CINXE.COM
W. Bruce Croft | University of Massachusetts Amherst - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>W. Bruce Croft | University of Massachusetts Amherst - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="6KSpxcvrwTOQfdv1rAdT4GRRSfLRYaEAJC32O8FeQP6UePZcfvBM0ugSWYwTzZSujkVBHl6myEgKdHj6ocmIzQ" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-d1941ab08e91e29ee143084c4749da4aaffa350a2ac6eec2306b1d7a352d911a.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="w. bruce croft" /> <meta name="description" content="W. Bruce Croft, University of Massachusetts Amherst: 817 Followers, 1 Following, 195 Research papers. Research interest: Computer Science." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '075e914b9e16164113b5b9afd7238a56a7292942'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14035,"monthly_visitors":"102 million","monthly_visitor_count":102864795,"monthly_visitor_count_in_millions":102,"user_count":283270014,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1740052330000); window.Aedu.timeDifference = new Date().getTime() - 1740052330000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-40698df34f913bd208bb70f09d2feb7c6286046250be17a4db35bba2c08b0e2f.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-6145545f49b709c1199990a76c559bd4c35429284884cbcb3cf7f1916215e941.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-5e022a2ab081599fcedc76886fa95a606f8073416cae1641695a9906c9a80b81.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://umass.academia.edu/WBruceCroft" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-8e43dbfb783947b05fb193bb4a981fdefb46b9285b0cade100b20d38357a3356.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft","photo":"https://0.academia-photos.com/1389/573/687/s65_w._bruce.croft.jpg","has_photo":true,"department":{"id":146,"name":"Computer Science","url":"https://umass.academia.edu/Departments/Computer_Science/Documents","university":{"id":445,"name":"University of Massachusetts Amherst","url":"https://umass.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":200630,"link":"http://ciir.cs.umass.edu/personnel/croft.html","name":"Homepage","link_domain":"ciir.cs.umass.edu","icon":"//www.google.com/s2/u/0/favicons?domain=ciir.cs.umass.edu"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://umass.academia.edu/WBruceCroft","location":"/WBruceCroft","scheme":"https","host":"umass.academia.edu","port":null,"pathname":"/WBruceCroft","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-54043458-86b2-4134-9410-a6f48caff911"></div> <div id="ProfileCheckPaperUpdate-react-component-54043458-86b2-4134-9410-a6f48caff911"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="W. Bruce Croft" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1389/573/687/s200_w._bruce.croft.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">W. Bruce Croft</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://umass.academia.edu/">University of Massachusetts Amherst</a>, <a class="u-tcGrayDarker" href="https://umass.academia.edu/Departments/Computer_Science/Documents">Computer Science</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="W. Bruce" data-follow-user-id="1389" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="1389"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">817</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/WBruceCroft/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/SlawomirMarcinkowski"><img class="profile-avatar u-positionAbsolute" alt="Slawomir Marcinkowski" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" src="https://gravatar.com/avatar/78c95e2044145598bcdc9941967f0487?s=200" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/SlawomirMarcinkowski">Slawomir Marcinkowski</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/VictorLesser"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/VictorLesser">Victor Lesser</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://cnrs.academia.edu/MichaelJamesBaker"><img class="profile-avatar u-positionAbsolute" alt="Michael Baker" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/28604112/18441182/18391055/s200_michael_james.baker.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cnrs.academia.edu/MichaelJamesBaker">Michael Baker</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Centre National de la Recherche Scientifique / French National Centre for Scientific Research</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/RobertGoldman2"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/RobertGoldman2">Robert P Goldman</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/LeeMartie"><img class="profile-avatar u-positionAbsolute" alt="Lee Martie" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" src="https://gravatar.com/avatar/4b0f289664a5c7a28af16f194abdc33b?s=200" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/LeeMartie">Lee Martie</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/AliciaP%C3%A9rez2"><img class="profile-avatar u-positionAbsolute" alt="Alicia P茅rez" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/6409159/2597926/3017748/s200_alicia.p_rez.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/AliciaP%C3%A9rez2">Alicia P茅rez</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/RandallHill"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/RandallHill">Randall Hill</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/PaoloMancarella"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/PaoloMancarella">Paolo Mancarella</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://gatech.academia.edu/AshwinRam"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://gatech.academia.edu/AshwinRam">Ashwin Ram</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Georgia Institute of Technology</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://drexel.academia.edu/SantiagoOntanon"><img class="profile-avatar u-positionAbsolute" alt="Santiago Ontanon" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1632691/568176/707434/s200_santiago.ontanon.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://drexel.academia.edu/SantiagoOntanon">Santiago Ontanon</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Drexel University</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="1389" href="https://www.academia.edu/Documents/in/Computer_Science"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://umass.academia.edu/WBruceCroft","location":"/WBruceCroft","scheme":"https","host":"umass.academia.edu","port":null,"pathname":"/WBruceCroft","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Computer Science"]}" data-trace="false" data-dom-id="Pill-react-component-1946fb94-f0eb-4a52-9632-7c9b3fe8a4e4"></div> <div id="Pill-react-component-1946fb94-f0eb-4a52-9632-7c9b3fe8a4e4"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="left-most js-UserInfo-social-cv" data-broccoli-component="user-info.cv-button" data-click-track="profile-user-info-cv" data-cv-filename="" data-placement="top" data-toggle="tooltip" href="/WBruceCroft/CurriculumVitae"><button class="ds2-5-text-link ds2-5-text-link--small" style="font-size: 20px; letter-spacing: 0.8px"><span class="ds2-5-text-link__content">CV</span></button></li><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by W. Bruce Croft</h3></div><div class="js-work-strip profile--work_container" data-work-id="2788025"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788025/Northeast_Artificial_Intelligence_Consortium_NAIC_Volume_6_Building_an_Intelligent_Assistant_The_Acquisition_Integration_and_Maintenance_of_Complex_Distributed_Tasks"><img alt="Research paper thumbnail of Northeast Artificial Intelligence Consortium (NAIC). Volume 6. Building an Intelligent Assistant: The Acquisition, Integration, and Maintenance of Complex Distributed Tasks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788025/Northeast_Artificial_Intelligence_Consortium_NAIC_Volume_6_Building_an_Intelligent_Assistant_The_Acquisition_Integration_and_Maintenance_of_Complex_Distributed_Tasks">Northeast Artificial Intelligence Consortium (NAIC). Volume 6. Building an Intelligent Assistant: The Acquisition, Integration, and Maintenance of Complex Distributed Tasks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Sy...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the Office of Scientific Research. Its purpose was to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress during the existence of the NAIC on the technical research tasks undertaken at the member universities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e751ee06b564551b1ccdb73c9eac0f39" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740565,"asset_id":2788025,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740565/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788025"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788025"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788025; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788025]").text(description); $(".js-view-count[data-work-id=2788025]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788025; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788025']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e751ee06b564551b1ccdb73c9eac0f39" } } $('.js-work-strip[data-work-id=2788025]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788025,"title":"Northeast Artificial Intelligence Consortium (NAIC). Volume 6. Building an Intelligent Assistant: The Acquisition, Integration, and Maintenance of Complex Distributed Tasks","internal_url":"https://www.academia.edu/2788025/Northeast_Artificial_Intelligence_Consortium_NAIC_Volume_6_Building_an_Intelligent_Assistant_The_Acquisition_Integration_and_Maintenance_of_Complex_Distributed_Tasks","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740565,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"GetTRDoc.pdf","download_url":"https://www.academia.edu/attachments/30740565/download_file","bulk_download_file_name":"Northeast_Artificial_Intelligence_Consor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740565/GetTRDoc-libre.pdf?1392107392=\u0026response-content-disposition=attachment%3B+filename%3DNortheast_Artificial_Intelligence_Consor.pdf\u0026Expires=1740055929\u0026Signature=JS3DJ9tu6ejKt62QWYuS1Gv-X1Qg-AFDYb2It0ie0XhY9wN5AFA3SgPW~R2PHxYcR2IVJQ6NmKJlGZoMY5O6akGPlTFEVV977evF0-RmJNQA2JoiKSY7YA3~UpHlEDVk1t-8wVvjUks1YT0RDD~RCm-8xACtqWmzch03UmTwjijFJ1~MmI0PmKpp5kjHDKj~R27pkBr1SkFjIslLYHzfJWFbjW90Wam16Z7hULhkKIk69yF9KaoqLXQGiJi4aH4e4aeKcXsQKYzBHKwwBU~ilRird-WAtZpxIxmzyvhYk9WusK3Qs6jy2LkC~s6HkbnqkNjXMXFjmLatmnw2vZLGpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788024"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788024/Corpus_Based_Stemming_using_Co_occurrence_of_Word"><img alt="Research paper thumbnail of Corpus-Based Stemming using Co-occurrence of Word" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788024/Corpus_Based_Stemming_using_Co_occurrence_of_Word">Corpus-Based Stemming using Co-occurrence of Word</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Stemming is used in many information retrieval (IR) systems to reduce variant word forms to commo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Stemming is used in many information retrieval (IR) systems to reduce variant word forms to common roots. It is one of the simplest applications of natural language processing to IR, and one of the most e ective in terms of user acceptance and consistent, though small, retrieval improvements. Current stemming techniques do not, however, re ect the language use in speci c corpora and this can lead to occasional serious retrieval failures. We propose a technique for using corpus-based word variant co-occurrence statistics to modify or create a stemmer. The experimental results generated using English newspaper and legal text and Spanish text demonstrate the viability of this technique and its advantages relative to conventional approaches.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="32e79e5d0f348e914eb83163456dd95f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740561,"asset_id":2788024,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740561/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788024"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788024"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788024; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788024]").text(description); $(".js-view-count[data-work-id=2788024]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788024; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788024']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "32e79e5d0f348e914eb83163456dd95f" } } $('.js-work-strip[data-work-id=2788024]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788024,"title":"Corpus-Based Stemming using Co-occurrence of Word","internal_url":"https://www.academia.edu/2788024/Corpus_Based_Stemming_using_Co_occurrence_of_Word","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740561,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"10.1.1.35.604.pdf","download_url":"https://www.academia.edu/attachments/30740561/download_file","bulk_download_file_name":"Corpus_Based_Stemming_using_Co_occurrenc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740561/10.1.1.35.604-libre.pdf?1392055682=\u0026response-content-disposition=attachment%3B+filename%3DCorpus_Based_Stemming_using_Co_occurrenc.pdf\u0026Expires=1740055929\u0026Signature=SdCJjbvMVQ5o~SO647pe4nqfKqfDb0VosjGmDeKmVwNZCsMDUCmpCBPifksKsNmXT4DzBPN19Z2GKzzh4rZZfUAOz82ozVuODrw5hg3Q9cT0z3EVO96xch~Fw9AqVudMu~oI2eGNityeppLIZv5bG7qBYDxZL8j-3WQNTcz0dEY-cP3VisHTR39IQaP2InGFCbydLVsyzGVaHTU5xgY7Lupawc4hloUglI8TfzuHvhuFwGrH0sAP9T2cn3Urlav~0JZvnwsvFSi7x4TjEEnDHXHnTpGGR3Hljo6rFJWtc~GRcg3Qc66oIe3kQORQ8kDDdSpcOJocfSHghLSlJEogsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788023"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788023/Hierarchical_language_models_for_expert_finding_in_enterprise_corpora"><img alt="Research paper thumbnail of Hierarchical language models for expert finding in enterprise corpora" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788023/Hierarchical_language_models_for_expert_finding_in_enterprise_corpora">Hierarchical language models for expert finding in enterprise corpora</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Enterprise corpora contain evidence of what employees work on and therefore can be used to automa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Enterprise corpora contain evidence of what employees work on and therefore can be used to automatically find experts on a given topic. We present a general approach for representing the knowledge of a potential expert as a mixture of language models from associated documents. First we retrieve documents given the expert's name using a generative probabilistic technique and weight the retrieved documents according to expert-specific posterior distribution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7a01a546d7870904300310c78f813f6b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30838833,"asset_id":2788023,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30838833/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788023"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788023"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788023; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788023]").text(description); $(".js-view-count[data-work-id=2788023]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788023; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788023']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7a01a546d7870904300310c78f813f6b" } } $('.js-work-strip[data-work-id=2788023]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788023,"title":"Hierarchical language models for expert finding in enterprise corpora","internal_url":"https://www.academia.edu/2788023/Hierarchical_language_models_for_expert_finding_in_enterprise_corpora","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30838833,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"hierarchical_language_models_for_expert_finding_in_enterprise_corpora.pdf","download_url":"https://www.academia.edu/attachments/30838833/download_file","bulk_download_file_name":"Hierarchical_language_models_for_expert.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30838833/hierarchical_language_models_for_expert_finding_in_enterprise_corpora-libre.pdf?1393888348=\u0026response-content-disposition=attachment%3B+filename%3DHierarchical_language_models_for_expert.pdf\u0026Expires=1740055929\u0026Signature=gx6bM6RU45R-q7sl0PAJ0Bnuf3Y3cgQtr4jMzxFArU8o4TF3bH3oRZ9XwMUGETT1kh7uujE50zkidPtBPiJjduKrovemUOAVje5gnc7PR55vE-6G9rn~GvzOgsaLJ9QrlNRdK~6ASqVEHb-zPZDUUWkAad6v6dPVzrswUSpi06vpc1gc1gTWy6cCEBNNQ9R~BIr~XlcV4JREVCegNz7YGIAY~eQqc8oPRdlGzwfjByD74jJ7uMzWCa3diJsbFQwmyU07IEAyfuNRjv2sCdHg~WH4sCctAxm-S44LGo0QWGFgTSeKy~bJx3JvFCglcfPqISyLhk-DSLryWYncqzhwNQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788022"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788022/Beyond_bags_of_words_Modeling_implicit_user_preferences_in_information_retrieval"><img alt="Research paper thumbnail of Beyond bags of words: Modeling implicit user preferences in information retrieval" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788022/Beyond_bags_of_words_Modeling_implicit_user_preferences_in_information_retrieval">Beyond bags of words: Modeling implicit user preferences in information retrieval</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper reports on recent work in the field of information retrieval that attempts to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper reports on recent work in the field of information retrieval that attempts to go beyond the overly simplified approach of representing documents and queries as bags of words. Simple models make it difficult to accurately model a user's information need. The model presented in the paper is based on Markov random fields and allows almost arbitrary features to be encoded. This provides a powerful mechanism for modeling many of the implicit constraints a user has in mind when formulating a query.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="629890029babb5f4c5a66148a87a4f65" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30838829,"asset_id":2788022,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30838829/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788022"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788022"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788022; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788022]").text(description); $(".js-view-count[data-work-id=2788022]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788022; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788022']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "629890029babb5f4c5a66148a87a4f65" } } $('.js-work-strip[data-work-id=2788022]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788022,"title":"Beyond bags of words: Modeling implicit user preferences in information retrieval","internal_url":"https://www.academia.edu/2788022/Beyond_bags_of_words_Modeling_implicit_user_preferences_in_information_retrieval","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30838829,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"beyond_bags_of_words_modeling_implicit_user_preferences_in_information.pdf","download_url":"https://www.academia.edu/attachments/30838829/download_file","bulk_download_file_name":"Beyond_bags_of_words_Modeling_implicit_u.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30838829/beyond_bags_of_words_modeling_implicit_user_preferences_in_information-libre.pdf?1392143968=\u0026response-content-disposition=attachment%3B+filename%3DBeyond_bags_of_words_Modeling_implicit_u.pdf\u0026Expires=1740055929\u0026Signature=XmS8cELNYJwCEMKKON-7tygkDcU2~PWjXMOKBFZi7X5mRAqwGYE1UpA8R82Om9nHZI5dYduzN-yW8eH7tha4NaqO~uia5ZSjEgLaS0vQSZG5JwT3BqEzNYg08iOLpXc6VAdC4muSQr5C7OUrlBFh35Zoz47QENfQgiIbGXEPfG7QJPBPveozA7QKFadweEu3Jh37oQFtDtX8DQ6lh5tnGykjezhfBwQ2h0W9FEEWYDK1jWwGhth4QJMw-0~0hIcmevPdq7GDy5XWcbTeyRnkRHkIfPdFN8WU63N8tVOFGa8nYl6OB44IZskuDxGoxZuaLRfs0LuWI5OvJnTsbd29eA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788021"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788021/Efficient_document_retrieval_in_main_memory"><img alt="Research paper thumbnail of Efficient document retrieval in main memory" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788021/Efficient_document_retrieval_in_main_memory">Efficient document retrieval in main memory</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Disk access performance is a major bottleneck in traditional information retrieval syste...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Disk access performance is a major bottleneck in traditional information retrieval systems. Compared to system memory, disk bandwidth is poor, and seek times are worse. We circumvent this problem by considering query evaluation strategies in main memory. We show how new accumulator trimming techniques combined with inverted list skipping can produce extremely high performance retrieval systems without resorting to methods that may harm effectiveness.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="07969388f8a1e2899b91d2cdaec797e4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740554,"asset_id":2788021,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740554/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788021"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788021"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788021; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788021]").text(description); $(".js-view-count[data-work-id=2788021]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788021; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788021']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "07969388f8a1e2899b91d2cdaec797e4" } } $('.js-work-strip[data-work-id=2788021]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788021,"title":"Efficient document retrieval in main memory","internal_url":"https://www.academia.edu/2788021/Efficient_document_retrieval_in_main_memory","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740554,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Efficient_document_retrieval_in_main_memory.pdf","download_url":"https://www.academia.edu/attachments/30740554/download_file","bulk_download_file_name":"Efficient_document_retrieval_in_main_mem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740554/Efficient_document_retrieval_in_main_memory-libre.pdf?1391809967=\u0026response-content-disposition=attachment%3B+filename%3DEfficient_document_retrieval_in_main_mem.pdf\u0026Expires=1740055929\u0026Signature=NRiDsuf6-Nt0Ddzbz3a9rwCO6di5OHVCQp1dizGDD4AfJHO5uQKE38VXaa-3srwe63Tzhg3TXlztvNmkyBd8U2z~DgBjgruKTZ-CT8rK2--SmO5QX7GwsJaavR6gjsUP8XafVedASeeAAq0rEjxazRq~p7qWS2BjbS3Ury1JXvKKlA5mzwEQYD6hwmNTN42rFVFK-GnJBDaVSqhGNx6LvPKHSvqC~mGaX-SntVXKb3mfihXFzpkquEQSKBPhu7UfwNCyALNFCdc2nQPcpD3f0QC2utlzthvzSVCLGhV8m2HTIag7tYwwYooc6v-mD1rAUtz7eCo3-ROtpi2t2CoTtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788020"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788020/PIC_matrices_A_computationally_tractable_class_of_probabilistic_query_operators"><img alt="Research paper thumbnail of PIC matrices: A computationally tractable class of probabilistic query operators" class="work-thumbnail" src="https://attachments.academia-assets.com/31008972/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788020/PIC_matrices_A_computationally_tractable_class_of_probabilistic_query_operators">PIC matrices: A computationally tractable class of probabilistic query operators</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The inference network model of information retrieval allows a probabilistic interpretati...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The inference network model of information retrieval allows a probabilistic interpretation of query operators. In particular, Boolean query operators are conveniently modeled as link matrices of the Bayesian Network. Prior work has shown, however, that these operators do not perform as well as the pnorm operators used for modeling query operators in the context of the vector space model. This motivates the search for alternative probabilistic formulations for these operators.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="975cf95bb6e07d1dc21521c198bcae31" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":31008972,"asset_id":2788020,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/31008972/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788020"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788020"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788020; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788020]").text(description); $(".js-view-count[data-work-id=2788020]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788020; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788020']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "975cf95bb6e07d1dc21521c198bcae31" } } $('.js-work-strip[data-work-id=2788020]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788020,"title":"PIC matrices: A computationally tractable class of probabilistic query operators","internal_url":"https://www.academia.edu/2788020/PIC_matrices_A_computationally_tractable_class_of_probabilistic_query_operators","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":31008972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/31008972/thumbnails/1.jpg","file_name":"pic_matrices_a_computationally_tractable_class_of_probabilistic_query_operators.pdf","download_url":"https://www.academia.edu/attachments/31008972/download_file","bulk_download_file_name":"PIC_matrices_A_computationally_tractable.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/31008972/pic_matrices_a_computationally_tractable_class_of_probabilistic_query_operators-libre.pdf?1392251201=\u0026response-content-disposition=attachment%3B+filename%3DPIC_matrices_A_computationally_tractable.pdf\u0026Expires=1740055929\u0026Signature=bkN5sozrd1dgYjvL9P7pOSySMbM8hNnecoIIQPiWFm4YpH6LabzDcUknWCj38tX4G9ZzX0rR6jua5AdYwicO~GHelyibsMHZzb2JIsRXtzzvf39VNDdIEGjz6Wu1RXxb~CQsxGxbCkeBqXaFvz7twaoAXlYtfEzZfj5GrEyPY2fy~Yw0JaYAvZjEJ7kO0cfkH8U9ykoJPkMG9H72NmCxfry3D3EjKpPmEyCPRLvO3iRr1Hg0FLbrAGejb-fzzbt4WYbuhkSfwW0C3j4YETN~PGAy-xfEtsievzh~LdXYFNINMvraZ3VvHmREoCk0kSlQzNrp5BrNU~adNvHEldFkWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788019"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/2788019/Parameterized_concept_weighting_in_verbose_queries"><img alt="Research paper thumbnail of Parameterized concept weighting in verbose queries" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/2788019/Parameterized_concept_weighting_in_verbose_queries">Parameterized concept weighting in verbose queries</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The majority of the current information retrieval models weight the query concepts (eg, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The majority of the current information retrieval models weight the query concepts (eg, terms or phrases) in an unsupervised manner, based solely on the collection statistics. In this paper, we go beyond the unsupervised estimation of concept weights, and propose a parameterized concept weighting model. In our model, the weight of each query concept is determined using a parameterized combination of diverse importance features.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788019"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788019"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788019; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788019]").text(description); $(".js-view-count[data-work-id=2788019]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788019; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788019']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=2788019]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788019,"title":"Parameterized concept weighting in verbose queries","internal_url":"https://www.academia.edu/2788019/Parameterized_concept_weighting_in_verbose_queries","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788018"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788018/Probabilistic_retrieval_of_ocr_degraded_text_using_n_grams"><img alt="Research paper thumbnail of Probabilistic retrieval of ocr degraded text using n-grams" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788018/Probabilistic_retrieval_of_ocr_degraded_text_using_n_grams">Probabilistic retrieval of ocr degraded text using n-grams</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The retrieval of OCR degraded text using n-gram formulations within a probabilistic retrieval sys...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The retrieval of OCR degraded text using n-gram formulations within a probabilistic retrieval system is examined in this paper. Direct retrieval of documents using n-gram databases of 2 and 3-grams or 2, 3, 4 and 5-grams resulted in improved retrieval performance over standard (word based) queries on the same data when a level of 10 percent degradation or worse was achieved.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8f218f0c21e6b451b5391e3f67853974" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740569,"asset_id":2788018,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740569/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788018"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788018"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788018; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788018]").text(description); $(".js-view-count[data-work-id=2788018]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788018; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788018']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8f218f0c21e6b451b5391e3f67853974" } } $('.js-work-strip[data-work-id=2788018]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788018,"title":"Probabilistic retrieval of ocr degraded text using n-grams","internal_url":"https://www.academia.edu/2788018/Probabilistic_retrieval_of_ocr_degraded_text_using_n_grams","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Probabilistic_Retrieval_of_OCR_Degraded_Text.pdf","download_url":"https://www.academia.edu/attachments/30740569/download_file","bulk_download_file_name":"Probabilistic_retrieval_of_ocr_degraded.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740569/Probabilistic_Retrieval_of_OCR_Degraded_Text-libre.pdf?1392098466=\u0026response-content-disposition=attachment%3B+filename%3DProbabilistic_retrieval_of_ocr_degraded.pdf\u0026Expires=1740055929\u0026Signature=f0b7Ar8qdSzSF0t2nYcxF-JM5yCQxzb3LOEBEGbO17zXAgtVZrYj9z85i5ZC5lxtaNo94v3u48GsG7rMyO~l-3R~fsvfrZa~d6Yb9Lo8aHaWvw1k9RkzqOP5EdJnj4Zgb7KR3SwxiRZDhR4XtfLU4mcQVsGv~CgfMrvakkHj2~1X2z1A7Z35DkFqrP4yd2Ib86zd0OaaoQV76P6EYdKuptgDjoOILNWzPIa18HiU5mO9uPYbaQVOySgOXhwLBITQ0lg~INsCsC5RYprL3-6ECEi68kpdqHd3BB2Sk4O-MQVjxTFJwnG84Ts5fBA~nFD54S5cbhDd7K854MMdTyovvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788017"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788017/Novelty_detection_based_on_sentence_level_patterns"><img alt="Research paper thumbnail of Novelty detection based on sentence level patterns" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788017/Novelty_detection_based_on_sentence_level_patterns">Novelty detection based on sentence level patterns</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The detection of new information in a document stream is an important component of many ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The detection of new information in a document stream is an important component of many potential applications. In this paper, a new novelty detection approach based on the identification of sentence level patterns is proposed. Given a user's information need, some patterns in sentences such as combinations of query words, named entities and phrases, may contain more important and relevant information than single words.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="57d91c0544f5c760a24d76a623874afb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740520,"asset_id":2788017,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740520/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788017"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788017"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788017; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788017]").text(description); $(".js-view-count[data-work-id=2788017]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788017; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788017']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "57d91c0544f5c760a24d76a623874afb" } } $('.js-work-strip[data-work-id=2788017]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788017,"title":"Novelty detection based on sentence level patterns","internal_url":"https://www.academia.edu/2788017/Novelty_detection_based_on_sentence_level_patterns","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740520,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"ir-435.pdf","download_url":"https://www.academia.edu/attachments/30740520/download_file","bulk_download_file_name":"Novelty_detection_based_on_sentence_leve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740520/ir-435-libre.pdf?1391872615=\u0026response-content-disposition=attachment%3B+filename%3DNovelty_detection_based_on_sentence_leve.pdf\u0026Expires=1740055929\u0026Signature=Tr4l91RtkjtymZPHeGbVb5f6somz4akc0Mic0x-z6EHB55cGg-JjSrM7IqDmzUFN6Rp6oEzKl-T-YHvk-ZIVISwKKBLOiVCxM7l1yepa5o0ijG3CJQq6o-4kxYCB2OIkbFZdqLDG6M~Q3aBeA~6Czn0CsyqigruTWiej-wzLe860aT1XPtfWcR0jpmbHKwJGgp5t8sTChuyWYeyr3Mo9dN9nhvfrgDKk6KC~5q8qsg-9Hh7Ck~U1MfY3Ue2OpzivL0eQpZkQo8pT7cpApx~c5vduGywVwFCyir4IXfMQh8jDfMXxtF8oqGrJ-IZsWcJUZ1Pc0szZNUbgMhnj3DO~qA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788016"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/2788016/Data_Engineering"><img alt="Research paper thumbnail of Data Engineering" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/2788016/Data_Engineering">Data Engineering</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788016"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788016"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788016; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788016]").text(description); $(".js-view-count[data-work-id=2788016]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788016; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788016']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=2788016]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788016,"title":"Data Engineering","internal_url":"https://www.academia.edu/2788016/Data_Engineering","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788015"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788015/Evaluating_search_in_personal_social_media_collections"><img alt="Research paper thumbnail of Evaluating search in personal social media collections" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788015/Evaluating_search_in_personal_social_media_collections">Evaluating search in personal social media collections</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The prevalence of social media applications is generating potentially large personal arc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The prevalence of social media applications is generating potentially large personal archives of posts, tweets, and other communications. The existence of these archives creates a need for search tools, which can be seen as an extension of current desktop search services. Little is currently known about the best search techniques for personal archives of social data, because of the difficulty of creating test collections.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8173561b94c7107f93fecf467078afaf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740489,"asset_id":2788015,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740489/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788015"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788015"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788015; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788015]").text(description); $(".js-view-count[data-work-id=2788015]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788015; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788015']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8173561b94c7107f93fecf467078afaf" } } $('.js-work-strip[data-work-id=2788015]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788015,"title":"Evaluating search in personal social media collections","internal_url":"https://www.academia.edu/2788015/Evaluating_search_in_personal_social_media_collections","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740489,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"wsdm479-lee.pdf","download_url":"https://www.academia.edu/attachments/30740489/download_file","bulk_download_file_name":"Evaluating_search_in_personal_social_med.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740489/wsdm479-lee-libre.pdf?1392031947=\u0026response-content-disposition=attachment%3B+filename%3DEvaluating_search_in_personal_social_med.pdf\u0026Expires=1740055930\u0026Signature=FQsuoJpqZ8HEB~GAd9CPKFMxTuLX8ICDjCKekF1vmfkj8YZu0oXIpkxDb7w7rZjNMCQNbeaVW4OUPpMLdZHqisz6sBhUG8G6iXrWpB9bEzVQnuhQhIXvhEmpIUsyzvh3qyhSX6p81hMz6EqENtX~dkHHccFxi3TKRc1STdKlUOBzQI2gTdsniRTn1xvizeva8yeLiO3~NWrshjSjPuQfZSOC9AbJZen7tCSxYsn4kLXoo1dhv-9ZwUO~ZwfnLti32gx3BjZwYJx6N0nxRRLytOEjmEPWTFpOsLZrC9me3udUvQxEzdrXWoVkHgfLQdBuSJWSn-m1QyEMB9sI0QXobQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788014"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788014/The_History_of_Information_Retrieval_Research"><img alt="Research paper thumbnail of The History of Information Retrieval Research" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788014/The_History_of_Information_Retrieval_Research">The History of Information Retrieval Research</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper describes a brief history of the research and development of information retr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper describes a brief history of the research and development of information retrieval systems starting with the creation of electromechanical searching devices, through to the early adoption of computers to search for items that are relevant to a user's query. The advances achieved by information retrieval researchers from the 1950s through to the present day are detailed next, focusing on the process of locating relevant information. The paper closes with speculation on where the future of information retrieval lies.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="99fb67474ff834ee2703deba2cc3d638" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740491,"asset_id":2788014,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740491/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788014"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788014"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788014; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788014]").text(description); $(".js-view-count[data-work-id=2788014]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788014; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788014']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "99fb67474ff834ee2703deba2cc3d638" } } $('.js-work-strip[data-work-id=2788014]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788014,"title":"The History of Information Retrieval Research","internal_url":"https://www.academia.edu/2788014/The_History_of_Information_Retrieval_Research","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740491,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"IEEE2012.pdf","download_url":"https://www.academia.edu/attachments/30740491/download_file","bulk_download_file_name":"The_History_of_Information_Retrieval_Res.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740491/IEEE2012-libre.pdf?1391868773=\u0026response-content-disposition=attachment%3B+filename%3DThe_History_of_Information_Retrieval_Res.pdf\u0026Expires=1740055930\u0026Signature=Jx-th8cPXs04-BTSfTlXsr7k7hM7m4kGh6V-a2h94QJsij-YuLKudcvo4~qiPeq7JAsDsOUz1h2tAMeeYzQ~kWKLs4spEgDH964mTRj51wv5KGhC7T5NbXCwJEOuXlWqxYr-HxikULo51~XLrSZmF1aVAX~~gs6duc7U8HOhcX3UU4HT1DNaalgzNTwlV7FBXV3DRs985zDN-ZxqhBZk3h2S3dsDFg05RF0Zh-IurRHBgQTYnrEbQyV~qiXdPKx-QSgM-mN39w3LyXNLjwPGeA6g-f0lxLxeXjGyV6Nydg3dPTseSA~zgKGvg3qNKBX4NJMJehD-smjG3M8X4ePuWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788013"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788013/An_evaluation_of_query_processing_strategies_using_the_TIPSTER_collection"><img alt="Research paper thumbnail of An evaluation of query processing strategies using the TIPSTER collection" class="work-thumbnail" src="https://attachments.academia-assets.com/30889753/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788013/An_evaluation_of_query_processing_strategies_using_the_TIPSTER_collection">An evaluation of query processing strategies using the TIPSTER collection</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The TIPSTER collection is unusual because of both its size and detail. In particular, it...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The TIPSTER collection is unusual because of both its size and detail. In particular, it describes a set of information needs, as opposed to traditional queries. These detailed representations of information need are an opportunity for research on different methods of formulating queries. This paper describes several methods of constructing queries for the INQUERY information retrieval system, and then evaluates those methods on the TIPSTER document collection. Both AdHoc and Routing query processing methods are evaluated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="49a4c58c23fbcdb5f17c9dba94d45952" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30889753,"asset_id":2788013,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30889753/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788013"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788013"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788013; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788013]").text(description); $(".js-view-count[data-work-id=2788013]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788013; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788013']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "49a4c58c23fbcdb5f17c9dba94d45952" } } $('.js-work-strip[data-work-id=2788013]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788013,"title":"An evaluation of query processing strategies using the TIPSTER collection","internal_url":"https://www.academia.edu/2788013/An_evaluation_of_query_processing_strategies_using_the_TIPSTER_collection","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30889753,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/30889753/thumbnails/1.jpg","file_name":"an_evaluation_of_query_processing_strategies_using_the_tipster_collection.pdf","download_url":"https://www.academia.edu/attachments/30889753/download_file","bulk_download_file_name":"An_evaluation_of_query_processing_strate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30889753/an_evaluation_of_query_processing_strategies_using_the_tipster_collection-libre.pdf?1392161369=\u0026response-content-disposition=attachment%3B+filename%3DAn_evaluation_of_query_processing_strate.pdf\u0026Expires=1740055930\u0026Signature=dPpd9y4PZo1gIN2x8l7dESin3Mgzx5CqZoSClMRBS1MarY2pObXL4EXSEpnPrEDqvjecrRLv7gk9KVhzBV0K2u-ZHvS3V65PZ-NVfsnc82lcK~4nfB85UipePTSi7EugY9OOT8SJkQkpn5rp1Ev3298zPaPBtPkS76N1jYW0NBFmT8FCFpMIsSzhoX1bTG~ATDJaeuFRKisbtrUbgpwvGP8j1EgAmLM2CFaK~HOD-grOutcLWI4PF1JetSy7T93qHfC3HYHSY8l3T6lQLIPgYGr10WEzBxGKMrXhnTd58H5rShZi27k0Ic80TcGsp~vlDmxj0~c9kE7MzX2BGxpO4w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788012"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788012/Building_a_semantic_representation_for_personal_information"><img alt="Research paper thumbnail of Building a semantic representation for personal information" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788012/Building_a_semantic_representation_for_personal_information">Building a semantic representation for personal information</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract A typical collection of personal information contains many documents and mentions many c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract A typical collection of personal information contains many documents and mentions many concepts (eg, person names, events, etc.). In this environment, associative browsing between these concepts and documents can be useful as a complement for search. Previous approaches in the area of semantic desktops aimed at addressing this task. However, they were not practical because they require tedious manual annotation by the user.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="23016aa3f37a3b9cb760be58412f8b0d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740436,"asset_id":2788012,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740436/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788012"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788012"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788012; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788012]").text(description); $(".js-view-count[data-work-id=2788012]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788012; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788012']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "23016aa3f37a3b9cb760be58412f8b0d" } } $('.js-work-strip[data-work-id=2788012]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788012,"title":"Building a semantic representation for personal information","internal_url":"https://www.academia.edu/2788012/Building_a_semantic_representation_for_personal_information","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740436,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"cikm_2010_semantic_rep_short.pdf","download_url":"https://www.academia.edu/attachments/30740436/download_file","bulk_download_file_name":"Building_a_semantic_representation_for_p.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740436/cikm_2010_semantic_rep_short-libre.pdf?1392118137=\u0026response-content-disposition=attachment%3B+filename%3DBuilding_a_semantic_representation_for_p.pdf\u0026Expires=1740055930\u0026Signature=aGtPqI4m10ROIVjTWcDF3XYUb3uVGVLRGiMXFVEmvBzp-8Ol13rj47qpUo7IohsIlFdhd-R2QOOrCTUQV32pqYBdfBp9iR8jUj18XpFv9c1SxldVG7QvM-us-OqE7xFsdr9x9fMU7FwFi~4pkeBF-7LO98ZqXf2GZ5T37K5ApUTE6cAca9-Ll6q837x5RLKDRr4FPqOkKjAv2~RhHL3bxIWTYOwD7cOFh0J7xWgPBokY0BCNzO~bqaswOX~MpxeR-uZ8SLpl98FbvwiVDzpTRNdyzkhlBLnS9YwJpIjf7SMfVQUwxlzcG-Vo6~nes6EsdKrE7OSnfQ~7l8le68KyIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788011"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788011/Representing_documents_with_named_entities_for_story_link_detection_SLD_"><img alt="Research paper thumbnail of Representing documents with named entities for story link detection (SLD)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788011/Representing_documents_with_named_entities_for_story_link_detection_SLD_">Representing documents with named entities for story link detection (SLD)</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Several information organization, access, and filtering systems can benefit from differe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Several information organization, access, and filtering systems can benefit from different kind of document representations than those used in traditional Information Retrieval (IR). Topic Detection and Tracking (TDT) is an example of such an application. In this paper we demonstrate that named entities serve as better choices of units for document representation over all words.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="34060e3340edc7cd4ce87419fcb2f211" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30838824,"asset_id":2788011,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30838824/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788011"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788011"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788011; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788011]").text(description); $(".js-view-count[data-work-id=2788011]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788011; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788011']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "34060e3340edc7cd4ce87419fcb2f211" } } $('.js-work-strip[data-work-id=2788011]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788011,"title":"Representing documents with named entities for story link detection (SLD)","internal_url":"https://www.academia.edu/2788011/Representing_documents_with_named_entities_for_story_link_detection_SLD_","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30838824,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"representing_documents_with_named_entities_for_story_link_detection_sld.pdf","download_url":"https://www.academia.edu/attachments/30838824/download_file","bulk_download_file_name":"Representing_documents_with_named_entiti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30838824/representing_documents_with_named_entities_for_story_link_detection_sld-libre.pdf?1392067388=\u0026response-content-disposition=attachment%3B+filename%3DRepresenting_documents_with_named_entiti.pdf\u0026Expires=1740055930\u0026Signature=DM4l55bJgSx5PNBhApsJuLMMwFcHMWR~ludIq9kZu92KfFMhG0uLRFxr8AhYrc7vZAeIuaHrVzsNRXdK-fQGm8~BToKWn2FIEJdv2bEIDWf-WnUhZRZfSgUdHKsOE3GFSiSq6-qtG9Q4JTH-qe11X6tgrJyNIdevUcGTH8dy7o4jGcmf~mGWKnrtl~bo-iXKIXbVJkKBlAyKApbVf3Rq4ZeGjcPh~lxQipBzwZohKqd9SuAYuyq2a4jD3L-0mdGMYywu-~I98ld6poKzhILaYAdXY9FYbdpRfLqWzh2Cxj97f8QSjKzOLnF88kO~3l4j~8MtMz0Kpn-AzQ3AKJwi1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788010"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788010/Combining_automatic_and_manual_index_representations_in_probabilistic_retrieval"><img alt="Research paper thumbnail of Combining automatic and manual index representations in probabilistic retrieval" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788010/Combining_automatic_and_manual_index_representations_in_probabilistic_retrieval">Combining automatic and manual index representations in probabilistic retrieval</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Results from research in information retrieval suggest that significant improvements in retrieval...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Results from research in information retrieval suggest that significant improvements in retrieval effectiveness could be obtained by combining results from multiple index representations and query strategies. Recently, an inference network based probabilistic retrieval model has been proposed, which views information retrieval as an evidential reasoning process in which multiple sources of evidence about document and query content are combined to estimate the relevance probabilities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0bb05b014ff7082e526302b789f7379f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740448,"asset_id":2788010,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740448/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788010"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788010"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788010; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788010]").text(description); $(".js-view-count[data-work-id=2788010]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788010; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788010']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0bb05b014ff7082e526302b789f7379f" } } $('.js-work-strip[data-work-id=2788010]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788010,"title":"Combining automatic and manual index representations in probabilistic retrieval","internal_url":"https://www.academia.edu/2788010/Combining_automatic_and_manual_index_representations_in_probabilistic_retrieval","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740448,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"rajashekar95combining.pdf","download_url":"https://www.academia.edu/attachments/30740448/download_file","bulk_download_file_name":"Combining_automatic_and_manual_index_rep.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740448/rajashekar95combining-libre.pdf?1391834935=\u0026response-content-disposition=attachment%3B+filename%3DCombining_automatic_and_manual_index_rep.pdf\u0026Expires=1740055930\u0026Signature=GlCAkbDl8oGPO0hfXR8y7dwufLyoQkmI9h7zk0AF6~-5P6znsYDzPw2eT9NuE7vvbsjHLVphL5lcLDMqdlEYgsTWbjedtwIAcPmTuHYR~KfSCNV4~SANJAjMhFUE1qzbZvOym9lbQiY8U~rXu-TBPt6usJaF5vcv70qfLx1WG~nGVyfsAR~uCoTdP~1-O8635nlzrWfcR7w8fkPM6NVshPDmQ7n3tWAMRxMTk8WxHTu5AX8K5p~d5EthC-4Nm79N7TCcJN1ZU02LIO-FcpNzf0wX9Nd0oRu83sRXtNE3QNblly1EzP8RfXUg4jbOgTdgFygh8uySRHrme84kKpBJmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788009"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/2788009/Automatic_boolean_query_suggestion_for_professional_search"><img alt="Research paper thumbnail of Automatic boolean query suggestion for professional search" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/2788009/Automatic_boolean_query_suggestion_for_professional_search">Automatic boolean query suggestion for professional search</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract In professional search environments, such as patent search or legal search, search tasks...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract In professional search environments, such as patent search or legal search, search tasks have unique characteristics: 1) users interactively issue several queries for a topic, and 2) users are willing to examine many retrieval results, ie, there is typically an emphasis on recall. Recent surveys have also verified that professional searchers continue to have a strong preference for Boolean queries because they provide a record of what documents were searched.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788009"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788009"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788009; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788009]").text(description); $(".js-view-count[data-work-id=2788009]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788009; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788009']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=2788009]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788009,"title":"Automatic boolean query suggestion for professional search","internal_url":"https://www.academia.edu/2788009/Automatic_boolean_query_suggestion_for_professional_search","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788008"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788008/Improving_the_effectiveness_of_information_retrieval_with_local_context_analysis"><img alt="Research paper thumbnail of Improving the effectiveness of information retrieval with local context analysis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788008/Improving_the_effectiveness_of_information_retrieval_with_local_context_analysis">Improving the effectiveness of information retrieval with local context analysis</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Techniques for automatic query expansion have been extensively studied in information re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Techniques for automatic query expansion have been extensively studied in information research as a means of addressing the word mismatch between queries and documents. These techniques can be categorized as either global or local. While global techniques rely on analysis of a whole collection to discover word relationships, local techniques emphasize analysis of the top-ranked documents retrieved for a query.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dd059e97ad7cf8b48a90d697d65331c0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740405,"asset_id":2788008,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740405/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788008"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788008"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788008; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788008]").text(description); $(".js-view-count[data-work-id=2788008]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788008; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788008']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dd059e97ad7cf8b48a90d697d65331c0" } } $('.js-work-strip[data-work-id=2788008]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788008,"title":"Improving the effectiveness of information retrieval with local context analysis","internal_url":"https://www.academia.edu/2788008/Improving_the_effectiveness_of_information_retrieval_with_local_context_analysis","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740405,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"improving_effectiveness_of_IR.pdf","download_url":"https://www.academia.edu/attachments/30740405/download_file","bulk_download_file_name":"Improving_the_effectiveness_of_informati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740405/improving_effectiveness_of_IR-libre.pdf?1392069429=\u0026response-content-disposition=attachment%3B+filename%3DImproving_the_effectiveness_of_informati.pdf\u0026Expires=1740055930\u0026Signature=NflwDKgBXp4tuLksbbkrCnqvc-aCpLyk5s9~3AEl4qPEfrQ20YSma5kjD~QdvygYrhyIr~vF-k0ECsHC1Z12nfuC8x3coZcErwkC1t6hEpLhK3i4YiVMlyO-CDrlAlzi99c6UJA2riZMdYx2lTQpvFjih317I1E5VNTNxO46-UZqArky6haA8NeJl3Z44B8dM5IeDF6JI-gD5CcbSNqZ08bJ3tQH45Zh-kYb0Om3FnSGRDM6-k6zvVbDjMhkrCjFqWNEqkv07EPEDoXvSDmVg6gXMEK-yupY7DX4vWZLsBFJQbe6gEwWn2RiQa49TaEmVGZCJdSHzxIB78fIDUE8ZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788007"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788007/Indri_at_TREC_2004_Terabyte_track"><img alt="Research paper thumbnail of Indri at TREC 2004: Terabyte track" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788007/Indri_at_TREC_2004_Terabyte_track">Indri at TREC 2004: Terabyte track</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: This paper provides an overview of experiments carried out at the TREC 2004 Terabyte Tr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: This paper provides an overview of experiments carried out at the TREC 2004 Terabyte Track using the Indri search engine. Indri is an efficient, effective distributed search engine. Like INQUERY, it is based on the inference network framework and supports structured queries, but unlike INQUERY, it uses language modeling probabilities within the network which allows for added flexibility.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0b7766a5b45c80408baf1c3763f60fe6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740406,"asset_id":2788007,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740406/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788007"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788007"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788007; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788007]").text(description); $(".js-view-count[data-work-id=2788007]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788007; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788007']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0b7766a5b45c80408baf1c3763f60fe6" } } $('.js-work-strip[data-work-id=2788007]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788007,"title":"Indri at TREC 2004: Terabyte track","internal_url":"https://www.academia.edu/2788007/Indri_at_TREC_2004_Terabyte_track","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740406,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"a460153.pdf","download_url":"https://www.academia.edu/attachments/30740406/download_file","bulk_download_file_name":"Indri_at_TREC_2004_Terabyte_track.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740406/a460153-libre.pdf?1392170159=\u0026response-content-disposition=attachment%3B+filename%3DIndri_at_TREC_2004_Terabyte_track.pdf\u0026Expires=1740055930\u0026Signature=LlGMTM5olUAQAkvvX-QfGGvIyqjW3J24S1Y0k6R6boqmto7-oJoZmbXczgPQ3LIVfW-gv0LVquPWTevRCCY8LUTPTZFGJDisbadmwjEifotpJf58c3FnWmNnIWKBFlofjvy52pN0iTimYNAM0yT3jsaACw~54YnT8ZzRkS3AKkwRK2ZhxcPuYSLEfxBy-f7ZKW9DjbCwCuHFxri91gbVYYLsmv4YhxJoDT4EYZYerJF1ykj5mWGW1yU1NuwU-yed17iarkAJEGbf2OoBMxnGa1QT61SoYPDSlsYTa2ReqGFQWjgItJASwd2Y2cCpGpEZSxa9lyjjgBs4e~PMv2ny6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788006"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788006/Statistical_language_modeling_for_information_retrieval"><img alt="Research paper thumbnail of Statistical language modeling for information retrieval" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788006/Statistical_language_modeling_for_information_retrieval">Statistical language modeling for information retrieval</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: This chapter reviews research and applications in statistical language modeling for inf...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: This chapter reviews research and applications in statistical language modeling for information retrieval (IR) that has emerged within the past several years as a new probabilistic framework for describing information retrieval processes. Generally speaking, statistical language modeling, or more simply, language modeling (LM), refers to the task of estimating a probability distribution that captures statistical regularities of natural language use.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b4d9de387e5a523e793afa47d7ecdd82" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740408,"asset_id":2788006,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740408/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788006"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788006"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788006; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788006]").text(description); $(".js-view-count[data-work-id=2788006]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788006; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788006']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b4d9de387e5a523e793afa47d7ecdd82" } } $('.js-work-strip[data-work-id=2788006]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788006,"title":"Statistical language modeling for information retrieval","internal_url":"https://www.academia.edu/2788006/Statistical_language_modeling_for_information_retrieval","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740408,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"GetTRDoc.pdf","download_url":"https://www.academia.edu/attachments/30740408/download_file","bulk_download_file_name":"Statistical_language_modeling_for_inform.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740408/GetTRDoc-libre.pdf?1392064416=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_language_modeling_for_inform.pdf\u0026Expires=1740055930\u0026Signature=MLO-sxNdE4JCi8hpW6cmKYjlZsVnFyjME7JtHJT~F1LwV39DURDlpmgjauvrBjDQwZglN~HhuXDyO8rGqDS6DruVRtp4PNzzN0Jz-jnRT9KP3w5Y5mjIZonJFudgYHjPFyIOpjaCvphp3C5WHS6KlREs-Sc3JZnRGmxa-tdekhaLxnll~Q0tPl9LTqtotNe6fH9BcE~ENDgOn4j9Ac~TU4oaHoVFynWcAEJ8JLSFA8yxOr6umeXjomfsESiH7jybHKezeQfHQIVm2XtcKRcjmojDlkONfbQb5rf1OfbUN0VWs5gu1-RM6mceVMdRiIQIQ7j~WICIeAVgG2YTuU2TWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="653" id="papers"><div class="js-work-strip profile--work_container" data-work-id="2788025"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788025/Northeast_Artificial_Intelligence_Consortium_NAIC_Volume_6_Building_an_Intelligent_Assistant_The_Acquisition_Integration_and_Maintenance_of_Complex_Distributed_Tasks"><img alt="Research paper thumbnail of Northeast Artificial Intelligence Consortium (NAIC). Volume 6. Building an Intelligent Assistant: The Acquisition, Integration, and Maintenance of Complex Distributed Tasks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788025/Northeast_Artificial_Intelligence_Consortium_NAIC_Volume_6_Building_an_Intelligent_Assistant_The_Acquisition_Integration_and_Maintenance_of_Complex_Distributed_Tasks">Northeast Artificial Intelligence Consortium (NAIC). Volume 6. Building an Intelligent Assistant: The Acquisition, Integration, and Maintenance of Complex Distributed Tasks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Sy...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the Office of Scientific Research. Its purpose was to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress during the existence of the NAIC on the technical research tasks undertaken at the member universities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e751ee06b564551b1ccdb73c9eac0f39" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740565,"asset_id":2788025,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740565/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788025"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788025"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788025; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788025]").text(description); $(".js-view-count[data-work-id=2788025]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788025; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788025']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e751ee06b564551b1ccdb73c9eac0f39" } } $('.js-work-strip[data-work-id=2788025]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788025,"title":"Northeast Artificial Intelligence Consortium (NAIC). Volume 6. Building an Intelligent Assistant: The Acquisition, Integration, and Maintenance of Complex Distributed Tasks","internal_url":"https://www.academia.edu/2788025/Northeast_Artificial_Intelligence_Consortium_NAIC_Volume_6_Building_an_Intelligent_Assistant_The_Acquisition_Integration_and_Maintenance_of_Complex_Distributed_Tasks","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740565,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"GetTRDoc.pdf","download_url":"https://www.academia.edu/attachments/30740565/download_file","bulk_download_file_name":"Northeast_Artificial_Intelligence_Consor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740565/GetTRDoc-libre.pdf?1392107392=\u0026response-content-disposition=attachment%3B+filename%3DNortheast_Artificial_Intelligence_Consor.pdf\u0026Expires=1740055929\u0026Signature=JS3DJ9tu6ejKt62QWYuS1Gv-X1Qg-AFDYb2It0ie0XhY9wN5AFA3SgPW~R2PHxYcR2IVJQ6NmKJlGZoMY5O6akGPlTFEVV977evF0-RmJNQA2JoiKSY7YA3~UpHlEDVk1t-8wVvjUks1YT0RDD~RCm-8xACtqWmzch03UmTwjijFJ1~MmI0PmKpp5kjHDKj~R27pkBr1SkFjIslLYHzfJWFbjW90Wam16Z7hULhkKIk69yF9KaoqLXQGiJi4aH4e4aeKcXsQKYzBHKwwBU~ilRird-WAtZpxIxmzyvhYk9WusK3Qs6jy2LkC~s6HkbnqkNjXMXFjmLatmnw2vZLGpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788024"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788024/Corpus_Based_Stemming_using_Co_occurrence_of_Word"><img alt="Research paper thumbnail of Corpus-Based Stemming using Co-occurrence of Word" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788024/Corpus_Based_Stemming_using_Co_occurrence_of_Word">Corpus-Based Stemming using Co-occurrence of Word</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Stemming is used in many information retrieval (IR) systems to reduce variant word forms to commo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Stemming is used in many information retrieval (IR) systems to reduce variant word forms to common roots. It is one of the simplest applications of natural language processing to IR, and one of the most e ective in terms of user acceptance and consistent, though small, retrieval improvements. Current stemming techniques do not, however, re ect the language use in speci c corpora and this can lead to occasional serious retrieval failures. We propose a technique for using corpus-based word variant co-occurrence statistics to modify or create a stemmer. The experimental results generated using English newspaper and legal text and Spanish text demonstrate the viability of this technique and its advantages relative to conventional approaches.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="32e79e5d0f348e914eb83163456dd95f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740561,"asset_id":2788024,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740561/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788024"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788024"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788024; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788024]").text(description); $(".js-view-count[data-work-id=2788024]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788024; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788024']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "32e79e5d0f348e914eb83163456dd95f" } } $('.js-work-strip[data-work-id=2788024]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788024,"title":"Corpus-Based Stemming using Co-occurrence of Word","internal_url":"https://www.academia.edu/2788024/Corpus_Based_Stemming_using_Co_occurrence_of_Word","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740561,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"10.1.1.35.604.pdf","download_url":"https://www.academia.edu/attachments/30740561/download_file","bulk_download_file_name":"Corpus_Based_Stemming_using_Co_occurrenc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740561/10.1.1.35.604-libre.pdf?1392055682=\u0026response-content-disposition=attachment%3B+filename%3DCorpus_Based_Stemming_using_Co_occurrenc.pdf\u0026Expires=1740055929\u0026Signature=SdCJjbvMVQ5o~SO647pe4nqfKqfDb0VosjGmDeKmVwNZCsMDUCmpCBPifksKsNmXT4DzBPN19Z2GKzzh4rZZfUAOz82ozVuODrw5hg3Q9cT0z3EVO96xch~Fw9AqVudMu~oI2eGNityeppLIZv5bG7qBYDxZL8j-3WQNTcz0dEY-cP3VisHTR39IQaP2InGFCbydLVsyzGVaHTU5xgY7Lupawc4hloUglI8TfzuHvhuFwGrH0sAP9T2cn3Urlav~0JZvnwsvFSi7x4TjEEnDHXHnTpGGR3Hljo6rFJWtc~GRcg3Qc66oIe3kQORQ8kDDdSpcOJocfSHghLSlJEogsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788023"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788023/Hierarchical_language_models_for_expert_finding_in_enterprise_corpora"><img alt="Research paper thumbnail of Hierarchical language models for expert finding in enterprise corpora" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788023/Hierarchical_language_models_for_expert_finding_in_enterprise_corpora">Hierarchical language models for expert finding in enterprise corpora</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Enterprise corpora contain evidence of what employees work on and therefore can be used to automa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Enterprise corpora contain evidence of what employees work on and therefore can be used to automatically find experts on a given topic. We present a general approach for representing the knowledge of a potential expert as a mixture of language models from associated documents. First we retrieve documents given the expert's name using a generative probabilistic technique and weight the retrieved documents according to expert-specific posterior distribution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7a01a546d7870904300310c78f813f6b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30838833,"asset_id":2788023,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30838833/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788023"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788023"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788023; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788023]").text(description); $(".js-view-count[data-work-id=2788023]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788023; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788023']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7a01a546d7870904300310c78f813f6b" } } $('.js-work-strip[data-work-id=2788023]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788023,"title":"Hierarchical language models for expert finding in enterprise corpora","internal_url":"https://www.academia.edu/2788023/Hierarchical_language_models_for_expert_finding_in_enterprise_corpora","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30838833,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"hierarchical_language_models_for_expert_finding_in_enterprise_corpora.pdf","download_url":"https://www.academia.edu/attachments/30838833/download_file","bulk_download_file_name":"Hierarchical_language_models_for_expert.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30838833/hierarchical_language_models_for_expert_finding_in_enterprise_corpora-libre.pdf?1393888348=\u0026response-content-disposition=attachment%3B+filename%3DHierarchical_language_models_for_expert.pdf\u0026Expires=1740055929\u0026Signature=gx6bM6RU45R-q7sl0PAJ0Bnuf3Y3cgQtr4jMzxFArU8o4TF3bH3oRZ9XwMUGETT1kh7uujE50zkidPtBPiJjduKrovemUOAVje5gnc7PR55vE-6G9rn~GvzOgsaLJ9QrlNRdK~6ASqVEHb-zPZDUUWkAad6v6dPVzrswUSpi06vpc1gc1gTWy6cCEBNNQ9R~BIr~XlcV4JREVCegNz7YGIAY~eQqc8oPRdlGzwfjByD74jJ7uMzWCa3diJsbFQwmyU07IEAyfuNRjv2sCdHg~WH4sCctAxm-S44LGo0QWGFgTSeKy~bJx3JvFCglcfPqISyLhk-DSLryWYncqzhwNQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788022"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788022/Beyond_bags_of_words_Modeling_implicit_user_preferences_in_information_retrieval"><img alt="Research paper thumbnail of Beyond bags of words: Modeling implicit user preferences in information retrieval" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788022/Beyond_bags_of_words_Modeling_implicit_user_preferences_in_information_retrieval">Beyond bags of words: Modeling implicit user preferences in information retrieval</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper reports on recent work in the field of information retrieval that attempts to...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper reports on recent work in the field of information retrieval that attempts to go beyond the overly simplified approach of representing documents and queries as bags of words. Simple models make it difficult to accurately model a user's information need. The model presented in the paper is based on Markov random fields and allows almost arbitrary features to be encoded. This provides a powerful mechanism for modeling many of the implicit constraints a user has in mind when formulating a query.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="629890029babb5f4c5a66148a87a4f65" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30838829,"asset_id":2788022,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30838829/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788022"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788022"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788022; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788022]").text(description); $(".js-view-count[data-work-id=2788022]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788022; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788022']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "629890029babb5f4c5a66148a87a4f65" } } $('.js-work-strip[data-work-id=2788022]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788022,"title":"Beyond bags of words: Modeling implicit user preferences in information retrieval","internal_url":"https://www.academia.edu/2788022/Beyond_bags_of_words_Modeling_implicit_user_preferences_in_information_retrieval","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30838829,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"beyond_bags_of_words_modeling_implicit_user_preferences_in_information.pdf","download_url":"https://www.academia.edu/attachments/30838829/download_file","bulk_download_file_name":"Beyond_bags_of_words_Modeling_implicit_u.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30838829/beyond_bags_of_words_modeling_implicit_user_preferences_in_information-libre.pdf?1392143968=\u0026response-content-disposition=attachment%3B+filename%3DBeyond_bags_of_words_Modeling_implicit_u.pdf\u0026Expires=1740055929\u0026Signature=XmS8cELNYJwCEMKKON-7tygkDcU2~PWjXMOKBFZi7X5mRAqwGYE1UpA8R82Om9nHZI5dYduzN-yW8eH7tha4NaqO~uia5ZSjEgLaS0vQSZG5JwT3BqEzNYg08iOLpXc6VAdC4muSQr5C7OUrlBFh35Zoz47QENfQgiIbGXEPfG7QJPBPveozA7QKFadweEu3Jh37oQFtDtX8DQ6lh5tnGykjezhfBwQ2h0W9FEEWYDK1jWwGhth4QJMw-0~0hIcmevPdq7GDy5XWcbTeyRnkRHkIfPdFN8WU63N8tVOFGa8nYl6OB44IZskuDxGoxZuaLRfs0LuWI5OvJnTsbd29eA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788021"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788021/Efficient_document_retrieval_in_main_memory"><img alt="Research paper thumbnail of Efficient document retrieval in main memory" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788021/Efficient_document_retrieval_in_main_memory">Efficient document retrieval in main memory</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Disk access performance is a major bottleneck in traditional information retrieval syste...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Disk access performance is a major bottleneck in traditional information retrieval systems. Compared to system memory, disk bandwidth is poor, and seek times are worse. We circumvent this problem by considering query evaluation strategies in main memory. We show how new accumulator trimming techniques combined with inverted list skipping can produce extremely high performance retrieval systems without resorting to methods that may harm effectiveness.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="07969388f8a1e2899b91d2cdaec797e4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740554,"asset_id":2788021,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740554/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788021"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788021"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788021; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788021]").text(description); $(".js-view-count[data-work-id=2788021]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788021; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788021']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "07969388f8a1e2899b91d2cdaec797e4" } } $('.js-work-strip[data-work-id=2788021]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788021,"title":"Efficient document retrieval in main memory","internal_url":"https://www.academia.edu/2788021/Efficient_document_retrieval_in_main_memory","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740554,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Efficient_document_retrieval_in_main_memory.pdf","download_url":"https://www.academia.edu/attachments/30740554/download_file","bulk_download_file_name":"Efficient_document_retrieval_in_main_mem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740554/Efficient_document_retrieval_in_main_memory-libre.pdf?1391809967=\u0026response-content-disposition=attachment%3B+filename%3DEfficient_document_retrieval_in_main_mem.pdf\u0026Expires=1740055929\u0026Signature=NRiDsuf6-Nt0Ddzbz3a9rwCO6di5OHVCQp1dizGDD4AfJHO5uQKE38VXaa-3srwe63Tzhg3TXlztvNmkyBd8U2z~DgBjgruKTZ-CT8rK2--SmO5QX7GwsJaavR6gjsUP8XafVedASeeAAq0rEjxazRq~p7qWS2BjbS3Ury1JXvKKlA5mzwEQYD6hwmNTN42rFVFK-GnJBDaVSqhGNx6LvPKHSvqC~mGaX-SntVXKb3mfihXFzpkquEQSKBPhu7UfwNCyALNFCdc2nQPcpD3f0QC2utlzthvzSVCLGhV8m2HTIag7tYwwYooc6v-mD1rAUtz7eCo3-ROtpi2t2CoTtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788020"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788020/PIC_matrices_A_computationally_tractable_class_of_probabilistic_query_operators"><img alt="Research paper thumbnail of PIC matrices: A computationally tractable class of probabilistic query operators" class="work-thumbnail" src="https://attachments.academia-assets.com/31008972/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788020/PIC_matrices_A_computationally_tractable_class_of_probabilistic_query_operators">PIC matrices: A computationally tractable class of probabilistic query operators</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The inference network model of information retrieval allows a probabilistic interpretati...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The inference network model of information retrieval allows a probabilistic interpretation of query operators. In particular, Boolean query operators are conveniently modeled as link matrices of the Bayesian Network. Prior work has shown, however, that these operators do not perform as well as the pnorm operators used for modeling query operators in the context of the vector space model. This motivates the search for alternative probabilistic formulations for these operators.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="975cf95bb6e07d1dc21521c198bcae31" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":31008972,"asset_id":2788020,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/31008972/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788020"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788020"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788020; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788020]").text(description); $(".js-view-count[data-work-id=2788020]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788020; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788020']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "975cf95bb6e07d1dc21521c198bcae31" } } $('.js-work-strip[data-work-id=2788020]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788020,"title":"PIC matrices: A computationally tractable class of probabilistic query operators","internal_url":"https://www.academia.edu/2788020/PIC_matrices_A_computationally_tractable_class_of_probabilistic_query_operators","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":31008972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/31008972/thumbnails/1.jpg","file_name":"pic_matrices_a_computationally_tractable_class_of_probabilistic_query_operators.pdf","download_url":"https://www.academia.edu/attachments/31008972/download_file","bulk_download_file_name":"PIC_matrices_A_computationally_tractable.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/31008972/pic_matrices_a_computationally_tractable_class_of_probabilistic_query_operators-libre.pdf?1392251201=\u0026response-content-disposition=attachment%3B+filename%3DPIC_matrices_A_computationally_tractable.pdf\u0026Expires=1740055929\u0026Signature=bkN5sozrd1dgYjvL9P7pOSySMbM8hNnecoIIQPiWFm4YpH6LabzDcUknWCj38tX4G9ZzX0rR6jua5AdYwicO~GHelyibsMHZzb2JIsRXtzzvf39VNDdIEGjz6Wu1RXxb~CQsxGxbCkeBqXaFvz7twaoAXlYtfEzZfj5GrEyPY2fy~Yw0JaYAvZjEJ7kO0cfkH8U9ykoJPkMG9H72NmCxfry3D3EjKpPmEyCPRLvO3iRr1Hg0FLbrAGejb-fzzbt4WYbuhkSfwW0C3j4YETN~PGAy-xfEtsievzh~LdXYFNINMvraZ3VvHmREoCk0kSlQzNrp5BrNU~adNvHEldFkWA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788019"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/2788019/Parameterized_concept_weighting_in_verbose_queries"><img alt="Research paper thumbnail of Parameterized concept weighting in verbose queries" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/2788019/Parameterized_concept_weighting_in_verbose_queries">Parameterized concept weighting in verbose queries</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The majority of the current information retrieval models weight the query concepts (eg, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The majority of the current information retrieval models weight the query concepts (eg, terms or phrases) in an unsupervised manner, based solely on the collection statistics. In this paper, we go beyond the unsupervised estimation of concept weights, and propose a parameterized concept weighting model. In our model, the weight of each query concept is determined using a parameterized combination of diverse importance features.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788019"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788019"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788019; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788019]").text(description); $(".js-view-count[data-work-id=2788019]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788019; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788019']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=2788019]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788019,"title":"Parameterized concept weighting in verbose queries","internal_url":"https://www.academia.edu/2788019/Parameterized_concept_weighting_in_verbose_queries","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788018"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788018/Probabilistic_retrieval_of_ocr_degraded_text_using_n_grams"><img alt="Research paper thumbnail of Probabilistic retrieval of ocr degraded text using n-grams" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788018/Probabilistic_retrieval_of_ocr_degraded_text_using_n_grams">Probabilistic retrieval of ocr degraded text using n-grams</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The retrieval of OCR degraded text using n-gram formulations within a probabilistic retrieval sys...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The retrieval of OCR degraded text using n-gram formulations within a probabilistic retrieval system is examined in this paper. Direct retrieval of documents using n-gram databases of 2 and 3-grams or 2, 3, 4 and 5-grams resulted in improved retrieval performance over standard (word based) queries on the same data when a level of 10 percent degradation or worse was achieved.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8f218f0c21e6b451b5391e3f67853974" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740569,"asset_id":2788018,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740569/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788018"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788018"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788018; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788018]").text(description); $(".js-view-count[data-work-id=2788018]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788018; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788018']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8f218f0c21e6b451b5391e3f67853974" } } $('.js-work-strip[data-work-id=2788018]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788018,"title":"Probabilistic retrieval of ocr degraded text using n-grams","internal_url":"https://www.academia.edu/2788018/Probabilistic_retrieval_of_ocr_degraded_text_using_n_grams","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Probabilistic_Retrieval_of_OCR_Degraded_Text.pdf","download_url":"https://www.academia.edu/attachments/30740569/download_file","bulk_download_file_name":"Probabilistic_retrieval_of_ocr_degraded.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740569/Probabilistic_Retrieval_of_OCR_Degraded_Text-libre.pdf?1392098466=\u0026response-content-disposition=attachment%3B+filename%3DProbabilistic_retrieval_of_ocr_degraded.pdf\u0026Expires=1740055929\u0026Signature=f0b7Ar8qdSzSF0t2nYcxF-JM5yCQxzb3LOEBEGbO17zXAgtVZrYj9z85i5ZC5lxtaNo94v3u48GsG7rMyO~l-3R~fsvfrZa~d6Yb9Lo8aHaWvw1k9RkzqOP5EdJnj4Zgb7KR3SwxiRZDhR4XtfLU4mcQVsGv~CgfMrvakkHj2~1X2z1A7Z35DkFqrP4yd2Ib86zd0OaaoQV76P6EYdKuptgDjoOILNWzPIa18HiU5mO9uPYbaQVOySgOXhwLBITQ0lg~INsCsC5RYprL3-6ECEi68kpdqHd3BB2Sk4O-MQVjxTFJwnG84Ts5fBA~nFD54S5cbhDd7K854MMdTyovvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788017"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788017/Novelty_detection_based_on_sentence_level_patterns"><img alt="Research paper thumbnail of Novelty detection based on sentence level patterns" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788017/Novelty_detection_based_on_sentence_level_patterns">Novelty detection based on sentence level patterns</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The detection of new information in a document stream is an important component of many ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The detection of new information in a document stream is an important component of many potential applications. In this paper, a new novelty detection approach based on the identification of sentence level patterns is proposed. Given a user's information need, some patterns in sentences such as combinations of query words, named entities and phrases, may contain more important and relevant information than single words.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="57d91c0544f5c760a24d76a623874afb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740520,"asset_id":2788017,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740520/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788017"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788017"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788017; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788017]").text(description); $(".js-view-count[data-work-id=2788017]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788017; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788017']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "57d91c0544f5c760a24d76a623874afb" } } $('.js-work-strip[data-work-id=2788017]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788017,"title":"Novelty detection based on sentence level patterns","internal_url":"https://www.academia.edu/2788017/Novelty_detection_based_on_sentence_level_patterns","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740520,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"ir-435.pdf","download_url":"https://www.academia.edu/attachments/30740520/download_file","bulk_download_file_name":"Novelty_detection_based_on_sentence_leve.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740520/ir-435-libre.pdf?1391872615=\u0026response-content-disposition=attachment%3B+filename%3DNovelty_detection_based_on_sentence_leve.pdf\u0026Expires=1740055929\u0026Signature=Tr4l91RtkjtymZPHeGbVb5f6somz4akc0Mic0x-z6EHB55cGg-JjSrM7IqDmzUFN6Rp6oEzKl-T-YHvk-ZIVISwKKBLOiVCxM7l1yepa5o0ijG3CJQq6o-4kxYCB2OIkbFZdqLDG6M~Q3aBeA~6Czn0CsyqigruTWiej-wzLe860aT1XPtfWcR0jpmbHKwJGgp5t8sTChuyWYeyr3Mo9dN9nhvfrgDKk6KC~5q8qsg-9Hh7Ck~U1MfY3Ue2OpzivL0eQpZkQo8pT7cpApx~c5vduGywVwFCyir4IXfMQh8jDfMXxtF8oqGrJ-IZsWcJUZ1Pc0szZNUbgMhnj3DO~qA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788016"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/2788016/Data_Engineering"><img alt="Research paper thumbnail of Data Engineering" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/2788016/Data_Engineering">Data Engineering</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788016"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788016"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788016; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788016]").text(description); $(".js-view-count[data-work-id=2788016]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788016; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788016']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=2788016]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788016,"title":"Data Engineering","internal_url":"https://www.academia.edu/2788016/Data_Engineering","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788015"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788015/Evaluating_search_in_personal_social_media_collections"><img alt="Research paper thumbnail of Evaluating search in personal social media collections" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788015/Evaluating_search_in_personal_social_media_collections">Evaluating search in personal social media collections</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The prevalence of social media applications is generating potentially large personal arc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The prevalence of social media applications is generating potentially large personal archives of posts, tweets, and other communications. The existence of these archives creates a need for search tools, which can be seen as an extension of current desktop search services. Little is currently known about the best search techniques for personal archives of social data, because of the difficulty of creating test collections.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8173561b94c7107f93fecf467078afaf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740489,"asset_id":2788015,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740489/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788015"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788015"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788015; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788015]").text(description); $(".js-view-count[data-work-id=2788015]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788015; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788015']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8173561b94c7107f93fecf467078afaf" } } $('.js-work-strip[data-work-id=2788015]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788015,"title":"Evaluating search in personal social media collections","internal_url":"https://www.academia.edu/2788015/Evaluating_search_in_personal_social_media_collections","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740489,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"wsdm479-lee.pdf","download_url":"https://www.academia.edu/attachments/30740489/download_file","bulk_download_file_name":"Evaluating_search_in_personal_social_med.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740489/wsdm479-lee-libre.pdf?1392031947=\u0026response-content-disposition=attachment%3B+filename%3DEvaluating_search_in_personal_social_med.pdf\u0026Expires=1740055930\u0026Signature=FQsuoJpqZ8HEB~GAd9CPKFMxTuLX8ICDjCKekF1vmfkj8YZu0oXIpkxDb7w7rZjNMCQNbeaVW4OUPpMLdZHqisz6sBhUG8G6iXrWpB9bEzVQnuhQhIXvhEmpIUsyzvh3qyhSX6p81hMz6EqENtX~dkHHccFxi3TKRc1STdKlUOBzQI2gTdsniRTn1xvizeva8yeLiO3~NWrshjSjPuQfZSOC9AbJZen7tCSxYsn4kLXoo1dhv-9ZwUO~ZwfnLti32gx3BjZwYJx6N0nxRRLytOEjmEPWTFpOsLZrC9me3udUvQxEzdrXWoVkHgfLQdBuSJWSn-m1QyEMB9sI0QXobQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788014"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788014/The_History_of_Information_Retrieval_Research"><img alt="Research paper thumbnail of The History of Information Retrieval Research" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788014/The_History_of_Information_Retrieval_Research">The History of Information Retrieval Research</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper describes a brief history of the research and development of information retr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper describes a brief history of the research and development of information retrieval systems starting with the creation of electromechanical searching devices, through to the early adoption of computers to search for items that are relevant to a user's query. The advances achieved by information retrieval researchers from the 1950s through to the present day are detailed next, focusing on the process of locating relevant information. The paper closes with speculation on where the future of information retrieval lies.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="99fb67474ff834ee2703deba2cc3d638" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740491,"asset_id":2788014,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740491/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788014"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788014"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788014; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788014]").text(description); $(".js-view-count[data-work-id=2788014]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788014; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788014']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "99fb67474ff834ee2703deba2cc3d638" } } $('.js-work-strip[data-work-id=2788014]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788014,"title":"The History of Information Retrieval Research","internal_url":"https://www.academia.edu/2788014/The_History_of_Information_Retrieval_Research","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740491,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"IEEE2012.pdf","download_url":"https://www.academia.edu/attachments/30740491/download_file","bulk_download_file_name":"The_History_of_Information_Retrieval_Res.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740491/IEEE2012-libre.pdf?1391868773=\u0026response-content-disposition=attachment%3B+filename%3DThe_History_of_Information_Retrieval_Res.pdf\u0026Expires=1740055930\u0026Signature=Jx-th8cPXs04-BTSfTlXsr7k7hM7m4kGh6V-a2h94QJsij-YuLKudcvo4~qiPeq7JAsDsOUz1h2tAMeeYzQ~kWKLs4spEgDH964mTRj51wv5KGhC7T5NbXCwJEOuXlWqxYr-HxikULo51~XLrSZmF1aVAX~~gs6duc7U8HOhcX3UU4HT1DNaalgzNTwlV7FBXV3DRs985zDN-ZxqhBZk3h2S3dsDFg05RF0Zh-IurRHBgQTYnrEbQyV~qiXdPKx-QSgM-mN39w3LyXNLjwPGeA6g-f0lxLxeXjGyV6Nydg3dPTseSA~zgKGvg3qNKBX4NJMJehD-smjG3M8X4ePuWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788013"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788013/An_evaluation_of_query_processing_strategies_using_the_TIPSTER_collection"><img alt="Research paper thumbnail of An evaluation of query processing strategies using the TIPSTER collection" class="work-thumbnail" src="https://attachments.academia-assets.com/30889753/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788013/An_evaluation_of_query_processing_strategies_using_the_TIPSTER_collection">An evaluation of query processing strategies using the TIPSTER collection</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The TIPSTER collection is unusual because of both its size and detail. In particular, it...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The TIPSTER collection is unusual because of both its size and detail. In particular, it describes a set of information needs, as opposed to traditional queries. These detailed representations of information need are an opportunity for research on different methods of formulating queries. This paper describes several methods of constructing queries for the INQUERY information retrieval system, and then evaluates those methods on the TIPSTER document collection. Both AdHoc and Routing query processing methods are evaluated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="49a4c58c23fbcdb5f17c9dba94d45952" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30889753,"asset_id":2788013,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30889753/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788013"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788013"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788013; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788013]").text(description); $(".js-view-count[data-work-id=2788013]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788013; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788013']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "49a4c58c23fbcdb5f17c9dba94d45952" } } $('.js-work-strip[data-work-id=2788013]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788013,"title":"An evaluation of query processing strategies using the TIPSTER collection","internal_url":"https://www.academia.edu/2788013/An_evaluation_of_query_processing_strategies_using_the_TIPSTER_collection","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30889753,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/30889753/thumbnails/1.jpg","file_name":"an_evaluation_of_query_processing_strategies_using_the_tipster_collection.pdf","download_url":"https://www.academia.edu/attachments/30889753/download_file","bulk_download_file_name":"An_evaluation_of_query_processing_strate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30889753/an_evaluation_of_query_processing_strategies_using_the_tipster_collection-libre.pdf?1392161369=\u0026response-content-disposition=attachment%3B+filename%3DAn_evaluation_of_query_processing_strate.pdf\u0026Expires=1740055930\u0026Signature=dPpd9y4PZo1gIN2x8l7dESin3Mgzx5CqZoSClMRBS1MarY2pObXL4EXSEpnPrEDqvjecrRLv7gk9KVhzBV0K2u-ZHvS3V65PZ-NVfsnc82lcK~4nfB85UipePTSi7EugY9OOT8SJkQkpn5rp1Ev3298zPaPBtPkS76N1jYW0NBFmT8FCFpMIsSzhoX1bTG~ATDJaeuFRKisbtrUbgpwvGP8j1EgAmLM2CFaK~HOD-grOutcLWI4PF1JetSy7T93qHfC3HYHSY8l3T6lQLIPgYGr10WEzBxGKMrXhnTd58H5rShZi27k0Ic80TcGsp~vlDmxj0~c9kE7MzX2BGxpO4w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788012"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788012/Building_a_semantic_representation_for_personal_information"><img alt="Research paper thumbnail of Building a semantic representation for personal information" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788012/Building_a_semantic_representation_for_personal_information">Building a semantic representation for personal information</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract A typical collection of personal information contains many documents and mentions many c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract A typical collection of personal information contains many documents and mentions many concepts (eg, person names, events, etc.). In this environment, associative browsing between these concepts and documents can be useful as a complement for search. Previous approaches in the area of semantic desktops aimed at addressing this task. However, they were not practical because they require tedious manual annotation by the user.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="23016aa3f37a3b9cb760be58412f8b0d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740436,"asset_id":2788012,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740436/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788012"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788012"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788012; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788012]").text(description); $(".js-view-count[data-work-id=2788012]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788012; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788012']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "23016aa3f37a3b9cb760be58412f8b0d" } } $('.js-work-strip[data-work-id=2788012]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788012,"title":"Building a semantic representation for personal information","internal_url":"https://www.academia.edu/2788012/Building_a_semantic_representation_for_personal_information","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740436,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"cikm_2010_semantic_rep_short.pdf","download_url":"https://www.academia.edu/attachments/30740436/download_file","bulk_download_file_name":"Building_a_semantic_representation_for_p.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740436/cikm_2010_semantic_rep_short-libre.pdf?1392118137=\u0026response-content-disposition=attachment%3B+filename%3DBuilding_a_semantic_representation_for_p.pdf\u0026Expires=1740055930\u0026Signature=aGtPqI4m10ROIVjTWcDF3XYUb3uVGVLRGiMXFVEmvBzp-8Ol13rj47qpUo7IohsIlFdhd-R2QOOrCTUQV32pqYBdfBp9iR8jUj18XpFv9c1SxldVG7QvM-us-OqE7xFsdr9x9fMU7FwFi~4pkeBF-7LO98ZqXf2GZ5T37K5ApUTE6cAca9-Ll6q837x5RLKDRr4FPqOkKjAv2~RhHL3bxIWTYOwD7cOFh0J7xWgPBokY0BCNzO~bqaswOX~MpxeR-uZ8SLpl98FbvwiVDzpTRNdyzkhlBLnS9YwJpIjf7SMfVQUwxlzcG-Vo6~nes6EsdKrE7OSnfQ~7l8le68KyIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788011"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788011/Representing_documents_with_named_entities_for_story_link_detection_SLD_"><img alt="Research paper thumbnail of Representing documents with named entities for story link detection (SLD)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788011/Representing_documents_with_named_entities_for_story_link_detection_SLD_">Representing documents with named entities for story link detection (SLD)</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Several information organization, access, and filtering systems can benefit from differe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Several information organization, access, and filtering systems can benefit from different kind of document representations than those used in traditional Information Retrieval (IR). Topic Detection and Tracking (TDT) is an example of such an application. In this paper we demonstrate that named entities serve as better choices of units for document representation over all words.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="34060e3340edc7cd4ce87419fcb2f211" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30838824,"asset_id":2788011,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30838824/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788011"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788011"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788011; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788011]").text(description); $(".js-view-count[data-work-id=2788011]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788011; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788011']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "34060e3340edc7cd4ce87419fcb2f211" } } $('.js-work-strip[data-work-id=2788011]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788011,"title":"Representing documents with named entities for story link detection (SLD)","internal_url":"https://www.academia.edu/2788011/Representing_documents_with_named_entities_for_story_link_detection_SLD_","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30838824,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"representing_documents_with_named_entities_for_story_link_detection_sld.pdf","download_url":"https://www.academia.edu/attachments/30838824/download_file","bulk_download_file_name":"Representing_documents_with_named_entiti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30838824/representing_documents_with_named_entities_for_story_link_detection_sld-libre.pdf?1392067388=\u0026response-content-disposition=attachment%3B+filename%3DRepresenting_documents_with_named_entiti.pdf\u0026Expires=1740055930\u0026Signature=DM4l55bJgSx5PNBhApsJuLMMwFcHMWR~ludIq9kZu92KfFMhG0uLRFxr8AhYrc7vZAeIuaHrVzsNRXdK-fQGm8~BToKWn2FIEJdv2bEIDWf-WnUhZRZfSgUdHKsOE3GFSiSq6-qtG9Q4JTH-qe11X6tgrJyNIdevUcGTH8dy7o4jGcmf~mGWKnrtl~bo-iXKIXbVJkKBlAyKApbVf3Rq4ZeGjcPh~lxQipBzwZohKqd9SuAYuyq2a4jD3L-0mdGMYywu-~I98ld6poKzhILaYAdXY9FYbdpRfLqWzh2Cxj97f8QSjKzOLnF88kO~3l4j~8MtMz0Kpn-AzQ3AKJwi1A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788010"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788010/Combining_automatic_and_manual_index_representations_in_probabilistic_retrieval"><img alt="Research paper thumbnail of Combining automatic and manual index representations in probabilistic retrieval" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788010/Combining_automatic_and_manual_index_representations_in_probabilistic_retrieval">Combining automatic and manual index representations in probabilistic retrieval</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Results from research in information retrieval suggest that significant improvements in retrieval...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Results from research in information retrieval suggest that significant improvements in retrieval effectiveness could be obtained by combining results from multiple index representations and query strategies. Recently, an inference network based probabilistic retrieval model has been proposed, which views information retrieval as an evidential reasoning process in which multiple sources of evidence about document and query content are combined to estimate the relevance probabilities.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0bb05b014ff7082e526302b789f7379f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740448,"asset_id":2788010,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740448/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788010"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788010"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788010; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788010]").text(description); $(".js-view-count[data-work-id=2788010]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788010; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788010']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0bb05b014ff7082e526302b789f7379f" } } $('.js-work-strip[data-work-id=2788010]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788010,"title":"Combining automatic and manual index representations in probabilistic retrieval","internal_url":"https://www.academia.edu/2788010/Combining_automatic_and_manual_index_representations_in_probabilistic_retrieval","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740448,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"rajashekar95combining.pdf","download_url":"https://www.academia.edu/attachments/30740448/download_file","bulk_download_file_name":"Combining_automatic_and_manual_index_rep.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740448/rajashekar95combining-libre.pdf?1391834935=\u0026response-content-disposition=attachment%3B+filename%3DCombining_automatic_and_manual_index_rep.pdf\u0026Expires=1740055930\u0026Signature=GlCAkbDl8oGPO0hfXR8y7dwufLyoQkmI9h7zk0AF6~-5P6znsYDzPw2eT9NuE7vvbsjHLVphL5lcLDMqdlEYgsTWbjedtwIAcPmTuHYR~KfSCNV4~SANJAjMhFUE1qzbZvOym9lbQiY8U~rXu-TBPt6usJaF5vcv70qfLx1WG~nGVyfsAR~uCoTdP~1-O8635nlzrWfcR7w8fkPM6NVshPDmQ7n3tWAMRxMTk8WxHTu5AX8K5p~d5EthC-4Nm79N7TCcJN1ZU02LIO-FcpNzf0wX9Nd0oRu83sRXtNE3QNblly1EzP8RfXUg4jbOgTdgFygh8uySRHrme84kKpBJmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788009"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/2788009/Automatic_boolean_query_suggestion_for_professional_search"><img alt="Research paper thumbnail of Automatic boolean query suggestion for professional search" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/2788009/Automatic_boolean_query_suggestion_for_professional_search">Automatic boolean query suggestion for professional search</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract In professional search environments, such as patent search or legal search, search tasks...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract In professional search environments, such as patent search or legal search, search tasks have unique characteristics: 1) users interactively issue several queries for a topic, and 2) users are willing to examine many retrieval results, ie, there is typically an emphasis on recall. Recent surveys have also verified that professional searchers continue to have a strong preference for Boolean queries because they provide a record of what documents were searched.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788009"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788009"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788009; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788009]").text(description); $(".js-view-count[data-work-id=2788009]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788009; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788009']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=2788009]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788009,"title":"Automatic boolean query suggestion for professional search","internal_url":"https://www.academia.edu/2788009/Automatic_boolean_query_suggestion_for_professional_search","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788008"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788008/Improving_the_effectiveness_of_information_retrieval_with_local_context_analysis"><img alt="Research paper thumbnail of Improving the effectiveness of information retrieval with local context analysis" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788008/Improving_the_effectiveness_of_information_retrieval_with_local_context_analysis">Improving the effectiveness of information retrieval with local context analysis</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Techniques for automatic query expansion have been extensively studied in information re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Techniques for automatic query expansion have been extensively studied in information research as a means of addressing the word mismatch between queries and documents. These techniques can be categorized as either global or local. While global techniques rely on analysis of a whole collection to discover word relationships, local techniques emphasize analysis of the top-ranked documents retrieved for a query.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dd059e97ad7cf8b48a90d697d65331c0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740405,"asset_id":2788008,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740405/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788008"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788008"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788008; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788008]").text(description); $(".js-view-count[data-work-id=2788008]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788008; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788008']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dd059e97ad7cf8b48a90d697d65331c0" } } $('.js-work-strip[data-work-id=2788008]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788008,"title":"Improving the effectiveness of information retrieval with local context analysis","internal_url":"https://www.academia.edu/2788008/Improving_the_effectiveness_of_information_retrieval_with_local_context_analysis","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740405,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"improving_effectiveness_of_IR.pdf","download_url":"https://www.academia.edu/attachments/30740405/download_file","bulk_download_file_name":"Improving_the_effectiveness_of_informati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740405/improving_effectiveness_of_IR-libre.pdf?1392069429=\u0026response-content-disposition=attachment%3B+filename%3DImproving_the_effectiveness_of_informati.pdf\u0026Expires=1740055930\u0026Signature=NflwDKgBXp4tuLksbbkrCnqvc-aCpLyk5s9~3AEl4qPEfrQ20YSma5kjD~QdvygYrhyIr~vF-k0ECsHC1Z12nfuC8x3coZcErwkC1t6hEpLhK3i4YiVMlyO-CDrlAlzi99c6UJA2riZMdYx2lTQpvFjih317I1E5VNTNxO46-UZqArky6haA8NeJl3Z44B8dM5IeDF6JI-gD5CcbSNqZ08bJ3tQH45Zh-kYb0Om3FnSGRDM6-k6zvVbDjMhkrCjFqWNEqkv07EPEDoXvSDmVg6gXMEK-yupY7DX4vWZLsBFJQbe6gEwWn2RiQa49TaEmVGZCJdSHzxIB78fIDUE8ZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788007"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788007/Indri_at_TREC_2004_Terabyte_track"><img alt="Research paper thumbnail of Indri at TREC 2004: Terabyte track" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788007/Indri_at_TREC_2004_Terabyte_track">Indri at TREC 2004: Terabyte track</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: This paper provides an overview of experiments carried out at the TREC 2004 Terabyte Tr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: This paper provides an overview of experiments carried out at the TREC 2004 Terabyte Track using the Indri search engine. Indri is an efficient, effective distributed search engine. Like INQUERY, it is based on the inference network framework and supports structured queries, but unlike INQUERY, it uses language modeling probabilities within the network which allows for added flexibility.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0b7766a5b45c80408baf1c3763f60fe6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740406,"asset_id":2788007,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740406/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788007"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788007"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788007; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788007]").text(description); $(".js-view-count[data-work-id=2788007]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788007; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788007']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0b7766a5b45c80408baf1c3763f60fe6" } } $('.js-work-strip[data-work-id=2788007]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788007,"title":"Indri at TREC 2004: Terabyte track","internal_url":"https://www.academia.edu/2788007/Indri_at_TREC_2004_Terabyte_track","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740406,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"a460153.pdf","download_url":"https://www.academia.edu/attachments/30740406/download_file","bulk_download_file_name":"Indri_at_TREC_2004_Terabyte_track.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740406/a460153-libre.pdf?1392170159=\u0026response-content-disposition=attachment%3B+filename%3DIndri_at_TREC_2004_Terabyte_track.pdf\u0026Expires=1740055930\u0026Signature=LlGMTM5olUAQAkvvX-QfGGvIyqjW3J24S1Y0k6R6boqmto7-oJoZmbXczgPQ3LIVfW-gv0LVquPWTevRCCY8LUTPTZFGJDisbadmwjEifotpJf58c3FnWmNnIWKBFlofjvy52pN0iTimYNAM0yT3jsaACw~54YnT8ZzRkS3AKkwRK2ZhxcPuYSLEfxBy-f7ZKW9DjbCwCuHFxri91gbVYYLsmv4YhxJoDT4EYZYerJF1ykj5mWGW1yU1NuwU-yed17iarkAJEGbf2OoBMxnGa1QT61SoYPDSlsYTa2ReqGFQWjgItJASwd2Y2cCpGpEZSxa9lyjjgBs4e~PMv2ny6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="2788006"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/2788006/Statistical_language_modeling_for_information_retrieval"><img alt="Research paper thumbnail of Statistical language modeling for information retrieval" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/2788006/Statistical_language_modeling_for_information_retrieval">Statistical language modeling for information retrieval</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: This chapter reviews research and applications in statistical language modeling for inf...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: This chapter reviews research and applications in statistical language modeling for information retrieval (IR) that has emerged within the past several years as a new probabilistic framework for describing information retrieval processes. Generally speaking, statistical language modeling, or more simply, language modeling (LM), refers to the task of estimating a probability distribution that captures statistical regularities of natural language use.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b4d9de387e5a523e793afa47d7ecdd82" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":30740408,"asset_id":2788006,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/30740408/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="2788006"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="2788006"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 2788006; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=2788006]").text(description); $(".js-view-count[data-work-id=2788006]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 2788006; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='2788006']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b4d9de387e5a523e793afa47d7ecdd82" } } $('.js-work-strip[data-work-id=2788006]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":2788006,"title":"Statistical language modeling for information retrieval","internal_url":"https://www.academia.edu/2788006/Statistical_language_modeling_for_information_retrieval","owner_id":1389,"coauthors_can_edit":true,"owner":{"id":1389,"first_name":"W. Bruce","middle_initials":null,"last_name":"Croft","page_name":"WBruceCroft","domain_name":"umass","created_at":"2008-08-13T11:28:23.544-07:00","display_name":"W. Bruce Croft","url":"https://umass.academia.edu/WBruceCroft"},"attachments":[{"id":30740408,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"GetTRDoc.pdf","download_url":"https://www.academia.edu/attachments/30740408/download_file","bulk_download_file_name":"Statistical_language_modeling_for_inform.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/30740408/GetTRDoc-libre.pdf?1392064416=\u0026response-content-disposition=attachment%3B+filename%3DStatistical_language_modeling_for_inform.pdf\u0026Expires=1740055930\u0026Signature=MLO-sxNdE4JCi8hpW6cmKYjlZsVnFyjME7JtHJT~F1LwV39DURDlpmgjauvrBjDQwZglN~HhuXDyO8rGqDS6DruVRtp4PNzzN0Jz-jnRT9KP3w5Y5mjIZonJFudgYHjPFyIOpjaCvphp3C5WHS6KlREs-Sc3JZnRGmxa-tdekhaLxnll~Q0tPl9LTqtotNe6fH9BcE~ENDgOn4j9Ac~TU4oaHoVFynWcAEJ8JLSFA8yxOr6umeXjomfsESiH7jybHKezeQfHQIVm2XtcKRcjmojDlkONfbQb5rf1OfbUN0VWs5gu1-RM6mceVMdRiIQIQ7j~WICIeAVgG2YTuU2TWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "d2556bf626bfcbccb59b661746e2f7a95d5646b907f6683659d7c72cb2fefe41", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="PCX0DRKeQs_CU79OZ125VP49jmC1CBiC59K4eji9BjtA-auUp4XPLro8PTfYl34aFCmGjDrPccrJiza7WCrOCA" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://umass.academia.edu/WBruceCroft" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="ZXk0CpZO3K8kmL_DfnH5x7Ei3dEestcVAd5b6FF-AUkZpWuTI1VRTlz3PbrBuz6JWzbVPZF1vl0vh9UpMenJeg" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>