CINXE.COM

promonoidal category in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> promonoidal category in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> promonoidal category </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/3814/#Item_20" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title></title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="monoidal_categories">Monoidal categories</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/monoidal+categories">monoidal categories</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+monoidal+category">enriched monoidal category</a>, <a class="existingWikiWord" href="/nlab/show/tensor+category">tensor category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+diagram">string diagram</a>, <a class="existingWikiWord" href="/nlab/show/tensor+network">tensor network</a></p> </li> </ul> <p><strong>With braiding</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/braided+monoidal+category">braided monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/balanced+monoidal+category">balanced monoidal category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twist">twist</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a></p> </li> </ul> <p><strong>With duals for objects</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+with+duals">category with duals</a> (list of them)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dualizable+object">dualizable object</a> (what they have)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/rigid+monoidal+category">rigid monoidal category</a>, a.k.a. <a class="existingWikiWord" href="/nlab/show/autonomous+category">autonomous category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pivotal+category">pivotal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spherical+category">spherical category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ribbon+category">ribbon category</a>, a.k.a. <a class="existingWikiWord" href="/nlab/show/tortile+category">tortile category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+closed+category">compact closed category</a></p> </li> </ul> <p><strong>With duals for morphisms</strong></p> <ul> <li> <p><span class="newWikiWord">monoidal dagger-category<a href="/nlab/new/monoidal+dagger-category">?</a></span></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+dagger-category">symmetric monoidal dagger-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dagger+compact+category">dagger compact category</a></p> </li> </ul> <p><strong>With traces</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/trace">trace</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/traced+monoidal+category">traced monoidal category</a></p> </li> </ul> <p><strong>Closed structure</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+monoidal+category">closed monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+closed+category">cartesian closed category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+category">closed category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/star-autonomous+category">star-autonomous category</a></p> </li> </ul> <p><strong>Special sorts of products</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/semicartesian+monoidal+category">semicartesian monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+category+with+diagonals">monoidal category with diagonals</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/multicategory">multicategory</a></p> </li> </ul> <p><strong>Semisimplicity</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/semisimple+category">semisimple category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fusion+category">fusion category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/modular+tensor+category">modular tensor category</a></p> </li> </ul> <p><strong>Morphisms</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+functor">monoidal functor</a></p> <p>(<a class="existingWikiWord" href="/nlab/show/lax+monoidal+functor">lax</a>, <a class="existingWikiWord" href="/nlab/show/oplax+monoidal+functor">oplax</a>, <a class="existingWikiWord" href="/nlab/show/strong+monoidal+functor">strong</a> <a class="existingWikiWord" href="/nlab/show/bilax+monoidal+functor">bilax</a>, <a class="existingWikiWord" href="/nlab/show/Frobenius+monoidal+functor">Frobenius</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/braided+monoidal+functor">braided monoidal functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+functor">symmetric monoidal functor</a></p> </li> </ul> <p><strong>Internal monoids</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+in+a+monoidal+category">monoid in a monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/commutative+monoid+in+a+symmetric+monoidal+category">commutative monoid in a symmetric monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module+over+a+monoid">module over a monoid</a></p> </li> </ul> <p><strong id="_examples">Examples</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/tensor+product">tensor product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+monoidal+structure+on+presheaves">closed monoidal structure on presheaves</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Day+convolution">Day convolution</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/coherence+theorem+for+monoidal+categories">coherence theorem for monoidal categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal Dold-Kan correspondence</a></p> </li> </ul> <p><strong>In higher category theory</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+2-category">monoidal 2-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/braided+monoidal+2-category">braided monoidal 2-category</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+bicategory">monoidal bicategory</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cartesian+bicategory">cartesian bicategory</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/k-tuply+monoidal+n-category">k-tuply monoidal n-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/little+cubes+operad">little cubes operad</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+%28%E2%88%9E%2C1%29-category">monoidal (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+%28%E2%88%9E%2C1%29-category">symmetric monoidal (∞,1)-category</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+double+category">compact double category</a></p> </li> </ul> </div></div> <h4 id="enriched_category_theory">Enriched category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a></strong></p> <h2 id="background">Background</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a>, <a class="existingWikiWord" href="/nlab/show/closed+monoidal+category">closed monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cosmos">cosmos</a>, <a class="existingWikiWord" href="/nlab/show/multicategory">multicategory</a>, <a class="existingWikiWord" href="/nlab/show/bicategory">bicategory</a>, <a class="existingWikiWord" href="/nlab/show/double+category">double category</a>, <a class="existingWikiWord" href="/nlab/show/virtual+double+category">virtual double category</a></p> </li> </ul> <h2 id="basic_concepts">Basic concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+category">enriched category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+functor">enriched functor</a>, <a class="existingWikiWord" href="/nlab/show/profunctor">profunctor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+natural+transformation">enriched natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+adjoint+functor">enriched adjoint functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+product+category">enriched product category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+functor+category">enriched functor category</a></p> </li> </ul> <h2 id="universal_constructions">Universal constructions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end</a>, <a class="existingWikiWord" href="/nlab/show/coend">coend</a></p> </li> </ul> <h2 id="extra_stuff_structure_property">Extra stuff, structure, property</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/copowering">copowering</a> (<a class="existingWikiWord" href="/nlab/show/tensoring">tensoring</a>)</p> <p><a class="existingWikiWord" href="/nlab/show/powering">powering</a> (<a class="existingWikiWord" href="/nlab/show/cotensoring">cotensoring</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+enriched+category">monoidal enriched category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+closed+enriched+category">cartesian closed enriched category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+cartesian+closed+enriched+category">locally cartesian closed enriched category</a></p> </li> </ul> </li> </ul> <h3 id="homotopical_enrichment">Homotopical enrichment</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+homotopical+category">enriched homotopical category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+model+category">enriched model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+homotopical+presheaves">model structure on homotopical presheaves</a></p> </li> </ul> </div></div> </div> </div> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#versus_monoidal_categories'>Versus monoidal categories</a></li> <li><a href='#day_convolution'>Day convolution</a></li> <li><a href='#versus_multicategories'>Versus multicategories</a></li> </ul> <li><a href='#notes'>Notes</a></li> <li><a href='#related_pages'>Related pages</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A <strong>promonoidal category</strong> is like a <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> in whose structure (namely, <a class="existingWikiWord" href="/nlab/show/tensor+product">tensor product</a> and <a class="existingWikiWord" href="/nlab/show/unit+object">unit object</a>) we have replaced <a class="existingWikiWord" href="/nlab/show/functors">functors</a> by <a class="existingWikiWord" href="/nlab/show/profunctors">profunctors</a>.</p> <h2 id="definition">Definition</h2> <p>A <strong>promonoidal category</strong> is a <a class="existingWikiWord" href="/nlab/show/pseudomonoid">pseudomonoid</a> in the <a class="existingWikiWord" href="/nlab/show/monoidal+bicategory">monoidal bicategory</a> <a class="existingWikiWord" href="/nlab/show/Prof">Prof</a>. This means that it is a <a class="existingWikiWord" href="/nlab/show/category">category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> together with</p> <ul> <li>A <a class="existingWikiWord" href="/nlab/show/profunctor">profunctor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo lspace="verythinmathspace">:</mo><mi>A</mi><mo>×</mo><mi>A</mi><mi>⇸</mi><mi>A</mi></mrow><annotation encoding="application/x-tex">P \colon A\times A &amp;#8696; A</annotation></semantics></math>.</li> <li>A profunctor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi><mo lspace="verythinmathspace">:</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">J\colon 1</annotation></semantics></math> ⇸ <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>.</li> <li><a class="existingWikiWord" href="/nlab/show/associator">Associativity</a> and <a class="existingWikiWord" href="/nlab/show/unitor">unit isomorphisms</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>⊙</mo><mo stretchy="false">(</mo><mi>P</mi><mo>×</mo><mn>1</mn><mo stretchy="false">)</mo><mo>≅</mo><mi>P</mi><mo>⊙</mo><mo stretchy="false">(</mo><mn>1</mn><mo>×</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P \odot (P\times 1) \cong P\odot (1\times P)</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>⊙</mo><mo stretchy="false">(</mo><mi>J</mi><mo>×</mo><mn>1</mn><mo stretchy="false">)</mo><mo>≅</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">P\odot (J\times 1) \cong 1</annotation></semantics></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>⊙</mo><mo stretchy="false">(</mo><mn>1</mn><mo>×</mo><mi>J</mi><mo stretchy="false">)</mo><mo>≅</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">P\odot (1\times J) \cong 1</annotation></semantics></math>.</li> <li>The usual <a class="existingWikiWord" href="/nlab/show/pentagon+identity">pentagon</a> and unit conditions hold, as in a <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a>.</li> </ul> <p>Recalling that a profunctor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> ⇸ <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> is defined to be a functor of the form <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>B</mi> <mi>op</mi></msup><mo>×</mo><mi>A</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">B^{op}\times A \to Set</annotation></semantics></math>, we can make this more explicit. We can also generalize it by replacing <a class="existingWikiWord" href="/nlab/show/Set">Set</a> by a <a class="existingWikiWord" href="/nlab/show/Benabou+cosmos">Benabou cosmos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> by a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/enriched+category">enriched category</a>; then a profunctor is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/enriched+functor">enriched functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>B</mi> <mi>op</mi></msup><mo>×</mo><mi>A</mi><mo>→</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">B^{op}\times A \to V</annotation></semantics></math>.</p> <p>Thus, we obtain the following as an explicit definition of <strong>promonoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-category</strong>:</p> <p>We have the following data</p> <ol> <li> <p>A <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/enriched+category">enriched category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>.</p> </li> <li> <p>A <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>3</mn></mrow><annotation encoding="application/x-tex">3</annotation></semantics></math>-ary <a class="existingWikiWord" href="/nlab/show/enriched+functor">enriched functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>:</mo><msup><mi>A</mi> <mo lspace="0em" rspace="thinmathspace">op</mo></msup><mo>⊗</mo><mi>A</mi><mo>⊗</mo><mi>A</mi><mo>→</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">P:A^\op \otimes A \otimes A\to V</annotation></semantics></math>. For notational clarity, we may write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(a,b,c)</annotation></semantics></math> as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>⋄</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(a,b \diamond c)</annotation></semantics></math>.</p> </li> <li> <p>A <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi><mo>:</mo><msup><mi>A</mi> <mi>op</mi></msup><mo>→</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">J:A^{op}\to V</annotation></semantics></math>.</p> </li> </ol> <p>and <a class="existingWikiWord" href="/nlab/show/enriched+natural+isomorphisms">enriched natural isomorphisms</a></p> <ol> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>λ</mi> <mi>ab</mi></msub><mo>:</mo><msup><mo>∫</mo> <mi>x</mi></msup><mo stretchy="false">(</mo><mi>J</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>⊗</mo><mi>P</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>a</mi><mo>⋄</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><mi>A</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\lambda_{ab}:\int^x (J(x) \otimes P(b,a \diamond x))\to A(b,a)</annotation></semantics></math></p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ρ</mi> <mi>ab</mi></msub><mo>:</mo><msup><mo>∫</mo> <mi>x</mi></msup><mo stretchy="false">(</mo><mi>J</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>⊗</mo><mi>P</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>x</mi><mo>⋄</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><mi>A</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\rho_{ab}: \int^x ( J(x)\otimes P(b,x \diamond a))\to A(b,a)</annotation></semantics></math></p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>α</mi> <mi>abcd</mi></msub><mo>:</mo><msup><mo>∫</mo> <mi>x</mi></msup><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>a</mi><mo>⋄</mo><mi>b</mi><mo stretchy="false">)</mo><mo>⊗</mo><mi>P</mi><mo stretchy="false">(</mo><mi>d</mi><mo>,</mo><mi>x</mi><mo>⋄</mo><mi>c</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><msup><mo>∫</mo> <mi>x</mi></msup><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>b</mi><mo>⋄</mo><mi>c</mi><mo stretchy="false">)</mo><mo>⊗</mo><mi>P</mi><mo stretchy="false">(</mo><mi>d</mi><mo>,</mo><mi>a</mi><mo>⋄</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\alpha_{abcd}: \int^x (P(x,a\diamond b)\otimes P(d,x\diamond c)) \to \int^x(P(x,b\diamond c)\otimes P(d,a\diamond x))</annotation></semantics></math></p> </li> </ol> <p>satisfying the pentagon and unit axioms for promonoidal categories. Explicitly, writting <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>P</mi> <mrow><mi>B</mi><mo>,</mo><mi>C</mi></mrow> <mi>A</mi></msubsup></mrow><annotation encoding="application/x-tex">P^{A}_{B,C}</annotation></semantics></math> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>;</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(A,B;C)</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mstyle mathvariant="sans-serif"><mi>h</mi></mstyle> <mi>B</mi> <mi>A</mi></msubsup></mrow><annotation encoding="application/x-tex">\mathsf{h}^{A}_{B}</annotation></semantics></math> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi mathvariant="normal">Hom</mi> <mi>A</mi></msub><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{Hom}_{A}(A,B)</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>J</mi> <mi>X</mi></msup></mrow><annotation encoding="application/x-tex">J^X</annotation></semantics></math> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">J(X)</annotation></semantics></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⋄</mo></mrow><annotation encoding="application/x-tex">\diamond</annotation></semantics></math> for composition of profunctors, we require the following conditions to hold:</p> <ol> <li> <p><strong>The triangle identity for promonoidal categories.</strong> For each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>∈</mo><mi mathvariant="normal">Obj</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A,B,C\in\mathrm{Obj}(A)</annotation></semantics></math>, the <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a></p> <p><img src="/nlab/files/pro-triangle-corrected.svg" /></p> <p><a class="existingWikiWord" href="/nlab/show/commuting+diagram">commutes</a>;</p> </li> <li> <p><strong>The pentagon identity for promonoidal categories.</strong> For each <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>E</mi><mo>∈</mo><mi mathvariant="normal">Obj</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A,B,C,D,E\in\mathrm{Obj}(A)</annotation></semantics></math>, the <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a></p> <p><img src="/nlab/files/pro-pentagon.svg" /></p> <p><a class="existingWikiWord" href="/nlab/show/commuting+diagram">commutes</a>.</p> </li> </ol> <h2 id="properties">Properties</h2> <h3 id="versus_monoidal_categories">Versus monoidal categories</h3> <p>Since any functor induces a representable profunctor, any monoidal category can be regarded as a promonoidal category. A given promonoidal category arises in this way if and only if the profunctors <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi></mrow><annotation encoding="application/x-tex">J</annotation></semantics></math> are representable.</p> <h3 id="day_convolution">Day convolution</h3> <p>A promonoidal structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> suffices to induce a monoidal structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>V</mi> <mrow><msup><mi>A</mi> <mi>op</mi></msup></mrow></msup></mrow><annotation encoding="application/x-tex">V^{A^{op}}</annotation></semantics></math> by <a class="existingWikiWord" href="/nlab/show/Day+convolution">Day convolution</a>. In fact, given a small <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>, there is an equivalence of categories between</p> <ol> <li> <p>the category of pro-monoidal structures on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>, with strong pro-monoidal functors between them, and</p> </li> <li> <p>the category of biclosed monoidal structures on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>V</mi> <mrow><msup><mi>A</mi> <mi>op</mi></msup></mrow></msup></mrow><annotation encoding="application/x-tex">V^{A^{op}}</annotation></semantics></math>, with strong monoidal functors between them.</p> </li> </ol> <h3 id="versus_multicategories">Versus multicategories</h3> <p>A promonoidal structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> can be identified with a particular sort of <a class="existingWikiWord" href="/nlab/show/multicategory">multicategory</a> structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>A</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">A^{op}</annotation></semantics></math>, i.e. with a co-multicategory structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>. The set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(x, y, z)</annotation></semantics></math> is regarded as the set of co-multimorphisms <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>→</mo><mo stretchy="false">(</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x \to (y,z)</annotation></semantics></math>.</p> <p>More generally, we define a co-multicategory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>A</mi><mo stretchy="false">¯</mo></mover></mrow><annotation encoding="application/x-tex">\bar A</annotation></semantics></math> as follows. The objects of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>A</mi><mo stretchy="false">¯</mo></mover></mrow><annotation encoding="application/x-tex">\bar A</annotation></semantics></math> are the objects of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>. The co-multimorphisms <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>→</mo><msub><mi>a</mi> <mn>1</mn></msub><mi>…</mi><msub><mi>a</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">b\to a_1\dots a_n</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>A</mi><mo stretchy="false">¯</mo></mover></mrow><annotation encoding="application/x-tex">\bar A</annotation></semantics></math> are defined by induction on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> as follows: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>A</mi><mo stretchy="false">¯</mo></mover><mo stretchy="false">(</mo><mi>b</mi><mo>;</mo><mo stretchy="false">)</mo><mo>=</mo><mi>Jb</mi></mrow><annotation encoding="application/x-tex">\bar A(b;)=Jb</annotation></semantics></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>A</mi><mo stretchy="false">¯</mo></mover><mo stretchy="false">(</mo><mi>b</mi><mo>;</mo><msub><mi>a</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>a</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><msup><mo>∫</mo> <mi>x</mi></msup><mover><mi>A</mi><mo stretchy="false">¯</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo>;</mo><msub><mi>a</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>a</mi> <mi>n</mi></msub><mo stretchy="false">)</mo><mo>⊗</mo><mi>P</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>x</mi><mo>⋄</mo><msub><mi>a</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\bar A(b;a_1,\dots,a_{n+1})=\int^x\bar A(x;a_1,\dots,a_n)\otimes P(b,x\diamond a_{n+1})</annotation></semantics></math>.</p> <p>Not every co-multicategory arises from a promonoidal one in this way. Roughly, a promonoidal category is a co-multicategory whose <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-ary co-multimorphisms are determined by the binary, unary, and nullary morphisms. In general, co-multicategories can be identified with a certain sort of “lax promonoidal category”.</p> <p>In fact, promonoidal categories correspond exactly to the <span class="newWikiWord">exponentiable<a href="/nlab/new/exponentiable">?</a></span> multicategories: see <a class="existingWikiWord" href="/nlab/show/multicategory">multicategory</a> for more information.</p> <h2 id="notes">Notes</h2> <p><a class="existingWikiWord" href="/nlab/show/Brian+Day">Brian Day</a> introduced the notion of a “premonoidal” category in <a href="#Day70">(Day 1970)</a>, and later renamed this to a “promonoidal” category in <a href="#Day74">(Day 1974)</a> while reformulating the identity and associativity isomorphisms <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi><mo>,</mo><mi>ρ</mi><mo>,</mo><mi>α</mi></mrow><annotation encoding="application/x-tex">\lambda,\rho,\alpha</annotation></semantics></math> explicitly in terms of profunctor composition. However, note that his definition is op’d from the definition used in this article, in the sense that a Day-promonoidal structure on a category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> corresponds to a pseudomonoid structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>C</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">C^{op}</annotation></semantics></math> in <a class="existingWikiWord" href="/nlab/show/Prof">Prof</a>. In particular, one example Day considers is that of a <a class="existingWikiWord" href="/nlab/show/closed+category">closed category</a>, which is actually a co-promonoidal category in the sense used here (analogous to the co-promonoidal structure on a multicategory described above).</p> <p>Regarding monoidal categories as promonoidal is useful in order to express extra structure on them, such as <a class="existingWikiWord" href="/nlab/show/closed+monoidal+category">closedness</a>, <a class="existingWikiWord" href="/nlab/show/star-autonomous+category"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mo>*</mo> </mrow> <annotation encoding="application/x-tex">\ast</annotation> </semantics> </math>-autonomy</a>, or <a class="existingWikiWord" href="/nlab/show/compact+closed+category">compact closedness</a>, in abstract bicategorical terms: these notions can be defined by adding extra structure to a <a class="existingWikiWord" href="/nlab/show/pseudomonoid">pseudomonoid</a> in the <a class="existingWikiWord" href="/nlab/show/monoidal+bicategory">monoidal bicategory</a> <a class="existingWikiWord" href="/nlab/show/Prof">Prof</a> (i.e. a promonoidal category), but the extra structure does not lie inside the sub-monoidal bicategory <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a>.</p> <h2 id="related_pages">Related pages</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a>, <a class="existingWikiWord" href="/nlab/show/multicategory">multicategory</a></li> <li><a class="existingWikiWord" href="/nlab/show/Day+convolution">Day convolution</a></li> <li>A (co-)promonoidal <a class="existingWikiWord" href="/nlab/show/poset">poset</a> is called a <a class="existingWikiWord" href="/nlab/show/ternary+frame">ternary frame</a>, when its Day convolution monoidal category is used to model <a class="existingWikiWord" href="/nlab/show/substructural+logic">substructural logic</a>.</li> </ul> <h2 id="references">References</h2> <ul> <li id="Day70"> <p><a class="existingWikiWord" href="/nlab/show/Brian+Day">Brian Day</a>, On closed categories of functors, <em>Lecture Notes in Mathematics</em> 137 (1970), 1-38.</p> </li> <li id="Day74"> <p><a class="existingWikiWord" href="/nlab/show/Brian+Day">Brian Day</a>, An embedding theorem for closed categories, <em>Lecture Notes in Mathematics</em> 420 (1974), 55-64.</p> </li> <li> <p>Day, Panchadcharam and Street, <em>On centres and lax centres for promonoidal categories</em>.</p> </li> </ul> <p>The relationship between <a class="existingWikiWord" href="/nlab/show/multicategories">multicategories</a>, <a class="existingWikiWord" href="/nlab/show/promonoidal+categories">promonoidal categories</a>, <a class="existingWikiWord" href="/nlab/show/lax+monoidal+categories">lax monoidal categories</a>, and <a class="existingWikiWord" href="/nlab/show/monoidal+categories">monoidal categories</a> is exposited in:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Brian+Day">Brian Day</a> and <a class="existingWikiWord" href="/nlab/show/Ross+Street">Ross Street</a>, <em>Lax monoids, pseudo-operads, and convolution</em>, Contemporary Mathematics 318 (2003): 75-96.</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on September 7, 2024 at 10:29:24. See the <a href="/nlab/history/promonoidal+category" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/promonoidal+category" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/3814/#Item_20">Discuss</a><span class="backintime"><a href="/nlab/revision/promonoidal+category/17" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/promonoidal+category" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/promonoidal+category" accesskey="S" class="navlink" id="history" rel="nofollow">History (17 revisions)</a> <a href="/nlab/show/promonoidal+category/cite" style="color: black">Cite</a> <a href="/nlab/print/promonoidal+category" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/promonoidal+category" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10