CINXE.COM

Search results for: freshwater content

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: freshwater content</title> <meta name="description" content="Search results for: freshwater content"> <meta name="keywords" content="freshwater content"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="freshwater content" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="freshwater content"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6348</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: freshwater content</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6348</span> Estimates of Freshwater Content from ICESat-2 Derived Dynamic Ocean Topography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adan%20Valdez">Adan Valdez</a>, <a href="https://publications.waset.org/abstracts/search?q=Shawn%20Gallaher"> Shawn Gallaher</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Morison"> James Morison</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan%20Aragon"> Jordan Aragon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global climate change has impacted atmospheric temperatures contributing to rising sea levels, decreasing sea ice, and increased freshening of high latitude oceans. This freshening has contributed to increased stratification inhibiting local mixing and nutrient transport and modifying regional circulations in polar oceans. In recent years, the Western Arctic has seen an increase in freshwater volume at an average rate of 397+-116 km3/year. The majority of the freshwater volume resides in the Beaufort Gyre surface lens driven by anticyclonic wind forcing, sea ice melt, and Arctic river runoff. The total climatological freshwater content is typically defined as water fresher than 34.8. The near-isothermal nature of Arctic seawater and non-linearities in the equation of state for near-freezing waters result in a salinity driven pycnocline as opposed to the temperature driven density structure seen in the lower latitudes. In this study, we investigate the relationship between freshwater content and remotely sensed dynamic ocean topography (DOT). In-situ measurements of freshwater content are useful in providing information on the freshening rate of the Beaufort Gyre; however, their collection is costly and time consuming. NASA’s Advanced Topographic Laser Altimeter System (ATLAS) derived dynamic ocean topography (DOT), and Air Expendable CTD (AXCTD) derived Freshwater Content are used to develop a linear regression model. In-situ data for the regression model is collected across the 150° West meridian, which typically defines the centerline of the Beaufort Gyre. Two freshwater content models are determined by integrating the freshwater volume between the surface and an isopycnal corresponding to reference salinities of 28.7 and 34.8. These salinities correspond to those of the winter pycnocline and total climatological freshwater content, respectively. Using each model, we determine the strength of the linear relationship between freshwater content and satellite derived DOT. The result of this modeling study could provide a future predictive capability of freshwater volume changes in the Beaufort-Chukchi Sea using non in-situ methods. Successful employment of the ICESat-2’s DOT approximation of freshwater content could potentially reduce reliance on field deployment platforms to characterize physical ocean properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICESat-2" title="ICESat-2">ICESat-2</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20ocean%20topography" title=" dynamic ocean topography"> dynamic ocean topography</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater%20content" title=" freshwater content"> freshwater content</a>, <a href="https://publications.waset.org/abstracts/search?q=beaufort%20gyre" title=" beaufort gyre"> beaufort gyre</a> </p> <a href="https://publications.waset.org/abstracts/167144/estimates-of-freshwater-content-from-icesat-2-derived-dynamic-ocean-topography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6347</span> Using ICESat-2 Dynamic Ocean Topography to Estimate Western Arctic Freshwater Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Adan%20Valdez">Joshua Adan Valdez</a>, <a href="https://publications.waset.org/abstracts/search?q=Shawn%20Gallaher"> Shawn Gallaher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global climate change has impacted atmospheric temperatures contributing to rising sea levels, decreasing sea ice, and increased freshening of high latitude oceans. This freshening has contributed to increased stratification inhibiting local mixing and nutrient transport, modifying regional circulations in polar oceans. In recent years, the Western Arctic has seen an increase in freshwater volume at an average rate of 397+-116km3/year across the Beaufort Gyre. The majority of the freshwater volume resides in the Beaufort Gyre surface lens driven by anticyclonic wind forcing, sea ice melt, and Arctic river runoff, and is typically defined as water fresher than 34.8. The near-isothermal nature of Arctic seawater and non-linearities in the equation of state for near-freezing waters result in a salinity-driven pycnocline as opposed to the temperature-driven density structure seen in the lower latitudes. In this study, we investigate the relationship between freshwater content and dynamic ocean topography (DOT). In situ measurements of freshwater content are useful in providing information on the freshening rate of the Beaufort Gyre; however, their collection is costly and time-consuming. Utilizing NASA’s ICESat-2’s DOT remote sensing capabilities and Air Expendable CTD (AXCTD) data from the Seasonal Ice Zone Reconnaissance Surveys (SIZRS), a linear regression model between DOT and freshwater content is determined along the 150° west meridian. Freshwater content is calculated by integrating the volume of water between the surface and a depth with a reference salinity of ~34.8. Using this model, we compare interannual variability in freshwater content within the gyre, which could provide a future predictive capability of freshwater volume changes in the Beaufort-Chukchi Sea using non-in situ methods. Successful employment of the ICESat-2’s DOT approximation of freshwater content could potentially demonstrate the value of remote sensing tools to reduce reliance on field deployment platforms to characterize physical ocean properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cryosphere" title="Cryosphere">Cryosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=Arctic%20oceanography" title=" Arctic oceanography"> Arctic oceanography</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20modeling" title=" climate modeling"> climate modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekman%20transport" title=" Ekman transport"> Ekman transport</a> </p> <a href="https://publications.waset.org/abstracts/162714/using-icesat-2-dynamic-ocean-topography-to-estimate-western-arctic-freshwater-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6346</span> Deltamethrin-Induces Oxidative Stress to the Freshwater Ciliate Model: Paramecium tetraurelia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amamra%20Ryma">Amamra Ryma</a>, <a href="https://publications.waset.org/abstracts/search?q=Djebar%20Mohamed%20Reda"> Djebar Mohamed Reda</a>, <a href="https://publications.waset.org/abstracts/search?q=Moumeni%20Ouissem"> Moumeni Ouissem</a>, <a href="https://publications.waset.org/abstracts/search?q=Otmani%20Hadjer"> Otmani Hadjer</a>, <a href="https://publications.waset.org/abstracts/search?q=Berrebbah%20Houria"> Berrebbah Houria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of environmental contamination by the excessive use of organics cannot be neglected. Extensive application is usually companied with serious problems and health risk. It is established that many chemicals, in common use, can produce some toxic effects on biological systems through their mode of action or by production of free radicals that damage all cell compounds. Deltamethrin, a widely used type II pyrethroid pesticide, is one of the most common contaminants in freshwater aquatic system. In this study, we investigate the effects of deltamethrin exposure on the induction of oxidative stress to the freshwater ciliate Paramecium tetraurelia. After the treatment of paramecium cells with increasing concentrations of insecticide, we followed up the growth kinetics, generation time and the percentage response. Also, we studied the variation in biomarkers of stress such as: GSH content, GST, GPX and CAT activities. Our results showed a significant decrease in the proliferation of cells correlated by the decrease in generation number and the increase in generation time. Also, we noted an inhibition in the percentage response. The monitoring of biomarkers revealed depletion in GSH content in a proportional and dose dependent manner accompanied by an increase in the GST activity. In parallel, a strong induction in the CAT and GPX activities was noted specially for the highest dose. In summary, under the current experimental conditions, deltamethrin is highly toxic to the freshwater ciliate Paramecium tetraurelia. Exposure to low concentrations showed significant adverse on growth accompanied with the induction of oxidative damage supported by the decrease in GSH content and the intensification of the antioxidant enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deltamethrin" title="deltamethrin">deltamethrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Paramecium%20tetraurelia" title=" Paramecium tetraurelia"> Paramecium tetraurelia</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a> </p> <a href="https://publications.waset.org/abstracts/17533/deltamethrin-induces-oxidative-stress-to-the-freshwater-ciliate-model-paramecium-tetraurelia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6345</span> An Investigation into the Potential of Industrial Low Grade Heat in Membrane Distillation for Freshwater Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yehia%20Manawi">Yehia Manawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Kayvanifard"> Ahmad Kayvanifard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane distillation is an emerging technology which has been used to produce freshwater and purify different types of aqueous mixtures. Qatar is an arid country where almost 100% of its freshwater demand is supplied through the energy-intensive thermal desalination process. The country’s need for water has reached an all-time high which stipulates finding an alternative way to augment freshwater without adding any drastic affect to the environment. The objective of this paper was to investigate the potential of using the industrial low grade waste heat to produce freshwater using membrane distillation. The main part of this work was conducting a heat audit on selected Qatari chemical industries to estimate the amounts of freshwater produced if such industrial waste heat were to be recovered. By the end of this work, the main objective was met and the heat audit conducted on the Qatari chemical industries enabled us to estimate both the amounts of waste heat which can be potentially recovered in addition to the amounts of freshwater which can be produced if such waste heat were to be recovered. By the end, the heat audit showed that around 605 Mega Watts of waste heat can be recovered from the studied Qatari chemical industries which resulted in a total daily production of 5078.7 cubic meter of freshwater. This water can be used in a wide variety of applications such as human consumption or industry. The amount of produced freshwater may look small when compared to that produced through thermal desalination plants; however, one must bear in mind that this water comes from waste and can be used to supply water for small cities or remote areas which are not connected to the water grid. The idea of producing freshwater from the two widely-available wastes (thermal rejected brine and waste heat) seems promising as less environmental and economic impacts will be associated with freshwater production which may in the near future augment the conventional way of producing freshwater currently being thermal desalination. This work has shown that low grade waste heat in the chemical industries in Qatar and perhaps the rest of the world can contribute to additional production of freshwater using membrane distillation without significantly adding to the environmental impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20distillation" title="membrane distillation">membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20recovery" title=" heat recovery"> heat recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/6188/an-investigation-into-the-potential-of-industrial-low-grade-heat-in-membrane-distillation-for-freshwater-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6344</span> Freshwater Lens Observation: Case Study of Laura Island, Majuro Atoll, Republic of the Marshall Islands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuhisa%20Koda">Kazuhisa Koda</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsutomu%20Kobayashi"> Tsutomu Kobayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Lorennji"> Rebecca Lorennji</a>, <a href="https://publications.waset.org/abstracts/search?q=Alington%20Robert"> Alington Robert</a>, <a href="https://publications.waset.org/abstracts/search?q=Halston%20DeBrum"> Halston DeBrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Julious%20Lucky"> Julious Lucky</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Paul"> Paul Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atolls are low-lying small islands with highly permeable ground that does not allow rivers and lakes to develop. As the water resources on these atolls basically rely on precipitation, groundwater becomes a very important water resource during droughts. Freshwater lenses develop as groundwater on relatively large atoll islands and play a key role in the stable water supply. Atoll islands in the Pacific Ocean sometimes suffer from drought due to El Nino. The global warming effects are noticeable, particularly on atoll islands. The Republic of the Marshall Islands in Oceania is burdened with the problems common to atoll islands. About half of its population lives in the capital, Majuro, and securing water resources for these people is a crucial issue. There is a freshwater lens on the largest, Laura Island, which serves as a water source for the downtown area. A serious drought that occurred in 1998 resulted in excessive water intake from the freshwater lens on Laura Island causing up-coning. Up-coning mixes saltwater into groundwater pumped from water-intake wells. Because up-coning makes the freshwater lens unusable, there was a need to investigate the freshwater lens on Laura Island. In this study, we observed the electrical conductivities of the groundwater at different depths in existing monitoring wells to determine the total storage volume of the freshwater lens on Laura Island from 2010 to 2013. Our results indicated that most of the groundwater that seeped into the freshwater lens had flowed out into the sea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atoll%20islands" title="Atoll islands">Atoll islands</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Nino" title=" El-Nino"> El-Nino</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater%20lens" title=" freshwater lens"> freshwater lens</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20observation" title=" groundwater observation"> groundwater observation</a> </p> <a href="https://publications.waset.org/abstracts/56405/freshwater-lens-observation-case-study-of-laura-island-majuro-atoll-republic-of-the-marshall-islands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6343</span> Cercarial Diversity in Freshwater Snails from Selected Freshwater Bodies and Its Implication for Veterinary and Public Health in Kaduna State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Muhammad%20Abdulkadir">Fatima Muhammad Abdulkadir</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B.%20Maikaje"> D. B. Maikaje</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20Umar"> Y. A. Umar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study conducted to determine cercariae diversity and prevalence of trematode infection in freshwater snails from six freshwater bodies selected by systematic random sampling in Kaduna State was carried from January 2013 to December 2013. Freshwater snails and cercariae harvested from the study sites were morphologically identified. A total of 23,823 freshwater snails were collected from the six freshwater bodies: Bagoma dam, Gimbawa dam, Kangimi dam, Kubacha dam, Manchok water intake and Saminaka water intake. The observed freshwater snail species were: <em>Melanoides tuberculata, Biomphalaria pfeifferi, Bulinus globosus</em>, <em>Lymnaea natalensis</em>, <em>Physa</em> sp., <em>Cleopatra bulimoides</em>, <em>Bellamya</em> <em>unicolor</em> and <em>Lanistes varicus</em>. The freshwater snails were exposed to artificial bright light from a 100 Watt electric bulb in the laboratory to induce cercarial shedding. Of the total freshwater snails collected, 10.55% released one or more types of cercariae. Seven morphological types of cercariae were shed by six freshwater snail species namely: Brevifurcate-apharyngeate distome, Amphistome, Gymnocephalus, Longifurcate-pharyngeate monostome, Longifurcate-pharyngeate distome, Echinostome and Xiphidio cercariae. Infection was monotype in most of the freshwater snails collected; however, Physa species presented a mixed infection with Gymnocephalus and Longifurcate-pharyngeate distome cercariae. B. globosus and B. pfeifferi were the most preferred intermediate hosts with the prevalence of 13.48% and 13.46%, respectively. The diversity and prevalence of cercariae varied among the six freshwater bodies with Manchok water intake having the highest infestation (14.3%) and the least recorded in Kangimi dam (3.9%). There was a correlation trend between the number of freshwater snails and trematode infection with Manchok exhibiting the highest and Bagoma none. The highest cercarial diversity was observed in B. pfeifferi and B. globosus with four morphotypes each, and the lowest was in M. tuberculata with one morphotype. The general distribution of freshwater snails and the trematode cercariae they shed suggests the risk of human and animals to trematodiasis in Manchok community. Public health education to raise awareness on individual and communal action that may control snail breeding sites, prevent transmission and provide access to treatment should be intensified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cercariae" title="Cercariae">Cercariae</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater%20snails" title=" freshwater snails"> freshwater snails</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=trematodiasis" title=" trematodiasis"> trematodiasis</a> </p> <a href="https://publications.waset.org/abstracts/84264/cercarial-diversity-in-freshwater-snails-from-selected-freshwater-bodies-and-its-implication-for-veterinary-and-public-health-in-kaduna-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6342</span> The Impact of Multiple Stressors on the Functioning and Resilience of Model Freshwater Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajida%20Saqira">Sajida Saqira</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Chariton"> Anthony Chariton</a>, <a href="https://publications.waset.org/abstracts/search?q=Grant%20C.%20Hose"> Grant C. Hose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Anthropocene has seen dramatic environmental changes which are affecting every ecosystem on earth. Freshwater ecosystems are particularly vulnerable as they are at risk from the many activities that go on and contaminants that are released in catchments. They are thus subject to many stressors simultaneously. Freshwater ecosystems respond to stress at all levels of biological organization, from subcellular to community structure and ecosystem functioning. The aim of this study was to examine the resistance and resilience of freshwater ecosystems to multiple stressors. Here we explored the individual and combined effects of copper as a chemical stressor and common carp (Cyprinus carpio) as a biological stressor on the health, functioning, and recovery of outdoor experimental pond ecosystems in a long-term, controlled, factorial experiment. Primary productivity, decomposition, and water and sediment quality were analysed at regular intervals for one year to understand the health and functioning of the ecosystems. Changes to benthic biota were quantified using DNA-based and traditional microscopy-based counts of invertebrates. Carp were added to the ponds to copper contaminated sediments (with controls) to explore the combined effects of copper and carp and removed after six months to explore the resilience and recovery of the system. The outcomes of this study will advance our understanding of the impacts of multiple stressors on freshwater ecosystems, and the resilience of these systems to copper and C. carpio, which are both globally significant stressors in freshwater systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carp" title="carp">carp</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20health" title=" ecosystem health"> ecosystem health</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater%20ecosystem" title=" freshwater ecosystem"> freshwater ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20stressors" title=" multiple stressors"> multiple stressors</a> </p> <a href="https://publications.waset.org/abstracts/118753/the-impact-of-multiple-stressors-on-the-functioning-and-resilience-of-model-freshwater-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6341</span> Greenhouse Gas Emissions from a Tropical Eutrophic Freshwater Wetland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20P.%20Silva">Juan P. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20R.%20Canchala"> T. R. Canchala</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Lubberding"> H. J. Lubberding</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20J.%20Pe%C3%B1a"> E. J. Peña</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Gijzen"> H. J. Gijzen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study measured the fluxes of greenhouse gases (GHGs) i.e. CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O from a tropical eutrophic freshwater wetland (&ldquo;Sonso Lagoon&rdquo;) which receives input loading nutrient from several sources i.e. agricultural run-off, domestic sewage, and a polluted river. The flux measurements were carried out at four different points using the static chamber technique. CO<sub>2</sub> fluxes ranged from -8270 to 12210 mg.m<sup>-2</sup>.d<sup>-1</sup> (median = 360; SD = 4.11; n = 50), CH<sub>4</sub> ranged between 0.2 and 5270 mg.m<sup>-2</sup>.d<sup>-1</sup> (median = 60; SD = 1.27; n = 45), and N<sub>2</sub>O ranged from -31.12 to 15.4 mg N<sub>2</sub>O m<sup>-2</sup>.d<sup>-1</sup> (median = 0.05; SD = 9.36; n = 42). Although some negative fluxes were observed in the zone dominated by floating plants i.e. <em>Eichornia crassipes, Salvinia </em>sp<em>.</em>, and <em>Pistia stratiotes </em>L., the mean values indicated that the Sonso Lagoon was a net source of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O. In addition, an effect of the eutrophication on GHG emissions could be observed in the positive correlation found between CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O generation and COD, PO<sub>4</sub><sup>-3</sup>, NH<sub>3</sub>-N, TN and NO<sub>3</sub><sup>-</sup>N. The eutrophication impact on GHG production highlights the necessity to limit the anthropic activities on freshwater wetlands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eutrophication" title="eutrophication">eutrophication</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emissions" title=" greenhouse gas emissions"> greenhouse gas emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater%20wetlands" title=" freshwater wetlands"> freshwater wetlands</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/43499/greenhouse-gas-emissions-from-a-tropical-eutrophic-freshwater-wetland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6340</span> Hydrogeophysical Investigations of Groundwater Resources and Demarcation of Saltwater-Freshwater Interface in Kilwa Kisiwani Island, Se Tanzania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simon%20R.%20Melchioly">Simon R. Melchioly</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahimu%20C.%20Mjemah"> Ibrahimu C. Mjemah</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20M.%20Marobhe"> Isaac M. Marobhe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research was to identify new potential sources of groundwater resources using geophysical methods and also to demarcate the saltwater - freshwater interface. Kilwa Kisiwani Island geologically is covered mostly by Quaternary alluvial sediments, sand, and gravel. The geophysical techniques employed during the research include Vertical Electrical Sounding (VES), Earth Resistivity Tomography (ERT), and Transient Electromagnetics (TEM). Two-dimensional interpolated geophysical results show that there exist freshwater lenses formations that are potential aquifers on the Island with resistivity values ranging from 11.68 Ωm to 46.71 Ωm. These freshwater lenses are underlain by formation with brackish water in which the resistivity values are varying between 3.89 Ωm and 1.6 Ωm. Saltwater with resistivity less than 1 Ωm is found at the bottom being overlaid by brackish saturated formation. VES resistivity results show that 89% (16 out of 18) of the VES sites are potential for groundwater resources drilling while TEM results indicate that 75% (12 out of 16) of TEM sites are potential for groundwater borehole drilling. The recommended drilling depths for potential sites in Kilwa Kisiwani Island show that the maximum depth is 25 m and the minimum being 10 m below ground surface. The aquifer structure in Kilwa Kisiwani Island is a shallow, unconfined freshwater lenses floating above the seawater and the maximum thickness of the aquifer is 25 m for few selected VES and TEM sites while the minimum thickness being 10 m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeophysical" title=" hydrogeophysical"> hydrogeophysical</a>, <a href="https://publications.waset.org/abstracts/search?q=Kilwa%20Kisiwani" title=" Kilwa Kisiwani"> Kilwa Kisiwani</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater" title=" freshwater"> freshwater</a>, <a href="https://publications.waset.org/abstracts/search?q=saltwater" title=" saltwater"> saltwater</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a> </p> <a href="https://publications.waset.org/abstracts/60810/hydrogeophysical-investigations-of-groundwater-resources-and-demarcation-of-saltwater-freshwater-interface-in-kilwa-kisiwani-island-se-tanzania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6339</span> The Impact on Habitat of Reef Traps Used in the Freshwater Shrimp (Palaemonetes antennarius, H. Milne Erwards, 1837) Catch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cenkmen%20R.%20Begburs">Cenkmen R. Begburs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Antalya region, freshwater shrimps are usually collected with scoops and tin traps. However, it can be catched by reef traps in some water sources. Freshwater shrimps are constantly catching for commercial reasons because of a favorite bait for angling. There are more or less damage catching fishing vehicles to the habitat. This study was carried out in the Kırkgöz spring, Antalya and examined the effect of reef traps on the Kırkgöz spring habitat. Reef traps used 18.5x23.5x25 cm perforated bricks are arranged next to each other, blocks of random dimensions are prepared in 5x10, 18x24, 7x8 meter dimensions. These blocks are constructed with two layers of bricks that are covered with various materials such as carpets and blankets. Then, freshwater shrimps enter the holes of bricks. The bricks are closed off from both sides and discharged into a container when it is desired to be caught. The reef traps built on the plants which staying on the plant for a long time have been damaging the vegetation under the reef traps. Fishermen are setting new traps on the plants to increase the fishing efficiency since the freshwater shrimps are among the water plants. As a result, this application disrupts the aquatic organisms in their habitats. It is important to use fishing gears which will cause less damage and conserve stocks for sustainable fishing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reef%20trap" title="reef trap">reef trap</a>, <a href="https://publications.waset.org/abstracts/search?q=Antalya" title=" Antalya"> Antalya</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a> </p> <a href="https://publications.waset.org/abstracts/83607/the-impact-on-habitat-of-reef-traps-used-in-the-freshwater-shrimp-palaemonetes-antennarius-h-milne-erwards-1837-catch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6338</span> Breeding Biology and Induced Breeding Status of Freshwater Mud Eel, Monopterus cuchia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faruque%20Miah">Faruque Miah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafij%20Ali"> Hafij Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Enaya%20Jannat"> Enaya Jannat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanmoy%20Modok%20Shuvra"> Tanmoy Modok Shuvra</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Niamul%20Naser"> M. Niamul Naser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, breeding biology and induced breeding of freshwater mud eel, Monopterus cuchia was observed during the experimental period from February to June, 2013. Breeding biology of freshwater mud eel, Monopterus cuchia was considered in terms of gonadosomatic index, length-weight relationship of gonad, ova diameter and fecundity. The ova diameter was recorded from 0.3 mm to 4.30 mm and the individual fecundity was recorded from 155 to 1495 while relative fecundity was found from 2.64 to 12.45. The fecundity related to body weight and length of fish was also discussed. A peak of GSI was observed 2.14±0.2 in male and 5.1 ±1.09 in female. Induced breeding of freshwater mud eel, Monopterus cuchia was also practiced with different doses of different inducing agents like pituitary gland (PG), human chorionic gonadotropin (HCG), Gonadotropin releasing hormone (GnRH) and Ovuline-a synthetic hormone in different environmental conditions. However, it was observed that the artificial breeding of freshwater mud eel, Monopterus cuchia was not yet succeeded through inducing agents in captive conditions, rather the inducing agent showed negative impacts on fecundity and ovarian tissues. It was seen that mature eggs in the oviduct were reduced, absorbed and some eggs were found in spoiled condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breeding%20biology" title="breeding biology">breeding biology</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20breeding" title=" induced breeding"> induced breeding</a>, <a href="https://publications.waset.org/abstracts/search?q=Monopterus%20cuchia" title=" Monopterus cuchia"> Monopterus cuchia</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20chorionic%20gonadotropin" title=" human chorionic gonadotropin"> human chorionic gonadotropin</a> </p> <a href="https://publications.waset.org/abstracts/22005/breeding-biology-and-induced-breeding-status-of-freshwater-mud-eel-monopterus-cuchia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">774</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6337</span> Sustainable Use of Laura Lens during Drought</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuhisa%20Koda">Kazuhisa Koda</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsutomu%20Kobayashi"> Tsutomu Kobayashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laura Island, which is located about 50 km away from downtown, is a source of water supply in Majuro atoll, which is the capital of the Republic of the Marshall Islands. Low and flat Majuro atoll has neither river nor lake. It is very important for Majuro atoll to ensure the conservation of its water resources. However, up-coning, which is the process of partial rising of the freshwater-saltwater boundary near the water-supply well, was caused by the excess pumping from it during the severe drought in 1998. Up-coning will make the water usage of the freshwater lens difficult. Thus, appropriate water usage is required to prevent up-coning in the freshwater lens because there is no other water source during drought. Numerical simulation of water usage applying SEAWAT model was conducted at the central part of Laura Island, including the water-supply well, which was affected by up-coning. The freshwater lens was created as a result of infiltration of consistent average rainfall. The lens shape was almost the same as the one in 1985. 0 of monthly rainfall and variable daily pump discharge were used to calculate the sustainable pump discharge from the water-supply well. Consequently, the total amount of pump discharge was increased as the daily pump discharge was increased, indicating that it needs more time to recover from up-coning. Thus, a pump standard to reduce the pump intensity is being proposed, which is based on numerical simulation concerning the occurrence of the up-coning phenomenon in Laura Island during the drought. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freshwater%20lens" title="freshwater lens">freshwater lens</a>, <a href="https://publications.waset.org/abstracts/search?q=islands" title=" islands"> islands</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water%20use" title=" sustainable water use"> sustainable water use</a> </p> <a href="https://publications.waset.org/abstracts/37678/sustainable-use-of-laura-lens-during-drought" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6336</span> Pathogenic Bacteria Isolated from Diseased Giant Freshwater Prawn in Shrimp Culture Ponds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kusumawadee%20Thancharoen">Kusumawadee Thancharoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rungrat%20Nontawong"> Rungrat Nontawong</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanawat%20Junsom"> Thanawat Junsom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pathogenic bacterial flora was isolated from giant freshwater prawns, Macrobrachium rosenbergii. Infected shrimp samples were collected from BuaBan Aquafarm in Kalasin Province, Thailand, between June and September 2018. Bacterial species were isolated by serial dilution and plated on Thiosulfate Citrate Bile Salt Sucrose (TCBS) agar medium. A total 89 colonies were isolated and identified using the API 20E biochemical tests. Results showed the presence of genera Aeromonas, Citrobacter, Chromobacterium, Providencia, Pseudomonas, Stenotrophomonas and Vibrio. Maximum number of species was recorded in Pseudomonas (50.57%) with minimum observed in Chromobacterium and Providencia (1.12%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemical%20test" title="biochemical test">biochemical test</a>, <a href="https://publications.waset.org/abstracts/search?q=giant%20freshwater%20prawn" title=" giant freshwater prawn"> giant freshwater prawn</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20tolerance" title=" salt tolerance"> salt tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=shrimp%20diseases" title=" shrimp diseases"> shrimp diseases</a> </p> <a href="https://publications.waset.org/abstracts/94049/pathogenic-bacteria-isolated-from-diseased-giant-freshwater-prawn-in-shrimp-culture-ponds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6335</span> Environmental Impacts and Ecological Utilization of Water Hyacinth (Eichhornia crassipes) in the Niger Delta Fresh Ecosystem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seiyaboh%20E.%20I.">Seiyaboh E. I.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water Hyacinth (Eichhornia crassipes) was introduced into many parts of the world, including Africa, as an ornamental garden pond plant because of its beauty. However, it is considered a dangerous pest today because when not controlled, water hyacinth will cover rivers, lakes and ponds entirely; this dramatically impacts water flow, blocks sunlight from reaching native aquatic plants, and starves the water of oxygen, often killing fish and other aquatic organisms. In the Niger Delta region, water hyacinth is considered a nuisance because of its very obvious devastating environmental impacts in the region. However, water hyacinth (Eichhornia crassipes) constitutes a very important part of an aquatic ecosystem. It possesses specialized growth habits, physiological characteristics and reproductive strategies that allow for rapid growth and spread in freshwater environments and this explains its very rapid spread in the Niger Delta freshwater ecosystem. This paper therefore focuses on the environmental consequences of the proliferation of water hyacinth (Eichhornia crassipes) in the Niger Delta freshwater ecosystem, extent of impact, and options available for its ecological utilization which will help mitigate proliferation, restore effective freshwater ecosystem utilization and balance. It concludes by recommending sustainable practices outlining the beneficial uses of water hyacinth (Eichhornia crassipes) rather than control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title="environmental impacts">environmental impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20utilization" title=" ecological utilization"> ecological utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=Niger%20Delta" title=" Niger Delta"> Niger Delta</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20hyacinth" title=" water hyacinth"> water hyacinth</a>, <a href="https://publications.waset.org/abstracts/search?q=Eichhornia%20crassipes" title=" Eichhornia crassipes"> Eichhornia crassipes</a> </p> <a href="https://publications.waset.org/abstracts/24966/environmental-impacts-and-ecological-utilization-of-water-hyacinth-eichhornia-crassipes-in-the-niger-delta-fresh-ecosystem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6334</span> Higher Freshwater Fish and Sea Fish Intake Is Inversely Associated with Liver Cancer in Patients with Hepatitis B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maomao%20Cao">Maomao Cao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and aims While the association between higher consumption of fish and lower liver cancer risk has been confirmed, however, the association between specific fish intake and liver cancer risk remains unknown. We aimed to identify the association between specific fish consumption and the risk of liver cancer. Methods: Based on a community-based seropositive hepatitis B cohort involving 18404 individuals, face to face interview was conducted by a standardized questionnaire to acquire baseline information. Three common fish types in this study were analyzed, including freshwater fish, sea fish, and small fish (shrimp, crab, conch, and shell). All participants received liver cancer screening, and possible cases were identified by CT or MRI. Multivariable logistic models were applied to estimate the odds ratio (OR) and 95% confidence intervals (CI). Multivariate multiple imputations were utilized to impute observations with missing values. Results: 179 liver cancer cases were identified. Consumption of freshwater fish and sea fish at least once a week had a strong inverse association with liver cancer risk compared with the lowest intake level, with an adjusted OR of 0.53 (95% CI, 0.38-0.75) and 0.38 (95% CI, 0.19-0.73), respectively. This inverse association was also observed after the imputation. There was no statistically significant association between intake of small fish and liver cancer risk (OR=0.58, 95%, CI 0.32-1.08). Conclusions: Our findings suggest that consumption of freshwater fish and sea fish at least once a week could reduce liver cancer risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-sectional%20study" title="cross-sectional study">cross-sectional study</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20intake" title=" fish intake"> fish intake</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer" title=" liver cancer"> liver cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factor" title=" risk factor"> risk factor</a> </p> <a href="https://publications.waset.org/abstracts/139256/higher-freshwater-fish-and-sea-fish-intake-is-inversely-associated-with-liver-cancer-in-patients-with-hepatitis-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6333</span> Timing and Impacts of Megafloods in the North Pacific as Recorded by Freshwater Diatoms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Lopes">Cristina Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20C.%20Mix"> Alan C. Mix</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The timing and extension of large discharges from glacial lakes, known as megafloods, into the oceans have been of key importance. This type of events can influence the oceanic/land interactions and even be related with climate changes. While the impact of such floods has been fairly studied in the North Atlantic, the impact of analog floods in the North Pacific remains debatable and relatively unknown. Here we will show records of the Missoula floods that have carved the Northwest landscape and have entered the North Pacific through the Columbia River. These records are given by the presence of high (more than 40%) percentages of freshwater diatoms in marine sediments. A regression equation using these percentages allows to estimate by how much the salinities decreased. The timing and impact of North Pacific megafloods recorded in three marine cores of Oregon and California for the past 25000 years (B.P.) will be presented. These records show that the volume of freshwater that entered the North Pacific reached as far as 600 Km south of the Columbia River Mouth, decreasing the salinities by as much as 4 units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diatoms" title="diatoms">diatoms</a>, <a href="https://publications.waset.org/abstracts/search?q=megafloods" title=" megafloods"> megafloods</a>, <a href="https://publications.waset.org/abstracts/search?q=Missoula" title=" Missoula"> Missoula</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Pacific" title=" North Pacific"> North Pacific</a> </p> <a href="https://publications.waset.org/abstracts/103119/timing-and-impacts-of-megafloods-in-the-north-pacific-as-recorded-by-freshwater-diatoms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6332</span> Effect of Sugar Mill Effluent on Growth, Yield and Soil Properties of Ratoon Cane in Cauvery Command Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Madhu">G. K. Madhu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bhaskar"> S. Bhaskar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Dinesh"> M. S. Dinesh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Manii"> R. Manii</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Srinivasamurthy"> C. A. Srinivasamurthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted in the premises of M/s Sri Chamundeshwari Sugars Ltd., Bharathinagar, Mandya District Pvt. Ltd., during 2014 to study the effect of sugar mill effluent (SME) on growth, yield and soil properties of ratoon cane with eight treatments replicated thrice using RCBD design. Significantly higher growth parameters like cane height (249.77 cm) and number of tillers per clump (12.22) were recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower growth attributes were recorded in treatment which received irrigation with sugar mill effluent alone. Significantly higher cane yield (104. 93 t -1) was recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower cane yield (87.40 t ha-1) was observed in treatment which received irrigation with sugar mill effluent alone. Soil properties like pH (7.84) was higher in treatment receiving Alternate irrigation with freshwater and sugar mill effluent + RDF. But EC was significantly higher in treatment which received Cycle of1 irrigation with freshwater + 2 irrigations with sugar mill effluent + RDF as compared to other treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugar%20mill%20effluent" title="sugar mill effluent">sugar mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane" title=" sugarcane"> sugarcane</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=cane%20yield" title=" cane yield"> cane yield</a> </p> <a href="https://publications.waset.org/abstracts/37275/effect-of-sugar-mill-effluent-on-growth-yield-and-soil-properties-of-ratoon-cane-in-cauvery-command-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6331</span> Bacteria Flora in the Gut and Respiratory Organs of Clarias gariepinus in Fresh and Brackish Water Habitats of Ondo State, South/West Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelson%20R.%20Osungbemiro">Nelson R. Osungbemiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiu%20O.%20Sanni"> Rafiu O. Sanni</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotimi%20F.%20Olaniyan"> Rotimi F. Olaniyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abayomi%20O.%20Olajuyigbe"> Abayomi O. Olajuyigbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacteria flora of Clarias gariepinus collected from two natural habitats namely Owena River (freshwater) and Igbokoda lagoon (brackish water) were examined using standard microbiological procedures. Thirteen bacterial species were identified. The result indicated that from the identified bacteria isolated, Vibrio sp, Proteus sp. Shigella sp. and E. coli were present in both habitats (fresh and brackish waters). Others were habitat-selective such as Salmonella sp., Pseudomonas sp, Enterococcus sp, Staphylococcus sp. that were found only in freshwater habitat. While Branhamella sp, Streptococcus sp. and Micrococcus sp. were found in brackish water habitat. Bacteria load from Owena river (freshwater) was found to be the highest load recorded at 6.21 x 104cfu. T-test analysis also revealed that there was a marked significant difference between bacterial load in guts of sampled Clarias from fresh water and brackish water habitats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria%20flora" title="bacteria flora">bacteria flora</a>, <a href="https://publications.waset.org/abstracts/search?q=gut" title=" gut"> gut</a>, <a href="https://publications.waset.org/abstracts/search?q=Clarias%20gariepinus" title=" Clarias gariepinus"> Clarias gariepinus</a>, <a href="https://publications.waset.org/abstracts/search?q=Owena%20river" title=" Owena river"> Owena river</a> </p> <a href="https://publications.waset.org/abstracts/6024/bacteria-flora-in-the-gut-and-respiratory-organs-of-clarias-gariepinus-in-fresh-and-brackish-water-habitats-of-ondo-state-southwest-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6330</span> Maori Primary Industries Responses to Climate Change and Freshwater Policy Reforms in Aotearoa New Zealand </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanira%20Kingi">Tanira Kingi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Montes%20Oca"> Oscar Montes Oca</a>, <a href="https://publications.waset.org/abstracts/search?q=Reina%20Tamepo"> Reina Tamepo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The introduction of the Climate Change Response (Zero Carbon) Amendment Act (2019) and the National Policy Statement for Freshwater Management (2020) both contain underpinning statements that refer to the principles of the Treaty of Waitangi and cultural concepts of stewardship and environmental protection. Maori interests in New Zealand’s agricultural, forestry, fishing and horticultural sectors are significant. The organizations that manage these investments do so on behalf of extended family groups that hold inherited interests based on genealogical connections (whakapapa) to particular tribal units (iwi and hapu) and areas of land (whenua) and freshwater bodies (wai). This paper draws on the findings of current research programmes funded by the New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC) and the Our Land & Water National Science Challenge (OLW NSC) to understand the impact of cultural knowledge and imperatives on agricultural GHG and freshwater mitigation and land-use change decisions. In particular, the research outlines mitigation and land-use change scenario decision support frameworks that model changes in emissions profiles (reductions in biogenic methane, nitrous oxide and nutrient emissions to freshwater) of agricultural and forestry production systems along with impacts on key economic indicators and socio-cultural factors. The paper also assesses the effectiveness of newly introduced partnership arrangements between Maori groups/organizations and key government agencies on policy co-design and implementation, and in particular, decisions to adopt mitigation practices and to diversify land use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-design%20and%20implementation%20of%20environmental%20policy" title="co-design and implementation of environmental policy">co-design and implementation of environmental policy</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous%20environmental%20knowledge" title=" indigenous environmental knowledge"> indigenous environmental knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C4%81ori%20land%20tenure%20and%20agribusiness" title=" Māori land tenure and agribusiness"> Māori land tenure and agribusiness</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation%20and%20land%20use%20change%20decision%20support%20frameworks" title=" mitigation and land use change decision support frameworks"> mitigation and land use change decision support frameworks</a> </p> <a href="https://publications.waset.org/abstracts/138170/maori-primary-industries-responses-to-climate-change-and-freshwater-policy-reforms-in-aotearoa-new-zealand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6329</span> Carbon Di Oxide Sequestration by Freshwater Microalgae Isolated from River Noyyal, India and Its Biomass for Biofuel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Mohanapriya">K. R. Mohanapriya</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Geetharamani"> D. Geetharamani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In last few decades, global atmospheric concentrations of green house gases have been frequently increased because of carbon di oxide (CO2) emission from combustion of fossil fuels. This green house gas emission leads to global warming. In order to reduce green house gas emission, cultivation of microalgae has received attention due to their feasibility of CO2 sequestration. Microalgae can grow and multiply in short period because of their photosynthetic simple unicellular structures and can grow using water unsuitable for human consumption with nutrients that are available at low cost. In the present study, freshwater microalgae were isolated from Noyyal river in Coimbatore, Tamil Nadu, India. The isolated strains were screened for CO2 sequestration potential. The efficient isolate namely Klebsormidium sp was subjected to further study. Quantitative determination of CO2 sequestration potential of the isolate under study has been done. The biomass of the isolate thus obtained was subjected to triglyceride and fatty acid analysis to study the potential application of the isolate for biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20sequestration" title="CO2 sequestration">CO2 sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater%20microalgae" title=" freshwater microalgae"> freshwater microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=Klebsormidium%20sp" title=" Klebsormidium sp"> Klebsormidium sp</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a> </p> <a href="https://publications.waset.org/abstracts/14931/carbon-di-oxide-sequestration-by-freshwater-microalgae-isolated-from-river-noyyal-india-and-its-biomass-for-biofuel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6328</span> Optimization and Retrofitting for an Egyptian Refinery Water Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mousa">Mohamed Mousa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freshwater%20minimization" title="freshwater minimization">freshwater minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=GAMS" title=" GAMS"> GAMS</a>, <a href="https://publications.waset.org/abstracts/search?q=BARON" title=" BARON"> BARON</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20network%20design" title=" water network design"> water network design</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reudction" title=" wastewater reudction"> wastewater reudction</a> </p> <a href="https://publications.waset.org/abstracts/139312/optimization-and-retrofitting-for-an-egyptian-refinery-water-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6327</span> An Experimental Investigation on Productivity and Performance of an Improved Design of Basin Type Solar Still</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20S.%20El-Sebaey">Mahmoud S. El-Sebaey</a>, <a href="https://publications.waset.org/abstracts/search?q=Asko%20Ellman"> Asko Ellman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hegazy"> Ahmed Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Ghonim"> Tarek Ghonim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to population growth, the need for drinkable healthy water is highly increased. Consequently, and since the conventional sources of water are limited, researchers devoted their efforts to oceans and seas for obtaining fresh drinkable water by thermal distillation. The current work is dedicated to the design and fabrication of modified solar still model, as well as conventional solar still for the sake of comparison. The modified still is single slope double basin solar still. The still consists of a lower basin with a dimension of 1000 mm x 1000 mm which contains the sea water, as well as the top basin that made with 4 mm acrylic, was temporarily kept on the supporting strips permanently fixed with the side walls. Equally ten spaced vertical glass strips of 50 mm height and 3 mm thickness were provided at the upper basin for the stagnancy of the water. Window glass of 3 mm was used as the transparent cover with 23° inclination at the top of the still. Furthermore, the performance evaluation and comparison of these two models in converting salty seawater into drinkable freshwater are introduced, analyzed and discussed. The experiments were performed during the period from June to July 2018 at seawater depths of 2, 3, 4 and 5 cm. Additionally, the solar still models were operated simultaneously in the same climatic conditions to analyze the influence of the modifications on the freshwater output. It can be concluded that the modified design of double basin single slope solar still shows the maximum freshwater output at all water depths tested. The results showed that the daily productivity for modified and conventional solar still was 2.9 and 1.8 dm³/m² day, indicating an increase of 60% in fresh water production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freshwater%20output" title="freshwater output">freshwater output</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20still" title=" solar still"> solar still</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desalination" title=" thermal desalination"> thermal desalination</a> </p> <a href="https://publications.waset.org/abstracts/104867/an-experimental-investigation-on-productivity-and-performance-of-an-improved-design-of-basin-type-solar-still" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6326</span> Preserving the Cultural Values of the Mararoa River and Waipuna–Freshwater Springs, Southland New Zealand: An Integration of Traditional and Scientific Knowledge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erine%20van%20Niekerk">Erine van Niekerk</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Holland"> Jason Holland</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Māori culture water is considered to be the foundation of all life and has its own mana (spiritual power) and mauri (life force). Water classification for cultural values therefore includes categories like waitapu (sacred water), waimanawa-whenua (water from under the land), waipuna (freshwater springs), the relationship between water quantity and quality and the relationship between surface and groundwater. Particular rivers and lakes have special significance to iwi and hapu for their rohe (tribal areas). The Mararoa River, including its freshwater springs and wetlands, is an example of such an area. There is currently little information available about the sources, characteristics and behavior of these important water resources and this study on the water quality of the Mararoa River and adjacent freshwater springs will provide valuable information to be used in informed decisions about water management. The regional council of Southland, Environment Southland, is required to make changes under their water quality policy in order to comply with the requirements for the New National Standards for Freshwater to consult with Maori to determine strategies for decision making. This requires an approach that includes traditional knowledge combined with scientific knowledge in the decision-making process. This study provided the scientific data that can be used in future for decision making on fresh water springs combined with traditional values for this particular area. Several parameters have been tested in situ as well as in a laboratory. Parameters such as temperature, salinity, electrical conductivity, Total Dissolved Solids, Total Kjeldahl Nitrogen, Total Phosphorus, Total Suspended Solids, and Escherichia coli among others show that recorded values of all test parameters fall within recommended ANZECC guidelines and Environment Southland standards and do not raise any concerns for the water quality of the springs and the river at the moment. However, the destruction of natural areas, particularly due to changes in farming practices, and the changes to water quality by the introduction of Didymosphenia geminate (Didymo) means Māori have already lost many of their traditional mahinga kai (food sources). There is a major change from land use such as sheep farming to dairying in Southland which puts freshwater resources under pressure. It is, therefore, important to draw on traditional knowledge and spirituality alongside scientific knowledge to protect the waters of the Mararoa River and waipuna. This study hopes to contribute to scientific knowledge to preserve the cultural values of these significant waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cultural%20values" title="cultural values">cultural values</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater%20springs" title=" freshwater springs"> freshwater springs</a>, <a href="https://publications.waset.org/abstracts/search?q=Maori" title=" Maori"> Maori</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/39300/preserving-the-cultural-values-of-the-mararoa-river-and-waipuna-freshwater-springs-southland-new-zealand-an-integration-of-traditional-and-scientific-knowledge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6325</span> Freshwater Recovering and Water Pollution Controlling Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habtamu%20Abdisa">Habtamu Abdisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In nature, water may not be free from contaminants due to its polar nature. But, more than this, the environmental water is highly polluted by manmade activities from industrial, agricultural, recreation, shipping, and domestic sites, thereby increasing the shortage of freshwater for designated purposes. Therefore, in the face of water scarcity, human beings are enforced to look at all the existing opportunities to get an adequate amount of freshwater resources. The most probable water resource is wastewater, from which the water can be recovered to serve designated purposes (for industrial, agricultural, drinking, and other domestic uses). Present-day, the most preferable method for recovering water from different wastewater streams for re-use is membrane technology. This paper looks at the progressive development of membrane technology in wastewater treatment. The applications of pressure-driven membrane separation technology (microfiltration, ultrafiltration, nano-filtration, reverse osmosis, and tissue purification) and no pressure membrane separation technology (semipermeable membrane, liquefiedfilm, and electro-dialysis) and also ion-exchange were reviewed. More than all, the technology for converting environmental water pollutants into energy is of considerable attention. Finally, recommendations for future research relating to the application of membrane technology in wastewater treatment were made. Also, further research recommendation about membrane fouling and cleaning was made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title="environmental pollution">environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20technology" title=" membrane technology"> membrane technology</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/149931/freshwater-recovering-and-water-pollution-controlling-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6324</span> Organic Geochemical Characteristics of Cenozoic Mudstones, NE Bengal Basin, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Zakir%20Hossain">H. M. Zakir Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cenozoic mudstone samples, obtained from drilled cored and outcrop in northeastern Bengal Basin of Bangladesh were organic geochemically analyzed to identify vertical variations of organic facies, thermal maturity, hydrocarbon potential and depositional environments. Total organic carbon (TOC) content ranges from 0.11 to 1.56 wt% with an average of 0.43 wt%, indicating a good source rock potential. Total sulphur content is variable with values ranging from ~0.001 to 1.75 wt% with an average of 0.065 wt%. Rock-Eval S1 and S2 yields range from 0.03 to 0.14 mg HC/g rock and 0.01 to 0.66 mg HC/g rock, respectively. The hydrogen index values range from 2.71 to 56.09 mg HC/g TOC. These results revealed that the samples are dominated by type III kerogene. Tmax values of 426 to 453 °C and vitrinite reflectance of 0.51 to 0.66% indicate the organic matter is immature to mature. Saturated hydrocarbon ratios such as pristane, phytane, steranes, and hopanes, indicate mostly terrigenous organic matter with small influence of marine organic matter. Organic matter in the succession was accumulated in three different environmental conditions based on the integration of biomarker proxies. First phase (late Eocene to early Miocene): Deposition occurred entirely in seawater-dominated oxic conditions, with high inputs of land plants organic matter including angiosperms. Second phase (middle to late Miocene): Deposition occurred in freshwater-dominated anoxic conditions, with phytoplanktonic organic matter and a small influence of land plants. Third phase (late Miocene to Pleistocene): Deposition occurred in oxygen-poor freshwater conditions, with abundant input of planktonic organic matter and high influx of angiosperms. The lower part (middle Eocene to early Miocene) of the succession with moderate TOC contents and primarily terrestrial organic matter could have generated some condensates and oils in and around the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title="Bangladesh">Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential" title=" hydrocarbon potential"> hydrocarbon potential</a>, <a href="https://publications.waset.org/abstracts/search?q=mudstone" title=" mudstone"> mudstone</a> </p> <a href="https://publications.waset.org/abstracts/14260/organic-geochemical-characteristics-of-cenozoic-mudstones-ne-bengal-basin-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6323</span> Assessment of Genotoxic Effects of a Fungicide (Propiconazole) in Freshwater Fish Gambusia Affinis Using Alkaline Single-Cell Gel Electrophoresis (Comet Essay)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bourenane%20Bouhafs%20Naziha">Bourenane Bouhafs Naziha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ARTEA330EC is a fungicide used to inhibit the growth of many types of fungi on and cereals and rice, it is the single largest selling agrochemical that has been widely detected in surface waters in our area (Northeast Algerian). The studies on long-term genotoxic effects of fugicides in different tissues of fish using genotoxic biomarkers are limited. Therefore, in the present study DNA damage by propiconazole in freshwater fish Gambusia affinis by comet assays was investigated. The LC(50)- 96 h of the fungicide was estimated for the fish in a semi-static system. On this basis of LC(50) value sublethal and nonlethal concentrations were determined (25; 50; 75; and 100 ppm). The DNA damage was measured in erythrocytes as the percentage of DNA in comet tails of fishes exposed to above concentrations the fungicide. In general,non significant effects for both the concentrations and time of exposure were observed in treated fish compared with the controls. However It was found that the highest DNA damage was observed at the highest concentration and the longest time of exposure (day 12). The study indicated comet assay to be sensitive and rapid method to detect genotoxicity of propiconasol and other pesticides in fishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genotoxicity" title="genotoxicity">genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=fungicide" title=" fungicide"> fungicide</a>, <a href="https://publications.waset.org/abstracts/search?q=propiconazole" title=" propiconazole"> propiconazole</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater" title=" freshwater"> freshwater</a>, <a href="https://publications.waset.org/abstracts/search?q=Gambusia%20affinis" title=" Gambusia affinis"> Gambusia affinis</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20single-cell%20gel%20electrophoresis" title=" alkaline single-cell gel electrophoresis "> alkaline single-cell gel electrophoresis </a> </p> <a href="https://publications.waset.org/abstracts/13291/assessment-of-genotoxic-effects-of-a-fungicide-propiconazole-in-freshwater-fish-gambusia-affinis-using-alkaline-single-cell-gel-electrophoresis-comet-essay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6322</span> Zooplankton Health Status Monitoring in Bir Mcherga Dam (Tunisia)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabria%20Barka">Sabria Barka</a>, <a href="https://publications.waset.org/abstracts/search?q=Imen%20Gdara"> Imen Gdara</a>, <a href="https://publications.waset.org/abstracts/search?q=Zouhour%20Ouan%C3%A8s"> Zouhour Ouanès</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Mouelhi"> Samia Mouelhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Monia%20El%20Bour"> Monia El Bour</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Hamza-Chaffai"> Amel Hamza-Chaffai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because dams are large semi-closed reservoirs of pollutants originating from numerous anthropogenic activities, they represent a threat to aquatic life and they should be monitored. The present work aims to use freshwater zooplankton (Copepods and Cladocerans) in order to evaluate the environmental health status of Bir M'cherga dam in Tunisia. Animals were collected in situ monthly between October and August. Genotoxicity (micronucleus test), neurotoxicity (acetylcholinesterase, AChE) and oxidative stress (catalase, CAT and malondialdehyde, MDA) biomarkers were analyzed in zooplankton. High frequencies of micronucleus were observed in zooplankton cells during summer. AChE activities were inhibited during early winter and summer. CAT and MDA biomarker levels showed high seasonal variability, suggesting that animals are permanently exposed to multiple oxidative stress. The results of this study suggest that the Bir Mcherga dam is subject to continuous multi-origin stress, probably amplified by abiotic parameters. It is then recommended to urgently monitor freshwater environments in Tunisia, especially those used for irrigation and consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biomonitoring" title="Biomonitoring">Biomonitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=Bir%20Mcherga%20Dam" title=" Bir Mcherga Dam"> Bir Mcherga Dam</a>, <a href="https://publications.waset.org/abstracts/search?q=cladocerans" title=" cladocerans"> cladocerans</a>, <a href="https://publications.waset.org/abstracts/search?q=copepods" title=" copepods"> copepods</a>, <a href="https://publications.waset.org/abstracts/search?q=freshwater%20zooplankton" title=" freshwater zooplankton"> freshwater zooplankton</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxicity" title=" genotoxicity"> genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotoxicity" title=" neurotoxicity"> neurotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title=" Tunisia"> Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/171979/zooplankton-health-status-monitoring-in-bir-mcherga-dam-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6321</span> Sardine Oil as a Source of Lipid in the Diet of Giant Freshwater Prawn (Macrobrachium rosenbergii)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Ramachandra%20Naik">A. T. Ramachandra Naik</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Shivananda%20Murthy"> H. Shivananda Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20n.%20Anjanayappa"> H. n. Anjanayappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The freshwater prawn, Macrobrachium rosenbergii is a more popular crustacean cultured widely in monoculture system in India. It has got high nutritional value in the human diet. Hence, understanding its enzymatic and body composition is important in order to judge its flesh quality. Fish oil specially derived from Indian oil sardine is a good source of highly unsaturated fatty acid and lipid source in fish/prawn diet. A 35% crude protein diet with graded levels of Sardine oil as a source of fat was incorporated at four levels viz, 2.07, 4.07, 6.07 and 8.07% maintaining a total lipid level of feed at 8.11, 10.24, 12.28 and 14.33% respectively. Diet without sardine oil (6.05% total lipid) was served as basal treatment. The giant freshwater prawn, Macrobrachium rosenbergii was used as test animal and the experiment was lost for 112 days. Significantly, higher gain in weight of prawn was recorded in the treatment with 6.07% sardine oil incorporation followed by higher specific growth rate, food conversion rate and protein efficiency ratio. The 8.07% sardine oil diet produced the highest RNA: DNA ratio in the prawn muscle. Digestive enzyme analyses in the digestive tract and mid-gut gland showed the greatest activity in prawns fed the 8.07% diet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digestive%20enzyme" title="digestive enzyme">digestive enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20diet" title=" fish diet"> fish diet</a>, <a href="https://publications.waset.org/abstracts/search?q=Macrobrachium%20rosenbergii" title=" Macrobrachium rosenbergii"> Macrobrachium rosenbergii</a>, <a href="https://publications.waset.org/abstracts/search?q=sardine%20oil" title=" sardine oil"> sardine oil</a> </p> <a href="https://publications.waset.org/abstracts/68584/sardine-oil-as-a-source-of-lipid-in-the-diet-of-giant-freshwater-prawn-macrobrachium-rosenbergii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6320</span> Genetic Differentiation between Members of a Species Complex (Retropinna spp.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Rakeb-Ul%20Islam">Md. Rakeb-Ul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20J.%20Schmidt"> Daniel J. Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jane%20M.%20Hughes"> Jane M. Hughes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Population connectivity plays an important role in the conservation and recovery of declining species. It affects genetic diversity, adaptive potential and resilience of species in nature. Loss of genetic variation can affect populations by limiting their ability to persist in stressful environmental conditions. Generally, freshwater fishes show higher levels of genetic structuring and subdivision among populations than those inhabiting estuarine or marine environments due to the presence of artificial (e.g. dams) and natural (e.g. mountain ranges) barriers to dispersal in freshwater ecosystems. The Australian smelt (Retropinnidae: Retropinna spp.) is a common freshwater fish species which is widely distributed throughout coastal and inland drainages in South - eastern Australia. These fish are found in a number of habitats from headwaters to lowland sites. They form large shoals in the mid to upper water column and inhabit deep slow – flowing pools as well as shallow fast flowing riffle-runs. Previously, Australian smelt consisted of two described taxa (Retropinna semoni and Retropinna tasmanica), but recently a complex of five or more species has been recognized based on an analysis of allozyme variation. In many area, they spend their entire life cycle within freshwater. Although most populations of the species are thought to be non-diadromous, it is still unclear whether individuals within coastal populations of Australian Retropinna exhibit diadromous migrations or whether fish collected from marine/estuarine environments are vagrants that have strayed out of the freshwater reaches. In this current study, the population structure and genetic differentiation of Australian smelt fish were investigated among eight rivers of South-East Queensland (SEQ), Australia. 11 microsatellite loci were used to examine genetic variation within and among populations. Genetic diversity was very high. Number of alleles ranged from three to twenty. Expected heterozygosity averaged across loci ranged from 0.572 to 0.852. There was a high degree of genetic differentiation among rivers (FST = 0.23), although low levels of genetic differentiation among populations within rivers. These extremely high levels of genetic differentiation suggest that the all smelt in SEQ complete their life history within freshwater, or, if they go to the estuary, they do not migrate to sea. This hypothesis is being tested further with a micro-chemical analysis of their otoliths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diadromous" title="diadromous">diadromous</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=microsatellite" title=" microsatellite"> microsatellite</a>, <a href="https://publications.waset.org/abstracts/search?q=otolith" title=" otolith"> otolith</a> </p> <a href="https://publications.waset.org/abstracts/60425/genetic-differentiation-between-members-of-a-species-complex-retropinna-spp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6319</span> The Influence of Crude Oil on Growth of Freshwater Algae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Saboonchi%20Azhar">Al-Saboonchi Azhar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of Iraqi crude oil on growth of three freshwater algae (Chlorella vulgaris Beij., Scenedesmus acuminatus (Lag.) Chodat. and Oscillatoria princeps Vauch.) were investigated, basing on it's biomass expressed as Chl.a. Growth rate and doubling time of the cell were calculated. Results showed that growth rate and species survival varied with concentrations of crude oil and species type. Chlorella vulgaris and Scenedesmus acuminatus were more sensitive in culture containing crude oil as compared with Oscillatoria princeps cultures. The growth of green algae were significantly inhibited in culture containing (5 mg/l) crude oil, while the growth of Oscillatoria princeps reduced in culture containing (10 mg/l) crude oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20algae" title=" green algae"> green algae</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyanobacteria" title=" Cyanobacteria "> Cyanobacteria </a> </p> <a href="https://publications.waset.org/abstracts/24663/the-influence-of-crude-oil-on-growth-of-freshwater-algae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freshwater%20content&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freshwater%20content&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freshwater%20content&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freshwater%20content&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freshwater%20content&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freshwater%20content&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freshwater%20content&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freshwater%20content&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freshwater%20content&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freshwater%20content&amp;page=211">211</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freshwater%20content&amp;page=212">212</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=freshwater%20content&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10