\omega {\frac {d{\hat {u}}_{\theta }}{dt}}\right)\ .\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 32.066ex;height: 11.509ex;vertical-align: -4.992ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e2645952bd072950bc608967bf66b8a145cf123" data-alt="{\displaystyle {\begin{aligned}{\vec {a}}(t)&={\frac {d}{dt}}{\vec {v}}(t)={\frac {d}{dt}}\left(R\omega {\hat {u}}_{\theta }(t)\right)\\&=R\left({\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)+\omega {\frac {d{\hat {u}}_{\theta }}{dt}}\right)\ .\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>Временски дериват на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>да се најде на ист начин како и за <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>. Повторно, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> е единица вектор и формира единица круг со агол што е π/2 + θ. Оттука, зголемување на аголот <i>d</i>θ од <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> имплицира <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> траги лак на големината <i>d</i>θ, и како <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> е ортогонална на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>имаме:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d{\hat {u}}_{\theta }}{dt}}=-{\frac {d\theta }{dt}}{\hat {u}}_{R}(t)=-\omega {\hat {u}}_{R}(t)\ ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mo> = </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mi> θ<!-- θ --> </mi> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mo> −<!-- − --> </mo> <mi> ω<!-- ω --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {d{\hat {u}}_{\theta }}{dt}}=-{\frac {d\theta }{dt}}{\hat {u}}_{R}(t)=-\omega {\hat {u}}_{R}(t)\ ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41e6a99ac382e730133c2b5023d58fdc15098c42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:30.93ex; height:5.509ex;" alt="{\displaystyle {\frac {d{\hat {u}}_{\theta }}{dt}}=-{\frac {d\theta }{dt}}{\hat {u}}_{R}(t)=-\omega {\hat {u}}_{R}(t)\ ,}"> </noscript><span class="lazy-image-placeholder" style="width: 30.93ex;height: 5.509ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41e6a99ac382e730133c2b5023d58fdc15098c42" data-alt="{\displaystyle {\frac {d{\hat {u}}_{\theta }}{dt}}=-{\frac {d\theta }{dt}}{\hat {u}}_{R}(t)=-\omega {\hat {u}}_{R}(t)\ ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>каде негативен знак е потребно да се задржи <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> е ортогонална на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>. (Инаку, на аголот помеѓу <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> ќе <i>се намали</i> со зголемување на <i>d</i>θ.) Види ја кружницата во долниот лев агол на Слика 4. Како резултат на тоа, забрзувањето е:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\vec {a}}(t)&=R\left({\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)+\omega {\frac {d{\hat {u}}_{\theta }}{dt}}\right)\\&=R{\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)-\omega ^{2}R{\hat {u}}_{R}(t)\ .\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> a </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mtd> <mtd> <mi></mi> <mo> = </mo> <mi> R </mi> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mi> ω<!-- ω --> </mi> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mi> ω<!-- ω --> </mi> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <msup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> R </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\vec {a}}(t)&=R\left({\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)+\omega {\frac {d{\hat {u}}_{\theta }}{dt}}\right)\\&=R{\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)-\omega ^{2}R{\hat {u}}_{R}(t)\ .\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e495e29c253bf4224f3d6e5416f0022f424404ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:31.763ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}{\vec {a}}(t)&=R\left({\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)+\omega {\frac {d{\hat {u}}_{\theta }}{dt}}\right)\\&=R{\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)-\omega ^{2}R{\hat {u}}_{R}(t)\ .\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 31.763ex;height: 11.509ex;vertical-align: -5.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e495e29c253bf4224f3d6e5416f0022f424404ab" data-alt="{\displaystyle {\begin{aligned}{\vec {a}}(t)&=R\left({\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)+\omega {\frac {d{\hat {u}}_{\theta }}{dt}}\right)\\&=R{\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)-\omega ^{2}R{\hat {u}}_{R}(t)\ .\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A6%D0%B5%D0%BD%D1%82%D1%80%D0%B8%D0%BF%D0%B5%D1%82%D0%B0%D0%BB%D0%BD%D0%B0_%D1%81%D0%B8%D0%BB%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Центрипетална сила">Центрипеталното забрзување</a> е радијалната компонента, која е насочена радијално навнатре:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}_{R}(t)=-\omega ^{2}R{\hat {u}}_{R}(t)\ ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> a </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mo> −<!-- − --> </mo> <msup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> R </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {a}}_{R}(t)=-\omega ^{2}R{\hat {u}}_{R}(t)\ ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26c3845a530572bd471f69bf3a2831358d7faa99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.215ex; height:3.176ex;" alt="{\displaystyle {\vec {a}}_{R}(t)=-\omega ^{2}R{\hat {u}}_{R}(t)\ ,}"> </noscript><span class="lazy-image-placeholder" style="width: 21.215ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26c3845a530572bd471f69bf3a2831358d7faa99" data-alt="{\displaystyle {\vec {a}}_{R}(t)=-\omega ^{2}R{\hat {u}}_{R}(t)\ ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>while the tangential component changes the <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=Vector_(geometry)&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Vector (geometry) (страницата не постои)">magnitude</a> of the velocity:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}_{\theta }(t)=R{\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)={\frac {dR\omega }{dt}}{\hat {u}}_{\theta }(t)={\frac {d\left|{\vec {v}}(t)\right|}{dt}}{\hat {u}}_{\theta }(t)\ .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> a </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mi> ω<!-- ω --> </mi> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mi> R </mi> <mi> ω<!-- ω --> </mi> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mrow> <mo> | </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mrow> <mo> | </mo> </mrow> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> θ<!-- θ --> </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {a}}_{\theta }(t)=R{\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)={\frac {dR\omega }{dt}}{\hat {u}}_{\theta }(t)={\frac {d\left|{\vec {v}}(t)\right|}{dt}}{\hat {u}}_{\theta }(t)\ .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e62fb823312e20c437c6b93ba97168781440f62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:48.431ex; height:5.843ex;" alt="{\displaystyle {\vec {a}}_{\theta }(t)=R{\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)={\frac {dR\omega }{dt}}{\hat {u}}_{\theta }(t)={\frac {d\left|{\vec {v}}(t)\right|}{dt}}{\hat {u}}_{\theta }(t)\ .}"> </noscript><span class="lazy-image-placeholder" style="width: 48.431ex;height: 5.843ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e62fb823312e20c437c6b93ba97168781440f62" data-alt="{\displaystyle {\vec {a}}_{\theta }(t)=R{\frac {d\omega }{dt}}{\hat {u}}_{\theta }(t)={\frac {dR\omega }{dt}}{\hat {u}}_{\theta }(t)={\frac {d\left|{\vec {v}}(t)\right|}{dt}}{\hat {u}}_{\theta }(t)\ .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>додека тангентнатаl компонента ја промени <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Вектор">големината</a> на брзината:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <div class="mw-heading mw-heading4"> <h4 id="Користење_на_комплексни_броеви"><span id=".D0.9A.D0.BE.D1.80.D0.B8.D1.81.D1.82.D0.B5.D1.9A.D0.B5_.D0.BD.D0.B0_.D0.BA.D0.BE.D0.BC.D0.BF.D0.BB.D0.B5.D0.BA.D1.81.D0.BD.D0.B8_.D0.B1.D1.80.D0.BE.D0.B5.D0.B2.D0.B8"></span>Користење на комплексни броеви</h4><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit&section=4&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Уреди го одделот „Користење на комплексни броеви“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Кружно движење може да се опише со користење на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%B5%D0%BD_%D0%B1%D1%80%D0%BE%D1%98?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Комплексен број">комплексни броеви</a>. Нека x оската е реалната оска и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> оска биде имагинарна оска. Положбата на телото, тогаш може да се даде како <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>, комплекс "вектор":</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=x+iy=R(\cos[\theta (t)]+i\sin[\theta (t)])=Re^{i\theta (t)}\ ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> x </mi> <mo> + </mo> <mi> i </mi> <mi> y </mi> <mo> = </mo> <mi> R </mi> <mo stretchy="false"> ( </mo> <mi> cos </mi> <mo> <!-- --> </mo> <mo stretchy="false"> [ </mo> <mi> θ<!-- θ --> </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mo> + </mo> <mi> i </mi> <mi> sin </mi> <mo> <!-- --> </mo> <mo stretchy="false"> [ </mo> <mi> θ<!-- θ --> </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> R </mi> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> θ<!-- θ --> </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mtext> </mtext> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=x+iy=R(\cos[\theta (t)]+i\sin[\theta (t)])=Re^{i\theta (t)}\ ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3cbaef6788e3f24ac5b98adafca739e98a20613" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.666ex; height:3.343ex;" alt="{\displaystyle z=x+iy=R(\cos[\theta (t)]+i\sin[\theta (t)])=Re^{i\theta (t)}\ ,}"> </noscript><span class="lazy-image-placeholder" style="width: 47.666ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3cbaef6788e3f24ac5b98adafca739e98a20613" data-alt="{\displaystyle z=x+iy=R(\cos[\theta (t)]+i\sin[\theta (t)])=Re^{i\theta (t)}\ ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>каде <i><b>i </b></i>е имагинарна единица, и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> е аргументот на комплексен број, како функција на време, <i>t</i>.</p> <p>Бидејќи полупречникот е константен:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {R}}={\ddot {R}}=0\ ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> R </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> R </mi> <mo> ¨<!-- ¨ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mn> 0 </mn> <mtext> </mtext> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\dot {R}}={\ddot {R}}=0\ ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c052b5b1caaee5aee8a41d12555ff9be4afe7e20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.115ex; height:3.009ex;" alt="{\displaystyle {\dot {R}}={\ddot {R}}=0\ ,}"> </noscript><span class="lazy-image-placeholder" style="width: 12.115ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c052b5b1caaee5aee8a41d12555ff9be4afe7e20" data-alt="{\displaystyle {\dot {R}}={\ddot {R}}=0\ ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>каде <i>dot</i> покажува диференцијација во однос на времето.</p> <p>Со оваа нотација брзината станува:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v={\dot {z}}={\frac {d\left(Re^{i\theta [t]}\right)}{dt}}=R{\frac {d\left(e^{i\theta [t]}\right)}{dt}}=Re^{i\theta (t)}{\frac {d(i\theta [t])}{dt}}=iR{\dot {\theta }}(t)e^{i\theta (t)}=i\omega Re^{i\theta (t)}=i\omega z}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> z </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mrow> <mo> ( </mo> <mrow> <mi> R </mi> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> θ<!-- θ --> </mi> <mo stretchy="false"> [ </mo> <mi> t </mi> <mo stretchy="false"> ] </mo> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mo> = </mo> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mrow> <mo> ( </mo> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> θ<!-- θ --> </mi> <mo stretchy="false"> [ </mo> <mi> t </mi> <mo stretchy="false"> ] </mo> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mo> = </mo> <mi> R </mi> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> θ<!-- θ --> </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mo stretchy="false"> ( </mo> <mi> i </mi> <mi> θ<!-- θ --> </mi> <mo stretchy="false"> [ </mo> <mi> t </mi> <mo stretchy="false"> ] </mo> <mo stretchy="false"> ) </mo> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mo> = </mo> <mi> i </mi> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> θ<!-- θ --> </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> θ<!-- θ --> </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> = </mo> <mi> i </mi> <mi> ω<!-- ω --> </mi> <mi> R </mi> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> θ<!-- θ --> </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> = </mo> <mi> i </mi> <mi> ω<!-- ω --> </mi> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v={\dot {z}}={\frac {d\left(Re^{i\theta [t]}\right)}{dt}}=R{\frac {d\left(e^{i\theta [t]}\right)}{dt}}=Re^{i\theta (t)}{\frac {d(i\theta [t])}{dt}}=iR{\dot {\theta }}(t)e^{i\theta (t)}=i\omega Re^{i\theta (t)}=i\omega z} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/067366fb69351cc859c0f4566c92852b5b55a01c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:82.258ex; height:6.343ex;" alt="{\displaystyle v={\dot {z}}={\frac {d\left(Re^{i\theta [t]}\right)}{dt}}=R{\frac {d\left(e^{i\theta [t]}\right)}{dt}}=Re^{i\theta (t)}{\frac {d(i\theta [t])}{dt}}=iR{\dot {\theta }}(t)e^{i\theta (t)}=i\omega Re^{i\theta (t)}=i\omega z}"> </noscript><span class="lazy-image-placeholder" style="width: 82.258ex;height: 6.343ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/067366fb69351cc859c0f4566c92852b5b55a01c" data-alt="{\displaystyle v={\dot {z}}={\frac {d\left(Re^{i\theta [t]}\right)}{dt}}=R{\frac {d\left(e^{i\theta [t]}\right)}{dt}}=Re^{i\theta (t)}{\frac {d(i\theta [t])}{dt}}=iR{\dot {\theta }}(t)e^{i\theta (t)}=i\omega Re^{i\theta (t)}=i\omega z}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>и забрзување станува:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}a&={\dot {v}}=i{\dot {\omega }}z+i\omega {\dot {z}}=\left(i{\dot {\omega }}-\omega ^{2}\right)z\\&=\left(i{\dot {\omega }}-\omega ^{2}\right)Re^{i\theta (t)}\\&=-\omega ^{2}Re^{i\theta (t)}+{\dot {\omega }}e^{i{\frac {\pi }{2}}}Re^{i\theta (t)}\ .\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi> a </mi> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mi> i </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> ω<!-- ω --> </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mi> z </mi> <mo> + </mo> <mi> i </mi> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> z </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> ω<!-- ω --> </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <msup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mi> z </mi> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> ω<!-- ω --> </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <msup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mi> R </mi> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> θ<!-- θ --> </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <msup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> R </mi> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> θ<!-- θ --> </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> ω<!-- ω --> </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> π<!-- π --> </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> </msup> <mi> R </mi> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> θ<!-- θ --> </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mtext> </mtext> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}a&={\dot {v}}=i{\dot {\omega }}z+i\omega {\dot {z}}=\left(i{\dot {\omega }}-\omega ^{2}\right)z\\&=\left(i{\dot {\omega }}-\omega ^{2}\right)Re^{i\theta (t)}\\&=-\omega ^{2}Re^{i\theta (t)}+{\dot {\omega }}e^{i{\frac {\pi }{2}}}Re^{i\theta (t)}\ .\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e377ec63a36b9399ff1a234210163e7d0a6bd53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:33.419ex; height:10.843ex;" alt="{\displaystyle {\begin{aligned}a&={\dot {v}}=i{\dot {\omega }}z+i\omega {\dot {z}}=\left(i{\dot {\omega }}-\omega ^{2}\right)z\\&=\left(i{\dot {\omega }}-\omega ^{2}\right)Re^{i\theta (t)}\\&=-\omega ^{2}Re^{i\theta (t)}+{\dot {\omega }}e^{i{\frac {\pi }{2}}}Re^{i\theta (t)}\ .\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 33.419ex;height: 10.843ex;vertical-align: -4.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e377ec63a36b9399ff1a234210163e7d0a6bd53" data-alt="{\displaystyle {\begin{aligned}a&={\dot {v}}=i{\dot {\omega }}z+i\omega {\dot {z}}=\left(i{\dot {\omega }}-\omega ^{2}\right)z\\&=\left(i{\dot {\omega }}-\omega ^{2}\right)Re^{i\theta (t)}\\&=-\omega ^{2}Re^{i\theta (t)}+{\dot {\omega }}e^{i{\frac {\pi }{2}}}Re^{i\theta (t)}\ .\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>Првиот термин е спротивна на насоката на векторот на поместување, а вториот е нормален, исто како и претходните резултати покажани претходно.</p> <div class="mw-heading mw-heading4"> <h4 id="Брзина"><span id=".D0.91.D1.80.D0.B7.D0.B8.D0.BD.D0.B0"></span>Брзина</h4><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit&section=5&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Уреди го одделот „Брзина“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Слика 1 илустрира вектори на брзина и забрзување за рамномерно движење во четири различни точки во орбитата. Бидејќи брзината <b>v</b> е тангента на кружна патека, на две точки на брзина во иста насока. Иако објектот има константна <i>брзина</i>, неговата <i>насока</i> е секогаш се менува. Оваа промена во брзината е предизвикана од забрзувањето <b>а</b>, чија големина е (како што е на брзината) непроменета, но чија насока постојано се менува. Точките на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%97%D0%B0%D0%B1%D1%80%D0%B7%D1%83%D0%B2%D0%B0%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Забрзување">забрзување</a> се насочени кон внатре (<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A6%D0%B5%D0%BD%D1%82%D1%80%D0%B8%D0%BF%D0%B5%D1%82%D0%B0%D0%BB%D0%BD%D0%B0_%D1%81%D0%B8%D0%BB%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Центрипетална сила">центрипетално</a>) и се нормални со брзината. Ова забрзување е познато како центрипетално забрзување.</p> <p>За патот со полупречник <i>r</i>, кога агол θ е кон надвор, на растојание кое е кон <a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.wiktionary.org/wiki/periphery" class="extiw" title="wiktionary:periphery">периферијата</a> на орбита е <i>s</i> = <i>r</i>θ. Затоа, брзина на патување околу орбитата е</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=r{\frac {d\theta }{dt}}=r\omega }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> <mo> = </mo> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mi> θ<!-- θ --> </mi> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mo> = </mo> <mi> r </mi> <mi> ω<!-- ω --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v=r{\frac {d\theta }{dt}}=r\omega } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97860e67dc1179a578380747077562bf894516af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.01ex; height:5.509ex;" alt="{\displaystyle v=r{\frac {d\theta }{dt}}=r\omega }"> </noscript><span class="lazy-image-placeholder" style="width: 14.01ex;height: 5.509ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97860e67dc1179a578380747077562bf894516af" data-alt="{\displaystyle v=r{\frac {d\theta }{dt}}=r\omega }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>, </dd> </dl> <p>каде аголна стапка на ротација е ω. (Од страна на изменување, ω = <i>v</i>/<i>р</i>.) На тој начин, <i>v</i> е константен, и брзината на вектор <b>v</b> , исто така ротира со постојана големина <i>v</i>, исто го пресметуваме и ω.</p> <div class="mw-heading mw-heading4"> <h4 id="Променливи_кружни_движења"><span id=".D0.9F.D1.80.D0.BE.D0.BC.D0.B5.D0.BD.D0.BB.D0.B8.D0.B2.D0.B8_.D0.BA.D1.80.D1.83.D0.B6.D0.BD.D0.B8_.D0.B4.D0.B2.D0.B8.D0.B6.D0.B5.D1.9A.D0.B0"></span>Променливи кружни движења</h4><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit&section=6&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Уреди го одделот „Променливи кружни движења“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Во овој случај на вектор со три забрзувања е нормален на вектор со три брзини,</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {u}}\cdot {\vec {a}}=0.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> a </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mn> 0. </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {u}}\cdot {\vec {a}}=0.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad45fd9cbb52eb2e5d293317cf1a372d48334083" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.146ex; height:2.343ex;" alt="{\displaystyle {\vec {u}}\cdot {\vec {a}}=0.}"> </noscript><span class="lazy-image-placeholder" style="width: 9.146ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad45fd9cbb52eb2e5d293317cf1a372d48334083" data-alt="{\displaystyle {\vec {u}}\cdot {\vec {a}}=0.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>и на квадратот на соодветните забрзувања, изразена како скаларни непроменливи, исти во сите референтни рамки,</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ^{2}=\gamma ^{4}a^{2}+\gamma ^{6}({\vec {u}}\cdot {\vec {a}})^{2},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> α<!-- α --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <msup> <mi> γ<!-- γ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msup> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> γ<!-- γ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 6 </mn> </mrow> </msup> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> a </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \alpha ^{2}=\gamma ^{4}a^{2}+\gamma ^{6}({\vec {u}}\cdot {\vec {a}})^{2},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc0f3f799c326da3d6d8b9d47a92334636a6b4da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.182ex; height:3.176ex;" alt="{\displaystyle \alpha ^{2}=\gamma ^{4}a^{2}+\gamma ^{6}({\vec {u}}\cdot {\vec {a}})^{2},}"> </noscript><span class="lazy-image-placeholder" style="width: 23.182ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc0f3f799c326da3d6d8b9d47a92334636a6b4da" data-alt="{\displaystyle \alpha ^{2}=\gamma ^{4}a^{2}+\gamma ^{6}({\vec {u}}\cdot {\vec {a}})^{2},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>станува израз за кружни движења,</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ^{2}=\gamma ^{4}a^{2}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> α<!-- α --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <msup> <mi> γ<!-- γ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msup> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \alpha ^{2}=\gamma ^{4}a^{2}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/898051bcccb316e64965f0be9d3d417c409c77e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.905ex; height:3.176ex;" alt="{\displaystyle \alpha ^{2}=\gamma ^{4}a^{2}.}"> </noscript><span class="lazy-image-placeholder" style="width: 10.905ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/898051bcccb316e64965f0be9d3d417c409c77e9" data-alt="{\displaystyle \alpha ^{2}=\gamma ^{4}a^{2}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>или, преземање на позитивен квадратен корен и со помош на три-забрзувања, го пресметуваме соодветното забрзување за кружно движење:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =\gamma ^{2}{\frac {v^{2}}{r}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> α<!-- α --> </mi> <mo> = </mo> <msup> <mi> γ<!-- γ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> r </mi> </mfrac> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \alpha =\gamma ^{2}{\frac {v^{2}}{r}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e294f3020f30a4f325f2a993996a1b399f0b00c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.585ex; height:5.676ex;" alt="{\displaystyle \alpha =\gamma ^{2}{\frac {v^{2}}{r}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 10.585ex;height: 5.676ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e294f3020f30a4f325f2a993996a1b399f0b00c1" data-alt="{\displaystyle \alpha =\gamma ^{2}{\frac {v^{2}}{r}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <div class="mw-heading mw-heading4"> <h4 id="Забрзување"><span id=".D0.97.D0.B0.D0.B1.D1.80.D0.B7.D1.83.D0.B2.D0.B0.D1.9A.D0.B5"></span>Забрзување</h4><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit&section=7&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Уреди го одделот „Забрзување“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Левата круг на Слика 2 е орбитата која ги покажува брзинските вектори во две соседни времиња. На десната страна, овие две брзини се поместуваат, па нивните опашки се совпаѓаат. Бидејќи брзината е константна, векторите на брзината на десната страна го движат кругот додека времето напредува. За агол на растојание dθ = <i>ωdt</i> промената на <b>v</b> е вектор под прав агол на <b>v</b> и на величина v dθ, што пак значи дека големината на забрзување е дадена со</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=v{\frac {d\theta }{dt}}=v\omega ={\frac {v^{2}}{r}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> a </mi> <mo> = </mo> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> d </mi> <mi> θ<!-- θ --> </mi> </mrow> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mo> = </mo> <mi> v </mi> <mi> ω<!-- ω --> </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> r </mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a=v{\frac {d\theta }{dt}}=v\omega ={\frac {v^{2}}{r}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91ee24ddc34c3f0dd48c3d2c5490124772dcd554" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.387ex; height:5.843ex;" alt="{\displaystyle a=v{\frac {d\theta }{dt}}=v\omega ={\frac {v^{2}}{r}}}"> </noscript><span class="lazy-image-placeholder" style="width: 20.387ex;height: 5.843ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91ee24ddc34c3f0dd48c3d2c5490124772dcd554" data-alt="{\displaystyle a=v{\frac {d\theta }{dt}}=v\omega ={\frac {v^{2}}{r}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <table class="wikitable" style="margin-bottom: 10px;"> <caption> Centripetal acceleration for some values of radius and magnitude of velocity </caption> <tbody> <tr> <th colspan="2" rowspan="2" valign="bottom"> <div align="right"> |<i>v</i>| </div><br><br> <div align="left"> <i>r</i> </div></th> <th>1 м/с<br> 3.6 км/ч</th> <th>2 м/с<br> 7.2 км/ч</th> <th>5 м/с<br> 18 км/ч</th> <th>10 м/с<br> 36 км/ч</th> <th>20 м/с<br> 72 км/ч</th> <th>50 м/с<br> 180 км/ч</th> <th>100 м/с<br> 360 км/ч</th> </tr> <tr> <th>Slow walk</th> <th><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D0%B5%D0%BB%D0%BE%D1%81%D0%B8%D0%BF%D0%B5%D0%B4?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Велосипед">Bicycle</a></th> <th>City car</th> <th>Aerobatics</th> </tr> <tr> <th>10 cm<br> 3.9 in</th> <th>Laboratory<br> centrifuge</th> <td bgcolor="#ffff99">10 м/с<sup>2</sup><br> 1.0 <i>g</i></td> <td bgcolor="#ffff99">40 м/с<sup>2</sup><br> 4.1 <i>g</i></td> <td bgcolor="#ffddaa">250 м/с<sup>2</sup><br> 25 <i>g</i></td> <td bgcolor="#ffbbbb">1.0 км/s<sup>2</sup><br> 100 <i>g</i></td> <td bgcolor="#ffbbbb">4.0 км/s<sup>2</sup><br> 410 <i>g</i></td> <td bgcolor="#ffccff">25 км/s<sup>2</sup><br> 2500 <i>g</i></td> <td bgcolor="#ff99ff">100 км/s<sup>2</sup><br> 10000 <i>g</i></td> </tr> <tr> <th>20 cm<br> 7.9 in</th> <td bgcolor="#ccffcc">5.0 м/с²<br> 0.51 <i>g</i></td> <td bgcolor="#ffff99">20 м/с²<br> 2.0 <i>g</i></td> <td bgcolor="#ffddaa">130 м/с²<br> 13 <i>g</i></td> <td bgcolor="#ffddaa">500 м/с²<br> 51 <i>g</i></td> <td bgcolor="#ffbbbb">2.0 км/s²<br> 200 <i>g</i></td> <td bgcolor="#ffccff">13 км/s²<br> 1300 <i>g</i></td> <td bgcolor="#ffccff">50 км/s²<br> 5100 <i>g</i></td> </tr> <tr> <th>50 cm<br> 1.6 ft</th> <td bgcolor="#ccffcc">2.0 м/с²<br> 0.20 <i>g</i></td> <td bgcolor="#ccffcc">8.0 м/с²<br> 0.82 <i>g</i></td> <td bgcolor="#ffff99">50 м/с²<br> 5.1 <i>g</i></td> <td bgcolor="#ffddaa">200 м/с²<br> 20 <i>g</i></td> <td bgcolor="#ffddaa">800 м/с²<br> 82 <i>g</i></td> <td bgcolor="#ffbbbb">5.0 км/s²<br> 510 <i>g</i></td> <td bgcolor="#ffccff">20 км/s²<br> 2000 <i>g</i></td> </tr> <tr> <th>1 m<br> 3.3 ft</th> <th>Playground<br> carousel</th> <td bgcolor="#ccffcc">1.0 м/с²<br> 0.10 <i>g</i></td> <td bgcolor="#ccffcc">4.0 м/с²<br> 0.41 <i>g</i></td> <td bgcolor="#ffff99">25 м/с²<br> 2.5 <i>g</i></td> <td bgcolor="#ffddaa">100 м/с²<br> 10 <i>g</i></td> <td bgcolor="#ffddaa">400 м/с²<br> 41 <i>g</i></td> <td bgcolor="#ffbbbb">2.5 км/s²<br> 250 <i>g</i></td> <td bgcolor="#ffccff">10 км/s²<br> 1000 <i>g</i></td> </tr> <tr> <th>2 m<br> 6.6 ft</th> <td bgcolor="#99ffff">500 мм/с²<br> 0.051 <i>g</i></td> <td bgcolor="#ccffcc">2.0 м/с²<br> 0.20 <i>g</i></td> <td bgcolor="#ffff99">13 м/с²<br> 1.3 <i>g</i></td> <td bgcolor="#ffff99">50 м/с²<br> 5.1 <i>g</i></td> <td bgcolor="#ffddaa">200 м/с²<br> 20 <i>g</i></td> <td bgcolor="#ffbbbb">1.3 км/s²<br> 130 <i>g</i></td> <td bgcolor="#ffbbbb">5.0 км/s²<br> 510 <i>g</i></td> </tr> <tr> <th>5 m<br> 16 ft</th> <td bgcolor="#99ffff">200 мм/с²<br> 0.020 <i>g</i></td> <td bgcolor="#99ffff">800 мм/с²<br> 0.082 <i>g</i></td> <td bgcolor="#ccffcc">5.0 м/с²<br> 0.51 <i>g</i></td> <td bgcolor="#ffff99">20 м/с²<br> 2.0 <i>g</i></td> <td bgcolor="#ffff99">80 м/с²<br> 8.2 <i>g</i></td> <td bgcolor="#ffddaa">500 м/с²<br> 51 <i>g</i></td> <td bgcolor="#ffbbbb">2.0 км/s²<br> 200 <i>g</i></td> </tr> <tr> <th>10 m<br> 33 ft</th> <th>Roller-coaster<br> vertical loop</th> <td bgcolor="#99ffff">100 мм/с²<br> 0.010 <i>g</i></td> <td bgcolor="#99ffff">400 mм/с²<br> 0.041 <i>g</i></td> <td bgcolor="#ccffcc">2.5 м/с²<br> 0.25 <i>g</i></td> <td bgcolor="#ffff99">10 м/с²<br> 1.0 <i>g</i></td> <td bgcolor="#ffff99">40 м/с²<br> 4.1 <i>g</i></td> <td bgcolor="#ffddaa">250 м/с²<br> 25 <i>g</i></td> <td bgcolor="#ffbbbb">1.0 км/s²<br> 100 <i>g</i></td> </tr> <tr> <th>20 m<br> 66 ft</th> <td bgcolor="#ddddff">50 мм/с²<br> 0.0051 <i>g</i></td> <td bgcolor="#99ffff">200 мм/с²<br> 0.020 <i>g</i></td> <td bgcolor="#ccffcc">1.3 м/с²<br> 0.13 <i>g</i></td> <td bgcolor="#ccffcc">5.0 м/с²<br> 0.51 <i>g</i></td> <td bgcolor="#ffff99">20 м/с²<br> 2 <i>g</i></td> <td bgcolor="#ffddaa">130 м/с²<br> 13 <i>g</i></td> <td bgcolor="#ffddaa">500 м/с²<br> 51 <i>g</i></td> </tr> <tr> <th>50 m<br> 160 ft</th> <td bgcolor="#ddddff">20 мм/с²<br> 0.0020 <i>g</i></td> <td bgcolor="#ddddff">80 мм/с²<br> 0.0082 <i>g</i></td> <td bgcolor="#99ffff">500 мм/с²<br> 0.051 <i>g</i></td> <td bgcolor="#ccffcc">2.0 м/с²<br> 0.20 <i>g</i></td> <td bgcolor="#ccffcc">8.0 м/с²<br> 0.82 <i>g</i></td> <td bgcolor="#ffff99">50 м/с²<br> 5.1 <i>g</i></td> <td bgcolor="#ffddaa">200 м/с²<br> 20 <i>g</i></td> </tr> <tr> <th>100 m<br> 330 ft</th> <th><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%90%D0%B2%D1%82%D0%BE%D0%BF%D0%B0%D1%82?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Автопат">Freeway</a><br> on-ramp</th> <td bgcolor="#ddddff">10 мм/с²<br> 0.0010 <i>g</i></td> <td bgcolor="#ddddff">40 мм/с²<br> 0.0041 <i>g</i></td> <td bgcolor="#99ffff">250 мм/с²<br> 0.025 <i>g</i></td> <td bgcolor="#ccffcc">1.0 м/с²<br> 0.10 <i>g</i></td> <td bgcolor="#ccffcc">4.0 м/с²<br> 0.41 <i>g</i></td> <td bgcolor="#ffff99">25 м/с²<br> 2.5 <i>g</i></td> <td bgcolor="#ffddaa">100 м/с²<br> 10 <i>g</i></td> </tr> <tr> <th>200 m<br> 660 ft</th> <td bgcolor="#ffffff">5.0 мм/с²<br> 0.00051 <i>g</i></td> <td bgcolor="#ddddff">20 мм/с²<br> 0.0020 <i>g</i></td> <td bgcolor="#99ffff">130 м/с²<br> 0.013 <i>g</i></td> <td bgcolor="#99ffff">500 мм/с²<br> 0.051 <i>g</i></td> <td bgcolor="#ccffcc">2.0 м/с²<br> 0.20 <i>g</i></td> <td bgcolor="#ffff99">13 м/с²<br> 1.3 <i>g</i></td> <td bgcolor="#ffff99">50 м/с²<br> 5.1 <i>g</i></td> </tr> <tr> <th>500 m<br> 1600 ft</th> <td bgcolor="#ffffff">2.0 мм/с²<br> 0.00020 <i>g</i></td> <td bgcolor="#ffffff">8.0 мм/с²<br> 0.00082 <i>g</i></td> <td bgcolor="#ddddff">50 мм/с²<br> 0.0051 <i>g</i></td> <td bgcolor="#99ffff">200 мм/с²<br> 0.020 <i>g</i></td> <td bgcolor="#99ffff">800 mм/с²<br> 0.082 <i>g</i></td> <td bgcolor="#ccffcc">5.0 м/с²<br> 0.51 <i>g</i></td> <td bgcolor="#ffff99">20 м/с²<br> 2.0 <i>g</i></td> </tr> <tr> <th>1 км</th> <th>Голембрзинска<br> железница</th> <td bgcolor="#ffffff">1.0 мм/с²<br> 0.00010 <i>g</i></td> <td bgcolor="#ffffff">4.0 мм/с²<br> 0.00041 <i>g</i></td> <td bgcolor="#ddddff">25 мм/с²<br> 0.0025 <i>g</i></td> <td bgcolor="#99ffff">100 мм/с²<br> 0.010 <i>g</i></td> <td bgcolor="#99ffff">400 мм/с²<br> 0.041 <i>g</i></td> <td bgcolor="#ccffcc">2.5 м/с²<br> 0.25 <i>g</i></td> <td bgcolor="#ffff99">10 м/с²<br> 1.0 <i>g</i></td> </tr> </tbody> </table> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Нерамномерно"><span id=".D0.9D.D0.B5.D1.80.D0.B0.D0.BC.D0.BD.D0.BE.D0.BC.D0.B5.D1.80.D0.BD.D0.BE"></span>Нерамномерно</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit&section=8&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Уреди го одделот „Нерамномерно“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <figure class="mw-halign-right" typeof="mw:File/Frameless"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Nonuniform_circular_motion.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Nonuniform_circular_motion.svg/293px-Nonuniform_circular_motion.svg.png" decoding="async" width="293" height="176" class="mw-file-element" data-file-width="579" data-file-height="348"> </noscript><span class="lazy-image-placeholder" style="width: 293px;height: 176px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Nonuniform_circular_motion.svg/293px-Nonuniform_circular_motion.svg.png" data-width="293" data-height="176" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Nonuniform_circular_motion.svg/440px-Nonuniform_circular_motion.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/22/Nonuniform_circular_motion.svg/586px-Nonuniform_circular_motion.svg.png 2x" data-class="mw-file-element"> </span></a> <figcaption></figcaption> </figure> <p>Во <b>нерамномерни кружни движења</b> кога објект се движи во кружна патека со различна брзина. Бидејќи брзината е променлива, постои <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%97%D0%B0%D0%B1%D1%80%D0%B7%D1%83%D0%B2%D0%B0%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Забрзување">тангенцијало забрзување</a> во прилог на нормално забрзување.</p> <p>Во нерамномерно кружно движење на нето забрзување (а) е заедно со насока на Δv кој е насочен, внатре во круг но не помине низ неговиот центар (види слика). Нето забрзување може да се реши во две компоненти: тангенцијално забрзување и нормалното забрзување исто така познат како центрипетално или радијално забрзување. За разлика од тангенцијалното забрзување, центрипеталното забрзување е присутен во двете рамномерно и нерамномерно кружно движење.</p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Frameless"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Freebody_circular.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Freebody_circular.svg/220px-Freebody_circular.svg.png" decoding="async" width="220" height="119" class="mw-file-element" data-file-width="274" data-file-height="148"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 119px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Freebody_circular.svg/220px-Freebody_circular.svg.png" data-width="220" data-height="119" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Freebody_circular.svg/330px-Freebody_circular.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Freebody_circular.svg/440px-Freebody_circular.svg.png 2x" data-class="mw-file-element"> </span></a> <figcaption></figcaption> </figure> <p>Во нерамномерно кружно движење, нормалната сила не секогаш покажува во спротивна насока на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A2%D0%B5%D0%B6%D0%B8%D0%BD%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Тежина">тежината</a>. Пример за тоа е кога некое тело се движи по права патека и излезе од патеката и повторно се врати на неа. </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Frameless"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Freebody_object.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Freebody_object.svg/220px-Freebody_object.svg.png" decoding="async" width="220" height="173" class="mw-file-element" data-file-width="173" data-file-height="136"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 173px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Freebody_object.svg/220px-Freebody_object.svg.png" data-width="220" data-height="173" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Freebody_object.svg/330px-Freebody_object.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Freebody_object.svg/440px-Freebody_object.svg.png 2x" data-class="mw-file-element"> </span></a> <figcaption></figcaption> </figure> <p>Овој дијаграм ја прикажува нормалната сила што покажува во други насоки, наместо спротивна на силата на тежина. Нормалната сила всушност е збирот на радијалните и тангенционалните сили. Компонентата на силата на тежината е одговорна за тангенционалната сила тука (Ја занемаривме фрикциона сила). Радијалната сила (центрипетална сила) се должи на промената во насоката на брзината како што беше дискутирано претходно.</p> <p>Во нерамномерно кружно движење, нормалната сила и тежина може да се насочени во иста насока. Двете сили може да се насочени надолу, но објектот ќе остане во кружна патека без да паѓа надолу. Прво, ајде да видиме зошто нормална сила може да биде насочена надолу. Во првиот дијаграм, да речеме дека објектот е човек што седи во авион, двете сили укажуваат само кога ќе стигнат до врвот на кругот. Причината за ова е дека нормалната сила е збирот на тангенционалната сила и центрипеталната сила. Тангентната сила е нула на врвот ((како што не се врши работа кога движењето е нормално на правецот на применетата сила. Овде тежинската сила е нормална на правецот на движење на предметот на врвот на кругот) и центрипеталната сила е насочена надолу, со тоа и нормална сила ќебиде насочена надолу. Од логичка гледна точка, еден човек кој е на патување во авионот ќе биде наопаку на врвот на кругот. Во тој момент, седиштето на личноста е всушност притискање на лицето, што е нормална сила.</p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Frameless"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Normal_and_weight.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Normal_and_weight.svg/220px-Normal_and_weight.svg.png" decoding="async" width="220" height="82" class="mw-file-element" data-file-width="238" data-file-height="89"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 82px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Normal_and_weight.svg/220px-Normal_and_weight.svg.png" data-width="220" data-height="82" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Normal_and_weight.svg/330px-Normal_and_weight.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Normal_and_weight.svg/440px-Normal_and_weight.svg.png 2x" data-class="mw-file-element"> </span></a> <figcaption></figcaption> </figure> <p>Причината зошто предметот не паѓа кога е подложен на само надолни сили е едноставен. Размислете за тоа што го задржува предметот откако ќе биде фрлен. Откако предметот ќе биде фрлен во воздухот, има само сила на гравитација на Земјата што дејствува на предметот. Тоа не значи дека откако некој објект е фрлена во воздух, тој ќе падне веднаш. Она што го чува тој објект нагоре во воздухот е неговата <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%91%D1%80%D0%B7%D0%B8%D0%BD%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Брзина">брзина</a>. Првиот <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%8A%D1%83%D1%82%D0%BD%D0%BE%D0%B2%D0%B8_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Њутнови закони">Њутн закон на движење</a> се наведува дека предметот во движење го чува <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%98%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Инерција">инерцијата</a>, и предметот во воздухот има брзина, тој ќе има тенденција да се задржи да се движи во таа насока.</p> <p>Променлива <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%90%D0%B3%D0%BE%D0%BB%D0%BD%D0%B0_%D0%B1%D1%80%D0%B7%D0%B8%D0%BD%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Аголна брзина">аголна брзина</a> за објект што се движи по кружна патека исто така може да се постигне ако вртечкото тело нема хомогена дистрибуција на маса. За нехомогени предмети, неопходно е да се пријде на проблемот како и во.<sup id="cite_ref-2" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Апликации"><span id=".D0.90.D0.BF.D0.BB.D0.B8.D0.BA.D0.B0.D1.86.D0.B8.D0.B8"></span>Апликации</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit&section=9&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Уреди го одделот „Апликации“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>Решавање на апликации кои се занимаваат со нерамномерно кружно движење вклучува анализа на сила. Со рамномерно кружно движење, единствената сила која дејствува врз предмет што патува во круг е центрипеталната сила.Во нерамномерни кружни движења, постојат дополнителни сили кои дејствуваат на предметот поради не-нулта тангенцијално забрзување. Иако постојат дополнителни сили кои дејствуваат врз предметот, збирот на сите сили кои дејствуваат на објектот ќе треба да се еднакви на центрипеталната сила.</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}F_{net}&=ma\,\\F_{net}&=ma_{r}\,\\F_{net}&={\frac {mv^{2}}{r}}\,\\F_{net}&=F_{c}\,\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mi> e </mi> <mi> t </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mi> m </mi> <mi> a </mi> <mspace width="thinmathspace"></mspace> </mtd> </mtr> <mtr> <mtd> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mi> e </mi> <mi> t </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mi> m </mi> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> </mtd> </mtr> <mtr> <mtd> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mi> e </mi> <mi> t </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> m </mi> <msup> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mi> r </mi> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> </mtd> </mtr> <mtr> <mtd> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mi> e </mi> <mi> t </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> c </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}F_{net}&=ma\,\\F_{net}&=ma_{r}\,\\F_{net}&={\frac {mv^{2}}{r}}\,\\F_{net}&=F_{c}\,\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/043ff4cd835e9f4116b1edd984e2178b82599646" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:13.368ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}F_{net}&=ma\,\\F_{net}&=ma_{r}\,\\F_{net}&={\frac {mv^{2}}{r}}\,\\F_{net}&=F_{c}\,\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 13.368ex;height: 14.843ex;vertical-align: -6.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/043ff4cd835e9f4116b1edd984e2178b82599646" data-alt="{\displaystyle {\begin{aligned}F_{net}&=ma\,\\F_{net}&=ma_{r}\,\\F_{net}&={\frac {mv^{2}}{r}}\,\\F_{net}&=F_{c}\,\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>Радијално забрзување се користи при пресметување на вкупната сила. Тангенцијалното забрзување не се користи при пресметувањето на вкупната сила, бидејќи тоа не е одговорно за одржување на предметот по кружна патека. Само забрзување одговорен за одржување на предметот да се движи во круг е радијалното забрзување. Бидејќи збирот на сите сили е центрипеталната сила, цртањето на центрипеталната сила во слободниот дијаграм на телото не е неопходно и обично не се препорачува.</p> <p>Користејќи <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>можеме да нацртаме слободни дијаграми на телата за да ги наведеме сите сили кои дејствуваат на секој предмет, а потоа да се нацрта <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>. Потоа, може да се реши сето она што е непознато (тоа може да биде маса, брзина, полупречник на кривина, коефициент на триење, нормално сила, итн.). На пример, визуелниот цртеж погоре покажува предмет на врвот на полукругот кој би бил изразен како <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{c}=n+mg\,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> c </mi> </mrow> </msub> <mo> = </mo> <mi> n </mi> <mo> + </mo> <mi> m </mi> <mi> g </mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F_{c}=n+mg\,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef5f2a821735d2b181885f7bdc2ed946b46eab41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.316ex; height:2.509ex;" alt="{\displaystyle F_{c}=n+mg\,}"> </noscript><span class="lazy-image-placeholder" style="width: 13.316ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef5f2a821735d2b181885f7bdc2ed946b46eab41" data-alt="{\displaystyle F_{c}=n+mg\,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</p> <p>Во рамномерно кружно движење, вкупно забрзување на предметна кружна патека е еднаков на радијално забрзување. Поради присуството на тангенцијалното забрзување во нерамномерно кружно движење, што повеќе не важи. За да се пронајде вкупното забрзување на предмет во нерамномерно кружно, се бара векторски збир на тангенцијалното забрзување и радијалното забрзување.</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {a_{r}^{2}+a_{t}^{2}}}=a}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> + </mo> <msubsup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> t </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> </msqrt> </mrow> <mo> = </mo> <mi> a </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\sqrt {a_{r}^{2}+a_{t}^{2}}}=a} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/929c495d7fe7f0fb1baeb66ad66a69010648aed5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.061ex; height:4.843ex;" alt="{\displaystyle {\sqrt {a_{r}^{2}+a_{t}^{2}}}=a}"> </noscript><span class="lazy-image-placeholder" style="width: 14.061ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/929c495d7fe7f0fb1baeb66ad66a69010648aed5" data-alt="{\displaystyle {\sqrt {a_{r}^{2}+a_{t}^{2}}}=a}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> </dd> </dl> <p>Радијалното забрзување уште е еднакво на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>. Тангенцијалното забрзување е едноставно извод од брзината во која било дадена точка: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>. Овој корен кој е збир од квадратите на радијалните и тангенцијалните забрзувања е само валиден за кружни движења; за општи движење во рамнина со поларните координати <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>, на Кориолисовите изрази <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span> треба да се додаде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>, додека радијална забрзување тогаш стануваат <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"></mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle } </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0; height:0.343ex;" alt="{\displaystyle }"></span>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Поврзано"><span id=".D0.9F.D0.BE.D0.B2.D1.80.D0.B7.D0.B0.D0.BD.D0.BE"></span>Поврзано</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit&section=10&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Уреди го одделот „Поврзано“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <ul> <li><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%81%D0%BE%D1%82?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Момент на импулсот">Аголен импулс</a></li> <li>Равенки на движење за кружни движења</li> <li>Пример: кружни движења</li> <li>Фиктивна сила</li> <li>Геостационарна орбита</li> <li>Геосинхрона орбита</li> <li>Нишало (математика)</li> <li><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A0%D0%B5%D0%B0%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%B0_%D1%86%D0%B5%D0%BD%D1%82%D1%80%D0%B8%D1%84%D1%83%D0%B3%D0%B0%D0%BB%D0%BD%D0%B0_%D1%81%D0%B8%D0%BB%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Реактивна центрифугална сила">Реактивна центрифугална сил</a>а</li> <li>Повратно движење</li> <li>Едноставно хармонично движење#Еднообразно кружно движење</li> <li><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D1%80%D0%B0%D1%9C%D0%BA%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Праќка">Прашка (оружје)</a></li> </ul> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Наводи"><span id=".D0.9D.D0.B0.D0.B2.D0.BE.D0.B4.D0.B8"></span>Наводи</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit&section=11&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Уреди го одделот „Наводи“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <div class="reflist" style="list-style-type: decimal;"> <div class="mw-references-wrap"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-1">↑</a></span> <span class="reference-text"><cite id="CITEREFKnudsenHjorth2000" class="citation book">Knudsen, Jens M.; Hjorth, Poul G. (2000). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://books.google.com/books?id%3DUrumwws_lWUC"><i>Elements of Newtonian mechanics: including nonlinear dynamics</i></a> (3. изд.). Springer. стр. 96. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="ISBN">ISBN</a> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/3-540-67652-X?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/3-540-67652-X"><bdi>3-540-67652-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elements+of+Newtonian+mechanics%3A+including+nonlinear+dynamics&rft.pages=96&rft.edition=3&rft.pub=Springer&rft.date=2000&rft.isbn=3-540-67652-X&rft.aulast=Knudsen&rft.aufirst=Jens+M.&rft.au=Hjorth%2C+Poul+G.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DUrumwws_lWUC&rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE+%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5" class="Z3988"></span><style data-mw-deduplicate="TemplateStyles:r5289462">.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background-image:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png");background-image:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg");background-repeat:no-repeat;background-size:9px;background-position:right .1em center}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background-image:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png");background-image:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg");background-repeat:no-repeat;background-size:9px;background-position:right .1em center}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background-image:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png");background-image:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg");background-repeat:no-repeat;background-size:9px;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:var(--color-subtle,#54595d)}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background-image:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png");background-image:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg");background-repeat:no-repeat;background-size:12px;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style></span></li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-2">↑</a></span> <span class="reference-text"><cite id="CITEREFGomezHernandez-GomezMarquina2012" class="citation journal">Gomez, R W; Hernandez-Gomez, J J; Marquina, V (25 July 2012). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://www.researchgate.net/publication/236030807_A_jumping_cylinder_on_an_inclined_plane_A_jumping_cylinder_on_an_inclined_plane">„A jumping cylinder on an inclined plane“</a>. <i>Eur. J. Phys</i>. IOP. <b>33</b> (5): 1359–1365. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ArXiv?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="ArXiv">arXiv</a>:<span class="cs1-lock-free" title="Слободен пристап"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://arxiv.org/abs/1204.0600">1204.0600</a></span>. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/Bibcode?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Bibcode">Bibcode</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ui.adsabs.harvard.edu/abs/2012EJPh...33.1359G">2012EJPh...33.1359G</a>. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/Doi?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Doi">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1088%252F0143-0807%252F33%252F5%252F1359">10.1088/0143-0807/33/5/1359</a><span class="reference-accessdate">. Посетено на <span class="nowrap">25 April</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Eur.+J.+Phys.&rft.atitle=A+jumping+cylinder+on+an+inclined+plane&rft.volume=33&rft.issue=5&rft.pages=1359-1365&rft.date=2012-07-25&rft_id=info%3Aarxiv%2F1204.0600&rft_id=info%3Adoi%2F10.1088%2F0143-0807%2F33%2F5%2F1359&rft_id=info%3Abibcode%2F2012EJPh...33.1359G&rft.aulast=Gomez&rft.aufirst=R+W&rft.au=Hernandez-Gomez%2C+J+J&rft.au=Marquina%2C+V&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F236030807_A_jumping_cylinder_on_an_inclined_plane_A_jumping_cylinder_on_an_inclined_plane&rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE+%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> </ol> </div> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Надворешни_врски"><span id=".D0.9D.D0.B0.D0.B4.D0.B2.D0.BE.D1.80.D0.B5.D1.88.D0.BD.D0.B8_.D0.B2.D1.80.D1.81.D0.BA.D0.B8"></span>Надворешни врски</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=edit&section=12&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Уреди го одделот „Надворешни врски“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-6 collapsible-block" id="mf-section-6"> <ul> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://web.archive.org/web/20070601020244/http://www.physclips.unsw.edu.au/">Physclips: Механика со анимации и видео клипови</a> од Универзитетот на Нов Јужен Велс</li> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://www.lightandmatter.com/html_books/1np/ch09/ch09.html">Кружни Движења</a> <small><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://web.archive.org/web/20101214150055/http://www.lightandmatter.com/html_books/1np/ch09/ch09.html">Архивирано</a> на 14 декември 2010 г.</small> – поглавје од онлајн учебник</li> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://web.archive.org/web/20100117190656/http://ocw.mit.edu/OcwWeb/Physics/8-01Physics-IFall1999/VideoLectures/detail/embed05.htm">Кружни Движења Предавање</a> – видео предавање на СМ</li> <li>– онлајн учебник со различни анализи за кружно движење</li> </ul> </section> </div><!-- MobileFormatter took 0.037 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> Преземено од „<a dir="ltr" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mk.wikipedia.org/w/index.php?title%3D%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5%26oldid%3D4998523">https://mk.wikipedia.org/w/index.php?title=Кружно_движење&oldid=4998523</a>“ </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5&action=history&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="Bjankuloski06" data-user-gender="male" data-timestamp="1688041399"> <span>Последна измена на 29 јуни 2023, во 13:23 ч.</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Јазици</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ar.wikipedia.org/wiki/%25D8%25AD%25D8%25B1%25D9%2583%25D8%25A9_%25D8%25AF%25D8%25A7%25D8%25A6%25D8%25B1%25D9%258A%25D8%25A9" title="حركة دائرية — арапски" lang="ar" hreflang="ar" data-title="حركة دائرية" data-language-autonym="العربية" data-language-local-name="арапски" class="interlanguage-link-target"><span>العربية</span></a></li> <li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bn.wikipedia.org/wiki/%25E0%25A6%25AC%25E0%25A7%2583%25E0%25A6%25A4%25E0%25A7%258D%25E0%25A6%25A4%25E0%25A7%2580%25E0%25A6%25AF%25E0%25A6%25BC_%25E0%25A6%2597%25E0%25A6%25A4%25E0%25A6%25BF" title="বৃত্তীয় গতি — бенгалски" lang="bn" hreflang="bn" data-title="বৃত্তীয় গতি" data-language-autonym="বাংলা" data-language-local-name="бенгалски" class="interlanguage-link-target"><span>বাংলা</span></a></li> <li class="interlanguage-link interwiki-be mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://be.wikipedia.org/wiki/%25D0%2592%25D1%258F%25D1%2580%25D1%2587%25D0%25B0%25D0%25BB%25D1%258C%25D0%25BD%25D1%258B_%25D1%2580%25D1%2583%25D1%2585" title="Вярчальны рух — белоруски" lang="be" hreflang="be" data-title="Вярчальны рух" data-language-autonym="Беларуская" data-language-local-name="белоруски" class="interlanguage-link-target"><span>Беларуская</span></a></li> <li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://be-tarask.wikipedia.org/wiki/%25D0%2592%25D1%258F%25D1%2580%25D1%2587%25D0%25B0%25D0%25BB%25D1%258C%25D0%25BD%25D1%258B_%25D1%2580%25D1%2583%25D1%2585" title="Вярчальны рух — Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Вярчальны рух" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ca.wikipedia.org/wiki/Moviment_circular" title="Moviment circular — каталонски" lang="ca" hreflang="ca" data-title="Moviment circular" data-language-autonym="Català" data-language-local-name="каталонски" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://cv.wikipedia.org/wiki/%25C3%2587%25D0%25B0%25D0%25B2%25D1%2580%25D0%25B0%25D1%2588%25D0%25BA%25D0%25B0%25D0%25BB%25D0%25BB%25D0%25B0_%25D0%25BA%25D1%2583%25C3%25A7%25C4%2583%25D0%25BC" title="Çаврашкалла куçăм — чувашки" lang="cv" hreflang="cv" data-title="Çаврашкалла куçăм" data-language-autonym="Чӑвашла" data-language-local-name="чувашки" class="interlanguage-link-target"><span>Чӑвашла</span></a></li> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://cs.wikipedia.org/wiki/Pohyb_po_kru%25C5%25BEnici" title="Pohyb po kružnici — чешки" lang="cs" hreflang="cs" data-title="Pohyb po kružnici" data-language-autonym="Čeština" data-language-local-name="чешки" class="interlanguage-link-target"><span>Čeština</span></a></li> <li class="interlanguage-link interwiki-da mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://da.wikipedia.org/wiki/J%25C3%25A6vn_cirkelbev%25C3%25A6gelse" title="Jævn cirkelbevægelse — дански" lang="da" hreflang="da" data-title="Jævn cirkelbevægelse" data-language-autonym="Dansk" data-language-local-name="дански" class="interlanguage-link-target"><span>Dansk</span></a></li> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://de.wikipedia.org/wiki/Gleichf%25C3%25B6rmige_Kreisbewegung" title="Gleichförmige Kreisbewegung — германски" lang="de" hreflang="de" data-title="Gleichförmige Kreisbewegung" data-language-autonym="Deutsch" data-language-local-name="германски" class="interlanguage-link-target"><span>Deutsch</span></a></li> <li class="interlanguage-link interwiki-et mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://et.wikipedia.org/wiki/Ringliikumine" title="Ringliikumine — естонски" lang="et" hreflang="et" data-title="Ringliikumine" data-language-autonym="Eesti" data-language-local-name="естонски" class="interlanguage-link-target"><span>Eesti</span></a></li> <li class="interlanguage-link interwiki-el mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://el.wikipedia.org/wiki/%25CE%259A%25CF%2585%25CE%25BA%25CE%25BB%25CE%25B9%25CE%25BA%25CE%25AE_%25CE%25BA%25CE%25AF%25CE%25BD%25CE%25B7%25CF%2583%25CE%25B7" title="Κυκλική κίνηση — грчки" lang="el" hreflang="el" data-title="Κυκλική κίνηση" data-language-autonym="Ελληνικά" data-language-local-name="грчки" class="interlanguage-link-target"><span>Ελληνικά</span></a></li> <li class="interlanguage-link interwiki-en mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.wikipedia.org/wiki/Circular_motion" title="Circular motion — англиски" lang="en" hreflang="en" data-title="Circular motion" data-language-autonym="English" data-language-local-name="англиски" class="interlanguage-link-target"><span>English</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://es.wikipedia.org/wiki/Movimiento_circular" title="Movimiento circular — шпански" lang="es" hreflang="es" data-title="Movimiento circular" data-language-autonym="Español" data-language-local-name="шпански" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://eu.wikipedia.org/wiki/Higidura_zirkular" title="Higidura zirkular — баскиски" lang="eu" hreflang="eu" data-title="Higidura zirkular" data-language-autonym="Euskara" data-language-local-name="баскиски" class="interlanguage-link-target"><span>Euskara</span></a></li> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fa.wikipedia.org/wiki/%25D8%25AD%25D8%25B1%25DA%25A9%25D8%25AA_%25D8%25AF%25D8%25A7%25DB%258C%25D8%25B1%25D9%2587%25E2%2580%258C%25D8%25A7%25DB%258C" title="حرکت دایرهای — персиски" lang="fa" hreflang="fa" data-title="حرکت دایرهای" data-language-autonym="فارسی" data-language-local-name="персиски" class="interlanguage-link-target"><span>فارسی</span></a></li> <li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://gl.wikipedia.org/wiki/Movemento_circular" title="Movemento circular — галициски" lang="gl" hreflang="gl" data-title="Movemento circular" data-language-autonym="Galego" data-language-local-name="галициски" class="interlanguage-link-target"><span>Galego</span></a></li> <li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ko.wikipedia.org/wiki/%25EC%259B%2590%25EC%259A%25B4%25EB%258F%2599" title="원운동 — корејски" lang="ko" hreflang="ko" data-title="원운동" data-language-autonym="한국어" data-language-local-name="корејски" class="interlanguage-link-target"><span>한국어</span></a></li> <li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hi.wikipedia.org/wiki/%25E0%25A4%25B5%25E0%25A5%2583%25E0%25A4%25A4%25E0%25A5%258D%25E0%25A4%25A4%25E0%25A5%2580%25E0%25A4%25AF_%25E0%25A4%2597%25E0%25A4%25A4%25E0%25A4%25BF" title="वृत्तीय गति — хинди" lang="hi" hreflang="hi" data-title="वृत्तीय गति" data-language-autonym="हिन्दी" data-language-local-name="хинди" class="interlanguage-link-target"><span>हिन्दी</span></a></li> <li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hr.wikipedia.org/wiki/Kru%25C5%25BEno_gibanje" title="Kružno gibanje — хрватски" lang="hr" hreflang="hr" data-title="Kružno gibanje" data-language-autonym="Hrvatski" data-language-local-name="хрватски" class="interlanguage-link-target"><span>Hrvatski</span></a></li> <li class="interlanguage-link interwiki-id mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://id.wikipedia.org/wiki/Gerak_melingkar" title="Gerak melingkar — индонезиски" lang="id" hreflang="id" data-title="Gerak melingkar" data-language-autonym="Bahasa Indonesia" data-language-local-name="индонезиски" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li> <li class="interlanguage-link interwiki-is mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://is.wikipedia.org/wiki/Hringhreyfing" title="Hringhreyfing — исландски" lang="is" hreflang="is" data-title="Hringhreyfing" data-language-autonym="Íslenska" data-language-local-name="исландски" class="interlanguage-link-target"><span>Íslenska</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://it.wikipedia.org/wiki/Moto_circolare" title="Moto circolare — италијански" lang="it" hreflang="it" data-title="Moto circolare" data-language-autonym="Italiano" data-language-local-name="италијански" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-he mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://he.wikipedia.org/wiki/%25D7%25AA%25D7%25A0%25D7%2595%25D7%25A2%25D7%2594_%25D7%259E%25D7%25A2%25D7%2592%25D7%259C%25D7%2599%25D7%25AA" title="תנועה מעגלית — хебрејски" lang="he" hreflang="he" data-title="תנועה מעגלית" data-language-autonym="עברית" data-language-local-name="хебрејски" class="interlanguage-link-target"><span>עברית</span></a></li> <li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://kn.wikipedia.org/wiki/%25E0%25B2%25B5%25E0%25B3%2583%25E0%25B2%25A4%25E0%25B3%258D%25E0%25B2%25A4%25E0%25B3%2580%25E0%25B2%25AF_%25E0%25B2%259A%25E0%25B2%25B2%25E0%25B2%25A8%25E0%25B3%2586" title="ವೃತ್ತೀಯ ಚಲನೆ — каннада" lang="kn" hreflang="kn" data-title="ವೃತ್ತೀಯ ಚಲನೆ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="каннада" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li> <li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://lv.wikipedia.org/wiki/L%25C4%25ABkl%25C4%25ABnijas_kust%25C4%25ABba" title="Līklīnijas kustība — латвиски" lang="lv" hreflang="lv" data-title="Līklīnijas kustība" data-language-autonym="Latviešu" data-language-local-name="латвиски" class="interlanguage-link-target"><span>Latviešu</span></a></li> <li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hu.wikipedia.org/wiki/K%25C3%25B6rmozg%25C3%25A1s" title="Körmozgás — унгарски" lang="hu" hreflang="hu" data-title="Körmozgás" data-language-autonym="Magyar" data-language-local-name="унгарски" class="interlanguage-link-target"><span>Magyar</span></a></li> <li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ml.wikipedia.org/wiki/%25E0%25B4%25B5%25E0%25B5%25BC%25E0%25B4%25A4%25E0%25B5%258D%25E0%25B4%25A4%25E0%25B5%2581%25E0%25B4%25B3%25E0%25B4%259A%25E0%25B4%25B2%25E0%25B4%25A8%25E0%25B4%2582" title="വർത്തുളചലനം — малајалски" lang="ml" hreflang="ml" data-title="വർത്തുളചലനം" data-language-autonym="മലയാളം" data-language-local-name="малајалски" class="interlanguage-link-target"><span>മലയാളം</span></a></li> <li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ja.wikipedia.org/wiki/%25E5%2586%2586%25E9%2581%258B%25E5%258B%2595" title="円運動 — јапонски" lang="ja" hreflang="ja" data-title="円運動" data-language-autonym="日本語" data-language-local-name="јапонски" class="interlanguage-link-target"><span>日本語</span></a></li> <li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://uz.wikipedia.org/wiki/Aylanma_harakat_va_uning_dinamikasi" title="Aylanma harakat va uning dinamikasi — узбечки" lang="uz" hreflang="uz" data-title="Aylanma harakat va uning dinamikasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="узбечки" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li> <li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pl.wikipedia.org/wiki/Ruch_jednostajny_po_okr%25C4%2599gu" title="Ruch jednostajny po okręgu — полски" lang="pl" hreflang="pl" data-title="Ruch jednostajny po okręgu" data-language-autonym="Polski" data-language-local-name="полски" class="interlanguage-link-target"><span>Polski</span></a></li> <li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pt.wikipedia.org/wiki/Movimento_circular" title="Movimento circular — португалски" lang="pt" hreflang="pt" data-title="Movimento circular" data-language-autonym="Português" data-language-local-name="португалски" class="interlanguage-link-target"><span>Português</span></a></li> <li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ru.wikipedia.org/wiki/%25D0%259A%25D1%2580%25D1%2583%25D0%25B3%25D0%25BE%25D0%25B2%25D0%25BE%25D0%25B5_%25D0%25B4%25D0%25B2%25D0%25B8%25D0%25B6%25D0%25B5%25D0%25BD%25D0%25B8%25D0%25B5" title="Круговое движение — руски" lang="ru" hreflang="ru" data-title="Круговое движение" data-language-autonym="Русский" data-language-local-name="руски" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-sc mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sc.wikipedia.org/wiki/Movimentu_in_caminu_chirculare" title="Movimentu in caminu chirculare — сардински" lang="sc" hreflang="sc" data-title="Movimentu in caminu chirculare" data-language-autonym="Sardu" data-language-local-name="сардински" class="interlanguage-link-target"><span>Sardu</span></a></li> <li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sq.wikipedia.org/wiki/L%25C3%25ABvizja_rrethore" title="Lëvizja rrethore — албански" lang="sq" hreflang="sq" data-title="Lëvizja rrethore" data-language-autonym="Shqip" data-language-local-name="албански" class="interlanguage-link-target"><span>Shqip</span></a></li> <li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sk.wikipedia.org/wiki/Pohyb_po_kru%25C5%25BEnici" title="Pohyb po kružnici — словачки" lang="sk" hreflang="sk" data-title="Pohyb po kružnici" data-language-autonym="Slovenčina" data-language-local-name="словачки" class="interlanguage-link-target"><span>Slovenčina</span></a></li> <li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sl.wikipedia.org/wiki/Kro%25C5%25BEenje" title="Kroženje — словенечки" lang="sl" hreflang="sl" data-title="Kroženje" data-language-autonym="Slovenščina" data-language-local-name="словенечки" class="interlanguage-link-target"><span>Slovenščina</span></a></li> <li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sh.wikipedia.org/wiki/Kru%25C5%25BEno_gibanje" title="Kružno gibanje — српскохрватски" lang="sh" hreflang="sh" data-title="Kružno gibanje" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="српскохрватски" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li> <li class="interlanguage-link interwiki-su mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://su.wikipedia.org/wiki/Gerak_muter" title="Gerak muter — сундски" lang="su" hreflang="su" data-title="Gerak muter" data-language-autonym="Sunda" data-language-local-name="сундски" class="interlanguage-link-target"><span>Sunda</span></a></li> <li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fi.wikipedia.org/wiki/Ympyr%25C3%25A4liike" title="Ympyräliike — фински" lang="fi" hreflang="fi" data-title="Ympyräliike" data-language-autonym="Suomi" data-language-local-name="фински" class="interlanguage-link-target"><span>Suomi</span></a></li> <li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://tr.wikipedia.org/wiki/Dairesel_hareket" title="Dairesel hareket — турски" lang="tr" hreflang="tr" data-title="Dairesel hareket" data-language-autonym="Türkçe" data-language-local-name="турски" class="interlanguage-link-target"><span>Türkçe</span></a></li> <li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://uk.wikipedia.org/wiki/%25D0%259A%25D0%25BE%25D0%25BB%25D0%25BE%25D0%25B2%25D0%25B8%25D0%25B9_%25D1%2580%25D1%2583%25D1%2585" title="Коловий рух — украински" lang="uk" hreflang="uk" data-title="Коловий рух" data-language-autonym="Українська" data-language-local-name="украински" class="interlanguage-link-target"><span>Українська</span></a></li> <li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ur.wikipedia.org/wiki/%25DA%25AF%25D8%25B1%25D8%25AF%25D8%25B4%25DB%258C_%25D8%25AD%25D8%25B1%25DA%25A9%25D8%25AA" title="گردشی حرکت — урду" lang="ur" hreflang="ur" data-title="گردشی حرکت" data-language-autonym="اردو" data-language-local-name="урду" class="interlanguage-link-target"><span>اردو</span></a></li> <li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://vi.wikipedia.org/wiki/Chuy%25E1%25BB%2583n_%25C4%2591%25E1%25BB%2599ng_tr%25C3%25B2n" title="Chuyển động tròn — виетнамски" lang="vi" hreflang="vi" data-title="Chuyển động tròn" data-language-autonym="Tiếng Việt" data-language-local-name="виетнамски" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li> <li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://wuu.wikipedia.org/wiki/%25E5%259C%2586%25E5%2591%25A8%25E8%25BF%2590%25E5%258A%25A8" title="圆周运动 — ву" lang="wuu" hreflang="wuu" data-title="圆周运动" data-language-autonym="吴语" data-language-local-name="ву" class="interlanguage-link-target"><span>吴语</span></a></li> <li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zh-yue.wikipedia.org/wiki/%25E5%259C%2593%25E5%2591%25A8%25E9%2581%258B%25E5%258B%2595" title="圓周運動 — кантонски" lang="yue" hreflang="yue" data-title="圓周運動" data-language-autonym="粵語" data-language-local-name="кантонски" class="interlanguage-link-target"><span>粵語</span></a></li> <li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zh.wikipedia.org/wiki/%25E5%259C%2593%25E5%2591%25A8%25E9%2581%258B%25E5%258B%2595" title="圓周運動 — кинески" lang="zh" hreflang="zh" data-title="圓周運動" data-language-autonym="中文" data-language-local-name="кинески" class="interlanguage-link-target"><span>中文</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-sr.svg" alt="Википедија" width="125" height="23" style="width: 7.8125em; height: 1.4375em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">Последната промена на страницава е извршена на 29 јуни 2023 г. во 13:23 ч.</li> <li id="footer-info-copyright">Содржината е достапна под <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://creativecommons.org/licenses/by-sa/4.0/deed.mk">CC BY-SA 4.0</a> освен ако не е поинаку наведено.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Заштита на личните податоци</a></li> <li id="footer-places-about"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%97%D0%B0_%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">За Википедија</a></li> <li id="footer-places-disclaimers"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%9E%D0%B4%D1%80%D0%B5%D0%BA%D1%83%D0%B2%D0%B0%D1%9A%D0%B5_%D0%BE%D0%B4_%D0%BE%D0%B4%D0%B3%D0%BE%D0%B2%D0%BE%D1%80%D0%BD%D0%BE%D1%81%D1%82?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">Одрекување од одговорност</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Правилник на однесување</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://developer.wikimedia.org">Програмери</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://stats.wikimedia.org/%23/mk.wikipedia.org">Статистика</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Согласност за колачиња</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Услови на употреба</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mk.wikipedia.org/w/index.php?title%3D%25D0%259A%25D1%2580%25D1%2583%25D0%25B6%25D0%25BD%25D0%25BE_%25D0%25B4%25D0%25B2%25D0%25B8%25D0%25B6%25D0%25B5%25D1%259A%25D0%25B5%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Обично</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-2hwd8","wgBackendResponseTime":203,"wgPageParseReport":{"limitreport":{"cputime":"0.257","walltime":"0.495","ppvisitednodes":{"value":1063,"limit":1000000},"postexpandincludesize":{"value":32969,"limit":2097152},"templateargumentsize":{"value":2278,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":15178,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 202.296 1 -total"," 50.26% 101.680 1 Предлошка:Reflist"," 43.45% 87.902 1 Предлошка:Classical_mechanics"," 40.12% 81.160 1 Предлошка:Странична_лента_со_расклопни_списоци"," 37.55% 75.968 1 Предлошка:Наведена_книга"," 3.73% 7.538 1 Предлошка:Наведено_списание"," 3.66% 7.411 2 Предлошка:Nowrap"," 2.90% 5.865 7 Предлошка:Startflatlist"," 2.86% 5.784 1 Предлошка:Sup"," 2.49% 5.044 6 Предлошка:Endflatlist"]},"scribunto":{"limitreport-timeusage":{"value":"0.077","limit":"10.000"},"limitreport-memusage":{"value":2068272,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-7cc4589599-8gzm6","timestamp":"20241114151023","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u041a\u0440\u0443\u0436\u043d\u043e \u0434\u0432\u0438\u0436\u0435\u045a\u0435","url":"https:\/\/mk.wikipedia.org\/wiki\/%D0%9A%D1%80%D1%83%D0%B6%D0%BD%D0%BE_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5","sameAs":"http:\/\/www.wikidata.org\/entity\/Q715746","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q715746","author":{"@type":"Organization","name":"\u0423\u0447\u0435\u0441\u043d\u0438\u0446\u0438 \u043d\u0430 \u0412\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u0438\u043d\u0438 \u043f\u0440\u043e\u0435\u043a\u0442\u0438"},"publisher":{"@type":"Organization","name":"\u0424\u043e\u043d\u0434\u0430\u0446\u0438\u0458\u0430 \u0412\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u0458\u0430","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2018-11-25T19:44:46Z"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('mk', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&hl=en-GB&client=wt" type="text/javascript"></script> </body> </html>