CINXE.COM
Irina Kolesnik | Moscow State University - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Irina Kolesnik | Moscow State University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="s60Gy_7eCAensULRxzS6tskP1IcjVmxkalFXqc0TQ9_dQA54usW5IiRUwcHa-4ilgDu6Mh-5ifOP2PK2gZom_g" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/figure_carousel-2004283e0948681916eefa74772df54f56cb5c7413d82b160212231c2f474bb3.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik","sameAs":[]},"dateCreated":"2011-08-12T21:18:37-07:00","dateModified":"2025-02-28T08:12:01-08:00","name":"Irina Kolesnik","description":"","sameAs":[],"relatedLink":"https://www.academia.edu/117011563/Microhotplate_catalytic_sensors_based_on_porous_anodic_alumina_Operando_study_of_methane_response_hysteresis"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" /> <meta name="author" content="irina kolesnik" /> <meta name="description" content="Irina Kolesnik, Moscow State University: 227049 Followers, 12 Following, 45 Research papers. Research interests: History of Materials Science, Chemistry, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'daccc426731b8df0df0912feeac86415d41c08d0'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13919,"monthly_visitors":"139 million","monthly_visitor_count":139296536,"monthly_visitor_count_in_millions":139,"user_count":286102407,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1743451855000); window.Aedu.timeDifference = new Date().getTime() - 1743451855000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-cf157bca4ef673abcac8051ac68ed1136134beba22a884388e7ed6391572eef4.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f96ab8a6334d161855249975a57d3f3d57f65c2e7553c6d20ab43c63efb79575.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://moscowstate.academia.edu/IrinaKolesnik" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-091a194a2533e53e1630c5cfd78813a4445aff73d16c70cdba1eafe8c0939f4a.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":246975,"name":"Department of Materials Science","url":"https://moscowstate.academia.edu/Departments/Department_of_Materials_Science/Documents","university":{"id":1497,"name":"Moscow State University","url":"https://moscowstate.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":148153,"name":"History of Materials Science","url":"https://www.academia.edu/Documents/in/History_of_Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":33003,"name":"Ionic Liquids","url":"https://www.academia.edu/Documents/in/Ionic_Liquids"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://moscowstate.academia.edu/IrinaKolesnik","location":"/IrinaKolesnik","scheme":"https","host":"moscowstate.academia.edu","port":null,"pathname":"/IrinaKolesnik","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-1734f07c-00fb-4fc6-b657-714886ca4ace"></div> <div id="ProfileCheckPaperUpdate-react-component-1734f07c-00fb-4fc6-b657-714886ca4ace"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Irina Kolesnik</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://moscowstate.academia.edu/">Moscow State University</a>, <a class="u-tcGrayDarker" href="https://moscowstate.academia.edu/Departments/Department_of_Materials_Science/Documents">Department of Materials Science</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Irina" data-follow-user-id="662855" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="662855"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">227,049</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">12</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">3</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><h3 class="ds2-5-heading-sans-serif-xs">Related Authors</h3></div><ul class="suggested-user-card-list" data-nosnippet="true"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/AlexSmirnov11"><img class="profile-avatar u-positionAbsolute" alt="Alex Smirnov related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/AlexSmirnov11">Alex Smirnov</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/AdrianaSturionLorenzi"><img class="profile-avatar u-positionAbsolute" alt="Adriana Sturion Lorenzi related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/AdrianaSturionLorenzi">Adriana Sturion Lorenzi</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://unlp.academia.edu/MaximilianoGonz%C3%A1lez"><img class="profile-avatar u-positionAbsolute" alt="Maximiliano González related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/44635982/77747313/66288844/s200_maximiliano.gonz_lez.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unlp.academia.edu/MaximilianoGonz%C3%A1lez">Maximiliano González</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad Nacional de La Plata</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/MaciejRybicki"><img class="profile-avatar u-positionAbsolute" alt="Maciej Rybicki related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/MaciejRybicki">Maciej Rybicki</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/WeberRobazza"><img class="profile-avatar u-positionAbsolute" alt="Weber Robazza related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/265049624/116358176/105652393/s200_weber.robazza.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/WeberRobazza">Weber Robazza</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/SarkarMihirKanti"><img class="profile-avatar u-positionAbsolute" alt="Mihir Kanti Sarkar related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/268416774/119141353/108457628/s200_mihir_kanti.sarkar.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/SarkarMihirKanti">Mihir Kanti Sarkar</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/amirajouirou"><img class="profile-avatar u-positionAbsolute" alt="amira jouirou related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/235672567/91447739/80235468/s200_amira.jouirou.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/amirajouirou">amira jouirou</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/VinayRaghavendra1"><img class="profile-avatar u-positionAbsolute" alt="Vinay Raghavendra related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/244869153/99397200/88529047/s200_vinay.raghavendra.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/VinayRaghavendra1">Vinay Raghavendra</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/zahrakayani2"><img class="profile-avatar u-positionAbsolute" alt="zahra kayani related author profile picture" border="0" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/zahrakayani2">zahra kayani</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a data-nosnippet="" href="https://independent.academia.edu/DuyguAslanT%C3%BCrker"><img class="profile-avatar u-positionAbsolute" alt="Duygu Aslan Türker related author profile picture" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/248807523/102744612/91913889/s200_duygu.aslan_t_rker.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/DuyguAslanT%C3%BCrker">Duygu Aslan Türker</a></div></div></ul></div><style type="text/css">.suggested-academics--header h3{font-size:16px;font-weight:500;line-height:20px}</style><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="662855" href="https://www.academia.edu/Documents/in/History_of_Materials_Science"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://moscowstate.academia.edu/IrinaKolesnik","location":"/IrinaKolesnik","scheme":"https","host":"moscowstate.academia.edu","port":null,"pathname":"/IrinaKolesnik","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["History of Materials Science"]}" data-trace="false" data-dom-id="Pill-react-component-6180dd3b-cf65-48fb-8ba1-e6da71b1489c"></div> <div id="Pill-react-component-6180dd3b-cf65-48fb-8ba1-e6da71b1489c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="662855" href="https://www.academia.edu/Documents/in/Chemistry"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Chemistry"]}" data-trace="false" data-dom-id="Pill-react-component-18cbb7b4-a2fe-49c3-af8a-5af671f2cc20"></div> <div id="Pill-react-component-18cbb7b4-a2fe-49c3-af8a-5af671f2cc20"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="662855" href="https://www.academia.edu/Documents/in/Materials_Science"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Materials Science"]}" data-trace="false" data-dom-id="Pill-react-component-ae7f135e-de63-40d6-ae31-0c8ade4ea0b2"></div> <div id="Pill-react-component-ae7f135e-de63-40d6-ae31-0c8ade4ea0b2"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="662855" href="https://www.academia.edu/Documents/in/Electrochemistry"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Electrochemistry"]}" data-trace="false" data-dom-id="Pill-react-component-1f39e84c-1cdf-4ec6-8bc8-ece8d11eb7d3"></div> <div id="Pill-react-component-1f39e84c-1cdf-4ec6-8bc8-ece8d11eb7d3"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="662855" href="https://www.academia.edu/Documents/in/Ionic_Liquids"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Ionic Liquids"]}" data-trace="false" data-dom-id="Pill-react-component-68f45074-2743-4abf-ab76-bbbd972e0d69"></div> <div id="Pill-react-component-68f45074-2743-4abf-ab76-bbbd972e0d69"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Irina Kolesnik</h3></div><div class="js-work-strip profile--work_container" data-work-id="117011561"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117011561/The_amorphous_phase_in_titania_and_its_influence_on_photocatalytic_properties"><img alt="Research paper thumbnail of The amorphous phase in titania and its influence on photocatalytic properties" class="work-thumbnail" src="https://attachments.academia-assets.com/112984186/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117011561/The_amorphous_phase_in_titania_and_its_influence_on_photocatalytic_properties">The amorphous phase in titania and its influence on photocatalytic properties</a></div><div class="wp-workCard_item"><span>Applied Catalysis B-environmental</span><span>, Oct 1, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present work, we compare the photocatalytic activity (PCA) of titania samples normalized t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present work, we compare the photocatalytic activity (PCA) of titania samples normalized to the sample weight and specific surface area (SSA), and show a correlation between the PCA of titania catalysts with similar phase compositions and amorphous phase contents. In our studies, we used the commercial samples, P25 Evonik (formerly Degussa), Hombikat UV100, and pre-synthesized mesoporous titania. Catalysts with a significant amorphous content were annealed and processed by partial dissolution in acid and included in the analysis. PCA was measured by methyl orange (MO) photodegradation in an aqueous catalyst suspension under high-pressure Hg bulb illumination and the pH was controlled using phosphate buffer (pH 6.9). The weight percentage of the amorphous phase was determined using reference intensity ratios (RIR) for X-ray diffraction patterns of the titania samples measured with crystalline silicon additives. The reproducibility of the proposed method was demonstrated by measuring the amorphous content in mixtures of the sample and XRD-amorphous titania. The contributions of amorphous titanium oxohydroxides T iO 2−0.5n (OH) n •xH 2 O and water physically adsorbed to the amorphous phases were distinguished by thermogravimetric analysis. The obtained results show that the PCA of the titania samples decreases with the weight percentage of the amorphous phase, as low as 5% of the PCA of P25 in the case of ω Am (T iO 2) > 25%. It was demonstrated that the partial removal of the amorphous phase by annealing or dissolution in nitric acid leads to a significant increase of PCA.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c50992a2bc119b413856d05af1fc53f8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":112984186,"asset_id":117011561,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/112984186/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011561"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011561"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011561; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011561]").text(description); $(".js-view-count[data-work-id=117011561]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011561; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011561']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c50992a2bc119b413856d05af1fc53f8" } } $('.js-work-strip[data-work-id=117011561]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011561,"title":"The amorphous phase in titania and its influence on photocatalytic properties","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Impact of Amorphous Phase on Photocatalytic Activity in Titania","grobid_abstract":"In the present work, we compare the photocatalytic activity (PCA) of titania samples normalized to the sample weight and specific surface area (SSA), and show a correlation between the PCA of titania catalysts with similar phase compositions and amorphous phase contents. In our studies, we used the commercial samples, P25 Evonik (formerly Degussa), Hombikat UV100, and pre-synthesized mesoporous titania. Catalysts with a significant amorphous content were annealed and processed by partial dissolution in acid and included in the analysis. PCA was measured by methyl orange (MO) photodegradation in an aqueous catalyst suspension under high-pressure Hg bulb illumination and the pH was controlled using phosphate buffer (pH 6.9). The weight percentage of the amorphous phase was determined using reference intensity ratios (RIR) for X-ray diffraction patterns of the titania samples measured with crystalline silicon additives. The reproducibility of the proposed method was demonstrated by measuring the amorphous content in mixtures of the sample and XRD-amorphous titania. The contributions of amorphous titanium oxohydroxides T iO 2−0.5n (OH) n •xH 2 O and water physically adsorbed to the amorphous phases were distinguished by thermogravimetric analysis. The obtained results show that the PCA of the titania samples decreases with the weight percentage of the amorphous phase, as low as 5% of the PCA of P25 in the case of ω Am (T iO 2) \u003e 25%. It was demonstrated that the partial removal of the amorphous phase by annealing or dissolution in nitric acid leads to a significant increase of PCA.","publication_date":{"day":1,"month":10,"year":2016,"errors":{}},"publication_name":"Applied Catalysis B-environmental","grobid_abstract_attachment_id":112984186},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011561/The_amorphous_phase_in_titania_and_its_influence_on_photocatalytic_properties","translated_internal_url":"","created_at":"2024-04-03T00:56:50.713-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112984186,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984186/thumbnails/1.jpg","file_name":"j.apcatb.2016.05.01020240403-1-l9gcn5.pdf","download_url":"https://www.academia.edu/attachments/112984186/download_file","bulk_download_file_name":"The_amorphous_phase_in_titania_and_its_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984186/j.apcatb.2016.05.01020240403-1-l9gcn5-libre.pdf?1712138066=\u0026response-content-disposition=attachment%3B+filename%3DThe_amorphous_phase_in_titania_and_its_i.pdf\u0026Expires=1743427815\u0026Signature=VyOmPmgnBiprOjwCTwlw1LfSo~8aawvp-ooujFWnUgC-BodQrPz3QP-cqQrysFOWMtiFZElSygbmB7EP2BUJNt5-hbpyLqoZe7iNqmCRcYYFK~UAejOUfZIfEzDXMlvo6sgFjduwZKY~IKIpcNTEwvwY0wkO~ttigOJmW9rH08AWggx1PdEf7I8nWYO3gy4wuHYd6SJm6wItpAz8c96lBKnRHVtvkYYKp6o9a2~jjjgAkjmY6tDWkB3ynd5aW08XSqEYz6RLGCShBEY0NWdXqw1tqAI1qqhagUtfhNID~9v0bLTW4S~sbzkZazSBsUcrNNnGIJmYjXq9N2fDGQbQdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_amorphous_phase_in_titania_and_its_influence_on_photocatalytic_properties","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"In the present work, we compare the photocatalytic activity (PCA) of titania samples normalized to the sample weight and specific surface area (SSA), and show a correlation between the PCA of titania catalysts with similar phase compositions and amorphous phase contents. In our studies, we used the commercial samples, P25 Evonik (formerly Degussa), Hombikat UV100, and pre-synthesized mesoporous titania. Catalysts with a significant amorphous content were annealed and processed by partial dissolution in acid and included in the analysis. PCA was measured by methyl orange (MO) photodegradation in an aqueous catalyst suspension under high-pressure Hg bulb illumination and the pH was controlled using phosphate buffer (pH 6.9). The weight percentage of the amorphous phase was determined using reference intensity ratios (RIR) for X-ray diffraction patterns of the titania samples measured with crystalline silicon additives. The reproducibility of the proposed method was demonstrated by measuring the amorphous content in mixtures of the sample and XRD-amorphous titania. The contributions of amorphous titanium oxohydroxides T iO 2−0.5n (OH) n •xH 2 O and water physically adsorbed to the amorphous phases were distinguished by thermogravimetric analysis. The obtained results show that the PCA of the titania samples decreases with the weight percentage of the amorphous phase, as low as 5% of the PCA of P25 in the case of ω Am (T iO 2) \u003e 25%. It was demonstrated that the partial removal of the amorphous phase by annealing or dissolution in nitric acid leads to a significant increase of PCA.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":112984186,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984186/thumbnails/1.jpg","file_name":"j.apcatb.2016.05.01020240403-1-l9gcn5.pdf","download_url":"https://www.academia.edu/attachments/112984186/download_file","bulk_download_file_name":"The_amorphous_phase_in_titania_and_its_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984186/j.apcatb.2016.05.01020240403-1-l9gcn5-libre.pdf?1712138066=\u0026response-content-disposition=attachment%3B+filename%3DThe_amorphous_phase_in_titania_and_its_i.pdf\u0026Expires=1743427815\u0026Signature=VyOmPmgnBiprOjwCTwlw1LfSo~8aawvp-ooujFWnUgC-BodQrPz3QP-cqQrysFOWMtiFZElSygbmB7EP2BUJNt5-hbpyLqoZe7iNqmCRcYYFK~UAejOUfZIfEzDXMlvo6sgFjduwZKY~IKIpcNTEwvwY0wkO~ttigOJmW9rH08AWggx1PdEf7I8nWYO3gy4wuHYd6SJm6wItpAz8c96lBKnRHVtvkYYKp6o9a2~jjjgAkjmY6tDWkB3ynd5aW08XSqEYz6RLGCShBEY0NWdXqw1tqAI1qqhagUtfhNID~9v0bLTW4S~sbzkZazSBsUcrNNnGIJmYjXq9N2fDGQbQdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":55,"name":"Environmental Engineering","url":"https://www.academia.edu/Documents/in/Environmental_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":58352,"name":"Photocatalysis","url":"https://www.academia.edu/Documents/in/Photocatalysis"},{"id":924470,"name":"Methyl Orange","url":"https://www.academia.edu/Documents/in/Methyl_Orange"}],"urls":[{"id":40809609,"url":"https://doi.org/10.1016/j.apcatb.2016.05.010"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011561-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011560"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117011560/Powders_Synthesized_from_Solutions_of_Calcium_Chloride_Sodium_Hydrogen_Phosphate_and_Sodium_Sulfate_for_Bioceramics_Production"><img alt="Research paper thumbnail of Powders Synthesized from Solutions of Calcium Chloride, Sodium Hydrogen Phosphate, and Sodium Sulfate for Bioceramics Production" class="work-thumbnail" src="https://attachments.academia-assets.com/112984156/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117011560/Powders_Synthesized_from_Solutions_of_Calcium_Chloride_Sodium_Hydrogen_Phosphate_and_Sodium_Sulfate_for_Bioceramics_Production">Powders Synthesized from Solutions of Calcium Chloride, Sodium Hydrogen Phosphate, and Sodium Sulfate for Bioceramics Production</a></div><div class="wp-workCard_item"><span>Ceramics</span><span>, Feb 22, 2023</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article is an open access article distributed under the terms and conditions of the Creative...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ea9ceb199aa52fa71c0ca188e769b95b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":112984156,"asset_id":117011560,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/112984156/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011560"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011560"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011560; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011560]").text(description); $(".js-view-count[data-work-id=117011560]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011560; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011560']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ea9ceb199aa52fa71c0ca188e769b95b" } } $('.js-work-strip[data-work-id=117011560]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011560,"title":"Powders Synthesized from Solutions of Calcium Chloride, Sodium Hydrogen Phosphate, and Sodium Sulfate for Bioceramics Production","translated_title":"","metadata":{"publisher":"Multidisciplinary Digital Publishing Institute","grobid_abstract":"This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY","publication_date":{"day":22,"month":2,"year":2023,"errors":{}},"publication_name":"Ceramics","grobid_abstract_attachment_id":112984157},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011560/Powders_Synthesized_from_Solutions_of_Calcium_Chloride_Sodium_Hydrogen_Phosphate_and_Sodium_Sulfate_for_Bioceramics_Production","translated_internal_url":"","created_at":"2024-04-03T00:56:50.497-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112984156,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984156/thumbnails/1.jpg","file_name":"ceramics-06-00034-v2.pdf","download_url":"https://www.academia.edu/attachments/112984156/download_file","bulk_download_file_name":"Powders_Synthesized_from_Solutions_of_Ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984156/ceramics-06-00034-v2-libre.pdf?1712138076=\u0026response-content-disposition=attachment%3B+filename%3DPowders_Synthesized_from_Solutions_of_Ca.pdf\u0026Expires=1743427815\u0026Signature=ZaGyPbQiaV2jUbE2kLpDceOQNPOWMdR426VO6eQhPQBqUVe-~8X~38GqQWjPWzvxidR-UYlgKoItTfvVm9hTDSHFEzsb1cxYMgrna98mSInISPIxw-KTN8QhDf0058Fjsuh7qCdjZS5KSEVS9WeBvuGTAOTYFnugzcOsbTzsBwZuO2S6QD2l06VOMwPPnM7AQ4cPhqkxlE5LJV-ukUDux~jgNsXTWXkNxPXLkAM0N3HzRp22NUEiZTUCnFE6Gtc0SkcbpCbnWveXXm4sqk88hGeOt4grrB~yld-gfE3fdLsHWYoQYJ2AWMyT9Z441v3JwAYoPnxM3BfCSbXPBE2MLA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Powders_Synthesized_from_Solutions_of_Calcium_Chloride_Sodium_Hydrogen_Phosphate_and_Sodium_Sulfate_for_Bioceramics_Production","translated_slug":"","page_count":23,"language":"en","content_type":"Work","summary":"This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":112984156,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984156/thumbnails/1.jpg","file_name":"ceramics-06-00034-v2.pdf","download_url":"https://www.academia.edu/attachments/112984156/download_file","bulk_download_file_name":"Powders_Synthesized_from_Solutions_of_Ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984156/ceramics-06-00034-v2-libre.pdf?1712138076=\u0026response-content-disposition=attachment%3B+filename%3DPowders_Synthesized_from_Solutions_of_Ca.pdf\u0026Expires=1743427815\u0026Signature=ZaGyPbQiaV2jUbE2kLpDceOQNPOWMdR426VO6eQhPQBqUVe-~8X~38GqQWjPWzvxidR-UYlgKoItTfvVm9hTDSHFEzsb1cxYMgrna98mSInISPIxw-KTN8QhDf0058Fjsuh7qCdjZS5KSEVS9WeBvuGTAOTYFnugzcOsbTzsBwZuO2S6QD2l06VOMwPPnM7AQ4cPhqkxlE5LJV-ukUDux~jgNsXTWXkNxPXLkAM0N3HzRp22NUEiZTUCnFE6Gtc0SkcbpCbnWveXXm4sqk88hGeOt4grrB~yld-gfE3fdLsHWYoQYJ2AWMyT9Z441v3JwAYoPnxM3BfCSbXPBE2MLA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":112984157,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984157/thumbnails/1.jpg","file_name":"ceramics-06-00034-v2.pdf","download_url":"https://www.academia.edu/attachments/112984157/download_file","bulk_download_file_name":"Powders_Synthesized_from_Solutions_of_Ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984157/ceramics-06-00034-v2-libre.pdf?1712138070=\u0026response-content-disposition=attachment%3B+filename%3DPowders_Synthesized_from_Solutions_of_Ca.pdf\u0026Expires=1743427815\u0026Signature=GaNatZDQ8zcm9x9a7AdedkRg0MJCbbjZyiP1flnZgDWKlkd5RgOVV6U2~uDSoMmzymU2Qkjv-8OCwXi99nAXze~tcV-R9TJOqu3~IGLJTXNz2ztHGNTWUzwSZbhbARah-nRUtgfL7HRBNziGgPBJuyle-euCDUWAlVoPYuKaCLHKkVDcTUS~w6utwkpXitQUhSXGtaJQ-wYg6YtHUaAjnBnzVsIbtfQE93pXg0SmpLeYAwDYPaXzwOhP9zIEhCEkljL-l7AAgnbTr1Mkal-ttQ1RsccvfsU1hYIpITXPHV2ISx8tkH5CUxH99fhEQoqjb-1AHGnaVGQkmcKfiUfZDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":9534,"name":"Calcium","url":"https://www.academia.edu/Documents/in/Calcium"},{"id":58128,"name":"Ceramics","url":"https://www.academia.edu/Documents/in/Ceramics"},{"id":162981,"name":"Sulfate","url":"https://www.academia.edu/Documents/in/Sulfate"},{"id":386342,"name":"Sodium","url":"https://www.academia.edu/Documents/in/Sodium"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"},{"id":1404710,"name":"Brushite","url":"https://www.academia.edu/Documents/in/Brushite"}],"urls":[{"id":40809608,"url":"https://www.mdpi.com/2571-6131/6/1/34/pdf?version=1678153918"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011560-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011559"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011559/Investigation_of_catalytic_hydrogen_sensors_with_platinum_group_catalysts"><img alt="Research paper thumbnail of Investigation of catalytic hydrogen sensors with platinum group catalysts" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Investigation of catalytic hydrogen sensors with platinum group catalysts</div><div class="wp-workCard_item"><span>Sensors and Actuators B-chemical</span><span>, Nov 1, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Environmental deterioration and limited resources of hydrocarbons push the development o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Environmental deterioration and limited resources of hydrocarbons push the development of alternative power sources. One of the most promising energy carriers is hydrogen. However, handling hydrogen is more hazardous than the use of hydrocarbons because it has a significantly wider flammable range. Thus the development of new sensors for preventing hydrogen leakage is the actual task of modern materials science and chemical engineering. In this work, the response of catalytic sensors to hydrogen with different catalysts of platinum group (Pt, Pd, Ir, Rh, Pt + Pd, Pt + Pd + Rh, Pt + Pd + Ir) in the pre-explosion concentration range is studied. Temperature dependencies of sensitivity are discussed. A hysteresis in sensor response is observed during the cycling of the supply voltage. This phenomenon can be explained by partial transformation of platinum group metal oxides into metallic phase at a temperature of more than 500 °C and reverse metal oxidation at temperatures less than 400 °C. It has been shown that the sensors with catalysts containing Ir and Rh demonstrate more preferable characteristics for practical applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011559"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011559"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011559; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011559]").text(description); $(".js-view-count[data-work-id=117011559]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011559; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011559']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011559]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011559,"title":"Investigation of catalytic hydrogen sensors with platinum group catalysts","translated_title":"","metadata":{"abstract":"Abstract Environmental deterioration and limited resources of hydrocarbons push the development of alternative power sources. One of the most promising energy carriers is hydrogen. However, handling hydrogen is more hazardous than the use of hydrocarbons because it has a significantly wider flammable range. Thus the development of new sensors for preventing hydrogen leakage is the actual task of modern materials science and chemical engineering. In this work, the response of catalytic sensors to hydrogen with different catalysts of platinum group (Pt, Pd, Ir, Rh, Pt + Pd, Pt + Pd + Rh, Pt + Pd + Ir) in the pre-explosion concentration range is studied. Temperature dependencies of sensitivity are discussed. A hysteresis in sensor response is observed during the cycling of the supply voltage. This phenomenon can be explained by partial transformation of platinum group metal oxides into metallic phase at a temperature of more than 500 °C and reverse metal oxidation at temperatures less than 400 °C. It has been shown that the sensors with catalysts containing Ir and Rh demonstrate more preferable characteristics for practical applications.","publisher":"Elsevier BV","publication_date":{"day":1,"month":11,"year":2021,"errors":{}},"publication_name":"Sensors and Actuators B-chemical"},"translated_abstract":"Abstract Environmental deterioration and limited resources of hydrocarbons push the development of alternative power sources. One of the most promising energy carriers is hydrogen. However, handling hydrogen is more hazardous than the use of hydrocarbons because it has a significantly wider flammable range. Thus the development of new sensors for preventing hydrogen leakage is the actual task of modern materials science and chemical engineering. In this work, the response of catalytic sensors to hydrogen with different catalysts of platinum group (Pt, Pd, Ir, Rh, Pt + Pd, Pt + Pd + Rh, Pt + Pd + Ir) in the pre-explosion concentration range is studied. Temperature dependencies of sensitivity are discussed. A hysteresis in sensor response is observed during the cycling of the supply voltage. This phenomenon can be explained by partial transformation of platinum group metal oxides into metallic phase at a temperature of more than 500 °C and reverse metal oxidation at temperatures less than 400 °C. It has been shown that the sensors with catalysts containing Ir and Rh demonstrate more preferable characteristics for practical applications.","internal_url":"https://www.academia.edu/117011559/Investigation_of_catalytic_hydrogen_sensors_with_platinum_group_catalysts","translated_internal_url":"","created_at":"2024-04-03T00:56:50.311-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Investigation_of_catalytic_hydrogen_sensors_with_platinum_group_catalysts","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract Environmental deterioration and limited resources of hydrocarbons push the development of alternative power sources. One of the most promising energy carriers is hydrogen. However, handling hydrogen is more hazardous than the use of hydrocarbons because it has a significantly wider flammable range. Thus the development of new sensors for preventing hydrogen leakage is the actual task of modern materials science and chemical engineering. In this work, the response of catalytic sensors to hydrogen with different catalysts of platinum group (Pt, Pd, Ir, Rh, Pt + Pd, Pt + Pd + Rh, Pt + Pd + Ir) in the pre-explosion concentration range is studied. Temperature dependencies of sensitivity are discussed. A hysteresis in sensor response is observed during the cycling of the supply voltage. This phenomenon can be explained by partial transformation of platinum group metal oxides into metallic phase at a temperature of more than 500 °C and reverse metal oxidation at temperatures less than 400 °C. It has been shown that the sensors with catalysts containing Ir and Rh demonstrate more preferable characteristics for practical applications.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":3771,"name":"Hydrogen","url":"https://www.academia.edu/Documents/in/Hydrogen"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":125734,"name":"Platinum","url":"https://www.academia.edu/Documents/in/Platinum"},{"id":436342,"name":"Platinum Group","url":"https://www.academia.edu/Documents/in/Platinum_Group"},{"id":1791517,"name":"Hydrogen Sensor","url":"https://www.academia.edu/Documents/in/Hydrogen_Sensor"},{"id":3370278,"name":"Flammable Liquid","url":"https://www.academia.edu/Documents/in/Flammable_Liquid"}],"urls":[{"id":40809607,"url":"https://doi.org/10.1016/j.snb.2021.130515"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011559-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011558"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011558/Electrocrystallization_of_Metals_in_Channels_of_Porous_Films_of_Anodic_Aluminum_Oxide_The_Real_Template_Structure_and_the_Quantitative_Model_of_Electrodeposition"><img alt="Research paper thumbnail of Electrocrystallization of Metals in Channels of Porous Films of Anodic Aluminum Oxide: The Real Template Structure and the Quantitative Model of Electrodeposition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Electrocrystallization of Metals in Channels of Porous Films of Anodic Aluminum Oxide: The Real Template Structure and the Quantitative Model of Electrodeposition</div><div class="wp-workCard_item"><span>Russian Journal of Electrochemistry</span><span>, Jul 1, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011558"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011558"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011558; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011558]").text(description); $(".js-view-count[data-work-id=117011558]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011558; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011558']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011558]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011558,"title":"Electrocrystallization of Metals in Channels of Porous Films of Anodic Aluminum Oxide: The Real Template Structure and the Quantitative Model of Electrodeposition","translated_title":"","metadata":{"publisher":"MAIK Nauka/Interperiodica","publication_date":{"day":1,"month":7,"year":2023,"errors":{}},"publication_name":"Russian Journal of Electrochemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011558/Electrocrystallization_of_Metals_in_Channels_of_Porous_Films_of_Anodic_Aluminum_Oxide_The_Real_Template_Structure_and_the_Quantitative_Model_of_Electrodeposition","translated_internal_url":"","created_at":"2024-04-03T00:56:50.115-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electrocrystallization_of_Metals_in_Channels_of_Porous_Films_of_Anodic_Aluminum_Oxide_The_Real_Template_Structure_and_the_Quantitative_Model_of_Electrodeposition","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":68315,"name":"Porosity","url":"https://www.academia.edu/Documents/in/Porosity"},{"id":80692,"name":"Copper","url":"https://www.academia.edu/Documents/in/Copper"},{"id":188706,"name":"Metal","url":"https://www.academia.edu/Documents/in/Metal"},{"id":369525,"name":"Aluminium","url":"https://www.academia.edu/Documents/in/Aluminium"},{"id":386271,"name":"Oxide","url":"https://www.academia.edu/Documents/in/Oxide"},{"id":1131651,"name":"Anode","url":"https://www.academia.edu/Documents/in/Anode"}],"urls":[{"id":40809606,"url":"https://doi.org/10.1134/s1023193523070078"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011558-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011557"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011557/Decoration_of_titania_by_metal_and_semiconductor_nanoparticles_to_improve_of_its_photocatalytic_activity"><img alt="Research paper thumbnail of Decoration of titania by metal and semiconductor nanoparticles to improve of its photocatalytic activity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Decoration of titania by metal and semiconductor nanoparticles to improve of its photocatalytic activity</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011557"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011557"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011557; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011557]").text(description); $(".js-view-count[data-work-id=117011557]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011557; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011557']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011557]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011557,"title":"Decoration of titania by metal and semiconductor nanoparticles to improve of its photocatalytic activity","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011557/Decoration_of_titania_by_metal_and_semiconductor_nanoparticles_to_improve_of_its_photocatalytic_activity","translated_internal_url":"","created_at":"2024-04-03T00:56:49.942-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Decoration_of_titania_by_metal_and_semiconductor_nanoparticles_to_improve_of_its_photocatalytic_activity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8950,"name":"Nanoparticle","url":"https://www.academia.edu/Documents/in/Nanoparticle"},{"id":58352,"name":"Photocatalysis","url":"https://www.academia.edu/Documents/in/Photocatalysis"},{"id":82551,"name":"Semiconductor","url":"https://www.academia.edu/Documents/in/Semiconductor"}],"urls":[{"id":40809605,"url":"http://istina.msu.ru/publications/article/21018650/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011557-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011556"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011556/Photocatalytic_activity_of_titania_based_nanocomposites_with_metals_Cu_Ag_and_semiconductors_CuO_WO3_"><img alt="Research paper thumbnail of Photocatalytic activity of titania-based nanocomposites with metals (Cu, Ag) and semiconductors (CuO, WO3)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Photocatalytic activity of titania-based nanocomposites with metals (Cu, Ag) and semiconductors (CuO, WO3)</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011556"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011556"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011556; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011556]").text(description); $(".js-view-count[data-work-id=117011556]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011556; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011556']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011556]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011556,"title":"Photocatalytic activity of titania-based nanocomposites with metals (Cu, Ag) and semiconductors (CuO, WO3)","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011556/Photocatalytic_activity_of_titania_based_nanocomposites_with_metals_Cu_Ag_and_semiconductors_CuO_WO3_","translated_internal_url":"","created_at":"2024-04-03T00:56:49.793-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Photocatalytic_activity_of_titania_based_nanocomposites_with_metals_Cu_Ag_and_semiconductors_CuO_WO3_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":58352,"name":"Photocatalysis","url":"https://www.academia.edu/Documents/in/Photocatalysis"},{"id":82551,"name":"Semiconductor","url":"https://www.academia.edu/Documents/in/Semiconductor"},{"id":99017,"name":"Nanocomposite","url":"https://www.academia.edu/Documents/in/Nanocomposite"}],"urls":[{"id":40809604,"url":"http://istina.msu.ru/publications/article/21018678/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011556-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011555"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011555/Crystal_structure_details_of_La_and_Bi_substituted_hydroxyapatites_Evidence_for_LaO_and_BiO_with_a_very_short_metal_oxygen_bond"><img alt="Research paper thumbnail of Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond</div><div class="wp-workCard_item"><span>Journal of Solid State Chemistry</span><span>, May 1, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Crystal structures of substituted apatites with general formula Ca10−xMx(PO4)6(OH1−δ)2−xOx, where...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Crystal structures of substituted apatites with general formula Ca10−xMx(PO4)6(OH1−δ)2−xOx, where M=La, Bi, 0≤x&lt;2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca2+ and M3+-ions localized near Ca2-site were determined. The M3+-ion was found shifted toward the hexagonal channel center with respect to the Ca2+-ion, forming very short bond with the intrachannel O2−, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO+ ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO+ and LaO+ were estimated to be 2.05(1) and 2.09(1) A correspondingly. The latter was almost 0.3 A lower than the shortest La–O bond in La2O3. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011555"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011555"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011555; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011555]").text(description); $(".js-view-count[data-work-id=117011555]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011555; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011555']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011555]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011555,"title":"Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond","translated_title":"","metadata":{"abstract":"Crystal structures of substituted apatites with general formula Ca10−xMx(PO4)6(OH1−δ)2−xOx, where M=La, Bi, 0≤x\u0026lt;2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca2+ and M3+-ions localized near Ca2-site were determined. The M3+-ion was found shifted toward the hexagonal channel center with respect to the Ca2+-ion, forming very short bond with the intrachannel O2−, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO+ ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO+ and LaO+ were estimated to be 2.05(1) and 2.09(1) A correspondingly. The latter was almost 0.3 A lower than the shortest La–O bond in La2O3. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores.","publisher":"Elsevier BV","publication_date":{"day":1,"month":5,"year":2016,"errors":{}},"publication_name":"Journal of Solid State Chemistry"},"translated_abstract":"Crystal structures of substituted apatites with general formula Ca10−xMx(PO4)6(OH1−δ)2−xOx, where M=La, Bi, 0≤x\u0026lt;2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca2+ and M3+-ions localized near Ca2-site were determined. The M3+-ion was found shifted toward the hexagonal channel center with respect to the Ca2+-ion, forming very short bond with the intrachannel O2−, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO+ ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO+ and LaO+ were estimated to be 2.05(1) and 2.09(1) A correspondingly. The latter was almost 0.3 A lower than the shortest La–O bond in La2O3. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores.","internal_url":"https://www.academia.edu/117011555/Crystal_structure_details_of_La_and_Bi_substituted_hydroxyapatites_Evidence_for_LaO_and_BiO_with_a_very_short_metal_oxygen_bond","translated_internal_url":"","created_at":"2024-04-03T00:56:49.507-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Crystal_structure_details_of_La_and_Bi_substituted_hydroxyapatites_Evidence_for_LaO_and_BiO_with_a_very_short_metal_oxygen_bond","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Crystal structures of substituted apatites with general formula Ca10−xMx(PO4)6(OH1−δ)2−xOx, where M=La, Bi, 0≤x\u0026lt;2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca2+ and M3+-ions localized near Ca2-site were determined. The M3+-ion was found shifted toward the hexagonal channel center with respect to the Ca2+-ion, forming very short bond with the intrachannel O2−, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO+ ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO+ and LaO+ were estimated to be 2.05(1) and 2.09(1) A correspondingly. The latter was almost 0.3 A lower than the shortest La–O bond in La2O3. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":9339,"name":"Raman Spectroscopy","url":"https://www.academia.edu/Documents/in/Raman_Spectroscopy"},{"id":15558,"name":"Solid State Chemistry","url":"https://www.academia.edu/Documents/in/Solid_State_Chemistry"},{"id":16216,"name":"Lanthanide","url":"https://www.academia.edu/Documents/in/Lanthanide"},{"id":50630,"name":"Crystal structure","url":"https://www.academia.edu/Documents/in/Crystal_structure"},{"id":188706,"name":"Metal","url":"https://www.academia.edu/Documents/in/Metal"},{"id":798093,"name":"Hydroxyapatites","url":"https://www.academia.edu/Documents/in/Hydroxyapatites"},{"id":4452431,"name":"Bond Length","url":"https://www.academia.edu/Documents/in/Bond_Length"}],"urls":[{"id":40809603,"url":"https://doi.org/10.1016/j.jssc.2016.03.004"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011555-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011554"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117011554/%D0%A1%D0%98%D0%9D%D0%A2%D0%95%D0%97_%D0%98_%D0%98%D0%A1%D0%A1%D0%9B%D0%95%D0%94%D0%9E%D0%92%D0%90%D0%9D%D0%98%D0%95_%D0%A1%D0%92%D0%9E%D0%99%D0%A1%D0%A2%D0%92_%D0%9F%D0%9B%D0%95%D0%9D%D0%9E%D0%9A_%D0%9F%D0%9E%D0%A0%D0%98%D0%A1%D0%A2%D0%9E%D0%93%D0%9E_%D0%A2%D0%AE2_%D0%9F%D0%9E%D0%9B%D0%A3%D0%A7%D0%95%D0%9D%D0%9D%D0%AB%D0%A5_%D0%90%D0%9D%D0%9E%D0%94%D0%9D%D0%AB%D0%9C_%D0%9E%D0%9A%D0%98%D0%A1%D0%9B%D0%95%D0%9D%D0%98%D0%95%D0%9C"><img alt="Research paper thumbnail of СИНТЕЗ И ИССЛЕДОВАНИЕ СВОЙСТВ ПЛЕНОК ПОРИСТОГО ТЮ2, ПОЛУЧЕННЫХ АНОДНЫМ ОКИСЛЕНИЕМ" class="work-thumbnail" src="https://attachments.academia-assets.com/112984154/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117011554/%D0%A1%D0%98%D0%9D%D0%A2%D0%95%D0%97_%D0%98_%D0%98%D0%A1%D0%A1%D0%9B%D0%95%D0%94%D0%9E%D0%92%D0%90%D0%9D%D0%98%D0%95_%D0%A1%D0%92%D0%9E%D0%99%D0%A1%D0%A2%D0%92_%D0%9F%D0%9B%D0%95%D0%9D%D0%9E%D0%9A_%D0%9F%D0%9E%D0%A0%D0%98%D0%A1%D0%A2%D0%9E%D0%93%D0%9E_%D0%A2%D0%AE2_%D0%9F%D0%9E%D0%9B%D0%A3%D0%A7%D0%95%D0%9D%D0%9D%D0%AB%D0%A5_%D0%90%D0%9D%D0%9E%D0%94%D0%9D%D0%AB%D0%9C_%D0%9E%D0%9A%D0%98%D0%A1%D0%9B%D0%95%D0%9D%D0%98%D0%95%D0%9C">СИНТЕЗ И ИССЛЕДОВАНИЕ СВОЙСТВ ПЛЕНОК ПОРИСТОГО ТЮ2, ПОЛУЧЕННЫХ АНОДНЫМ ОКИСЛЕНИЕМ</a></div><div class="wp-workCard_item"><span>Международный научный журнал Альтернативная энергетика и экология</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="890900a75697147aa5de4b9d6b032807" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":112984154,"asset_id":117011554,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/112984154/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011554"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011554"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011554; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011554]").text(description); $(".js-view-count[data-work-id=117011554]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011554; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011554']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "890900a75697147aa5de4b9d6b032807" } } $('.js-work-strip[data-work-id=117011554]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011554,"title":"СИНТЕЗ И ИССЛЕДОВАНИЕ СВОЙСТВ ПЛЕНОК ПОРИСТОГО ТЮ2, ПОЛУЧЕННЫХ АНОДНЫМ ОКИСЛЕНИЕМ","translated_title":"","metadata":{"ai_abstract":"Синтезированы упорядоченные массивы нанотрубок титана с помощью анодного окисления титановыми фольгами в глицериновом электролите, содержащем NH4F, при различных напряжениях от 10 до 30 В. Порозная структура была охарактеризована с использованием методов, таких как SEM, XRD и термический анализ, а также малоугловое нейтронное рассеяние. Результаты показали, что параметры пористой структуры зависят от напряжения, и добавление сурфактанта в электролит помогает получить более упорядоченные пористые структуры.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Международный научный журнал Альтернативная энергетика и экология"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011554/%D0%A1%D0%98%D0%9D%D0%A2%D0%95%D0%97_%D0%98_%D0%98%D0%A1%D0%A1%D0%9B%D0%95%D0%94%D0%9E%D0%92%D0%90%D0%9D%D0%98%D0%95_%D0%A1%D0%92%D0%9E%D0%99%D0%A1%D0%A2%D0%92_%D0%9F%D0%9B%D0%95%D0%9D%D0%9E%D0%9A_%D0%9F%D0%9E%D0%A0%D0%98%D0%A1%D0%A2%D0%9E%D0%93%D0%9E_%D0%A2%D0%AE2_%D0%9F%D0%9E%D0%9B%D0%A3%D0%A7%D0%95%D0%9D%D0%9D%D0%AB%D0%A5_%D0%90%D0%9D%D0%9E%D0%94%D0%9D%D0%AB%D0%9C_%D0%9E%D0%9A%D0%98%D0%A1%D0%9B%D0%95%D0%9D%D0%98%D0%95%D0%9C","translated_internal_url":"","created_at":"2024-04-03T00:56:49.313-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112984154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984154/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/112984154/download_file","bulk_download_file_name":"112984154.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984154/pdf-libre.pdf?1712138047=\u0026response-content-disposition=attachment%3B+filename%3D112984154.pdf\u0026Expires=1743427816\u0026Signature=gc3RZHj5avinZueRZKzK~tW5498M~8XjwYjxSWjpoVtAzKO6XeHaJOLyBLZsllmVWKT7qmxdG7oXIyHRSRgkSu4wWrrQWAd5nt92~EJZ9sK96Q5uJ76z76eo~0lJjOrcG-MhxFJkPNndS-IdAS9KouWW2dmhrNMtm7toQdB3ZXT4MGTrYtd~MewFOoKVpqv~lnYNmNZ2k61VazB2cxekVIrngNuLqwXhc2vD5umOqp1Nw-Jx7IDwb-~5n4LBS8tdBrA2iqefFtUb3oZmKWSxt~OfEvq7Y~4gYdoqmcJ9s2XF3JS-r9mYNuzl4-a5JDdJ8X6AQIplDrpoZt4tgKTElg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"СИНТЕЗ_И_ИССЛЕДОВАНИЕ_СВОЙСТВ_ПЛЕНОК_ПОРИСТОГО_ТЮ2_ПОЛУЧЕННЫХ_АНОДНЫМ_ОКИСЛЕНИЕМ","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":null,"owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":112984154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984154/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/112984154/download_file","bulk_download_file_name":"112984154.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984154/pdf-libre.pdf?1712138047=\u0026response-content-disposition=attachment%3B+filename%3D112984154.pdf\u0026Expires=1743427816\u0026Signature=gc3RZHj5avinZueRZKzK~tW5498M~8XjwYjxSWjpoVtAzKO6XeHaJOLyBLZsllmVWKT7qmxdG7oXIyHRSRgkSu4wWrrQWAd5nt92~EJZ9sK96Q5uJ76z76eo~0lJjOrcG-MhxFJkPNndS-IdAS9KouWW2dmhrNMtm7toQdB3ZXT4MGTrYtd~MewFOoKVpqv~lnYNmNZ2k61VazB2cxekVIrngNuLqwXhc2vD5umOqp1Nw-Jx7IDwb-~5n4LBS8tdBrA2iqefFtUb3oZmKWSxt~OfEvq7Y~4gYdoqmcJ9s2XF3JS-r9mYNuzl4-a5JDdJ8X6AQIplDrpoZt4tgKTElg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":112984155,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984155/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/112984155/download_file","bulk_download_file_name":"112984155.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984155/pdf-libre.pdf?1712138047=\u0026response-content-disposition=attachment%3B+filename%3D112984155.pdf\u0026Expires=1743427816\u0026Signature=S84EbqpIDnB7g6kNCzXLOuIIC9KYgdOxMIVsXbem3A6KwL~XxQTL-i-6wLjJYGeJ1Mr6mbv8vFRiKONKf~Jf5gW9SvLd0yE8AQHDTYVZrRaHliHkGGsAYz-rYozFgRVzZpZHYqFVEk55rIQ6kuyvBS~uZeyD-T3EQPqeQZ0sVMrXYCbg5I7oZa3MjbOLnEP~YTSbm6lDAc50hEnu96Ym2Mao81thcn1lzoGP7RsTqsjUNDJkyR91fqtBkHh-csZjhLGhi~11BVSftss1O1s5mxGhZHth8LLmfrBamwmJa1uThKZAKPi5Y1L~Zi9bVOasxT8LcyaqEVW12f6ci2Tz~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11404,"name":"Titanium","url":"https://www.academia.edu/Documents/in/Titanium"},{"id":68315,"name":"Porosity","url":"https://www.academia.edu/Documents/in/Porosity"},{"id":1131651,"name":"Anode","url":"https://www.academia.edu/Documents/in/Anode"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":1380809,"name":"Pulmonary Surfactant","url":"https://www.academia.edu/Documents/in/Pulmonary_Surfactant"}],"urls":[{"id":40809602,"url":"https://cyberleninka.ru/article/n/sintez-i-issledovanie-svoystv-plenok-poristogo-tyu2-poluchennyh-anodnym-okisleniem/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011554-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011553"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011553/Preparation_and_magnetic_properties_of_ordered_iron_nanowires_in_mesoporous_silica_matrix"><img alt="Research paper thumbnail of Preparation and magnetic properties of ordered iron nanowires in mesoporous silica matrix" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Preparation and magnetic properties of ordered iron nanowires in mesoporous silica matrix</div><div class="wp-workCard_item"><span>Physica E-low-dimensional Systems & Nanostructures</span><span>, May 1, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... The authors also would like to acknowledge the help of Alexey V. Garshev for TEM imaging and ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... The authors also would like to acknowledge the help of Alexey V. Garshev for TEM imaging and Mr. Artem P. Malakho for SAXS experiments. References. ... [8] KS Napolsky, AA Eliseev, AV Knotko, AV Lukahsin, AA Vertegel and YD Tretyakov, Mater. Sci. Eng. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011553"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011553"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011553; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011553]").text(description); $(".js-view-count[data-work-id=117011553]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011553; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011553']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011553]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011553,"title":"Preparation and magnetic properties of ordered iron nanowires in mesoporous silica matrix","translated_title":"","metadata":{"abstract":"... The authors also would like to acknowledge the help of Alexey V. Garshev for TEM imaging and Mr. Artem P. Malakho for SAXS experiments. References. ... [8] KS Napolsky, AA Eliseev, AV Knotko, AV Lukahsin, AA Vertegel and YD Tretyakov, Mater. Sci. Eng. ...","publisher":"Elsevier BV","publication_date":{"day":1,"month":5,"year":2008,"errors":{}},"publication_name":"Physica E-low-dimensional Systems \u0026 Nanostructures"},"translated_abstract":"... The authors also would like to acknowledge the help of Alexey V. Garshev for TEM imaging and Mr. Artem P. Malakho for SAXS experiments. References. ... [8] KS Napolsky, AA Eliseev, AV Knotko, AV Lukahsin, AA Vertegel and YD Tretyakov, Mater. Sci. Eng. ...","internal_url":"https://www.academia.edu/117011553/Preparation_and_magnetic_properties_of_ordered_iron_nanowires_in_mesoporous_silica_matrix","translated_internal_url":"","created_at":"2024-04-03T00:56:49.035-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Preparation_and_magnetic_properties_of_ordered_iron_nanowires_in_mesoporous_silica_matrix","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... The authors also would like to acknowledge the help of Alexey V. Garshev for TEM imaging and Mr. Artem P. Malakho for SAXS experiments. References. ... [8] KS Napolsky, AA Eliseev, AV Knotko, AV Lukahsin, AA Vertegel and YD Tretyakov, Mater. Sci. Eng. ...","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":12597,"name":"Crystallization","url":"https://www.academia.edu/Documents/in/Crystallization"},{"id":16738,"name":"Nanowire","url":"https://www.academia.edu/Documents/in/Nanowire"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":37333,"name":"Anisotropy","url":"https://www.academia.edu/Documents/in/Anisotropy"},{"id":99017,"name":"Nanocomposite","url":"https://www.academia.edu/Documents/in/Nanocomposite"},{"id":148624,"name":"Nanostructure","url":"https://www.academia.edu/Documents/in/Nanostructure"},{"id":809776,"name":"Mesoporous Silica","url":"https://www.academia.edu/Documents/in/Mesoporous_Silica"},{"id":3568914,"name":"Mesoporous Material","url":"https://www.academia.edu/Documents/in/Mesoporous_Material"}],"urls":[{"id":40809601,"url":"https://doi.org/10.1016/j.physe.2007.10.084"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011553-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011552"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011552/Engineering_SiO2_TiO2_binary_aerogels_for_sun_protection_and_cosmetic_applications"><img alt="Research paper thumbnail of Engineering SiO2–TiO2 binary aerogels for sun protection and cosmetic applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Engineering SiO2–TiO2 binary aerogels for sun protection and cosmetic applications</div><div class="wp-workCard_item"><span>Journal of Supercritical Fluids</span><span>, Feb 1, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract SiO2‒TiO2 binary aerogels obtained by the methods of low-temperature (carbon dioxide) an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract SiO2‒TiO2 binary aerogels obtained by the methods of low-temperature (carbon dioxide) and high-temperature (isopropanol, hexafluoroisopropanol and methyl tert-butyl ether) supercritical drying are considered as multifunctional cosmetic pigments with high anti-shine power and photoprotective properties. The composition and structure of SiO2–TiO2 aerogels obtained by supercritical drying in various fluids were studied by IR spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, scanning and transmission electron microscopy, and low-temperature nitrogen adsorption. The values of the sun protection factors SPF and UVAPF for the obtained materials are comparable to those of the commercial sunscreens Kronos 1171 and Kronos 2971, and the anti-shine power is approximately 1.5 times higher than that of kaolin-based materials.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011552"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011552"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011552; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011552]").text(description); $(".js-view-count[data-work-id=117011552]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011552; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011552']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011552]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011552,"title":"Engineering SiO2–TiO2 binary aerogels for sun protection and cosmetic applications","translated_title":"","metadata":{"abstract":"Abstract SiO2‒TiO2 binary aerogels obtained by the methods of low-temperature (carbon dioxide) and high-temperature (isopropanol, hexafluoroisopropanol and methyl tert-butyl ether) supercritical drying are considered as multifunctional cosmetic pigments with high anti-shine power and photoprotective properties. The composition and structure of SiO2–TiO2 aerogels obtained by supercritical drying in various fluids were studied by IR spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, scanning and transmission electron microscopy, and low-temperature nitrogen adsorption. The values of the sun protection factors SPF and UVAPF for the obtained materials are comparable to those of the commercial sunscreens Kronos 1171 and Kronos 2971, and the anti-shine power is approximately 1.5 times higher than that of kaolin-based materials.","publisher":"Elsevier BV","publication_date":{"day":1,"month":2,"year":2021,"errors":{}},"publication_name":"Journal of Supercritical Fluids"},"translated_abstract":"Abstract SiO2‒TiO2 binary aerogels obtained by the methods of low-temperature (carbon dioxide) and high-temperature (isopropanol, hexafluoroisopropanol and methyl tert-butyl ether) supercritical drying are considered as multifunctional cosmetic pigments with high anti-shine power and photoprotective properties. The composition and structure of SiO2–TiO2 aerogels obtained by supercritical drying in various fluids were studied by IR spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, scanning and transmission electron microscopy, and low-temperature nitrogen adsorption. The values of the sun protection factors SPF and UVAPF for the obtained materials are comparable to those of the commercial sunscreens Kronos 1171 and Kronos 2971, and the anti-shine power is approximately 1.5 times higher than that of kaolin-based materials.","internal_url":"https://www.academia.edu/117011552/Engineering_SiO2_TiO2_binary_aerogels_for_sun_protection_and_cosmetic_applications","translated_internal_url":"","created_at":"2024-04-03T00:56:48.843-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Engineering_SiO2_TiO2_binary_aerogels_for_sun_protection_and_cosmetic_applications","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract SiO2‒TiO2 binary aerogels obtained by the methods of low-temperature (carbon dioxide) and high-temperature (isopropanol, hexafluoroisopropanol and methyl tert-butyl ether) supercritical drying are considered as multifunctional cosmetic pigments with high anti-shine power and photoprotective properties. The composition and structure of SiO2–TiO2 aerogels obtained by supercritical drying in various fluids were studied by IR spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, scanning and transmission electron microscopy, and low-temperature nitrogen adsorption. The values of the sun protection factors SPF and UVAPF for the obtained materials are comparable to those of the commercial sunscreens Kronos 1171 and Kronos 2971, and the anti-shine power is approximately 1.5 times higher than that of kaolin-based materials.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":9359,"name":"Supercritical fluids","url":"https://www.academia.edu/Documents/in/Supercritical_fluids"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":318936,"name":"Supercritical carbon dioxide","url":"https://www.academia.edu/Documents/in/Supercritical_carbon_dioxide"},{"id":1181274,"name":"Supercritical Fluid","url":"https://www.academia.edu/Documents/in/Supercritical_Fluid"}],"urls":[{"id":40809600,"url":"https://doi.org/10.1016/j.supflu.2020.105099"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011552-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011551"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011551/Selective_Synthesis_of_Manganese_Dioxide_Polymorphs_by_the_Hydrothermal_Treatment_of_Aqueous_KMnO4_Solutions"><img alt="Research paper thumbnail of Selective Synthesis of Manganese Dioxide Polymorphs by the Hydrothermal Treatment of Aqueous KMnO4 Solutions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Selective Synthesis of Manganese Dioxide Polymorphs by the Hydrothermal Treatment of Aqueous KMnO4 Solutions</div><div class="wp-workCard_item"><span>Russian Journal of Inorganic Chemistry</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The hydrothermal treatment of neutral and acidified KMnO4 solutions at concentration of 0.037–0.0...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The hydrothermal treatment of neutral and acidified KMnO4 solutions at concentration of 0.037–0.093 mol/L and temperature of 120, 170, and 220°С for 24 h leads to selective synthesis of three different manganese dioxide modifications: α-MnO2, δ-MnO2, and β-MnO2. The temperature of hydrothermal treatment and medium acidity has been shown to affect considerably the phase composition of KMnO4 reduction products and reaction yield. The obtained samples of MnO2 have been characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and diffuse reflectance spectroscopy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011551"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011551"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011551; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011551]").text(description); $(".js-view-count[data-work-id=117011551]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011551; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011551']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011551]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011551,"title":"Selective Synthesis of Manganese Dioxide Polymorphs by the Hydrothermal Treatment of Aqueous KMnO4 Solutions","translated_title":"","metadata":{"abstract":"The hydrothermal treatment of neutral and acidified KMnO4 solutions at concentration of 0.037–0.093 mol/L and temperature of 120, 170, and 220°С for 24 h leads to selective synthesis of three different manganese dioxide modifications: α-MnO2, δ-MnO2, and β-MnO2. The temperature of hydrothermal treatment and medium acidity has been shown to affect considerably the phase composition of KMnO4 reduction products and reaction yield. The obtained samples of MnO2 have been characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and diffuse reflectance spectroscopy.","publisher":"Pleiades Publishing Ltd","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Russian Journal of Inorganic Chemistry"},"translated_abstract":"The hydrothermal treatment of neutral and acidified KMnO4 solutions at concentration of 0.037–0.093 mol/L and temperature of 120, 170, and 220°С for 24 h leads to selective synthesis of three different manganese dioxide modifications: α-MnO2, δ-MnO2, and β-MnO2. The temperature of hydrothermal treatment and medium acidity has been shown to affect considerably the phase composition of KMnO4 reduction products and reaction yield. The obtained samples of MnO2 have been characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and diffuse reflectance spectroscopy.","internal_url":"https://www.academia.edu/117011551/Selective_Synthesis_of_Manganese_Dioxide_Polymorphs_by_the_Hydrothermal_Treatment_of_Aqueous_KMnO4_Solutions","translated_internal_url":"","created_at":"2024-04-03T00:56:48.665-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Selective_Synthesis_of_Manganese_Dioxide_Polymorphs_by_the_Hydrothermal_Treatment_of_Aqueous_KMnO4_Solutions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The hydrothermal treatment of neutral and acidified KMnO4 solutions at concentration of 0.037–0.093 mol/L and temperature of 120, 170, and 220°С for 24 h leads to selective synthesis of three different manganese dioxide modifications: α-MnO2, δ-MnO2, and β-MnO2. The temperature of hydrothermal treatment and medium acidity has been shown to affect considerably the phase composition of KMnO4 reduction products and reaction yield. The obtained samples of MnO2 have been characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and diffuse reflectance spectroscopy.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":9339,"name":"Raman Spectroscopy","url":"https://www.academia.edu/Documents/in/Raman_Spectroscopy"},{"id":29057,"name":"Manganese","url":"https://www.academia.edu/Documents/in/Manganese"},{"id":390995,"name":"Scanning Electron Microscope","url":"https://www.academia.edu/Documents/in/Scanning_Electron_Microscope"},{"id":416722,"name":"Hydrothermal Synthesis","url":"https://www.academia.edu/Documents/in/Hydrothermal_Synthesis"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"}],"urls":[{"id":40809599,"url":"http://link.springer.com/content/pdf/10.1134/S0036023621020066.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011551-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011550"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117011550/Annealing_induced_structural_and_phase_transitions_in_anodic_aluminum_oxide_prepared_in_oxalic_acid_electrolyte"><img alt="Research paper thumbnail of Annealing induced structural and phase transitions in anodic aluminum oxide prepared in oxalic acid electrolyte" class="work-thumbnail" src="https://attachments.academia-assets.com/112984184/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117011550/Annealing_induced_structural_and_phase_transitions_in_anodic_aluminum_oxide_prepared_in_oxalic_acid_electrolyte">Annealing induced structural and phase transitions in anodic aluminum oxide prepared in oxalic acid electrolyte</a></div><div class="wp-workCard_item"><span>Surface and Coatings Technology</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-117011550-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-117011550-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444103/figure-1-decomposition-products-through-the-cell-walls"><img alt="decomposition products through the cell walls. impurities removal is described in the framework of the limited mass-transport of oxalate " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444108/figure-2-air-black-curve-dynamic-atmospheres-aao-films-were"><img alt="air (black curve) dynamic atmospheres. AAO films were prepared at 120 V. " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444114/figure-3-ordering-of-the-oxygen-vacancies-tetrahedral"><img alt="ordering of the oxygen vacancies. tetrahedral positions of Al cations, the difference in symmetry arises from the variou between structures of y-, 6-, and 6-Al203 phases is the ratio between octahedral and " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444121/figure-4-complex-geometry-are-observed-between-the-particles"><img alt="complex geometry are observed between the particles. temperature alumina polymorphs with an average size of about 15 nm. Mesopores with using the BJH approach. AAO films were obtained at 120 V and annealed at different " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444133/figure-5-annealing-induced-structural-and-phase-transitions"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444140/figure-6-previous-findings-all-bands-almost-disappear-above"><img alt="previous findings [16]. All bands almost disappear above 1050 °C due to the thermal 1150 °C for 24 h. (b) Calibration curve plotted as the area of the oxalate bands at ca. ~ 150( " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444155/figure-7-for-the-conversion-degrees-above-is-problematic-due"><img alt="for the conversion degrees above 90% is problematic due to a small mass loss above 1000 °C. dependence of apparent activation energy of the impurities removal process on conversion " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444165/figure-8-annealing-induced-structural-and-phase-transitions"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444177/table-1-prepared-in-oxalic-acid-at-different-anodization"><img alt="prepared in 0.3 M oxalic acid at different anodization voltages (U). Wall analysis; anodization duration (fanoq) and cell wall thickness (Dy). Samples were " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/table_001.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-117011550-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4826d38c848927803e7b04d3c6db5107" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":112984184,"asset_id":117011550,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/112984184/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011550"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011550"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011550; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011550]").text(description); $(".js-view-count[data-work-id=117011550]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011550; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011550']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4826d38c848927803e7b04d3c6db5107" } } $('.js-work-strip[data-work-id=117011550]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011550,"title":"Annealing induced structural and phase transitions in anodic aluminum oxide prepared in oxalic acid electrolyte","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Annealing Effects on Anodic Aluminum Oxide","grobid_abstract":"This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Surface and Coatings Technology","grobid_abstract_attachment_id":112984184},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011550/Annealing_induced_structural_and_phase_transitions_in_anodic_aluminum_oxide_prepared_in_oxalic_acid_electrolyte","translated_internal_url":"","created_at":"2024-04-03T00:56:48.495-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112984184,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984184/thumbnails/1.jpg","file_name":"j.surfcoat.2019.12515920240403-1-bu184s.pdf","download_url":"https://www.academia.edu/attachments/112984184/download_file","bulk_download_file_name":"Annealing_induced_structural_and_phase_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984184/j.surfcoat.2019.12515920240403-1-bu184s-libre.pdf?1712138053=\u0026response-content-disposition=attachment%3B+filename%3DAnnealing_induced_structural_and_phase_t.pdf\u0026Expires=1743378069\u0026Signature=hCpxD2OmHzDGFjJj8QY7mlRKnnS6bzl4trSH0NhN5TAokZUWFwst-DHIA3Y4-1fhoR907bMlYJvpTeHjsVrC6EgXM8iG~LH8AujePC3s~FktPnV~mK4LgT4gxNsnfMaClrXhA8dpIISC0Or9FfSjHeS5XIAbOMr3u~0BG1SsMNkaNLL6Fy8gbOAS9HPtti2pJCpHjKH-eS-p1kkTT4scmEsBkTPZR4zayQk0g00~lmlZkTAQMLAKcEHgYU5UrdOiO6bMUlvWyDx0w0Gguq1QoCFxsUKGuO45JosZiasAwEOUL-1IuJviCJzmgQXljdN0ux63xWZLVHCbd2wpP7~~Pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Annealing_induced_structural_and_phase_transitions_in_anodic_aluminum_oxide_prepared_in_oxalic_acid_electrolyte","translated_slug":"","page_count":33,"language":"en","content_type":"Work","summary":"This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":112984184,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984184/thumbnails/1.jpg","file_name":"j.surfcoat.2019.12515920240403-1-bu184s.pdf","download_url":"https://www.academia.edu/attachments/112984184/download_file","bulk_download_file_name":"Annealing_induced_structural_and_phase_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984184/j.surfcoat.2019.12515920240403-1-bu184s-libre.pdf?1712138053=\u0026response-content-disposition=attachment%3B+filename%3DAnnealing_induced_structural_and_phase_t.pdf\u0026Expires=1743378069\u0026Signature=hCpxD2OmHzDGFjJj8QY7mlRKnnS6bzl4trSH0NhN5TAokZUWFwst-DHIA3Y4-1fhoR907bMlYJvpTeHjsVrC6EgXM8iG~LH8AujePC3s~FktPnV~mK4LgT4gxNsnfMaClrXhA8dpIISC0Or9FfSjHeS5XIAbOMr3u~0BG1SsMNkaNLL6Fy8gbOAS9HPtti2pJCpHjKH-eS-p1kkTT4scmEsBkTPZR4zayQk0g00~lmlZkTAQMLAKcEHgYU5UrdOiO6bMUlvWyDx0w0Gguq1QoCFxsUKGuO45JosZiasAwEOUL-1IuJviCJzmgQXljdN0ux63xWZLVHCbd2wpP7~~Pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":307514,"name":"Surface and Coatings Technology","url":"https://www.academia.edu/Documents/in/Surface_and_Coatings_Technology"},{"id":369525,"name":"Aluminium","url":"https://www.academia.edu/Documents/in/Aluminium"},{"id":386271,"name":"Oxide","url":"https://www.academia.edu/Documents/in/Oxide"},{"id":1131651,"name":"Anode","url":"https://www.academia.edu/Documents/in/Anode"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":1376522,"name":"Anodizing","url":"https://www.academia.edu/Documents/in/Anodizing"},{"id":1499551,"name":"Oxalic acid","url":"https://www.academia.edu/Documents/in/Oxalic_acid"}],"urls":[{"id":40809598,"url":"https://api.elsevier.com/content/article/PII:S0257897219311508?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-117011550-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011549"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011549/Non_classical_growth_of_brookite_nanorods"><img alt="Research paper thumbnail of Non-classical growth of brookite nanorods" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Non-classical growth of brookite nanorods</div><div class="wp-workCard_item"><span>CrystEngComm</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Under hydrothermal conditions, the formation of the brookite phase occurs due to the oriented att...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Under hydrothermal conditions, the formation of the brookite phase occurs due to the oriented attachment of anatase particles with subsequent recrystallization.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011549"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011549"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011549; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011549]").text(description); $(".js-view-count[data-work-id=117011549]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011549; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011549']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011549]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011549,"title":"Non-classical growth of brookite nanorods","translated_title":"","metadata":{"abstract":"Under hydrothermal conditions, the formation of the brookite phase occurs due to the oriented attachment of anatase particles with subsequent recrystallization.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"CrystEngComm"},"translated_abstract":"Under hydrothermal conditions, the formation of the brookite phase occurs due to the oriented attachment of anatase particles with subsequent recrystallization.","internal_url":"https://www.academia.edu/117011549/Non_classical_growth_of_brookite_nanorods","translated_internal_url":"","created_at":"2024-04-03T00:56:48.319-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Non_classical_growth_of_brookite_nanorods","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Under hydrothermal conditions, the formation of the brookite phase occurs due to the oriented attachment of anatase particles with subsequent recrystallization.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":209101,"name":"Nanorod","url":"https://www.academia.edu/Documents/in/Nanorod"}],"urls":[{"id":40809597,"url":"http://pubs.rsc.org/en/content/articlepdf/2019/CE/C9CE00682F"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011549-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011548"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011548/Production_of_nanocrystalline_titanium_dioxide_photoactive_coatings_for_decomposition_of_organic_water_pollutants_in_a_flow_reactor"><img alt="Research paper thumbnail of Production of nanocrystalline titanium dioxide photoactive coatings for decomposition of organic water pollutants in a flow reactor" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Production of nanocrystalline titanium dioxide photoactive coatings for decomposition of organic water pollutants in a flow reactor</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011548"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011548"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011548; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011548]").text(description); $(".js-view-count[data-work-id=117011548]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011548; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011548']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011548]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011548,"title":"Production of nanocrystalline titanium dioxide photoactive coatings for decomposition of organic water pollutants in a flow reactor","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011548/Production_of_nanocrystalline_titanium_dioxide_photoactive_coatings_for_decomposition_of_organic_water_pollutants_in_a_flow_reactor","translated_internal_url":"","created_at":"2024-04-03T00:56:48.192-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Production_of_nanocrystalline_titanium_dioxide_photoactive_coatings_for_decomposition_of_organic_water_pollutants_in_a_flow_reactor","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":6414,"name":"Decomposition","url":"https://www.academia.edu/Documents/in/Decomposition"},{"id":58353,"name":"Nanocrystalline Material","url":"https://www.academia.edu/Documents/in/Nanocrystalline_Material"},{"id":125137,"name":"Titanium dioxide","url":"https://www.academia.edu/Documents/in/Titanium_dioxide"},{"id":538342,"name":"Pollutant","url":"https://www.academia.edu/Documents/in/Pollutant"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011548-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011490/Protons_transport_in_electrochemically_reduced_graphene_oxide_Enhancing_H_H2O_selectivity"><img alt="Research paper thumbnail of Protons transport in electrochemically reduced graphene oxide: Enhancing H+/H2O selectivity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Protons transport in electrochemically reduced graphene oxide: Enhancing H+/H2O selectivity</div><div class="wp-workCard_item"><span>Carbon</span><span>, Sep 1, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011490]").text(description); $(".js-view-count[data-work-id=117011490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011490,"title":"Protons transport in electrochemically reduced graphene oxide: Enhancing H+/H2O selectivity","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":9,"year":2023,"errors":{}},"publication_name":"Carbon"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011490/Protons_transport_in_electrochemically_reduced_graphene_oxide_Enhancing_H_H2O_selectivity","translated_internal_url":"","created_at":"2024-04-03T00:55:47.206-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Protons_transport_in_electrochemically_reduced_graphene_oxide_Enhancing_H_H2O_selectivity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":5303,"name":"Carbon","url":"https://www.academia.edu/Documents/in/Carbon"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":386271,"name":"Oxide","url":"https://www.academia.edu/Documents/in/Oxide"},{"id":444974,"name":"Proton Transport","url":"https://www.academia.edu/Documents/in/Proton_Transport"}],"urls":[{"id":40809557,"url":"https://doi.org/10.1016/j.carbon.2023.118288"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011490-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="98386168"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/98386168/Fine_tuning_of_the_magnetization_relaxation_parameters_of_the_DyO_single_ion_magnet_in_the_hydroxy_fluoro_apatite_solid_solution"><img alt="Research paper thumbnail of Fine tuning of the magnetization relaxation parameters of the DyO+ single ion magnet in the hydroxy/fluoro-apatite solid solution" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Fine tuning of the magnetization relaxation parameters of the DyO+ single ion magnet in the hydroxy/fluoro-apatite solid solution</div><div class="wp-workCard_item"><span>CrystEngComm</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">DyO+ embedded in a hydroxy/fluoro-apatite matrix reveals robust and finely tunable single ion mag...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">DyO+ embedded in a hydroxy/fluoro-apatite matrix reveals robust and finely tunable single ion magnet properties. The energy barrier for magnetization reversal grows with the increase of the fluoride and the...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98386168"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98386168"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98386168; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98386168]").text(description); $(".js-view-count[data-work-id=98386168]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98386168; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98386168']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=98386168]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98386168,"title":"Fine tuning of the magnetization relaxation parameters of the DyO+ single ion magnet in the hydroxy/fluoro-apatite solid solution","translated_title":"","metadata":{"abstract":"DyO+ embedded in a hydroxy/fluoro-apatite matrix reveals robust and finely tunable single ion magnet properties. The energy barrier for magnetization reversal grows with the increase of the fluoride and the...","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"CrystEngComm"},"translated_abstract":"DyO+ embedded in a hydroxy/fluoro-apatite matrix reveals robust and finely tunable single ion magnet properties. The energy barrier for magnetization reversal grows with the increase of the fluoride and the...","internal_url":"https://www.academia.edu/98386168/Fine_tuning_of_the_magnetization_relaxation_parameters_of_the_DyO_single_ion_magnet_in_the_hydroxy_fluoro_apatite_solid_solution","translated_internal_url":"","created_at":"2023-03-12T09:45:55.966-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fine_tuning_of_the_magnetization_relaxation_parameters_of_the_DyO_single_ion_magnet_in_the_hydroxy_fluoro_apatite_solid_solution","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"DyO+ embedded in a hydroxy/fluoro-apatite matrix reveals robust and finely tunable single ion magnet properties. The energy barrier for magnetization reversal grows with the increase of the fluoride and the...","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":205587,"name":"Apatite","url":"https://www.academia.edu/Documents/in/Apatite"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":519549,"name":"Magnetization","url":"https://www.academia.edu/Documents/in/Magnetization"},{"id":576916,"name":"Magnet","url":"https://www.academia.edu/Documents/in/Magnet"}],"urls":[{"id":29716355,"url":"http://pubs.rsc.org/en/content/articlepdf/2018/CE/C8CE01706A"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-98386168-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="98386078"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98386078/_Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH_4y_as_Cathode_Materials_for_Li_ion_Batteries"><img alt="Research paper thumbnail of “Hydrotriphylites” Li1-xFe1+x(PO4)1-y(OH)4y as Cathode Materials for Li-ion Batteries" class="work-thumbnail" src="https://attachments.academia-assets.com/99751725/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98386078/_Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH_4y_as_Cathode_Materials_for_Li_ion_Batteries">“Hydrotriphylites” Li1-xFe1+x(PO4)1-y(OH)4y as Cathode Materials for Li-ion Batteries</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Lithium iron phosphate LiFePO4 triphylite is now one of the core positive electrode (cathode) mat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Lithium iron phosphate LiFePO4 triphylite is now one of the core positive electrode (cathode) materials enabling the Li-ion battery technology for stationary energy storage applications, which are important for broad implementation of the renewable energy sources. Despite the apparent simplicity of its crystal structure and chemical composition, LiFePO4 is prone to off-stoichiometry and demonstrates rich defect chemistry owing to variations in the cation content and iron oxidation state, and to the redistribution of the cations and vacancies over two crystallographically distinct octahedral sites. The importance of the defects stems from their impact on the electrochemical performance, particularly on limiting the capacity and rate capability through blocking the Li ion diffusion along the channels of the olivine-type LiFePO4 structure. Up to now the polyanionic (i.e. phosphate) sublattice has been considered idle on this playground. Here, we demonstrate that under hydrothermal cond...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9020fbc20f35295c22cc7fa9357db2a7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99751725,"asset_id":98386078,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99751725/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98386078"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98386078"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98386078; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98386078]").text(description); $(".js-view-count[data-work-id=98386078]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98386078; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98386078']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9020fbc20f35295c22cc7fa9357db2a7" } } $('.js-work-strip[data-work-id=98386078]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98386078,"title":"“Hydrotriphylites” Li1-xFe1+x(PO4)1-y(OH)4y as Cathode Materials for Li-ion Batteries","translated_title":"","metadata":{"abstract":"Lithium iron phosphate LiFePO4 triphylite is now one of the core positive electrode (cathode) materials enabling the Li-ion battery technology for stationary energy storage applications, which are important for broad implementation of the renewable energy sources. Despite the apparent simplicity of its crystal structure and chemical composition, LiFePO4 is prone to off-stoichiometry and demonstrates rich defect chemistry owing to variations in the cation content and iron oxidation state, and to the redistribution of the cations and vacancies over two crystallographically distinct octahedral sites. The importance of the defects stems from their impact on the electrochemical performance, particularly on limiting the capacity and rate capability through blocking the Li ion diffusion along the channels of the olivine-type LiFePO4 structure. Up to now the polyanionic (i.e. phosphate) sublattice has been considered idle on this playground. Here, we demonstrate that under hydrothermal cond...","publisher":"American Chemical Society (ACS)","ai_title_tag":"Hydrotriphylites Li1-xFe1+x(PO4)1-y(OH)4y for Li-ion Batteries","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"Lithium iron phosphate LiFePO4 triphylite is now one of the core positive electrode (cathode) materials enabling the Li-ion battery technology for stationary energy storage applications, which are important for broad implementation of the renewable energy sources. Despite the apparent simplicity of its crystal structure and chemical composition, LiFePO4 is prone to off-stoichiometry and demonstrates rich defect chemistry owing to variations in the cation content and iron oxidation state, and to the redistribution of the cations and vacancies over two crystallographically distinct octahedral sites. The importance of the defects stems from their impact on the electrochemical performance, particularly on limiting the capacity and rate capability through blocking the Li ion diffusion along the channels of the olivine-type LiFePO4 structure. Up to now the polyanionic (i.e. phosphate) sublattice has been considered idle on this playground. Here, we demonstrate that under hydrothermal cond...","internal_url":"https://www.academia.edu/98386078/_Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH_4y_as_Cathode_Materials_for_Li_ion_Batteries","translated_internal_url":"","created_at":"2023-03-12T09:45:00.114-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99751725,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99751725/thumbnails/1.jpg","file_name":"15375917.pdf","download_url":"https://www.academia.edu/attachments/99751725/download_file","bulk_download_file_name":"Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99751725/15375917-libre.pdf?1678640115=\u0026response-content-disposition=attachment%3B+filename%3DHydrotriphylites_Li1_xFe1_x_PO4_1_y_OH.pdf\u0026Expires=1743427816\u0026Signature=g~4YeEcwXoJWcjINRg2yuCzNilI-vOMmlkoFsuuBqKZUNi2pgXjobrC~Z5KAeeL7FhXn3LLZa3P5gCV1~RCUVU61N3ExWEEmus2xPGChMf~kmesVAeZ4WDHghv~weHhvLb~rIvaLGUuvNVNn1ke-D8-MgSapKw7KzzlnpisbCuv8idO-T9WxWTI1yie0KGbEkwdhKEB7qOLhDbmEmWt0cveX1ZRu-1oGu42CWXWXD4wqCz1H7WUH4euhZZBz9QJxTapxt-2lTRKxkn7suvpJYujHZhWXIJCd12ItjNN0xTW-7JgRlAXlheupXNa8ZpzKI2t9k38wKZy3C663IAZ5OA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"_Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH_4y_as_Cathode_Materials_for_Li_ion_Batteries","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Lithium iron phosphate LiFePO4 triphylite is now one of the core positive electrode (cathode) materials enabling the Li-ion battery technology for stationary energy storage applications, which are important for broad implementation of the renewable energy sources. Despite the apparent simplicity of its crystal structure and chemical composition, LiFePO4 is prone to off-stoichiometry and demonstrates rich defect chemistry owing to variations in the cation content and iron oxidation state, and to the redistribution of the cations and vacancies over two crystallographically distinct octahedral sites. The importance of the defects stems from their impact on the electrochemical performance, particularly on limiting the capacity and rate capability through blocking the Li ion diffusion along the channels of the olivine-type LiFePO4 structure. Up to now the polyanionic (i.e. phosphate) sublattice has been considered idle on this playground. Here, we demonstrate that under hydrothermal cond...","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":99751725,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99751725/thumbnails/1.jpg","file_name":"15375917.pdf","download_url":"https://www.academia.edu/attachments/99751725/download_file","bulk_download_file_name":"Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99751725/15375917-libre.pdf?1678640115=\u0026response-content-disposition=attachment%3B+filename%3DHydrotriphylites_Li1_xFe1_x_PO4_1_y_OH.pdf\u0026Expires=1743427816\u0026Signature=g~4YeEcwXoJWcjINRg2yuCzNilI-vOMmlkoFsuuBqKZUNi2pgXjobrC~Z5KAeeL7FhXn3LLZa3P5gCV1~RCUVU61N3ExWEEmus2xPGChMf~kmesVAeZ4WDHghv~weHhvLb~rIvaLGUuvNVNn1ke-D8-MgSapKw7KzzlnpisbCuv8idO-T9WxWTI1yie0KGbEkwdhKEB7qOLhDbmEmWt0cveX1ZRu-1oGu42CWXWXD4wqCz1H7WUH4euhZZBz9QJxTapxt-2lTRKxkn7suvpJYujHZhWXIJCd12ItjNN0xTW-7JgRlAXlheupXNa8ZpzKI2t9k38wKZy3C663IAZ5OA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":99751724,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99751724/thumbnails/1.jpg","file_name":"15375917.pdf","download_url":"https://www.academia.edu/attachments/99751724/download_file","bulk_download_file_name":"Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99751724/15375917-libre.pdf?1678640116=\u0026response-content-disposition=attachment%3B+filename%3DHydrotriphylites_Li1_xFe1_x_PO4_1_y_OH.pdf\u0026Expires=1743427816\u0026Signature=QrT-dCnYwji1nzSD3TOVbfurkp-QmOiBg2~eLs56iozC1ePA39oMH8jPof0yWvbYXJRsC4JdC6LpxJXMM29zVfg77jadoxVPICyeOJ5Asndd8T95X2sAUl7fC7FyXi~QlJBlkr~USUC-lRTxE8u8ornL~q~PD2P5FfHXaqBpRYoQHc7HzkQ52qQ1rNkqk5nN4EF-2udKi1ewpsyZMJC4s76-HQ-JY9DQWX28-K7Z8ylFmjK5L9SupaXZn2ectzAxEqxrqfuq9qDf7aqxyw2IZ5yZeH5X45FZNeqk5dLvdDsgv9cm~KJdy9KQ3sKtS0fB-bNJijQl6XV6qRx1rD-Sxg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2305,"name":"Materials Chemistry","url":"https://www.academia.edu/Documents/in/Materials_Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":566559,"name":"Stoichiometry","url":"https://www.academia.edu/Documents/in/Stoichiometry"},{"id":1131650,"name":"Cathode","url":"https://www.academia.edu/Documents/in/Cathode"}],"urls":[{"id":29716298,"url":"https://ndownloader.figshare.com/files/15375917"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-98386078-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="88644964"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/88644964/Amorphous_and_crystalline_cerium_iv_phosphates_biocompatible_ROS_scavenging_sunscreens"><img alt="Research paper thumbnail of Amorphous and crystalline cerium(iv) phosphates: biocompatible ROS-scavenging sunscreens" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Amorphous and crystalline cerium(iv) phosphates: biocompatible ROS-scavenging sunscreens</div><div class="wp-workCard_item"><span>Journal of Materials Chemistry B</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper reports on the good UV-shielding properties (namely, the sun protection factor and the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper reports on the good UV-shielding properties (namely, the sun protection factor and the factor of protection against UV-A radiation) and low cytotoxicity (including photocytotoxicity) of amorphous and crystalline cerium(iv) phosphates.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88644964"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88644964"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88644964; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88644964]").text(description); $(".js-view-count[data-work-id=88644964]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88644964; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88644964']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88644964]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88644964,"title":"Amorphous and crystalline cerium(iv) phosphates: biocompatible ROS-scavenging sunscreens","translated_title":"","metadata":{"abstract":"This paper reports on the good UV-shielding properties (namely, the sun protection factor and the factor of protection against UV-A radiation) and low cytotoxicity (including photocytotoxicity) of amorphous and crystalline cerium(iv) phosphates.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Journal of Materials Chemistry B"},"translated_abstract":"This paper reports on the good UV-shielding properties (namely, the sun protection factor and the factor of protection against UV-A radiation) and low cytotoxicity (including photocytotoxicity) of amorphous and crystalline cerium(iv) phosphates.","internal_url":"https://www.academia.edu/88644964/Amorphous_and_crystalline_cerium_iv_phosphates_biocompatible_ROS_scavenging_sunscreens","translated_internal_url":"","created_at":"2022-10-17T04:53:38.203-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Amorphous_and_crystalline_cerium_iv_phosphates_biocompatible_ROS_scavenging_sunscreens","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This paper reports on the good UV-shielding properties (namely, the sun protection factor and the factor of protection against UV-A radiation) and low cytotoxicity (including photocytotoxicity) of amorphous and crystalline cerium(iv) phosphates.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":26931,"name":"Nuclear Chemistry","url":"https://www.academia.edu/Documents/in/Nuclear_Chemistry"},{"id":58353,"name":"Nanocrystalline Material","url":"https://www.academia.edu/Documents/in/Nanocrystalline_Material"},{"id":71906,"name":"Cerium Oxide","url":"https://www.academia.edu/Documents/in/Cerium_Oxide"},{"id":386276,"name":"Cerium","url":"https://www.academia.edu/Documents/in/Cerium"},{"id":843400,"name":"Phosphate","url":"https://www.academia.edu/Documents/in/Phosphate"}],"urls":[{"id":24852923,"url":"http://pubs.rsc.org/en/content/articlepdf/2022/TB/D1TB02604F"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-88644964-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="88644963"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88644963/Hydrothermal_Synthesis_of_Layered_Titanium_Phosphate_Ti2O2H_PO4_NH4_2PO4_2_and_Its_Potential_Application_in_Cosmetics"><img alt="Research paper thumbnail of Hydrothermal Synthesis of Layered Titanium Phosphate Ti2O2H(PO4)[(NH4)2PO4]2 and Its Potential Application in Cosmetics" class="work-thumbnail" src="https://attachments.academia-assets.com/92578592/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88644963/Hydrothermal_Synthesis_of_Layered_Titanium_Phosphate_Ti2O2H_PO4_NH4_2PO4_2_and_Its_Potential_Application_in_Cosmetics">Hydrothermal Synthesis of Layered Titanium Phosphate Ti2O2H(PO4)[(NH4)2PO4]2 and Its Potential Application in Cosmetics</a></div><div class="wp-workCard_item"><span>Crystals</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Titanium phosphates were recently revealed as promising cosmetic pigments; however, their photoca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Titanium phosphates were recently revealed as promising cosmetic pigments; however, their photocatalytic activity and sun protective factor (SPF) levels have not been investigated in detail. In this study, we used hydrothermal conditions to prepare nanocrystalline anatase, brookite, and layered titanium phosphate using the titanium lactate complex, NH4H2PO4, and urea as precursors. The samples were characterized by powder X-ray diffraction (XRD) in addition to Raman spectroscopy, transmission and scanning electron microscopy (TEM, SEM), energy-dispersive X-ray spectroscopy (EDX), and UV-Vis spectroscopy. Furthermore, the photocatalytic activity, sun protective factor, and moisture retention ability were determined for the samples. Brookite exhibited the highest SPF value and anatase the lowest, while Ti2O2H(PO4)[(NH4)2PO4]2 displayed highly promising UV protection and moisture retention properties and, therefore, represents a polyfunctional pigment that is particularly well suited f...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4ce6354c151d3ce0fe1023aa210eab8d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92578592,"asset_id":88644963,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92578592/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88644963"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88644963"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88644963; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88644963]").text(description); $(".js-view-count[data-work-id=88644963]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88644963; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88644963']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4ce6354c151d3ce0fe1023aa210eab8d" } } $('.js-work-strip[data-work-id=88644963]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88644963,"title":"Hydrothermal Synthesis of Layered Titanium Phosphate Ti2O2H(PO4)[(NH4)2PO4]2 and Its Potential Application in Cosmetics","translated_title":"","metadata":{"abstract":"Titanium phosphates were recently revealed as promising cosmetic pigments; however, their photocatalytic activity and sun protective factor (SPF) levels have not been investigated in detail. In this study, we used hydrothermal conditions to prepare nanocrystalline anatase, brookite, and layered titanium phosphate using the titanium lactate complex, NH4H2PO4, and urea as precursors. The samples were characterized by powder X-ray diffraction (XRD) in addition to Raman spectroscopy, transmission and scanning electron microscopy (TEM, SEM), energy-dispersive X-ray spectroscopy (EDX), and UV-Vis spectroscopy. Furthermore, the photocatalytic activity, sun protective factor, and moisture retention ability were determined for the samples. Brookite exhibited the highest SPF value and anatase the lowest, while Ti2O2H(PO4)[(NH4)2PO4]2 displayed highly promising UV protection and moisture retention properties and, therefore, represents a polyfunctional pigment that is particularly well suited f...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Crystals"},"translated_abstract":"Titanium phosphates were recently revealed as promising cosmetic pigments; however, their photocatalytic activity and sun protective factor (SPF) levels have not been investigated in detail. In this study, we used hydrothermal conditions to prepare nanocrystalline anatase, brookite, and layered titanium phosphate using the titanium lactate complex, NH4H2PO4, and urea as precursors. The samples were characterized by powder X-ray diffraction (XRD) in addition to Raman spectroscopy, transmission and scanning electron microscopy (TEM, SEM), energy-dispersive X-ray spectroscopy (EDX), and UV-Vis spectroscopy. Furthermore, the photocatalytic activity, sun protective factor, and moisture retention ability were determined for the samples. Brookite exhibited the highest SPF value and anatase the lowest, while Ti2O2H(PO4)[(NH4)2PO4]2 displayed highly promising UV protection and moisture retention properties and, therefore, represents a polyfunctional pigment that is particularly well suited f...","internal_url":"https://www.academia.edu/88644963/Hydrothermal_Synthesis_of_Layered_Titanium_Phosphate_Ti2O2H_PO4_NH4_2PO4_2_and_Its_Potential_Application_in_Cosmetics","translated_internal_url":"","created_at":"2022-10-17T04:53:37.895-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92578592,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92578592/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/92578592/download_file","bulk_download_file_name":"Hydrothermal_Synthesis_of_Layered_Titani.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92578592/pdf-libre.pdf?1666009924=\u0026response-content-disposition=attachment%3B+filename%3DHydrothermal_Synthesis_of_Layered_Titani.pdf\u0026Expires=1743427816\u0026Signature=NC6QJEo45XK-x8b4Wbvt7t64fX-0XDQgkHSSj0z0uRdUHBE3l-kOlXo70I2LmhGnSIEyoTr98AgBVrOundjn6JFLzhoQGOiWYhuM3pUtg6set8eKxbHyooEbiUlCfWhQ7mhKG6ERP-4RI2nZ~UIPaXdJWAlvzl8t2Jp16E9NMQPkCZXy4fLnL7F422FSqvt7TP44iyIHg79Wjl3DEIN8uG5~eiY2fNwqVxbKrZMCQSHzSAD3T~tz6ULhOsjR9JcHIbV2Kx0tOj5E3mWdXXDjkl83qAzIq8~O9rDtMOYzRInW4S6qaRtRTRILXibIjQ3M2PAFvt~LxxYNuLDL8DWHkA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hydrothermal_Synthesis_of_Layered_Titanium_Phosphate_Ti2O2H_PO4_NH4_2PO4_2_and_Its_Potential_Application_in_Cosmetics","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Titanium phosphates were recently revealed as promising cosmetic pigments; however, their photocatalytic activity and sun protective factor (SPF) levels have not been investigated in detail. In this study, we used hydrothermal conditions to prepare nanocrystalline anatase, brookite, and layered titanium phosphate using the titanium lactate complex, NH4H2PO4, and urea as precursors. The samples were characterized by powder X-ray diffraction (XRD) in addition to Raman spectroscopy, transmission and scanning electron microscopy (TEM, SEM), energy-dispersive X-ray spectroscopy (EDX), and UV-Vis spectroscopy. Furthermore, the photocatalytic activity, sun protective factor, and moisture retention ability were determined for the samples. Brookite exhibited the highest SPF value and anatase the lowest, while Ti2O2H(PO4)[(NH4)2PO4]2 displayed highly promising UV protection and moisture retention properties and, therefore, represents a polyfunctional pigment that is particularly well suited f...","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":92578592,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92578592/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/92578592/download_file","bulk_download_file_name":"Hydrothermal_Synthesis_of_Layered_Titani.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92578592/pdf-libre.pdf?1666009924=\u0026response-content-disposition=attachment%3B+filename%3DHydrothermal_Synthesis_of_Layered_Titani.pdf\u0026Expires=1743427816\u0026Signature=NC6QJEo45XK-x8b4Wbvt7t64fX-0XDQgkHSSj0z0uRdUHBE3l-kOlXo70I2LmhGnSIEyoTr98AgBVrOundjn6JFLzhoQGOiWYhuM3pUtg6set8eKxbHyooEbiUlCfWhQ7mhKG6ERP-4RI2nZ~UIPaXdJWAlvzl8t2Jp16E9NMQPkCZXy4fLnL7F422FSqvt7TP44iyIHg79Wjl3DEIN8uG5~eiY2fNwqVxbKrZMCQSHzSAD3T~tz6ULhOsjR9JcHIbV2Kx0tOj5E3mWdXXDjkl83qAzIq8~O9rDtMOYzRInW4S6qaRtRTRILXibIjQ3M2PAFvt~LxxYNuLDL8DWHkA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":62948,"name":"Crystals","url":"https://www.academia.edu/Documents/in/Crystals"},{"id":843400,"name":"Phosphate","url":"https://www.academia.edu/Documents/in/Phosphate"}],"urls":[{"id":24852922,"url":"https://www.mdpi.com/2073-4352/9/7/332/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-88644963-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="88644962"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88644962/Titanium_Oxide_Microspheres_with_Tunable_Size_and_Phase_Composition"><img alt="Research paper thumbnail of Titanium Oxide Microspheres with Tunable Size and Phase Composition" class="work-thumbnail" src="https://attachments.academia-assets.com/92578590/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88644962/Titanium_Oxide_Microspheres_with_Tunable_Size_and_Phase_Composition">Titanium Oxide Microspheres with Tunable Size and Phase Composition</a></div><div class="wp-workCard_item"><span>Materials</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres ca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is still a challenge. In this work, spherical titania particles with controllable size, crystallinity, and pore size were obtained by Ti(OnBu)4 hydrolysis in ethanol. The influence of NaOH addition on the particles’ size and morphology was investigated for the first time. Particle diameter can be tailored from 300 nm to 1.5 μm by changing water and NaOH concentrations. Particle size was analyzed by the statistical processing of scanning electron microscopy (SEM) images and differential centrifugal sedimentation (DCS) measurements. Optical properties of the microspheres were studied by diffuse reflectance UV-Vis spectroscopy. Thermal and hydrothermal treatment allowed transforming amorphous ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f9d7558ed6cda9cb007d592fb93df46f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92578590,"asset_id":88644962,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92578590/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88644962"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88644962"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88644962; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88644962]").text(description); $(".js-view-count[data-work-id=88644962]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88644962; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88644962']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f9d7558ed6cda9cb007d592fb93df46f" } } $('.js-work-strip[data-work-id=88644962]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88644962,"title":"Titanium Oxide Microspheres with Tunable Size and Phase Composition","translated_title":"","metadata":{"abstract":"Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is still a challenge. In this work, spherical titania particles with controllable size, crystallinity, and pore size were obtained by Ti(OnBu)4 hydrolysis in ethanol. The influence of NaOH addition on the particles’ size and morphology was investigated for the first time. Particle diameter can be tailored from 300 nm to 1.5 μm by changing water and NaOH concentrations. Particle size was analyzed by the statistical processing of scanning electron microscopy (SEM) images and differential centrifugal sedimentation (DCS) measurements. Optical properties of the microspheres were studied by diffuse reflectance UV-Vis spectroscopy. Thermal and hydrothermal treatment allowed transforming amorphous ...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Materials"},"translated_abstract":"Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is still a challenge. In this work, spherical titania particles with controllable size, crystallinity, and pore size were obtained by Ti(OnBu)4 hydrolysis in ethanol. The influence of NaOH addition on the particles’ size and morphology was investigated for the first time. Particle diameter can be tailored from 300 nm to 1.5 μm by changing water and NaOH concentrations. Particle size was analyzed by the statistical processing of scanning electron microscopy (SEM) images and differential centrifugal sedimentation (DCS) measurements. Optical properties of the microspheres were studied by diffuse reflectance UV-Vis spectroscopy. Thermal and hydrothermal treatment allowed transforming amorphous ...","internal_url":"https://www.academia.edu/88644962/Titanium_Oxide_Microspheres_with_Tunable_Size_and_Phase_Composition","translated_internal_url":"","created_at":"2022-10-17T04:53:37.650-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92578590,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92578590/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/92578590/download_file","bulk_download_file_name":"Titanium_Oxide_Microspheres_with_Tunable.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92578590/pdf-libre.pdf?1666009913=\u0026response-content-disposition=attachment%3B+filename%3DTitanium_Oxide_Microspheres_with_Tunable.pdf\u0026Expires=1743427816\u0026Signature=YAC5bbfu65MVN8lR-2zotxa-a-64vANiO-2Ue2RVY75Zsven59Wdm76GKdnhfolcvxhSAWzQGmECJwzq0lCzNCxQQoxKkUU6~lo28G12I4QEMeAvxdn~U2VWDqtOOXLSe8~wS9P46V~q~kcX7kbfBqFbeCCeCwE6xOcceiav4~XJD7JgwP40rrY-BOhkP-evtbJG6nWfhfKxzpmSzB4J4HBfdPIWrNQBkIpGfviGKFJz4GkrrSGGdHaDfQjsiRP5nXw2A3Zllz41qFA0a2Kfh3ozTgANykgBvGHvjD-J0PyoBCO6EORiXhNIfoDA2rtwjmixXj16QhYLFdLwVU45sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Titanium_Oxide_Microspheres_with_Tunable_Size_and_Phase_Composition","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is still a challenge. In this work, spherical titania particles with controllable size, crystallinity, and pore size were obtained by Ti(OnBu)4 hydrolysis in ethanol. The influence of NaOH addition on the particles’ size and morphology was investigated for the first time. Particle diameter can be tailored from 300 nm to 1.5 μm by changing water and NaOH concentrations. Particle size was analyzed by the statistical processing of scanning electron microscopy (SEM) images and differential centrifugal sedimentation (DCS) measurements. Optical properties of the microspheres were studied by diffuse reflectance UV-Vis spectroscopy. Thermal and hydrothermal treatment allowed transforming amorphous ...","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":92578590,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92578590/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/92578590/download_file","bulk_download_file_name":"Titanium_Oxide_Microspheres_with_Tunable.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92578590/pdf-libre.pdf?1666009913=\u0026response-content-disposition=attachment%3B+filename%3DTitanium_Oxide_Microspheres_with_Tunable.pdf\u0026Expires=1743427816\u0026Signature=YAC5bbfu65MVN8lR-2zotxa-a-64vANiO-2Ue2RVY75Zsven59Wdm76GKdnhfolcvxhSAWzQGmECJwzq0lCzNCxQQoxKkUU6~lo28G12I4QEMeAvxdn~U2VWDqtOOXLSe8~wS9P46V~q~kcX7kbfBqFbeCCeCwE6xOcceiav4~XJD7JgwP40rrY-BOhkP-evtbJG6nWfhfKxzpmSzB4J4HBfdPIWrNQBkIpGfviGKFJz4GkrrSGGdHaDfQjsiRP5nXw2A3Zllz41qFA0a2Kfh3ozTgANykgBvGHvjD-J0PyoBCO6EORiXhNIfoDA2rtwjmixXj16QhYLFdLwVU45sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":10650,"name":"Materials","url":"https://www.academia.edu/Documents/in/Materials"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":58353,"name":"Nanocrystalline Material","url":"https://www.academia.edu/Documents/in/Nanocrystalline_Material"},{"id":192323,"name":"Crystallinity","url":"https://www.academia.edu/Documents/in/Crystallinity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":349078,"name":"Anatase","url":"https://www.academia.edu/Documents/in/Anatase"},{"id":390245,"name":"Particle Size","url":"https://www.academia.edu/Documents/in/Particle_Size"}],"urls":[{"id":24852921,"url":"https://www.mdpi.com/1996-1944/12/9/1472/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-88644962-figures'); } }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="184065" id="papers"><div class="js-work-strip profile--work_container" data-work-id="117011561"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117011561/The_amorphous_phase_in_titania_and_its_influence_on_photocatalytic_properties"><img alt="Research paper thumbnail of The amorphous phase in titania and its influence on photocatalytic properties" class="work-thumbnail" src="https://attachments.academia-assets.com/112984186/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117011561/The_amorphous_phase_in_titania_and_its_influence_on_photocatalytic_properties">The amorphous phase in titania and its influence on photocatalytic properties</a></div><div class="wp-workCard_item"><span>Applied Catalysis B-environmental</span><span>, Oct 1, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present work, we compare the photocatalytic activity (PCA) of titania samples normalized t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present work, we compare the photocatalytic activity (PCA) of titania samples normalized to the sample weight and specific surface area (SSA), and show a correlation between the PCA of titania catalysts with similar phase compositions and amorphous phase contents. In our studies, we used the commercial samples, P25 Evonik (formerly Degussa), Hombikat UV100, and pre-synthesized mesoporous titania. Catalysts with a significant amorphous content were annealed and processed by partial dissolution in acid and included in the analysis. PCA was measured by methyl orange (MO) photodegradation in an aqueous catalyst suspension under high-pressure Hg bulb illumination and the pH was controlled using phosphate buffer (pH 6.9). The weight percentage of the amorphous phase was determined using reference intensity ratios (RIR) for X-ray diffraction patterns of the titania samples measured with crystalline silicon additives. The reproducibility of the proposed method was demonstrated by measuring the amorphous content in mixtures of the sample and XRD-amorphous titania. The contributions of amorphous titanium oxohydroxides T iO 2−0.5n (OH) n •xH 2 O and water physically adsorbed to the amorphous phases were distinguished by thermogravimetric analysis. The obtained results show that the PCA of the titania samples decreases with the weight percentage of the amorphous phase, as low as 5% of the PCA of P25 in the case of ω Am (T iO 2) > 25%. It was demonstrated that the partial removal of the amorphous phase by annealing or dissolution in nitric acid leads to a significant increase of PCA.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c50992a2bc119b413856d05af1fc53f8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":112984186,"asset_id":117011561,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/112984186/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011561"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011561"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011561; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011561]").text(description); $(".js-view-count[data-work-id=117011561]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011561; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011561']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c50992a2bc119b413856d05af1fc53f8" } } $('.js-work-strip[data-work-id=117011561]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011561,"title":"The amorphous phase in titania and its influence on photocatalytic properties","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Impact of Amorphous Phase on Photocatalytic Activity in Titania","grobid_abstract":"In the present work, we compare the photocatalytic activity (PCA) of titania samples normalized to the sample weight and specific surface area (SSA), and show a correlation between the PCA of titania catalysts with similar phase compositions and amorphous phase contents. In our studies, we used the commercial samples, P25 Evonik (formerly Degussa), Hombikat UV100, and pre-synthesized mesoporous titania. Catalysts with a significant amorphous content were annealed and processed by partial dissolution in acid and included in the analysis. PCA was measured by methyl orange (MO) photodegradation in an aqueous catalyst suspension under high-pressure Hg bulb illumination and the pH was controlled using phosphate buffer (pH 6.9). The weight percentage of the amorphous phase was determined using reference intensity ratios (RIR) for X-ray diffraction patterns of the titania samples measured with crystalline silicon additives. The reproducibility of the proposed method was demonstrated by measuring the amorphous content in mixtures of the sample and XRD-amorphous titania. The contributions of amorphous titanium oxohydroxides T iO 2−0.5n (OH) n •xH 2 O and water physically adsorbed to the amorphous phases were distinguished by thermogravimetric analysis. The obtained results show that the PCA of the titania samples decreases with the weight percentage of the amorphous phase, as low as 5% of the PCA of P25 in the case of ω Am (T iO 2) \u003e 25%. It was demonstrated that the partial removal of the amorphous phase by annealing or dissolution in nitric acid leads to a significant increase of PCA.","publication_date":{"day":1,"month":10,"year":2016,"errors":{}},"publication_name":"Applied Catalysis B-environmental","grobid_abstract_attachment_id":112984186},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011561/The_amorphous_phase_in_titania_and_its_influence_on_photocatalytic_properties","translated_internal_url":"","created_at":"2024-04-03T00:56:50.713-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112984186,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984186/thumbnails/1.jpg","file_name":"j.apcatb.2016.05.01020240403-1-l9gcn5.pdf","download_url":"https://www.academia.edu/attachments/112984186/download_file","bulk_download_file_name":"The_amorphous_phase_in_titania_and_its_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984186/j.apcatb.2016.05.01020240403-1-l9gcn5-libre.pdf?1712138066=\u0026response-content-disposition=attachment%3B+filename%3DThe_amorphous_phase_in_titania_and_its_i.pdf\u0026Expires=1743427815\u0026Signature=VyOmPmgnBiprOjwCTwlw1LfSo~8aawvp-ooujFWnUgC-BodQrPz3QP-cqQrysFOWMtiFZElSygbmB7EP2BUJNt5-hbpyLqoZe7iNqmCRcYYFK~UAejOUfZIfEzDXMlvo6sgFjduwZKY~IKIpcNTEwvwY0wkO~ttigOJmW9rH08AWggx1PdEf7I8nWYO3gy4wuHYd6SJm6wItpAz8c96lBKnRHVtvkYYKp6o9a2~jjjgAkjmY6tDWkB3ynd5aW08XSqEYz6RLGCShBEY0NWdXqw1tqAI1qqhagUtfhNID~9v0bLTW4S~sbzkZazSBsUcrNNnGIJmYjXq9N2fDGQbQdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_amorphous_phase_in_titania_and_its_influence_on_photocatalytic_properties","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"In the present work, we compare the photocatalytic activity (PCA) of titania samples normalized to the sample weight and specific surface area (SSA), and show a correlation between the PCA of titania catalysts with similar phase compositions and amorphous phase contents. In our studies, we used the commercial samples, P25 Evonik (formerly Degussa), Hombikat UV100, and pre-synthesized mesoporous titania. Catalysts with a significant amorphous content were annealed and processed by partial dissolution in acid and included in the analysis. PCA was measured by methyl orange (MO) photodegradation in an aqueous catalyst suspension under high-pressure Hg bulb illumination and the pH was controlled using phosphate buffer (pH 6.9). The weight percentage of the amorphous phase was determined using reference intensity ratios (RIR) for X-ray diffraction patterns of the titania samples measured with crystalline silicon additives. The reproducibility of the proposed method was demonstrated by measuring the amorphous content in mixtures of the sample and XRD-amorphous titania. The contributions of amorphous titanium oxohydroxides T iO 2−0.5n (OH) n •xH 2 O and water physically adsorbed to the amorphous phases were distinguished by thermogravimetric analysis. The obtained results show that the PCA of the titania samples decreases with the weight percentage of the amorphous phase, as low as 5% of the PCA of P25 in the case of ω Am (T iO 2) \u003e 25%. It was demonstrated that the partial removal of the amorphous phase by annealing or dissolution in nitric acid leads to a significant increase of PCA.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":112984186,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984186/thumbnails/1.jpg","file_name":"j.apcatb.2016.05.01020240403-1-l9gcn5.pdf","download_url":"https://www.academia.edu/attachments/112984186/download_file","bulk_download_file_name":"The_amorphous_phase_in_titania_and_its_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984186/j.apcatb.2016.05.01020240403-1-l9gcn5-libre.pdf?1712138066=\u0026response-content-disposition=attachment%3B+filename%3DThe_amorphous_phase_in_titania_and_its_i.pdf\u0026Expires=1743427815\u0026Signature=VyOmPmgnBiprOjwCTwlw1LfSo~8aawvp-ooujFWnUgC-BodQrPz3QP-cqQrysFOWMtiFZElSygbmB7EP2BUJNt5-hbpyLqoZe7iNqmCRcYYFK~UAejOUfZIfEzDXMlvo6sgFjduwZKY~IKIpcNTEwvwY0wkO~ttigOJmW9rH08AWggx1PdEf7I8nWYO3gy4wuHYd6SJm6wItpAz8c96lBKnRHVtvkYYKp6o9a2~jjjgAkjmY6tDWkB3ynd5aW08XSqEYz6RLGCShBEY0NWdXqw1tqAI1qqhagUtfhNID~9v0bLTW4S~sbzkZazSBsUcrNNnGIJmYjXq9N2fDGQbQdw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":55,"name":"Environmental Engineering","url":"https://www.academia.edu/Documents/in/Environmental_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":58352,"name":"Photocatalysis","url":"https://www.academia.edu/Documents/in/Photocatalysis"},{"id":924470,"name":"Methyl Orange","url":"https://www.academia.edu/Documents/in/Methyl_Orange"}],"urls":[{"id":40809609,"url":"https://doi.org/10.1016/j.apcatb.2016.05.010"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011561-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011560"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117011560/Powders_Synthesized_from_Solutions_of_Calcium_Chloride_Sodium_Hydrogen_Phosphate_and_Sodium_Sulfate_for_Bioceramics_Production"><img alt="Research paper thumbnail of Powders Synthesized from Solutions of Calcium Chloride, Sodium Hydrogen Phosphate, and Sodium Sulfate for Bioceramics Production" class="work-thumbnail" src="https://attachments.academia-assets.com/112984156/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117011560/Powders_Synthesized_from_Solutions_of_Calcium_Chloride_Sodium_Hydrogen_Phosphate_and_Sodium_Sulfate_for_Bioceramics_Production">Powders Synthesized from Solutions of Calcium Chloride, Sodium Hydrogen Phosphate, and Sodium Sulfate for Bioceramics Production</a></div><div class="wp-workCard_item"><span>Ceramics</span><span>, Feb 22, 2023</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This article is an open access article distributed under the terms and conditions of the Creative...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ea9ceb199aa52fa71c0ca188e769b95b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":112984156,"asset_id":117011560,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/112984156/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011560"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011560"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011560; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011560]").text(description); $(".js-view-count[data-work-id=117011560]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011560; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011560']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ea9ceb199aa52fa71c0ca188e769b95b" } } $('.js-work-strip[data-work-id=117011560]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011560,"title":"Powders Synthesized from Solutions of Calcium Chloride, Sodium Hydrogen Phosphate, and Sodium Sulfate for Bioceramics Production","translated_title":"","metadata":{"publisher":"Multidisciplinary Digital Publishing Institute","grobid_abstract":"This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY","publication_date":{"day":22,"month":2,"year":2023,"errors":{}},"publication_name":"Ceramics","grobid_abstract_attachment_id":112984157},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011560/Powders_Synthesized_from_Solutions_of_Calcium_Chloride_Sodium_Hydrogen_Phosphate_and_Sodium_Sulfate_for_Bioceramics_Production","translated_internal_url":"","created_at":"2024-04-03T00:56:50.497-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112984156,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984156/thumbnails/1.jpg","file_name":"ceramics-06-00034-v2.pdf","download_url":"https://www.academia.edu/attachments/112984156/download_file","bulk_download_file_name":"Powders_Synthesized_from_Solutions_of_Ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984156/ceramics-06-00034-v2-libre.pdf?1712138076=\u0026response-content-disposition=attachment%3B+filename%3DPowders_Synthesized_from_Solutions_of_Ca.pdf\u0026Expires=1743427815\u0026Signature=ZaGyPbQiaV2jUbE2kLpDceOQNPOWMdR426VO6eQhPQBqUVe-~8X~38GqQWjPWzvxidR-UYlgKoItTfvVm9hTDSHFEzsb1cxYMgrna98mSInISPIxw-KTN8QhDf0058Fjsuh7qCdjZS5KSEVS9WeBvuGTAOTYFnugzcOsbTzsBwZuO2S6QD2l06VOMwPPnM7AQ4cPhqkxlE5LJV-ukUDux~jgNsXTWXkNxPXLkAM0N3HzRp22NUEiZTUCnFE6Gtc0SkcbpCbnWveXXm4sqk88hGeOt4grrB~yld-gfE3fdLsHWYoQYJ2AWMyT9Z441v3JwAYoPnxM3BfCSbXPBE2MLA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Powders_Synthesized_from_Solutions_of_Calcium_Chloride_Sodium_Hydrogen_Phosphate_and_Sodium_Sulfate_for_Bioceramics_Production","translated_slug":"","page_count":23,"language":"en","content_type":"Work","summary":"This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":112984156,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984156/thumbnails/1.jpg","file_name":"ceramics-06-00034-v2.pdf","download_url":"https://www.academia.edu/attachments/112984156/download_file","bulk_download_file_name":"Powders_Synthesized_from_Solutions_of_Ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984156/ceramics-06-00034-v2-libre.pdf?1712138076=\u0026response-content-disposition=attachment%3B+filename%3DPowders_Synthesized_from_Solutions_of_Ca.pdf\u0026Expires=1743427815\u0026Signature=ZaGyPbQiaV2jUbE2kLpDceOQNPOWMdR426VO6eQhPQBqUVe-~8X~38GqQWjPWzvxidR-UYlgKoItTfvVm9hTDSHFEzsb1cxYMgrna98mSInISPIxw-KTN8QhDf0058Fjsuh7qCdjZS5KSEVS9WeBvuGTAOTYFnugzcOsbTzsBwZuO2S6QD2l06VOMwPPnM7AQ4cPhqkxlE5LJV-ukUDux~jgNsXTWXkNxPXLkAM0N3HzRp22NUEiZTUCnFE6Gtc0SkcbpCbnWveXXm4sqk88hGeOt4grrB~yld-gfE3fdLsHWYoQYJ2AWMyT9Z441v3JwAYoPnxM3BfCSbXPBE2MLA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":112984157,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984157/thumbnails/1.jpg","file_name":"ceramics-06-00034-v2.pdf","download_url":"https://www.academia.edu/attachments/112984157/download_file","bulk_download_file_name":"Powders_Synthesized_from_Solutions_of_Ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984157/ceramics-06-00034-v2-libre.pdf?1712138070=\u0026response-content-disposition=attachment%3B+filename%3DPowders_Synthesized_from_Solutions_of_Ca.pdf\u0026Expires=1743427815\u0026Signature=GaNatZDQ8zcm9x9a7AdedkRg0MJCbbjZyiP1flnZgDWKlkd5RgOVV6U2~uDSoMmzymU2Qkjv-8OCwXi99nAXze~tcV-R9TJOqu3~IGLJTXNz2ztHGNTWUzwSZbhbARah-nRUtgfL7HRBNziGgPBJuyle-euCDUWAlVoPYuKaCLHKkVDcTUS~w6utwkpXitQUhSXGtaJQ-wYg6YtHUaAjnBnzVsIbtfQE93pXg0SmpLeYAwDYPaXzwOhP9zIEhCEkljL-l7AAgnbTr1Mkal-ttQ1RsccvfsU1hYIpITXPHV2ISx8tkH5CUxH99fhEQoqjb-1AHGnaVGQkmcKfiUfZDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":9534,"name":"Calcium","url":"https://www.academia.edu/Documents/in/Calcium"},{"id":58128,"name":"Ceramics","url":"https://www.academia.edu/Documents/in/Ceramics"},{"id":162981,"name":"Sulfate","url":"https://www.academia.edu/Documents/in/Sulfate"},{"id":386342,"name":"Sodium","url":"https://www.academia.edu/Documents/in/Sodium"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"},{"id":1404710,"name":"Brushite","url":"https://www.academia.edu/Documents/in/Brushite"}],"urls":[{"id":40809608,"url":"https://www.mdpi.com/2571-6131/6/1/34/pdf?version=1678153918"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011560-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011559"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011559/Investigation_of_catalytic_hydrogen_sensors_with_platinum_group_catalysts"><img alt="Research paper thumbnail of Investigation of catalytic hydrogen sensors with platinum group catalysts" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Investigation of catalytic hydrogen sensors with platinum group catalysts</div><div class="wp-workCard_item"><span>Sensors and Actuators B-chemical</span><span>, Nov 1, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Environmental deterioration and limited resources of hydrocarbons push the development o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Environmental deterioration and limited resources of hydrocarbons push the development of alternative power sources. One of the most promising energy carriers is hydrogen. However, handling hydrogen is more hazardous than the use of hydrocarbons because it has a significantly wider flammable range. Thus the development of new sensors for preventing hydrogen leakage is the actual task of modern materials science and chemical engineering. In this work, the response of catalytic sensors to hydrogen with different catalysts of platinum group (Pt, Pd, Ir, Rh, Pt + Pd, Pt + Pd + Rh, Pt + Pd + Ir) in the pre-explosion concentration range is studied. Temperature dependencies of sensitivity are discussed. A hysteresis in sensor response is observed during the cycling of the supply voltage. This phenomenon can be explained by partial transformation of platinum group metal oxides into metallic phase at a temperature of more than 500 °C and reverse metal oxidation at temperatures less than 400 °C. It has been shown that the sensors with catalysts containing Ir and Rh demonstrate more preferable characteristics for practical applications.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011559"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011559"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011559; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011559]").text(description); $(".js-view-count[data-work-id=117011559]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011559; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011559']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011559]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011559,"title":"Investigation of catalytic hydrogen sensors with platinum group catalysts","translated_title":"","metadata":{"abstract":"Abstract Environmental deterioration and limited resources of hydrocarbons push the development of alternative power sources. One of the most promising energy carriers is hydrogen. However, handling hydrogen is more hazardous than the use of hydrocarbons because it has a significantly wider flammable range. Thus the development of new sensors for preventing hydrogen leakage is the actual task of modern materials science and chemical engineering. In this work, the response of catalytic sensors to hydrogen with different catalysts of platinum group (Pt, Pd, Ir, Rh, Pt + Pd, Pt + Pd + Rh, Pt + Pd + Ir) in the pre-explosion concentration range is studied. Temperature dependencies of sensitivity are discussed. A hysteresis in sensor response is observed during the cycling of the supply voltage. This phenomenon can be explained by partial transformation of platinum group metal oxides into metallic phase at a temperature of more than 500 °C and reverse metal oxidation at temperatures less than 400 °C. It has been shown that the sensors with catalysts containing Ir and Rh demonstrate more preferable characteristics for practical applications.","publisher":"Elsevier BV","publication_date":{"day":1,"month":11,"year":2021,"errors":{}},"publication_name":"Sensors and Actuators B-chemical"},"translated_abstract":"Abstract Environmental deterioration and limited resources of hydrocarbons push the development of alternative power sources. One of the most promising energy carriers is hydrogen. However, handling hydrogen is more hazardous than the use of hydrocarbons because it has a significantly wider flammable range. Thus the development of new sensors for preventing hydrogen leakage is the actual task of modern materials science and chemical engineering. In this work, the response of catalytic sensors to hydrogen with different catalysts of platinum group (Pt, Pd, Ir, Rh, Pt + Pd, Pt + Pd + Rh, Pt + Pd + Ir) in the pre-explosion concentration range is studied. Temperature dependencies of sensitivity are discussed. A hysteresis in sensor response is observed during the cycling of the supply voltage. This phenomenon can be explained by partial transformation of platinum group metal oxides into metallic phase at a temperature of more than 500 °C and reverse metal oxidation at temperatures less than 400 °C. It has been shown that the sensors with catalysts containing Ir and Rh demonstrate more preferable characteristics for practical applications.","internal_url":"https://www.academia.edu/117011559/Investigation_of_catalytic_hydrogen_sensors_with_platinum_group_catalysts","translated_internal_url":"","created_at":"2024-04-03T00:56:50.311-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Investigation_of_catalytic_hydrogen_sensors_with_platinum_group_catalysts","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract Environmental deterioration and limited resources of hydrocarbons push the development of alternative power sources. One of the most promising energy carriers is hydrogen. However, handling hydrogen is more hazardous than the use of hydrocarbons because it has a significantly wider flammable range. Thus the development of new sensors for preventing hydrogen leakage is the actual task of modern materials science and chemical engineering. In this work, the response of catalytic sensors to hydrogen with different catalysts of platinum group (Pt, Pd, Ir, Rh, Pt + Pd, Pt + Pd + Rh, Pt + Pd + Ir) in the pre-explosion concentration range is studied. Temperature dependencies of sensitivity are discussed. A hysteresis in sensor response is observed during the cycling of the supply voltage. This phenomenon can be explained by partial transformation of platinum group metal oxides into metallic phase at a temperature of more than 500 °C and reverse metal oxidation at temperatures less than 400 °C. It has been shown that the sensors with catalysts containing Ir and Rh demonstrate more preferable characteristics for practical applications.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":3771,"name":"Hydrogen","url":"https://www.academia.edu/Documents/in/Hydrogen"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":125734,"name":"Platinum","url":"https://www.academia.edu/Documents/in/Platinum"},{"id":436342,"name":"Platinum Group","url":"https://www.academia.edu/Documents/in/Platinum_Group"},{"id":1791517,"name":"Hydrogen Sensor","url":"https://www.academia.edu/Documents/in/Hydrogen_Sensor"},{"id":3370278,"name":"Flammable Liquid","url":"https://www.academia.edu/Documents/in/Flammable_Liquid"}],"urls":[{"id":40809607,"url":"https://doi.org/10.1016/j.snb.2021.130515"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011559-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011558"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011558/Electrocrystallization_of_Metals_in_Channels_of_Porous_Films_of_Anodic_Aluminum_Oxide_The_Real_Template_Structure_and_the_Quantitative_Model_of_Electrodeposition"><img alt="Research paper thumbnail of Electrocrystallization of Metals in Channels of Porous Films of Anodic Aluminum Oxide: The Real Template Structure and the Quantitative Model of Electrodeposition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Electrocrystallization of Metals in Channels of Porous Films of Anodic Aluminum Oxide: The Real Template Structure and the Quantitative Model of Electrodeposition</div><div class="wp-workCard_item"><span>Russian Journal of Electrochemistry</span><span>, Jul 1, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011558"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011558"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011558; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011558]").text(description); $(".js-view-count[data-work-id=117011558]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011558; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011558']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011558]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011558,"title":"Electrocrystallization of Metals in Channels of Porous Films of Anodic Aluminum Oxide: The Real Template Structure and the Quantitative Model of Electrodeposition","translated_title":"","metadata":{"publisher":"MAIK Nauka/Interperiodica","publication_date":{"day":1,"month":7,"year":2023,"errors":{}},"publication_name":"Russian Journal of Electrochemistry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011558/Electrocrystallization_of_Metals_in_Channels_of_Porous_Films_of_Anodic_Aluminum_Oxide_The_Real_Template_Structure_and_the_Quantitative_Model_of_Electrodeposition","translated_internal_url":"","created_at":"2024-04-03T00:56:50.115-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electrocrystallization_of_Metals_in_Channels_of_Porous_Films_of_Anodic_Aluminum_Oxide_The_Real_Template_Structure_and_the_Quantitative_Model_of_Electrodeposition","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":68315,"name":"Porosity","url":"https://www.academia.edu/Documents/in/Porosity"},{"id":80692,"name":"Copper","url":"https://www.academia.edu/Documents/in/Copper"},{"id":188706,"name":"Metal","url":"https://www.academia.edu/Documents/in/Metal"},{"id":369525,"name":"Aluminium","url":"https://www.academia.edu/Documents/in/Aluminium"},{"id":386271,"name":"Oxide","url":"https://www.academia.edu/Documents/in/Oxide"},{"id":1131651,"name":"Anode","url":"https://www.academia.edu/Documents/in/Anode"}],"urls":[{"id":40809606,"url":"https://doi.org/10.1134/s1023193523070078"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011558-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011557"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011557/Decoration_of_titania_by_metal_and_semiconductor_nanoparticles_to_improve_of_its_photocatalytic_activity"><img alt="Research paper thumbnail of Decoration of titania by metal and semiconductor nanoparticles to improve of its photocatalytic activity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Decoration of titania by metal and semiconductor nanoparticles to improve of its photocatalytic activity</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011557"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011557"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011557; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011557]").text(description); $(".js-view-count[data-work-id=117011557]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011557; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011557']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011557]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011557,"title":"Decoration of titania by metal and semiconductor nanoparticles to improve of its photocatalytic activity","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011557/Decoration_of_titania_by_metal_and_semiconductor_nanoparticles_to_improve_of_its_photocatalytic_activity","translated_internal_url":"","created_at":"2024-04-03T00:56:49.942-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Decoration_of_titania_by_metal_and_semiconductor_nanoparticles_to_improve_of_its_photocatalytic_activity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8950,"name":"Nanoparticle","url":"https://www.academia.edu/Documents/in/Nanoparticle"},{"id":58352,"name":"Photocatalysis","url":"https://www.academia.edu/Documents/in/Photocatalysis"},{"id":82551,"name":"Semiconductor","url":"https://www.academia.edu/Documents/in/Semiconductor"}],"urls":[{"id":40809605,"url":"http://istina.msu.ru/publications/article/21018650/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011557-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011556"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011556/Photocatalytic_activity_of_titania_based_nanocomposites_with_metals_Cu_Ag_and_semiconductors_CuO_WO3_"><img alt="Research paper thumbnail of Photocatalytic activity of titania-based nanocomposites with metals (Cu, Ag) and semiconductors (CuO, WO3)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Photocatalytic activity of titania-based nanocomposites with metals (Cu, Ag) and semiconductors (CuO, WO3)</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011556"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011556"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011556; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011556]").text(description); $(".js-view-count[data-work-id=117011556]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011556; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011556']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011556]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011556,"title":"Photocatalytic activity of titania-based nanocomposites with metals (Cu, Ag) and semiconductors (CuO, WO3)","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011556/Photocatalytic_activity_of_titania_based_nanocomposites_with_metals_Cu_Ag_and_semiconductors_CuO_WO3_","translated_internal_url":"","created_at":"2024-04-03T00:56:49.793-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Photocatalytic_activity_of_titania_based_nanocomposites_with_metals_Cu_Ag_and_semiconductors_CuO_WO3_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":58352,"name":"Photocatalysis","url":"https://www.academia.edu/Documents/in/Photocatalysis"},{"id":82551,"name":"Semiconductor","url":"https://www.academia.edu/Documents/in/Semiconductor"},{"id":99017,"name":"Nanocomposite","url":"https://www.academia.edu/Documents/in/Nanocomposite"}],"urls":[{"id":40809604,"url":"http://istina.msu.ru/publications/article/21018678/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011556-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011555"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011555/Crystal_structure_details_of_La_and_Bi_substituted_hydroxyapatites_Evidence_for_LaO_and_BiO_with_a_very_short_metal_oxygen_bond"><img alt="Research paper thumbnail of Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond</div><div class="wp-workCard_item"><span>Journal of Solid State Chemistry</span><span>, May 1, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Crystal structures of substituted apatites with general formula Ca10−xMx(PO4)6(OH1−δ)2−xOx, where...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Crystal structures of substituted apatites with general formula Ca10−xMx(PO4)6(OH1−δ)2−xOx, where M=La, Bi, 0≤x&lt;2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca2+ and M3+-ions localized near Ca2-site were determined. The M3+-ion was found shifted toward the hexagonal channel center with respect to the Ca2+-ion, forming very short bond with the intrachannel O2−, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO+ ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO+ and LaO+ were estimated to be 2.05(1) and 2.09(1) A correspondingly. The latter was almost 0.3 A lower than the shortest La–O bond in La2O3. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011555"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011555"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011555; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011555]").text(description); $(".js-view-count[data-work-id=117011555]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011555; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011555']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011555]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011555,"title":"Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond","translated_title":"","metadata":{"abstract":"Crystal structures of substituted apatites with general formula Ca10−xMx(PO4)6(OH1−δ)2−xOx, where M=La, Bi, 0≤x\u0026lt;2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca2+ and M3+-ions localized near Ca2-site were determined. The M3+-ion was found shifted toward the hexagonal channel center with respect to the Ca2+-ion, forming very short bond with the intrachannel O2−, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO+ ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO+ and LaO+ were estimated to be 2.05(1) and 2.09(1) A correspondingly. The latter was almost 0.3 A lower than the shortest La–O bond in La2O3. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores.","publisher":"Elsevier BV","publication_date":{"day":1,"month":5,"year":2016,"errors":{}},"publication_name":"Journal of Solid State Chemistry"},"translated_abstract":"Crystal structures of substituted apatites with general formula Ca10−xMx(PO4)6(OH1−δ)2−xOx, where M=La, Bi, 0≤x\u0026lt;2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca2+ and M3+-ions localized near Ca2-site were determined. The M3+-ion was found shifted toward the hexagonal channel center with respect to the Ca2+-ion, forming very short bond with the intrachannel O2−, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO+ ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO+ and LaO+ were estimated to be 2.05(1) and 2.09(1) A correspondingly. The latter was almost 0.3 A lower than the shortest La–O bond in La2O3. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores.","internal_url":"https://www.academia.edu/117011555/Crystal_structure_details_of_La_and_Bi_substituted_hydroxyapatites_Evidence_for_LaO_and_BiO_with_a_very_short_metal_oxygen_bond","translated_internal_url":"","created_at":"2024-04-03T00:56:49.507-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Crystal_structure_details_of_La_and_Bi_substituted_hydroxyapatites_Evidence_for_LaO_and_BiO_with_a_very_short_metal_oxygen_bond","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Crystal structures of substituted apatites with general formula Ca10−xMx(PO4)6(OH1−δ)2−xOx, where M=La, Bi, 0≤x\u0026lt;2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca2+ and M3+-ions localized near Ca2-site were determined. The M3+-ion was found shifted toward the hexagonal channel center with respect to the Ca2+-ion, forming very short bond with the intrachannel O2−, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO+ ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO+ and LaO+ were estimated to be 2.05(1) and 2.09(1) A correspondingly. The latter was almost 0.3 A lower than the shortest La–O bond in La2O3. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":1177,"name":"Crystallography","url":"https://www.academia.edu/Documents/in/Crystallography"},{"id":9339,"name":"Raman Spectroscopy","url":"https://www.academia.edu/Documents/in/Raman_Spectroscopy"},{"id":15558,"name":"Solid State Chemistry","url":"https://www.academia.edu/Documents/in/Solid_State_Chemistry"},{"id":16216,"name":"Lanthanide","url":"https://www.academia.edu/Documents/in/Lanthanide"},{"id":50630,"name":"Crystal structure","url":"https://www.academia.edu/Documents/in/Crystal_structure"},{"id":188706,"name":"Metal","url":"https://www.academia.edu/Documents/in/Metal"},{"id":798093,"name":"Hydroxyapatites","url":"https://www.academia.edu/Documents/in/Hydroxyapatites"},{"id":4452431,"name":"Bond Length","url":"https://www.academia.edu/Documents/in/Bond_Length"}],"urls":[{"id":40809603,"url":"https://doi.org/10.1016/j.jssc.2016.03.004"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011555-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011554"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117011554/%D0%A1%D0%98%D0%9D%D0%A2%D0%95%D0%97_%D0%98_%D0%98%D0%A1%D0%A1%D0%9B%D0%95%D0%94%D0%9E%D0%92%D0%90%D0%9D%D0%98%D0%95_%D0%A1%D0%92%D0%9E%D0%99%D0%A1%D0%A2%D0%92_%D0%9F%D0%9B%D0%95%D0%9D%D0%9E%D0%9A_%D0%9F%D0%9E%D0%A0%D0%98%D0%A1%D0%A2%D0%9E%D0%93%D0%9E_%D0%A2%D0%AE2_%D0%9F%D0%9E%D0%9B%D0%A3%D0%A7%D0%95%D0%9D%D0%9D%D0%AB%D0%A5_%D0%90%D0%9D%D0%9E%D0%94%D0%9D%D0%AB%D0%9C_%D0%9E%D0%9A%D0%98%D0%A1%D0%9B%D0%95%D0%9D%D0%98%D0%95%D0%9C"><img alt="Research paper thumbnail of СИНТЕЗ И ИССЛЕДОВАНИЕ СВОЙСТВ ПЛЕНОК ПОРИСТОГО ТЮ2, ПОЛУЧЕННЫХ АНОДНЫМ ОКИСЛЕНИЕМ" class="work-thumbnail" src="https://attachments.academia-assets.com/112984154/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117011554/%D0%A1%D0%98%D0%9D%D0%A2%D0%95%D0%97_%D0%98_%D0%98%D0%A1%D0%A1%D0%9B%D0%95%D0%94%D0%9E%D0%92%D0%90%D0%9D%D0%98%D0%95_%D0%A1%D0%92%D0%9E%D0%99%D0%A1%D0%A2%D0%92_%D0%9F%D0%9B%D0%95%D0%9D%D0%9E%D0%9A_%D0%9F%D0%9E%D0%A0%D0%98%D0%A1%D0%A2%D0%9E%D0%93%D0%9E_%D0%A2%D0%AE2_%D0%9F%D0%9E%D0%9B%D0%A3%D0%A7%D0%95%D0%9D%D0%9D%D0%AB%D0%A5_%D0%90%D0%9D%D0%9E%D0%94%D0%9D%D0%AB%D0%9C_%D0%9E%D0%9A%D0%98%D0%A1%D0%9B%D0%95%D0%9D%D0%98%D0%95%D0%9C">СИНТЕЗ И ИССЛЕДОВАНИЕ СВОЙСТВ ПЛЕНОК ПОРИСТОГО ТЮ2, ПОЛУЧЕННЫХ АНОДНЫМ ОКИСЛЕНИЕМ</a></div><div class="wp-workCard_item"><span>Международный научный журнал Альтернативная энергетика и экология</span><span>, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="890900a75697147aa5de4b9d6b032807" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":112984154,"asset_id":117011554,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/112984154/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011554"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011554"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011554; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011554]").text(description); $(".js-view-count[data-work-id=117011554]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011554; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011554']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "890900a75697147aa5de4b9d6b032807" } } $('.js-work-strip[data-work-id=117011554]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011554,"title":"СИНТЕЗ И ИССЛЕДОВАНИЕ СВОЙСТВ ПЛЕНОК ПОРИСТОГО ТЮ2, ПОЛУЧЕННЫХ АНОДНЫМ ОКИСЛЕНИЕМ","translated_title":"","metadata":{"ai_abstract":"Синтезированы упорядоченные массивы нанотрубок титана с помощью анодного окисления титановыми фольгами в глицериновом электролите, содержащем NH4F, при различных напряжениях от 10 до 30 В. Порозная структура была охарактеризована с использованием методов, таких как SEM, XRD и термический анализ, а также малоугловое нейтронное рассеяние. Результаты показали, что параметры пористой структуры зависят от напряжения, и добавление сурфактанта в электролит помогает получить более упорядоченные пористые структуры.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Международный научный журнал Альтернативная энергетика и экология"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011554/%D0%A1%D0%98%D0%9D%D0%A2%D0%95%D0%97_%D0%98_%D0%98%D0%A1%D0%A1%D0%9B%D0%95%D0%94%D0%9E%D0%92%D0%90%D0%9D%D0%98%D0%95_%D0%A1%D0%92%D0%9E%D0%99%D0%A1%D0%A2%D0%92_%D0%9F%D0%9B%D0%95%D0%9D%D0%9E%D0%9A_%D0%9F%D0%9E%D0%A0%D0%98%D0%A1%D0%A2%D0%9E%D0%93%D0%9E_%D0%A2%D0%AE2_%D0%9F%D0%9E%D0%9B%D0%A3%D0%A7%D0%95%D0%9D%D0%9D%D0%AB%D0%A5_%D0%90%D0%9D%D0%9E%D0%94%D0%9D%D0%AB%D0%9C_%D0%9E%D0%9A%D0%98%D0%A1%D0%9B%D0%95%D0%9D%D0%98%D0%95%D0%9C","translated_internal_url":"","created_at":"2024-04-03T00:56:49.313-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112984154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984154/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/112984154/download_file","bulk_download_file_name":"112984154.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984154/pdf-libre.pdf?1712138047=\u0026response-content-disposition=attachment%3B+filename%3D112984154.pdf\u0026Expires=1743427816\u0026Signature=gc3RZHj5avinZueRZKzK~tW5498M~8XjwYjxSWjpoVtAzKO6XeHaJOLyBLZsllmVWKT7qmxdG7oXIyHRSRgkSu4wWrrQWAd5nt92~EJZ9sK96Q5uJ76z76eo~0lJjOrcG-MhxFJkPNndS-IdAS9KouWW2dmhrNMtm7toQdB3ZXT4MGTrYtd~MewFOoKVpqv~lnYNmNZ2k61VazB2cxekVIrngNuLqwXhc2vD5umOqp1Nw-Jx7IDwb-~5n4LBS8tdBrA2iqefFtUb3oZmKWSxt~OfEvq7Y~4gYdoqmcJ9s2XF3JS-r9mYNuzl4-a5JDdJ8X6AQIplDrpoZt4tgKTElg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"СИНТЕЗ_И_ИССЛЕДОВАНИЕ_СВОЙСТВ_ПЛЕНОК_ПОРИСТОГО_ТЮ2_ПОЛУЧЕННЫХ_АНОДНЫМ_ОКИСЛЕНИЕМ","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":null,"owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":112984154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984154/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/112984154/download_file","bulk_download_file_name":"112984154.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984154/pdf-libre.pdf?1712138047=\u0026response-content-disposition=attachment%3B+filename%3D112984154.pdf\u0026Expires=1743427816\u0026Signature=gc3RZHj5avinZueRZKzK~tW5498M~8XjwYjxSWjpoVtAzKO6XeHaJOLyBLZsllmVWKT7qmxdG7oXIyHRSRgkSu4wWrrQWAd5nt92~EJZ9sK96Q5uJ76z76eo~0lJjOrcG-MhxFJkPNndS-IdAS9KouWW2dmhrNMtm7toQdB3ZXT4MGTrYtd~MewFOoKVpqv~lnYNmNZ2k61VazB2cxekVIrngNuLqwXhc2vD5umOqp1Nw-Jx7IDwb-~5n4LBS8tdBrA2iqefFtUb3oZmKWSxt~OfEvq7Y~4gYdoqmcJ9s2XF3JS-r9mYNuzl4-a5JDdJ8X6AQIplDrpoZt4tgKTElg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":112984155,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984155/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/112984155/download_file","bulk_download_file_name":"112984155.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984155/pdf-libre.pdf?1712138047=\u0026response-content-disposition=attachment%3B+filename%3D112984155.pdf\u0026Expires=1743427816\u0026Signature=S84EbqpIDnB7g6kNCzXLOuIIC9KYgdOxMIVsXbem3A6KwL~XxQTL-i-6wLjJYGeJ1Mr6mbv8vFRiKONKf~Jf5gW9SvLd0yE8AQHDTYVZrRaHliHkGGsAYz-rYozFgRVzZpZHYqFVEk55rIQ6kuyvBS~uZeyD-T3EQPqeQZ0sVMrXYCbg5I7oZa3MjbOLnEP~YTSbm6lDAc50hEnu96Ym2Mao81thcn1lzoGP7RsTqsjUNDJkyR91fqtBkHh-csZjhLGhi~11BVSftss1O1s5mxGhZHth8LLmfrBamwmJa1uThKZAKPi5Y1L~Zi9bVOasxT8LcyaqEVW12f6ci2Tz~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11404,"name":"Titanium","url":"https://www.academia.edu/Documents/in/Titanium"},{"id":68315,"name":"Porosity","url":"https://www.academia.edu/Documents/in/Porosity"},{"id":1131651,"name":"Anode","url":"https://www.academia.edu/Documents/in/Anode"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":1380809,"name":"Pulmonary Surfactant","url":"https://www.academia.edu/Documents/in/Pulmonary_Surfactant"}],"urls":[{"id":40809602,"url":"https://cyberleninka.ru/article/n/sintez-i-issledovanie-svoystv-plenok-poristogo-tyu2-poluchennyh-anodnym-okisleniem/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011554-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011553"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011553/Preparation_and_magnetic_properties_of_ordered_iron_nanowires_in_mesoporous_silica_matrix"><img alt="Research paper thumbnail of Preparation and magnetic properties of ordered iron nanowires in mesoporous silica matrix" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Preparation and magnetic properties of ordered iron nanowires in mesoporous silica matrix</div><div class="wp-workCard_item"><span>Physica E-low-dimensional Systems & Nanostructures</span><span>, May 1, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... The authors also would like to acknowledge the help of Alexey V. Garshev for TEM imaging and ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... The authors also would like to acknowledge the help of Alexey V. Garshev for TEM imaging and Mr. Artem P. Malakho for SAXS experiments. References. ... [8] KS Napolsky, AA Eliseev, AV Knotko, AV Lukahsin, AA Vertegel and YD Tretyakov, Mater. Sci. Eng. ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011553"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011553"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011553; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011553]").text(description); $(".js-view-count[data-work-id=117011553]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011553; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011553']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011553]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011553,"title":"Preparation and magnetic properties of ordered iron nanowires in mesoporous silica matrix","translated_title":"","metadata":{"abstract":"... The authors also would like to acknowledge the help of Alexey V. Garshev for TEM imaging and Mr. Artem P. Malakho for SAXS experiments. References. ... [8] KS Napolsky, AA Eliseev, AV Knotko, AV Lukahsin, AA Vertegel and YD Tretyakov, Mater. Sci. Eng. ...","publisher":"Elsevier BV","publication_date":{"day":1,"month":5,"year":2008,"errors":{}},"publication_name":"Physica E-low-dimensional Systems \u0026 Nanostructures"},"translated_abstract":"... The authors also would like to acknowledge the help of Alexey V. Garshev for TEM imaging and Mr. Artem P. Malakho for SAXS experiments. References. ... [8] KS Napolsky, AA Eliseev, AV Knotko, AV Lukahsin, AA Vertegel and YD Tretyakov, Mater. Sci. Eng. ...","internal_url":"https://www.academia.edu/117011553/Preparation_and_magnetic_properties_of_ordered_iron_nanowires_in_mesoporous_silica_matrix","translated_internal_url":"","created_at":"2024-04-03T00:56:49.035-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Preparation_and_magnetic_properties_of_ordered_iron_nanowires_in_mesoporous_silica_matrix","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... The authors also would like to acknowledge the help of Alexey V. Garshev for TEM imaging and Mr. Artem P. Malakho for SAXS experiments. References. ... [8] KS Napolsky, AA Eliseev, AV Knotko, AV Lukahsin, AA Vertegel and YD Tretyakov, Mater. Sci. Eng. ...","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":12597,"name":"Crystallization","url":"https://www.academia.edu/Documents/in/Crystallization"},{"id":16738,"name":"Nanowire","url":"https://www.academia.edu/Documents/in/Nanowire"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":37333,"name":"Anisotropy","url":"https://www.academia.edu/Documents/in/Anisotropy"},{"id":99017,"name":"Nanocomposite","url":"https://www.academia.edu/Documents/in/Nanocomposite"},{"id":148624,"name":"Nanostructure","url":"https://www.academia.edu/Documents/in/Nanostructure"},{"id":809776,"name":"Mesoporous Silica","url":"https://www.academia.edu/Documents/in/Mesoporous_Silica"},{"id":3568914,"name":"Mesoporous Material","url":"https://www.academia.edu/Documents/in/Mesoporous_Material"}],"urls":[{"id":40809601,"url":"https://doi.org/10.1016/j.physe.2007.10.084"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011553-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011552"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011552/Engineering_SiO2_TiO2_binary_aerogels_for_sun_protection_and_cosmetic_applications"><img alt="Research paper thumbnail of Engineering SiO2–TiO2 binary aerogels for sun protection and cosmetic applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Engineering SiO2–TiO2 binary aerogels for sun protection and cosmetic applications</div><div class="wp-workCard_item"><span>Journal of Supercritical Fluids</span><span>, Feb 1, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract SiO2‒TiO2 binary aerogels obtained by the methods of low-temperature (carbon dioxide) an...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract SiO2‒TiO2 binary aerogels obtained by the methods of low-temperature (carbon dioxide) and high-temperature (isopropanol, hexafluoroisopropanol and methyl tert-butyl ether) supercritical drying are considered as multifunctional cosmetic pigments with high anti-shine power and photoprotective properties. The composition and structure of SiO2–TiO2 aerogels obtained by supercritical drying in various fluids were studied by IR spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, scanning and transmission electron microscopy, and low-temperature nitrogen adsorption. The values of the sun protection factors SPF and UVAPF for the obtained materials are comparable to those of the commercial sunscreens Kronos 1171 and Kronos 2971, and the anti-shine power is approximately 1.5 times higher than that of kaolin-based materials.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011552"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011552"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011552; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011552]").text(description); $(".js-view-count[data-work-id=117011552]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011552; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011552']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011552]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011552,"title":"Engineering SiO2–TiO2 binary aerogels for sun protection and cosmetic applications","translated_title":"","metadata":{"abstract":"Abstract SiO2‒TiO2 binary aerogels obtained by the methods of low-temperature (carbon dioxide) and high-temperature (isopropanol, hexafluoroisopropanol and methyl tert-butyl ether) supercritical drying are considered as multifunctional cosmetic pigments with high anti-shine power and photoprotective properties. The composition and structure of SiO2–TiO2 aerogels obtained by supercritical drying in various fluids were studied by IR spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, scanning and transmission electron microscopy, and low-temperature nitrogen adsorption. The values of the sun protection factors SPF and UVAPF for the obtained materials are comparable to those of the commercial sunscreens Kronos 1171 and Kronos 2971, and the anti-shine power is approximately 1.5 times higher than that of kaolin-based materials.","publisher":"Elsevier BV","publication_date":{"day":1,"month":2,"year":2021,"errors":{}},"publication_name":"Journal of Supercritical Fluids"},"translated_abstract":"Abstract SiO2‒TiO2 binary aerogels obtained by the methods of low-temperature (carbon dioxide) and high-temperature (isopropanol, hexafluoroisopropanol and methyl tert-butyl ether) supercritical drying are considered as multifunctional cosmetic pigments with high anti-shine power and photoprotective properties. The composition and structure of SiO2–TiO2 aerogels obtained by supercritical drying in various fluids were studied by IR spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, scanning and transmission electron microscopy, and low-temperature nitrogen adsorption. The values of the sun protection factors SPF and UVAPF for the obtained materials are comparable to those of the commercial sunscreens Kronos 1171 and Kronos 2971, and the anti-shine power is approximately 1.5 times higher than that of kaolin-based materials.","internal_url":"https://www.academia.edu/117011552/Engineering_SiO2_TiO2_binary_aerogels_for_sun_protection_and_cosmetic_applications","translated_internal_url":"","created_at":"2024-04-03T00:56:48.843-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Engineering_SiO2_TiO2_binary_aerogels_for_sun_protection_and_cosmetic_applications","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract SiO2‒TiO2 binary aerogels obtained by the methods of low-temperature (carbon dioxide) and high-temperature (isopropanol, hexafluoroisopropanol and methyl tert-butyl ether) supercritical drying are considered as multifunctional cosmetic pigments with high anti-shine power and photoprotective properties. The composition and structure of SiO2–TiO2 aerogels obtained by supercritical drying in various fluids were studied by IR spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, scanning and transmission electron microscopy, and low-temperature nitrogen adsorption. The values of the sun protection factors SPF and UVAPF for the obtained materials are comparable to those of the commercial sunscreens Kronos 1171 and Kronos 2971, and the anti-shine power is approximately 1.5 times higher than that of kaolin-based materials.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":9359,"name":"Supercritical fluids","url":"https://www.academia.edu/Documents/in/Supercritical_fluids"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":318936,"name":"Supercritical carbon dioxide","url":"https://www.academia.edu/Documents/in/Supercritical_carbon_dioxide"},{"id":1181274,"name":"Supercritical Fluid","url":"https://www.academia.edu/Documents/in/Supercritical_Fluid"}],"urls":[{"id":40809600,"url":"https://doi.org/10.1016/j.supflu.2020.105099"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011552-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011551"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011551/Selective_Synthesis_of_Manganese_Dioxide_Polymorphs_by_the_Hydrothermal_Treatment_of_Aqueous_KMnO4_Solutions"><img alt="Research paper thumbnail of Selective Synthesis of Manganese Dioxide Polymorphs by the Hydrothermal Treatment of Aqueous KMnO4 Solutions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Selective Synthesis of Manganese Dioxide Polymorphs by the Hydrothermal Treatment of Aqueous KMnO4 Solutions</div><div class="wp-workCard_item"><span>Russian Journal of Inorganic Chemistry</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The hydrothermal treatment of neutral and acidified KMnO4 solutions at concentration of 0.037–0.0...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The hydrothermal treatment of neutral and acidified KMnO4 solutions at concentration of 0.037–0.093 mol/L and temperature of 120, 170, and 220°С for 24 h leads to selective synthesis of three different manganese dioxide modifications: α-MnO2, δ-MnO2, and β-MnO2. The temperature of hydrothermal treatment and medium acidity has been shown to affect considerably the phase composition of KMnO4 reduction products and reaction yield. The obtained samples of MnO2 have been characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and diffuse reflectance spectroscopy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011551"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011551"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011551; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011551]").text(description); $(".js-view-count[data-work-id=117011551]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011551; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011551']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011551]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011551,"title":"Selective Synthesis of Manganese Dioxide Polymorphs by the Hydrothermal Treatment of Aqueous KMnO4 Solutions","translated_title":"","metadata":{"abstract":"The hydrothermal treatment of neutral and acidified KMnO4 solutions at concentration of 0.037–0.093 mol/L and temperature of 120, 170, and 220°С for 24 h leads to selective synthesis of three different manganese dioxide modifications: α-MnO2, δ-MnO2, and β-MnO2. The temperature of hydrothermal treatment and medium acidity has been shown to affect considerably the phase composition of KMnO4 reduction products and reaction yield. The obtained samples of MnO2 have been characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and diffuse reflectance spectroscopy.","publisher":"Pleiades Publishing Ltd","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Russian Journal of Inorganic Chemistry"},"translated_abstract":"The hydrothermal treatment of neutral and acidified KMnO4 solutions at concentration of 0.037–0.093 mol/L and temperature of 120, 170, and 220°С for 24 h leads to selective synthesis of three different manganese dioxide modifications: α-MnO2, δ-MnO2, and β-MnO2. The temperature of hydrothermal treatment and medium acidity has been shown to affect considerably the phase composition of KMnO4 reduction products and reaction yield. The obtained samples of MnO2 have been characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and diffuse reflectance spectroscopy.","internal_url":"https://www.academia.edu/117011551/Selective_Synthesis_of_Manganese_Dioxide_Polymorphs_by_the_Hydrothermal_Treatment_of_Aqueous_KMnO4_Solutions","translated_internal_url":"","created_at":"2024-04-03T00:56:48.665-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Selective_Synthesis_of_Manganese_Dioxide_Polymorphs_by_the_Hydrothermal_Treatment_of_Aqueous_KMnO4_Solutions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The hydrothermal treatment of neutral and acidified KMnO4 solutions at concentration of 0.037–0.093 mol/L and temperature of 120, 170, and 220°С for 24 h leads to selective synthesis of three different manganese dioxide modifications: α-MnO2, δ-MnO2, and β-MnO2. The temperature of hydrothermal treatment and medium acidity has been shown to affect considerably the phase composition of KMnO4 reduction products and reaction yield. The obtained samples of MnO2 have been characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and diffuse reflectance spectroscopy.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":9339,"name":"Raman Spectroscopy","url":"https://www.academia.edu/Documents/in/Raman_Spectroscopy"},{"id":29057,"name":"Manganese","url":"https://www.academia.edu/Documents/in/Manganese"},{"id":390995,"name":"Scanning Electron Microscope","url":"https://www.academia.edu/Documents/in/Scanning_Electron_Microscope"},{"id":416722,"name":"Hydrothermal Synthesis","url":"https://www.academia.edu/Documents/in/Hydrothermal_Synthesis"},{"id":989646,"name":"Aqueous Solution","url":"https://www.academia.edu/Documents/in/Aqueous_Solution"}],"urls":[{"id":40809599,"url":"http://link.springer.com/content/pdf/10.1134/S0036023621020066.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011551-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011550"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117011550/Annealing_induced_structural_and_phase_transitions_in_anodic_aluminum_oxide_prepared_in_oxalic_acid_electrolyte"><img alt="Research paper thumbnail of Annealing induced structural and phase transitions in anodic aluminum oxide prepared in oxalic acid electrolyte" class="work-thumbnail" src="https://attachments.academia-assets.com/112984184/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117011550/Annealing_induced_structural_and_phase_transitions_in_anodic_aluminum_oxide_prepared_in_oxalic_acid_electrolyte">Annealing induced structural and phase transitions in anodic aluminum oxide prepared in oxalic acid electrolyte</a></div><div class="wp-workCard_item"><span>Surface and Coatings Technology</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This is a PDF file of an article that has undergone enhancements after acceptance, such as the ad...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.</span></div><div class="wp-workCard_item"><div class="carousel-container carousel-container--sm" id="profile-work-117011550-figures"><div class="prev-slide-container js-prev-button-container"><button aria-label="Previous" class="carousel-navigation-button js-profile-work-117011550-figures-prev"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_back_ios</span></button></div><div class="slides-container js-slides-container"><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444103/figure-1-decomposition-products-through-the-cell-walls"><img alt="decomposition products through the cell walls. impurities removal is described in the framework of the limited mass-transport of oxalate " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_001.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444108/figure-2-air-black-curve-dynamic-atmospheres-aao-films-were"><img alt="air (black curve) dynamic atmospheres. AAO films were prepared at 120 V. " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_002.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444114/figure-3-ordering-of-the-oxygen-vacancies-tetrahedral"><img alt="ordering of the oxygen vacancies. tetrahedral positions of Al cations, the difference in symmetry arises from the variou between structures of y-, 6-, and 6-Al203 phases is the ratio between octahedral and " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_003.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444121/figure-4-complex-geometry-are-observed-between-the-particles"><img alt="complex geometry are observed between the particles. temperature alumina polymorphs with an average size of about 15 nm. Mesopores with using the BJH approach. AAO films were obtained at 120 V and annealed at different " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_004.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444133/figure-5-annealing-induced-structural-and-phase-transitions"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_005.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444140/figure-6-previous-findings-all-bands-almost-disappear-above"><img alt="previous findings [16]. All bands almost disappear above 1050 °C due to the thermal 1150 °C for 24 h. (b) Calibration curve plotted as the area of the oxalate bands at ca. ~ 150( " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_006.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444155/figure-7-for-the-conversion-degrees-above-is-problematic-due"><img alt="for the conversion degrees above 90% is problematic due to a small mass loss above 1000 °C. dependence of apparent activation energy of the impurities removal process on conversion " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_007.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444165/figure-8-annealing-induced-structural-and-phase-transitions"><img alt="" class="figure-slide-image" src="https://figures.academia-assets.com/112984184/figure_008.jpg" /></a></figure><figure class="figure-slide-container"><a href="https://www.academia.edu/figures/28444177/table-1-prepared-in-oxalic-acid-at-different-anodization"><img alt="prepared in 0.3 M oxalic acid at different anodization voltages (U). Wall analysis; anodization duration (fanoq) and cell wall thickness (Dy). Samples were " class="figure-slide-image" src="https://figures.academia-assets.com/112984184/table_001.jpg" /></a></figure></div><div class="next-slide-container js-next-button-container"><button aria-label="Next" class="carousel-navigation-button js-profile-work-117011550-figures-next"><span class="material-symbols-outlined" style="font-size: 24px" translate="no">arrow_forward_ios</span></button></div></div></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4826d38c848927803e7b04d3c6db5107" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":112984184,"asset_id":117011550,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/112984184/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011550"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011550"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011550; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011550]").text(description); $(".js-view-count[data-work-id=117011550]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011550; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011550']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4826d38c848927803e7b04d3c6db5107" } } $('.js-work-strip[data-work-id=117011550]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011550,"title":"Annealing induced structural and phase transitions in anodic aluminum oxide prepared in oxalic acid electrolyte","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Annealing Effects on Anodic Aluminum Oxide","grobid_abstract":"This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Surface and Coatings Technology","grobid_abstract_attachment_id":112984184},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011550/Annealing_induced_structural_and_phase_transitions_in_anodic_aluminum_oxide_prepared_in_oxalic_acid_electrolyte","translated_internal_url":"","created_at":"2024-04-03T00:56:48.495-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112984184,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984184/thumbnails/1.jpg","file_name":"j.surfcoat.2019.12515920240403-1-bu184s.pdf","download_url":"https://www.academia.edu/attachments/112984184/download_file","bulk_download_file_name":"Annealing_induced_structural_and_phase_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984184/j.surfcoat.2019.12515920240403-1-bu184s-libre.pdf?1712138053=\u0026response-content-disposition=attachment%3B+filename%3DAnnealing_induced_structural_and_phase_t.pdf\u0026Expires=1743378069\u0026Signature=hCpxD2OmHzDGFjJj8QY7mlRKnnS6bzl4trSH0NhN5TAokZUWFwst-DHIA3Y4-1fhoR907bMlYJvpTeHjsVrC6EgXM8iG~LH8AujePC3s~FktPnV~mK4LgT4gxNsnfMaClrXhA8dpIISC0Or9FfSjHeS5XIAbOMr3u~0BG1SsMNkaNLL6Fy8gbOAS9HPtti2pJCpHjKH-eS-p1kkTT4scmEsBkTPZR4zayQk0g00~lmlZkTAQMLAKcEHgYU5UrdOiO6bMUlvWyDx0w0Gguq1QoCFxsUKGuO45JosZiasAwEOUL-1IuJviCJzmgQXljdN0ux63xWZLVHCbd2wpP7~~Pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Annealing_induced_structural_and_phase_transitions_in_anodic_aluminum_oxide_prepared_in_oxalic_acid_electrolyte","translated_slug":"","page_count":33,"language":"en","content_type":"Work","summary":"This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":112984184,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112984184/thumbnails/1.jpg","file_name":"j.surfcoat.2019.12515920240403-1-bu184s.pdf","download_url":"https://www.academia.edu/attachments/112984184/download_file","bulk_download_file_name":"Annealing_induced_structural_and_phase_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112984184/j.surfcoat.2019.12515920240403-1-bu184s-libre.pdf?1712138053=\u0026response-content-disposition=attachment%3B+filename%3DAnnealing_induced_structural_and_phase_t.pdf\u0026Expires=1743378069\u0026Signature=hCpxD2OmHzDGFjJj8QY7mlRKnnS6bzl4trSH0NhN5TAokZUWFwst-DHIA3Y4-1fhoR907bMlYJvpTeHjsVrC6EgXM8iG~LH8AujePC3s~FktPnV~mK4LgT4gxNsnfMaClrXhA8dpIISC0Or9FfSjHeS5XIAbOMr3u~0BG1SsMNkaNLL6Fy8gbOAS9HPtti2pJCpHjKH-eS-p1kkTT4scmEsBkTPZR4zayQk0g00~lmlZkTAQMLAKcEHgYU5UrdOiO6bMUlvWyDx0w0Gguq1QoCFxsUKGuO45JosZiasAwEOUL-1IuJviCJzmgQXljdN0ux63xWZLVHCbd2wpP7~~Pw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":307514,"name":"Surface and Coatings Technology","url":"https://www.academia.edu/Documents/in/Surface_and_Coatings_Technology"},{"id":369525,"name":"Aluminium","url":"https://www.academia.edu/Documents/in/Aluminium"},{"id":386271,"name":"Oxide","url":"https://www.academia.edu/Documents/in/Oxide"},{"id":1131651,"name":"Anode","url":"https://www.academia.edu/Documents/in/Anode"},{"id":1276642,"name":"Electrolyte","url":"https://www.academia.edu/Documents/in/Electrolyte"},{"id":1376522,"name":"Anodizing","url":"https://www.academia.edu/Documents/in/Anodizing"},{"id":1499551,"name":"Oxalic acid","url":"https://www.academia.edu/Documents/in/Oxalic_acid"}],"urls":[{"id":40809598,"url":"https://api.elsevier.com/content/article/PII:S0257897219311508?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (true) { Aedu.setUpFigureCarousel('profile-work-117011550-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011549"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011549/Non_classical_growth_of_brookite_nanorods"><img alt="Research paper thumbnail of Non-classical growth of brookite nanorods" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Non-classical growth of brookite nanorods</div><div class="wp-workCard_item"><span>CrystEngComm</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Under hydrothermal conditions, the formation of the brookite phase occurs due to the oriented att...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Under hydrothermal conditions, the formation of the brookite phase occurs due to the oriented attachment of anatase particles with subsequent recrystallization.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011549"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011549"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011549; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011549]").text(description); $(".js-view-count[data-work-id=117011549]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011549; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011549']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011549]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011549,"title":"Non-classical growth of brookite nanorods","translated_title":"","metadata":{"abstract":"Under hydrothermal conditions, the formation of the brookite phase occurs due to the oriented attachment of anatase particles with subsequent recrystallization.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"CrystEngComm"},"translated_abstract":"Under hydrothermal conditions, the formation of the brookite phase occurs due to the oriented attachment of anatase particles with subsequent recrystallization.","internal_url":"https://www.academia.edu/117011549/Non_classical_growth_of_brookite_nanorods","translated_internal_url":"","created_at":"2024-04-03T00:56:48.319-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Non_classical_growth_of_brookite_nanorods","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Under hydrothermal conditions, the formation of the brookite phase occurs due to the oriented attachment of anatase particles with subsequent recrystallization.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":209101,"name":"Nanorod","url":"https://www.academia.edu/Documents/in/Nanorod"}],"urls":[{"id":40809597,"url":"http://pubs.rsc.org/en/content/articlepdf/2019/CE/C9CE00682F"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011549-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011548"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011548/Production_of_nanocrystalline_titanium_dioxide_photoactive_coatings_for_decomposition_of_organic_water_pollutants_in_a_flow_reactor"><img alt="Research paper thumbnail of Production of nanocrystalline titanium dioxide photoactive coatings for decomposition of organic water pollutants in a flow reactor" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Production of nanocrystalline titanium dioxide photoactive coatings for decomposition of organic water pollutants in a flow reactor</div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011548"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011548"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011548; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011548]").text(description); $(".js-view-count[data-work-id=117011548]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011548; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011548']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011548]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011548,"title":"Production of nanocrystalline titanium dioxide photoactive coatings for decomposition of organic water pollutants in a flow reactor","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011548/Production_of_nanocrystalline_titanium_dioxide_photoactive_coatings_for_decomposition_of_organic_water_pollutants_in_a_flow_reactor","translated_internal_url":"","created_at":"2024-04-03T00:56:48.192-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Production_of_nanocrystalline_titanium_dioxide_photoactive_coatings_for_decomposition_of_organic_water_pollutants_in_a_flow_reactor","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":6414,"name":"Decomposition","url":"https://www.academia.edu/Documents/in/Decomposition"},{"id":58353,"name":"Nanocrystalline Material","url":"https://www.academia.edu/Documents/in/Nanocrystalline_Material"},{"id":125137,"name":"Titanium dioxide","url":"https://www.academia.edu/Documents/in/Titanium_dioxide"},{"id":538342,"name":"Pollutant","url":"https://www.academia.edu/Documents/in/Pollutant"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011548-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="117011490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/117011490/Protons_transport_in_electrochemically_reduced_graphene_oxide_Enhancing_H_H2O_selectivity"><img alt="Research paper thumbnail of Protons transport in electrochemically reduced graphene oxide: Enhancing H+/H2O selectivity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Protons transport in electrochemically reduced graphene oxide: Enhancing H+/H2O selectivity</div><div class="wp-workCard_item"><span>Carbon</span><span>, Sep 1, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117011490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117011490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117011490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117011490]").text(description); $(".js-view-count[data-work-id=117011490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117011490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117011490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117011490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117011490,"title":"Protons transport in electrochemically reduced graphene oxide: Enhancing H+/H2O selectivity","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":9,"year":2023,"errors":{}},"publication_name":"Carbon"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117011490/Protons_transport_in_electrochemically_reduced_graphene_oxide_Enhancing_H_H2O_selectivity","translated_internal_url":"","created_at":"2024-04-03T00:55:47.206-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Protons_transport_in_electrochemically_reduced_graphene_oxide_Enhancing_H_H2O_selectivity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":5303,"name":"Carbon","url":"https://www.academia.edu/Documents/in/Carbon"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":386271,"name":"Oxide","url":"https://www.academia.edu/Documents/in/Oxide"},{"id":444974,"name":"Proton Transport","url":"https://www.academia.edu/Documents/in/Proton_Transport"}],"urls":[{"id":40809557,"url":"https://doi.org/10.1016/j.carbon.2023.118288"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-117011490-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="98386168"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/98386168/Fine_tuning_of_the_magnetization_relaxation_parameters_of_the_DyO_single_ion_magnet_in_the_hydroxy_fluoro_apatite_solid_solution"><img alt="Research paper thumbnail of Fine tuning of the magnetization relaxation parameters of the DyO+ single ion magnet in the hydroxy/fluoro-apatite solid solution" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Fine tuning of the magnetization relaxation parameters of the DyO+ single ion magnet in the hydroxy/fluoro-apatite solid solution</div><div class="wp-workCard_item"><span>CrystEngComm</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">DyO+ embedded in a hydroxy/fluoro-apatite matrix reveals robust and finely tunable single ion mag...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">DyO+ embedded in a hydroxy/fluoro-apatite matrix reveals robust and finely tunable single ion magnet properties. The energy barrier for magnetization reversal grows with the increase of the fluoride and the...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98386168"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98386168"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98386168; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98386168]").text(description); $(".js-view-count[data-work-id=98386168]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98386168; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98386168']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=98386168]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98386168,"title":"Fine tuning of the magnetization relaxation parameters of the DyO+ single ion magnet in the hydroxy/fluoro-apatite solid solution","translated_title":"","metadata":{"abstract":"DyO+ embedded in a hydroxy/fluoro-apatite matrix reveals robust and finely tunable single ion magnet properties. The energy barrier for magnetization reversal grows with the increase of the fluoride and the...","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"CrystEngComm"},"translated_abstract":"DyO+ embedded in a hydroxy/fluoro-apatite matrix reveals robust and finely tunable single ion magnet properties. The energy barrier for magnetization reversal grows with the increase of the fluoride and the...","internal_url":"https://www.academia.edu/98386168/Fine_tuning_of_the_magnetization_relaxation_parameters_of_the_DyO_single_ion_magnet_in_the_hydroxy_fluoro_apatite_solid_solution","translated_internal_url":"","created_at":"2023-03-12T09:45:55.966-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fine_tuning_of_the_magnetization_relaxation_parameters_of_the_DyO_single_ion_magnet_in_the_hydroxy_fluoro_apatite_solid_solution","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"DyO+ embedded in a hydroxy/fluoro-apatite matrix reveals robust and finely tunable single ion magnet properties. The energy barrier for magnetization reversal grows with the increase of the fluoride and the...","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":530,"name":"Inorganic Chemistry","url":"https://www.academia.edu/Documents/in/Inorganic_Chemistry"},{"id":205587,"name":"Apatite","url":"https://www.academia.edu/Documents/in/Apatite"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":519549,"name":"Magnetization","url":"https://www.academia.edu/Documents/in/Magnetization"},{"id":576916,"name":"Magnet","url":"https://www.academia.edu/Documents/in/Magnet"}],"urls":[{"id":29716355,"url":"http://pubs.rsc.org/en/content/articlepdf/2018/CE/C8CE01706A"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-98386168-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="98386078"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/98386078/_Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH_4y_as_Cathode_Materials_for_Li_ion_Batteries"><img alt="Research paper thumbnail of “Hydrotriphylites” Li1-xFe1+x(PO4)1-y(OH)4y as Cathode Materials for Li-ion Batteries" class="work-thumbnail" src="https://attachments.academia-assets.com/99751725/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/98386078/_Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH_4y_as_Cathode_Materials_for_Li_ion_Batteries">“Hydrotriphylites” Li1-xFe1+x(PO4)1-y(OH)4y as Cathode Materials for Li-ion Batteries</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Lithium iron phosphate LiFePO4 triphylite is now one of the core positive electrode (cathode) mat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Lithium iron phosphate LiFePO4 triphylite is now one of the core positive electrode (cathode) materials enabling the Li-ion battery technology for stationary energy storage applications, which are important for broad implementation of the renewable energy sources. Despite the apparent simplicity of its crystal structure and chemical composition, LiFePO4 is prone to off-stoichiometry and demonstrates rich defect chemistry owing to variations in the cation content and iron oxidation state, and to the redistribution of the cations and vacancies over two crystallographically distinct octahedral sites. The importance of the defects stems from their impact on the electrochemical performance, particularly on limiting the capacity and rate capability through blocking the Li ion diffusion along the channels of the olivine-type LiFePO4 structure. Up to now the polyanionic (i.e. phosphate) sublattice has been considered idle on this playground. Here, we demonstrate that under hydrothermal cond...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9020fbc20f35295c22cc7fa9357db2a7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":99751725,"asset_id":98386078,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/99751725/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="98386078"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="98386078"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 98386078; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=98386078]").text(description); $(".js-view-count[data-work-id=98386078]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 98386078; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='98386078']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9020fbc20f35295c22cc7fa9357db2a7" } } $('.js-work-strip[data-work-id=98386078]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":98386078,"title":"“Hydrotriphylites” Li1-xFe1+x(PO4)1-y(OH)4y as Cathode Materials for Li-ion Batteries","translated_title":"","metadata":{"abstract":"Lithium iron phosphate LiFePO4 triphylite is now one of the core positive electrode (cathode) materials enabling the Li-ion battery technology for stationary energy storage applications, which are important for broad implementation of the renewable energy sources. Despite the apparent simplicity of its crystal structure and chemical composition, LiFePO4 is prone to off-stoichiometry and demonstrates rich defect chemistry owing to variations in the cation content and iron oxidation state, and to the redistribution of the cations and vacancies over two crystallographically distinct octahedral sites. The importance of the defects stems from their impact on the electrochemical performance, particularly on limiting the capacity and rate capability through blocking the Li ion diffusion along the channels of the olivine-type LiFePO4 structure. Up to now the polyanionic (i.e. phosphate) sublattice has been considered idle on this playground. Here, we demonstrate that under hydrothermal cond...","publisher":"American Chemical Society (ACS)","ai_title_tag":"Hydrotriphylites Li1-xFe1+x(PO4)1-y(OH)4y for Li-ion Batteries","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"Lithium iron phosphate LiFePO4 triphylite is now one of the core positive electrode (cathode) materials enabling the Li-ion battery technology for stationary energy storage applications, which are important for broad implementation of the renewable energy sources. Despite the apparent simplicity of its crystal structure and chemical composition, LiFePO4 is prone to off-stoichiometry and demonstrates rich defect chemistry owing to variations in the cation content and iron oxidation state, and to the redistribution of the cations and vacancies over two crystallographically distinct octahedral sites. The importance of the defects stems from their impact on the electrochemical performance, particularly on limiting the capacity and rate capability through blocking the Li ion diffusion along the channels of the olivine-type LiFePO4 structure. Up to now the polyanionic (i.e. phosphate) sublattice has been considered idle on this playground. Here, we demonstrate that under hydrothermal cond...","internal_url":"https://www.academia.edu/98386078/_Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH_4y_as_Cathode_Materials_for_Li_ion_Batteries","translated_internal_url":"","created_at":"2023-03-12T09:45:00.114-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":99751725,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99751725/thumbnails/1.jpg","file_name":"15375917.pdf","download_url":"https://www.academia.edu/attachments/99751725/download_file","bulk_download_file_name":"Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99751725/15375917-libre.pdf?1678640115=\u0026response-content-disposition=attachment%3B+filename%3DHydrotriphylites_Li1_xFe1_x_PO4_1_y_OH.pdf\u0026Expires=1743427816\u0026Signature=g~4YeEcwXoJWcjINRg2yuCzNilI-vOMmlkoFsuuBqKZUNi2pgXjobrC~Z5KAeeL7FhXn3LLZa3P5gCV1~RCUVU61N3ExWEEmus2xPGChMf~kmesVAeZ4WDHghv~weHhvLb~rIvaLGUuvNVNn1ke-D8-MgSapKw7KzzlnpisbCuv8idO-T9WxWTI1yie0KGbEkwdhKEB7qOLhDbmEmWt0cveX1ZRu-1oGu42CWXWXD4wqCz1H7WUH4euhZZBz9QJxTapxt-2lTRKxkn7suvpJYujHZhWXIJCd12ItjNN0xTW-7JgRlAXlheupXNa8ZpzKI2t9k38wKZy3C663IAZ5OA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"_Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH_4y_as_Cathode_Materials_for_Li_ion_Batteries","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Lithium iron phosphate LiFePO4 triphylite is now one of the core positive electrode (cathode) materials enabling the Li-ion battery technology for stationary energy storage applications, which are important for broad implementation of the renewable energy sources. Despite the apparent simplicity of its crystal structure and chemical composition, LiFePO4 is prone to off-stoichiometry and demonstrates rich defect chemistry owing to variations in the cation content and iron oxidation state, and to the redistribution of the cations and vacancies over two crystallographically distinct octahedral sites. The importance of the defects stems from their impact on the electrochemical performance, particularly on limiting the capacity and rate capability through blocking the Li ion diffusion along the channels of the olivine-type LiFePO4 structure. Up to now the polyanionic (i.e. phosphate) sublattice has been considered idle on this playground. Here, we demonstrate that under hydrothermal cond...","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":99751725,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99751725/thumbnails/1.jpg","file_name":"15375917.pdf","download_url":"https://www.academia.edu/attachments/99751725/download_file","bulk_download_file_name":"Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99751725/15375917-libre.pdf?1678640115=\u0026response-content-disposition=attachment%3B+filename%3DHydrotriphylites_Li1_xFe1_x_PO4_1_y_OH.pdf\u0026Expires=1743427816\u0026Signature=g~4YeEcwXoJWcjINRg2yuCzNilI-vOMmlkoFsuuBqKZUNi2pgXjobrC~Z5KAeeL7FhXn3LLZa3P5gCV1~RCUVU61N3ExWEEmus2xPGChMf~kmesVAeZ4WDHghv~weHhvLb~rIvaLGUuvNVNn1ke-D8-MgSapKw7KzzlnpisbCuv8idO-T9WxWTI1yie0KGbEkwdhKEB7qOLhDbmEmWt0cveX1ZRu-1oGu42CWXWXD4wqCz1H7WUH4euhZZBz9QJxTapxt-2lTRKxkn7suvpJYujHZhWXIJCd12ItjNN0xTW-7JgRlAXlheupXNa8ZpzKI2t9k38wKZy3C663IAZ5OA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":99751724,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/99751724/thumbnails/1.jpg","file_name":"15375917.pdf","download_url":"https://www.academia.edu/attachments/99751724/download_file","bulk_download_file_name":"Hydrotriphylites_Li1_xFe1_x_PO4_1_y_OH.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/99751724/15375917-libre.pdf?1678640116=\u0026response-content-disposition=attachment%3B+filename%3DHydrotriphylites_Li1_xFe1_x_PO4_1_y_OH.pdf\u0026Expires=1743427816\u0026Signature=QrT-dCnYwji1nzSD3TOVbfurkp-QmOiBg2~eLs56iozC1ePA39oMH8jPof0yWvbYXJRsC4JdC6LpxJXMM29zVfg77jadoxVPICyeOJ5Asndd8T95X2sAUl7fC7FyXi~QlJBlkr~USUC-lRTxE8u8ornL~q~PD2P5FfHXaqBpRYoQHc7HzkQ52qQ1rNkqk5nN4EF-2udKi1ewpsyZMJC4s76-HQ-JY9DQWX28-K7Z8ylFmjK5L9SupaXZn2ectzAxEqxrqfuq9qDf7aqxyw2IZ5yZeH5X45FZNeqk5dLvdDsgv9cm~KJdy9KQ3sKtS0fB-bNJijQl6XV6qRx1rD-Sxg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":2305,"name":"Materials Chemistry","url":"https://www.academia.edu/Documents/in/Materials_Chemistry"},{"id":4748,"name":"Electrochemistry","url":"https://www.academia.edu/Documents/in/Electrochemistry"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":566559,"name":"Stoichiometry","url":"https://www.academia.edu/Documents/in/Stoichiometry"},{"id":1131650,"name":"Cathode","url":"https://www.academia.edu/Documents/in/Cathode"}],"urls":[{"id":29716298,"url":"https://ndownloader.figshare.com/files/15375917"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-98386078-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="88644964"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/88644964/Amorphous_and_crystalline_cerium_iv_phosphates_biocompatible_ROS_scavenging_sunscreens"><img alt="Research paper thumbnail of Amorphous and crystalline cerium(iv) phosphates: biocompatible ROS-scavenging sunscreens" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title">Amorphous and crystalline cerium(iv) phosphates: biocompatible ROS-scavenging sunscreens</div><div class="wp-workCard_item"><span>Journal of Materials Chemistry B</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper reports on the good UV-shielding properties (namely, the sun protection factor and the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper reports on the good UV-shielding properties (namely, the sun protection factor and the factor of protection against UV-A radiation) and low cytotoxicity (including photocytotoxicity) of amorphous and crystalline cerium(iv) phosphates.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88644964"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88644964"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88644964; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88644964]").text(description); $(".js-view-count[data-work-id=88644964]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88644964; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88644964']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=88644964]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88644964,"title":"Amorphous and crystalline cerium(iv) phosphates: biocompatible ROS-scavenging sunscreens","translated_title":"","metadata":{"abstract":"This paper reports on the good UV-shielding properties (namely, the sun protection factor and the factor of protection against UV-A radiation) and low cytotoxicity (including photocytotoxicity) of amorphous and crystalline cerium(iv) phosphates.","publisher":"Royal Society of Chemistry (RSC)","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Journal of Materials Chemistry B"},"translated_abstract":"This paper reports on the good UV-shielding properties (namely, the sun protection factor and the factor of protection against UV-A radiation) and low cytotoxicity (including photocytotoxicity) of amorphous and crystalline cerium(iv) phosphates.","internal_url":"https://www.academia.edu/88644964/Amorphous_and_crystalline_cerium_iv_phosphates_biocompatible_ROS_scavenging_sunscreens","translated_internal_url":"","created_at":"2022-10-17T04:53:38.203-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Amorphous_and_crystalline_cerium_iv_phosphates_biocompatible_ROS_scavenging_sunscreens","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This paper reports on the good UV-shielding properties (namely, the sun protection factor and the factor of protection against UV-A radiation) and low cytotoxicity (including photocytotoxicity) of amorphous and crystalline cerium(iv) phosphates.","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":26931,"name":"Nuclear Chemistry","url":"https://www.academia.edu/Documents/in/Nuclear_Chemistry"},{"id":58353,"name":"Nanocrystalline Material","url":"https://www.academia.edu/Documents/in/Nanocrystalline_Material"},{"id":71906,"name":"Cerium Oxide","url":"https://www.academia.edu/Documents/in/Cerium_Oxide"},{"id":386276,"name":"Cerium","url":"https://www.academia.edu/Documents/in/Cerium"},{"id":843400,"name":"Phosphate","url":"https://www.academia.edu/Documents/in/Phosphate"}],"urls":[{"id":24852923,"url":"http://pubs.rsc.org/en/content/articlepdf/2022/TB/D1TB02604F"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-88644964-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="88644963"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88644963/Hydrothermal_Synthesis_of_Layered_Titanium_Phosphate_Ti2O2H_PO4_NH4_2PO4_2_and_Its_Potential_Application_in_Cosmetics"><img alt="Research paper thumbnail of Hydrothermal Synthesis of Layered Titanium Phosphate Ti2O2H(PO4)[(NH4)2PO4]2 and Its Potential Application in Cosmetics" class="work-thumbnail" src="https://attachments.academia-assets.com/92578592/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88644963/Hydrothermal_Synthesis_of_Layered_Titanium_Phosphate_Ti2O2H_PO4_NH4_2PO4_2_and_Its_Potential_Application_in_Cosmetics">Hydrothermal Synthesis of Layered Titanium Phosphate Ti2O2H(PO4)[(NH4)2PO4]2 and Its Potential Application in Cosmetics</a></div><div class="wp-workCard_item"><span>Crystals</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Titanium phosphates were recently revealed as promising cosmetic pigments; however, their photoca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Titanium phosphates were recently revealed as promising cosmetic pigments; however, their photocatalytic activity and sun protective factor (SPF) levels have not been investigated in detail. In this study, we used hydrothermal conditions to prepare nanocrystalline anatase, brookite, and layered titanium phosphate using the titanium lactate complex, NH4H2PO4, and urea as precursors. The samples were characterized by powder X-ray diffraction (XRD) in addition to Raman spectroscopy, transmission and scanning electron microscopy (TEM, SEM), energy-dispersive X-ray spectroscopy (EDX), and UV-Vis spectroscopy. Furthermore, the photocatalytic activity, sun protective factor, and moisture retention ability were determined for the samples. Brookite exhibited the highest SPF value and anatase the lowest, while Ti2O2H(PO4)[(NH4)2PO4]2 displayed highly promising UV protection and moisture retention properties and, therefore, represents a polyfunctional pigment that is particularly well suited f...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4ce6354c151d3ce0fe1023aa210eab8d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92578592,"asset_id":88644963,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92578592/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88644963"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88644963"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88644963; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88644963]").text(description); $(".js-view-count[data-work-id=88644963]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88644963; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88644963']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4ce6354c151d3ce0fe1023aa210eab8d" } } $('.js-work-strip[data-work-id=88644963]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88644963,"title":"Hydrothermal Synthesis of Layered Titanium Phosphate Ti2O2H(PO4)[(NH4)2PO4]2 and Its Potential Application in Cosmetics","translated_title":"","metadata":{"abstract":"Titanium phosphates were recently revealed as promising cosmetic pigments; however, their photocatalytic activity and sun protective factor (SPF) levels have not been investigated in detail. In this study, we used hydrothermal conditions to prepare nanocrystalline anatase, brookite, and layered titanium phosphate using the titanium lactate complex, NH4H2PO4, and urea as precursors. The samples were characterized by powder X-ray diffraction (XRD) in addition to Raman spectroscopy, transmission and scanning electron microscopy (TEM, SEM), energy-dispersive X-ray spectroscopy (EDX), and UV-Vis spectroscopy. Furthermore, the photocatalytic activity, sun protective factor, and moisture retention ability were determined for the samples. Brookite exhibited the highest SPF value and anatase the lowest, while Ti2O2H(PO4)[(NH4)2PO4]2 displayed highly promising UV protection and moisture retention properties and, therefore, represents a polyfunctional pigment that is particularly well suited f...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Crystals"},"translated_abstract":"Titanium phosphates were recently revealed as promising cosmetic pigments; however, their photocatalytic activity and sun protective factor (SPF) levels have not been investigated in detail. In this study, we used hydrothermal conditions to prepare nanocrystalline anatase, brookite, and layered titanium phosphate using the titanium lactate complex, NH4H2PO4, and urea as precursors. The samples were characterized by powder X-ray diffraction (XRD) in addition to Raman spectroscopy, transmission and scanning electron microscopy (TEM, SEM), energy-dispersive X-ray spectroscopy (EDX), and UV-Vis spectroscopy. Furthermore, the photocatalytic activity, sun protective factor, and moisture retention ability were determined for the samples. Brookite exhibited the highest SPF value and anatase the lowest, while Ti2O2H(PO4)[(NH4)2PO4]2 displayed highly promising UV protection and moisture retention properties and, therefore, represents a polyfunctional pigment that is particularly well suited f...","internal_url":"https://www.academia.edu/88644963/Hydrothermal_Synthesis_of_Layered_Titanium_Phosphate_Ti2O2H_PO4_NH4_2PO4_2_and_Its_Potential_Application_in_Cosmetics","translated_internal_url":"","created_at":"2022-10-17T04:53:37.895-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92578592,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92578592/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/92578592/download_file","bulk_download_file_name":"Hydrothermal_Synthesis_of_Layered_Titani.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92578592/pdf-libre.pdf?1666009924=\u0026response-content-disposition=attachment%3B+filename%3DHydrothermal_Synthesis_of_Layered_Titani.pdf\u0026Expires=1743427816\u0026Signature=NC6QJEo45XK-x8b4Wbvt7t64fX-0XDQgkHSSj0z0uRdUHBE3l-kOlXo70I2LmhGnSIEyoTr98AgBVrOundjn6JFLzhoQGOiWYhuM3pUtg6set8eKxbHyooEbiUlCfWhQ7mhKG6ERP-4RI2nZ~UIPaXdJWAlvzl8t2Jp16E9NMQPkCZXy4fLnL7F422FSqvt7TP44iyIHg79Wjl3DEIN8uG5~eiY2fNwqVxbKrZMCQSHzSAD3T~tz6ULhOsjR9JcHIbV2Kx0tOj5E3mWdXXDjkl83qAzIq8~O9rDtMOYzRInW4S6qaRtRTRILXibIjQ3M2PAFvt~LxxYNuLDL8DWHkA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hydrothermal_Synthesis_of_Layered_Titanium_Phosphate_Ti2O2H_PO4_NH4_2PO4_2_and_Its_Potential_Application_in_Cosmetics","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Titanium phosphates were recently revealed as promising cosmetic pigments; however, their photocatalytic activity and sun protective factor (SPF) levels have not been investigated in detail. In this study, we used hydrothermal conditions to prepare nanocrystalline anatase, brookite, and layered titanium phosphate using the titanium lactate complex, NH4H2PO4, and urea as precursors. The samples were characterized by powder X-ray diffraction (XRD) in addition to Raman spectroscopy, transmission and scanning electron microscopy (TEM, SEM), energy-dispersive X-ray spectroscopy (EDX), and UV-Vis spectroscopy. Furthermore, the photocatalytic activity, sun protective factor, and moisture retention ability were determined for the samples. Brookite exhibited the highest SPF value and anatase the lowest, while Ti2O2H(PO4)[(NH4)2PO4]2 displayed highly promising UV protection and moisture retention properties and, therefore, represents a polyfunctional pigment that is particularly well suited f...","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":92578592,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92578592/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/92578592/download_file","bulk_download_file_name":"Hydrothermal_Synthesis_of_Layered_Titani.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92578592/pdf-libre.pdf?1666009924=\u0026response-content-disposition=attachment%3B+filename%3DHydrothermal_Synthesis_of_Layered_Titani.pdf\u0026Expires=1743427816\u0026Signature=NC6QJEo45XK-x8b4Wbvt7t64fX-0XDQgkHSSj0z0uRdUHBE3l-kOlXo70I2LmhGnSIEyoTr98AgBVrOundjn6JFLzhoQGOiWYhuM3pUtg6set8eKxbHyooEbiUlCfWhQ7mhKG6ERP-4RI2nZ~UIPaXdJWAlvzl8t2Jp16E9NMQPkCZXy4fLnL7F422FSqvt7TP44iyIHg79Wjl3DEIN8uG5~eiY2fNwqVxbKrZMCQSHzSAD3T~tz6ULhOsjR9JcHIbV2Kx0tOj5E3mWdXXDjkl83qAzIq8~O9rDtMOYzRInW4S6qaRtRTRILXibIjQ3M2PAFvt~LxxYNuLDL8DWHkA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":62948,"name":"Crystals","url":"https://www.academia.edu/Documents/in/Crystals"},{"id":843400,"name":"Phosphate","url":"https://www.academia.edu/Documents/in/Phosphate"}],"urls":[{"id":24852922,"url":"https://www.mdpi.com/2073-4352/9/7/332/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-88644963-figures'); } }); </script> <div class="js-work-strip profile--work_container" data-work-id="88644962"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88644962/Titanium_Oxide_Microspheres_with_Tunable_Size_and_Phase_Composition"><img alt="Research paper thumbnail of Titanium Oxide Microspheres with Tunable Size and Phase Composition" class="work-thumbnail" src="https://attachments.academia-assets.com/92578590/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88644962/Titanium_Oxide_Microspheres_with_Tunable_Size_and_Phase_Composition">Titanium Oxide Microspheres with Tunable Size and Phase Composition</a></div><div class="wp-workCard_item"><span>Materials</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres ca...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is still a challenge. In this work, spherical titania particles with controllable size, crystallinity, and pore size were obtained by Ti(OnBu)4 hydrolysis in ethanol. The influence of NaOH addition on the particles’ size and morphology was investigated for the first time. Particle diameter can be tailored from 300 nm to 1.5 μm by changing water and NaOH concentrations. Particle size was analyzed by the statistical processing of scanning electron microscopy (SEM) images and differential centrifugal sedimentation (DCS) measurements. Optical properties of the microspheres were studied by diffuse reflectance UV-Vis spectroscopy. Thermal and hydrothermal treatment allowed transforming amorphous ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f9d7558ed6cda9cb007d592fb93df46f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92578590,"asset_id":88644962,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92578590/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88644962"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88644962"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88644962; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88644962]").text(description); $(".js-view-count[data-work-id=88644962]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88644962; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88644962']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f9d7558ed6cda9cb007d592fb93df46f" } } $('.js-work-strip[data-work-id=88644962]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88644962,"title":"Titanium Oxide Microspheres with Tunable Size and Phase Composition","translated_title":"","metadata":{"abstract":"Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is still a challenge. In this work, spherical titania particles with controllable size, crystallinity, and pore size were obtained by Ti(OnBu)4 hydrolysis in ethanol. The influence of NaOH addition on the particles’ size and morphology was investigated for the first time. Particle diameter can be tailored from 300 nm to 1.5 μm by changing water and NaOH concentrations. Particle size was analyzed by the statistical processing of scanning electron microscopy (SEM) images and differential centrifugal sedimentation (DCS) measurements. Optical properties of the microspheres were studied by diffuse reflectance UV-Vis spectroscopy. Thermal and hydrothermal treatment allowed transforming amorphous ...","publisher":"MDPI AG","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Materials"},"translated_abstract":"Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is still a challenge. In this work, spherical titania particles with controllable size, crystallinity, and pore size were obtained by Ti(OnBu)4 hydrolysis in ethanol. The influence of NaOH addition on the particles’ size and morphology was investigated for the first time. Particle diameter can be tailored from 300 nm to 1.5 μm by changing water and NaOH concentrations. Particle size was analyzed by the statistical processing of scanning electron microscopy (SEM) images and differential centrifugal sedimentation (DCS) measurements. Optical properties of the microspheres were studied by diffuse reflectance UV-Vis spectroscopy. Thermal and hydrothermal treatment allowed transforming amorphous ...","internal_url":"https://www.academia.edu/88644962/Titanium_Oxide_Microspheres_with_Tunable_Size_and_Phase_Composition","translated_internal_url":"","created_at":"2022-10-17T04:53:37.650-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":662855,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92578590,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92578590/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/92578590/download_file","bulk_download_file_name":"Titanium_Oxide_Microspheres_with_Tunable.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92578590/pdf-libre.pdf?1666009913=\u0026response-content-disposition=attachment%3B+filename%3DTitanium_Oxide_Microspheres_with_Tunable.pdf\u0026Expires=1743427816\u0026Signature=YAC5bbfu65MVN8lR-2zotxa-a-64vANiO-2Ue2RVY75Zsven59Wdm76GKdnhfolcvxhSAWzQGmECJwzq0lCzNCxQQoxKkUU6~lo28G12I4QEMeAvxdn~U2VWDqtOOXLSe8~wS9P46V~q~kcX7kbfBqFbeCCeCwE6xOcceiav4~XJD7JgwP40rrY-BOhkP-evtbJG6nWfhfKxzpmSzB4J4HBfdPIWrNQBkIpGfviGKFJz4GkrrSGGdHaDfQjsiRP5nXw2A3Zllz41qFA0a2Kfh3ozTgANykgBvGHvjD-J0PyoBCO6EORiXhNIfoDA2rtwjmixXj16QhYLFdLwVU45sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Titanium_Oxide_Microspheres_with_Tunable_Size_and_Phase_Composition","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is still a challenge. In this work, spherical titania particles with controllable size, crystallinity, and pore size were obtained by Ti(OnBu)4 hydrolysis in ethanol. The influence of NaOH addition on the particles’ size and morphology was investigated for the first time. Particle diameter can be tailored from 300 nm to 1.5 μm by changing water and NaOH concentrations. Particle size was analyzed by the statistical processing of scanning electron microscopy (SEM) images and differential centrifugal sedimentation (DCS) measurements. Optical properties of the microspheres were studied by diffuse reflectance UV-Vis spectroscopy. Thermal and hydrothermal treatment allowed transforming amorphous ...","owner":{"id":662855,"first_name":"Irina","middle_initials":"","last_name":"Kolesnik","page_name":"IrinaKolesnik","domain_name":"moscowstate","created_at":"2011-08-12T21:18:37.740-07:00","display_name":"Irina Kolesnik","url":"https://moscowstate.academia.edu/IrinaKolesnik"},"attachments":[{"id":92578590,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92578590/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/92578590/download_file","bulk_download_file_name":"Titanium_Oxide_Microspheres_with_Tunable.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92578590/pdf-libre.pdf?1666009913=\u0026response-content-disposition=attachment%3B+filename%3DTitanium_Oxide_Microspheres_with_Tunable.pdf\u0026Expires=1743427816\u0026Signature=YAC5bbfu65MVN8lR-2zotxa-a-64vANiO-2Ue2RVY75Zsven59Wdm76GKdnhfolcvxhSAWzQGmECJwzq0lCzNCxQQoxKkUU6~lo28G12I4QEMeAvxdn~U2VWDqtOOXLSe8~wS9P46V~q~kcX7kbfBqFbeCCeCwE6xOcceiav4~XJD7JgwP40rrY-BOhkP-evtbJG6nWfhfKxzpmSzB4J4HBfdPIWrNQBkIpGfviGKFJz4GkrrSGGdHaDfQjsiRP5nXw2A3Zllz41qFA0a2Kfh3ozTgANykgBvGHvjD-J0PyoBCO6EORiXhNIfoDA2rtwjmixXj16QhYLFdLwVU45sQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":10650,"name":"Materials","url":"https://www.academia.edu/Documents/in/Materials"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":58353,"name":"Nanocrystalline Material","url":"https://www.academia.edu/Documents/in/Nanocrystalline_Material"},{"id":192323,"name":"Crystallinity","url":"https://www.academia.edu/Documents/in/Crystallinity"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":349078,"name":"Anatase","url":"https://www.academia.edu/Documents/in/Anatase"},{"id":390245,"name":"Particle Size","url":"https://www.academia.edu/Documents/in/Particle_Size"}],"urls":[{"id":24852921,"url":"https://www.mdpi.com/1996-1944/12/9/1472/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") if (false) { Aedu.setUpFigureCarousel('profile-work-88644962-figures'); } }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "39eace3859f8fc90e8704c1026ce62ac841de0e45a80615ab20fce95abd49e99", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="LSxheKVD9CdK2kpmXIEtRNYCYbVyPgQ2M3YP-rilw01DwWnL4VhFAsk_yXZBTh9XnzYPAE7R4aHW_6rl9CymbA" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://moscowstate.academia.edu/IrinaKolesnik" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="iMTkZbixdfV37RhOavwCT5lRMOQsGE71Qcd7niecaC7mKezW_KrE0PQIm153MzBc0GVeURD3q2KkTt6BaxUNDw" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>