CINXE.COM

List of prime numbers - Wikipedia

<!DOCTYPE html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>List of prime numbers - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"915e5e1e-e887-4d10-a538-473bab9773c0","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"List_of_prime_numbers","wgTitle":"List of prime numbers","wgCurRevisionId":1255071013,"wgRevisionId":1255071013, "wgArticleId":442370,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"List_of_prime_numbers","wgRelevantArticleId":442370,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true, "wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang" :"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bg","autonym":"български","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག", "dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"ca","autonym":"català","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"da","autonym":"dansk","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"de" ,"autonym":"Deutsch","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"et","autonym":"eesti","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fi","autonym":"suomi","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym": "Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"he","autonym": "עברית","dir":"rtl"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"}, {"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{ "lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang": "min","autonym":"Minangkabau","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym": "Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir": "ltr"},{"lang":"pl","autonym":"polski","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym": "davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sl","autonym":"slovenščina","dir":"ltr"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym": "Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang": "ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym": "Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb" ,"lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat", "ss","tn","vec"],"wgWikibaseItemId":"Q225987","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.minerva.styles":"ready", "skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&amp;only=styles&amp;skin=minerva"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="List of prime numbers - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/List_of_prime_numbers"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-List_of_prime_numbers rootpage-List_of_prime_numbers stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"><div id="mw-mf-viewport"> <div id="mw-mf-page-center"> <a class="mw-mf-page-center__mask" href="#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"> <input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--home" href="/wiki/Main_Page" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--random" href="/wiki/Special:Random" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a> </li> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--nearby" href="/wiki/Special:Nearby" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a> </li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--login" href="/w/index.php?title=Special:UserLogin&amp;returnto=List+of+prime+numbers" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a> </li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--settings" href="/w/index.php?title=Special:MobileOptions&amp;returnto=List+of+prime+numbers" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a> </li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--donate" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en&amp;utm_key=minerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a> </li> </ul> <ul class="hlist"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--about" href="/wiki/Wikipedia:About" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--disclaimers" href="/wiki/Wikipedia:General_disclaimer" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a> </li> </ul> </div> <label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"> <a href="/wiki/Main_Page"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"> <input type="hidden" name="title" value="Special:Search"/> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div> <button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">List of prime numbers</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"> <a class="minerva__tab-text" href="/wiki/List_of_prime_numbers" rel="" data-event-name="tabs.subject">Article</a> </li> <li class="minerva__tab "> <a class="minerva__tab-text" href="/wiki/Talk:List_of_prime_numbers" rel="discussion" data-event-name="tabs.talk">Talk</a> </li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"> <a role="button" href="#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a> </li> <li id="page-actions-watch" class="page-actions-menu__list-item"> <a role="button" id="ca-watch" href="/w/index.php?title=Special:UserLogin&amp;returnto=List+of+prime+numbers" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a> </li> <li id="page-actions-edit" class="page-actions-menu__list-item"> <a role="button" id="ca-edit" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a> </li> </ul> </nav> <!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"><script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><section class="mf-section-0" id="mf-section-0"> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This is a <a href="/wiki/Wikipedia:WikiProject_Lists#Dynamic_lists" title="Wikipedia:WikiProject Lists">dynamic list</a> and may never be able to satisfy particular standards for completeness. You can help by <a href="/wiki/Special:EditPage/List_of_prime_numbers" title="Special:EditPage/List of prime numbers">adding missing items</a> with <a href="/wiki/Wikipedia:Reliable_sources" title="Wikipedia:Reliable sources">reliable sources</a>.</div> <p>This is a list of articles about <a href="/wiki/Prime_number" title="Prime number">prime numbers</a>. A prime number (or <i>prime</i>) is a <a href="/wiki/Natural_number" title="Natural number">natural number</a> greater than 1 that has no positive <a href="/wiki/Divisor" title="Divisor">divisors</a> other than 1 and itself. By <a href="/wiki/Euclid%27s_theorem" title="Euclid's theorem">Euclid's theorem</a>, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various <a href="/wiki/Formulas_for_primes" class="mw-redirect" title="Formulas for primes">formulas for primes</a>. The first 1000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. 1 is neither prime nor <a href="/wiki/Composite_number" title="Composite number">composite</a>. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#The_first_1000_prime_numbers"><span class="tocnumber">1</span> <span class="toctext">The first 1000 prime numbers</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Lists_of_primes_by_type"><span class="tocnumber">2</span> <span class="toctext">Lists of primes by type</span></a> <ul> <li class="toclevel-2 tocsection-3"><a href="#Balanced_primes"><span class="tocnumber">2.1</span> <span class="toctext">Balanced primes</span></a></li> <li class="toclevel-2 tocsection-4"><a href="#Bell_primes"><span class="tocnumber">2.2</span> <span class="toctext">Bell primes</span></a></li> <li class="toclevel-2 tocsection-5"><a href="#Chen_primes"><span class="tocnumber">2.3</span> <span class="toctext">Chen primes</span></a></li> <li class="toclevel-2 tocsection-6"><a href="#Circular_primes"><span class="tocnumber">2.4</span> <span class="toctext">Circular primes</span></a></li> <li class="toclevel-2 tocsection-7"><a href="#Cluster_primes"><span class="tocnumber">2.5</span> <span class="toctext">Cluster primes</span></a></li> <li class="toclevel-2 tocsection-8"><a href="#Cousin_primes"><span class="tocnumber">2.6</span> <span class="toctext">Cousin primes</span></a></li> <li class="toclevel-2 tocsection-9"><a href="#Cuban_primes"><span class="tocnumber">2.7</span> <span class="toctext">Cuban primes</span></a></li> <li class="toclevel-2 tocsection-10"><a href="#Cullen_primes"><span class="tocnumber">2.8</span> <span class="toctext">Cullen primes</span></a></li> <li class="toclevel-2 tocsection-11"><a href="#Delicate_primes"><span class="tocnumber">2.9</span> <span class="toctext">Delicate primes</span></a></li> <li class="toclevel-2 tocsection-12"><a href="#Dihedral_primes"><span class="tocnumber">2.10</span> <span class="toctext">Dihedral primes</span></a></li> <li class="toclevel-2 tocsection-13"><a href="#Eisenstein_primes_without_imaginary_part"><span class="tocnumber">2.11</span> <span class="toctext">Eisenstein primes without imaginary part</span></a></li> <li class="toclevel-2 tocsection-14"><a href="#Emirps"><span class="tocnumber">2.12</span> <span class="toctext">Emirps</span></a></li> <li class="toclevel-2 tocsection-15"><a href="#Euclid_primes"><span class="tocnumber">2.13</span> <span class="toctext">Euclid primes</span></a></li> <li class="toclevel-2 tocsection-16"><a href="#Euler_irregular_primes"><span class="tocnumber">2.14</span> <span class="toctext">Euler irregular primes</span></a> <ul> <li class="toclevel-3 tocsection-17"><a href="#Euler_(p,_p_%E2%88%92_3)_irregular_primes"><span class="tocnumber">2.14.1</span> <span class="toctext">Euler (<i>p</i>, <i>p</i> − 3) irregular primes</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-18"><a href="#Factorial_primes"><span class="tocnumber">2.15</span> <span class="toctext">Factorial primes</span></a></li> <li class="toclevel-2 tocsection-19"><a href="#Fermat_primes"><span class="tocnumber">2.16</span> <span class="toctext">Fermat primes</span></a> <ul> <li class="toclevel-3 tocsection-20"><a href="#Generalized_Fermat_primes"><span class="tocnumber">2.16.1</span> <span class="toctext">Generalized Fermat primes</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-21"><a href="#Fibonacci_primes"><span class="tocnumber">2.17</span> <span class="toctext">Fibonacci primes</span></a></li> <li class="toclevel-2 tocsection-22"><a href="#Fortunate_primes"><span class="tocnumber">2.18</span> <span class="toctext">Fortunate primes</span></a></li> <li class="toclevel-2 tocsection-23"><a href="#Gaussian_primes"><span class="tocnumber">2.19</span> <span class="toctext">Gaussian primes</span></a></li> <li class="toclevel-2 tocsection-24"><a href="#Good_primes"><span class="tocnumber">2.20</span> <span class="toctext">Good primes</span></a></li> <li class="toclevel-2 tocsection-25"><a href="#Happy_primes"><span class="tocnumber">2.21</span> <span class="toctext">Happy primes</span></a></li> <li class="toclevel-2 tocsection-26"><a href="#Harmonic_primes"><span class="tocnumber">2.22</span> <span class="toctext">Harmonic primes</span></a></li> <li class="toclevel-2 tocsection-27"><a href="#Higgs_primes_for_squares"><span class="tocnumber">2.23</span> <span class="toctext">Higgs primes for squares</span></a></li> <li class="toclevel-2 tocsection-28"><a href="#Highly_cototient_primes"><span class="tocnumber">2.24</span> <span class="toctext">Highly cototient primes</span></a></li> <li class="toclevel-2 tocsection-29"><a href="#Home_primes"><span class="tocnumber">2.25</span> <span class="toctext">Home primes</span></a></li> <li class="toclevel-2 tocsection-30"><a href="#Irregular_primes"><span class="tocnumber">2.26</span> <span class="toctext">Irregular primes</span></a> <ul> <li class="toclevel-3 tocsection-31"><a href="#(p,_p_%E2%88%92_3)_irregular_primes"><span class="tocnumber">2.26.1</span> <span class="toctext">(<i>p</i>, <i>p</i> − 3) irregular primes</span></a></li> <li class="toclevel-3 tocsection-32"><a href="#(p,_p_%E2%88%92_5)_irregular_primes"><span class="tocnumber">2.26.2</span> <span class="toctext">(<i>p</i>, <i>p</i> − 5) irregular primes</span></a></li> <li class="toclevel-3 tocsection-33"><a href="#(p,_p_%E2%88%92_9)_irregular_primes"><span class="tocnumber">2.26.3</span> <span class="toctext">(<i>p</i>, <i>p</i> − 9) irregular primes</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-34"><a href="#Isolated_primes"><span class="tocnumber">2.27</span> <span class="toctext">Isolated primes</span></a></li> <li class="toclevel-2 tocsection-35"><a href="#Leyland_primes"><span class="tocnumber">2.28</span> <span class="toctext">Leyland primes</span></a></li> <li class="toclevel-2 tocsection-36"><a href="#Long_primes"><span class="tocnumber">2.29</span> <span class="toctext">Long primes</span></a></li> <li class="toclevel-2 tocsection-37"><a href="#Lucas_primes"><span class="tocnumber">2.30</span> <span class="toctext">Lucas primes</span></a></li> <li class="toclevel-2 tocsection-38"><a href="#Lucky_primes"><span class="tocnumber">2.31</span> <span class="toctext">Lucky primes</span></a></li> <li class="toclevel-2 tocsection-39"><a href="#Mersenne_primes"><span class="tocnumber">2.32</span> <span class="toctext">Mersenne primes</span></a> <ul> <li class="toclevel-3 tocsection-40"><a href="#Mersenne_divisors"><span class="tocnumber">2.32.1</span> <span class="toctext">Mersenne divisors</span></a></li> <li class="toclevel-3 tocsection-41"><a href="#Mersenne_prime_exponents"><span class="tocnumber">2.32.2</span> <span class="toctext">Mersenne prime exponents</span></a></li> <li class="toclevel-3 tocsection-42"><a href="#Double_Mersenne_primes"><span class="tocnumber">2.32.3</span> <span class="toctext">Double Mersenne primes</span></a></li> <li class="toclevel-3 tocsection-43"><a href="#Generalized_repunit_primes"><span class="tocnumber">2.32.4</span> <span class="toctext">Generalized repunit primes</span></a></li> <li class="toclevel-3 tocsection-44"><a href="#Other_generalizations_and_variations"><span class="tocnumber">2.32.5</span> <span class="toctext">Other generalizations and variations</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-45"><a href="#Mills_primes"><span class="tocnumber">2.33</span> <span class="toctext">Mills primes</span></a></li> <li class="toclevel-2 tocsection-46"><a href="#Minimal_primes"><span class="tocnumber">2.34</span> <span class="toctext">Minimal primes</span></a></li> <li class="toclevel-2 tocsection-47"><a href="#Newman%E2%80%93Shanks%E2%80%93Williams_primes"><span class="tocnumber">2.35</span> <span class="toctext">Newman–Shanks–Williams primes</span></a></li> <li class="toclevel-2 tocsection-48"><a href="#Non-generous_primes"><span class="tocnumber">2.36</span> <span class="toctext">Non-generous primes</span></a></li> <li class="toclevel-2 tocsection-49"><a href="#Palindromic_primes"><span class="tocnumber">2.37</span> <span class="toctext">Palindromic primes</span></a></li> <li class="toclevel-2 tocsection-50"><a href="#Palindromic_wing_primes"><span class="tocnumber">2.38</span> <span class="toctext">Palindromic wing primes</span></a></li> <li class="toclevel-2 tocsection-51"><a href="#Partition_primes"><span class="tocnumber">2.39</span> <span class="toctext">Partition primes</span></a></li> <li class="toclevel-2 tocsection-52"><a href="#Pell_primes"><span class="tocnumber">2.40</span> <span class="toctext">Pell primes</span></a></li> <li class="toclevel-2 tocsection-53"><a href="#Permutable_primes"><span class="tocnumber">2.41</span> <span class="toctext">Permutable primes</span></a></li> <li class="toclevel-2 tocsection-54"><a href="#Perrin_primes"><span class="tocnumber">2.42</span> <span class="toctext">Perrin primes</span></a></li> <li class="toclevel-2 tocsection-55"><a href="#Pierpont_primes"><span class="tocnumber">2.43</span> <span class="toctext">Pierpont primes</span></a></li> <li class="toclevel-2 tocsection-56"><a href="#Pillai_primes"><span class="tocnumber">2.44</span> <span class="toctext">Pillai primes</span></a></li> <li class="toclevel-2 tocsection-57"><a href="#Primes_of_the_form_n4_+_1"><span class="tocnumber">2.45</span> <span class="toctext">Primes of the form <i>n</i><sup>4</sup> + 1</span></a></li> <li class="toclevel-2 tocsection-58"><a href="#Primeval_primes"><span class="tocnumber">2.46</span> <span class="toctext">Primeval primes</span></a></li> <li class="toclevel-2 tocsection-59"><a href="#Primorial_primes"><span class="tocnumber">2.47</span> <span class="toctext">Primorial primes</span></a></li> <li class="toclevel-2 tocsection-60"><a href="#Proth_primes"><span class="tocnumber">2.48</span> <span class="toctext">Proth primes</span></a></li> <li class="toclevel-2 tocsection-61"><a href="#Pythagorean_primes"><span class="tocnumber">2.49</span> <span class="toctext">Pythagorean primes</span></a></li> <li class="toclevel-2 tocsection-62"><a href="#Prime_quadruplets"><span class="tocnumber">2.50</span> <span class="toctext">Prime quadruplets</span></a></li> <li class="toclevel-2 tocsection-63"><a href="#Quartan_primes"><span class="tocnumber">2.51</span> <span class="toctext">Quartan primes</span></a></li> <li class="toclevel-2 tocsection-64"><a href="#Ramanujan_primes"><span class="tocnumber">2.52</span> <span class="toctext">Ramanujan primes</span></a></li> <li class="toclevel-2 tocsection-65"><a href="#Regular_primes"><span class="tocnumber">2.53</span> <span class="toctext">Regular primes</span></a></li> <li class="toclevel-2 tocsection-66"><a href="#Repunit_primes"><span class="tocnumber">2.54</span> <span class="toctext">Repunit primes</span></a></li> <li class="toclevel-2 tocsection-67"><a href="#Residue_classes_of_primes"><span class="tocnumber">2.55</span> <span class="toctext">Residue classes of primes</span></a></li> <li class="toclevel-2 tocsection-68"><a href="#Safe_primes"><span class="tocnumber">2.56</span> <span class="toctext">Safe primes</span></a></li> <li class="toclevel-2 tocsection-69"><a href="#Self_primes_in_base_10"><span class="tocnumber">2.57</span> <span class="toctext">Self primes in base 10</span></a></li> <li class="toclevel-2 tocsection-70"><a href="#Sexy_primes"><span class="tocnumber">2.58</span> <span class="toctext">Sexy primes</span></a></li> <li class="toclevel-2 tocsection-71"><a href="#Smarandache%E2%80%93Wellin_primes"><span class="tocnumber">2.59</span> <span class="toctext">Smarandache–Wellin primes</span></a></li> <li class="toclevel-2 tocsection-72"><a href="#Solinas_primes"><span class="tocnumber">2.60</span> <span class="toctext">Solinas primes</span></a></li> <li class="toclevel-2 tocsection-73"><a href="#Sophie_Germain_primes"><span class="tocnumber">2.61</span> <span class="toctext">Sophie Germain primes</span></a></li> <li class="toclevel-2 tocsection-74"><a href="#Stern_primes"><span class="tocnumber">2.62</span> <span class="toctext">Stern primes</span></a></li> <li class="toclevel-2 tocsection-75"><a href="#Super-primes"><span class="tocnumber">2.63</span> <span class="toctext">Super-primes</span></a></li> <li class="toclevel-2 tocsection-76"><a href="#Supersingular_primes"><span class="tocnumber">2.64</span> <span class="toctext">Supersingular primes</span></a></li> <li class="toclevel-2 tocsection-77"><a href="#Thabit_primes"><span class="tocnumber">2.65</span> <span class="toctext">Thabit primes</span></a></li> <li class="toclevel-2 tocsection-78"><a href="#Prime_triplets"><span class="tocnumber">2.66</span> <span class="toctext">Prime triplets</span></a></li> <li class="toclevel-2 tocsection-79"><a href="#Truncatable_prime"><span class="tocnumber">2.67</span> <span class="toctext">Truncatable prime</span></a> <ul> <li class="toclevel-3 tocsection-80"><a href="#Left-truncatable"><span class="tocnumber">2.67.1</span> <span class="toctext">Left-truncatable</span></a></li> <li class="toclevel-3 tocsection-81"><a href="#Right-truncatable"><span class="tocnumber">2.67.2</span> <span class="toctext">Right-truncatable</span></a></li> <li class="toclevel-3 tocsection-82"><a href="#Two-sided"><span class="tocnumber">2.67.3</span> <span class="toctext">Two-sided</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-83"><a href="#Twin_primes"><span class="tocnumber">2.68</span> <span class="toctext">Twin primes</span></a></li> <li class="toclevel-2 tocsection-84"><a href="#Unique_primes"><span class="tocnumber">2.69</span> <span class="toctext">Unique primes</span></a></li> <li class="toclevel-2 tocsection-85"><a href="#Wagstaff_primes"><span class="tocnumber">2.70</span> <span class="toctext">Wagstaff primes</span></a></li> <li class="toclevel-2 tocsection-86"><a href="#Wall%E2%80%93Sun%E2%80%93Sun_primes"><span class="tocnumber">2.71</span> <span class="toctext">Wall–Sun–Sun primes</span></a></li> <li class="toclevel-2 tocsection-87"><a href="#Wieferich_primes"><span class="tocnumber">2.72</span> <span class="toctext">Wieferich primes</span></a></li> <li class="toclevel-2 tocsection-88"><a href="#Wilson_primes"><span class="tocnumber">2.73</span> <span class="toctext">Wilson primes</span></a></li> <li class="toclevel-2 tocsection-89"><a href="#Wolstenholme_primes"><span class="tocnumber">2.74</span> <span class="toctext">Wolstenholme primes</span></a></li> <li class="toclevel-2 tocsection-90"><a href="#Woodall_primes"><span class="tocnumber">2.75</span> <span class="toctext">Woodall primes</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-91"><a href="#See_also"><span class="tocnumber">3</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-92"><a href="#References"><span class="tocnumber">4</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-93"><a href="#External_links"><span class="tocnumber">5</span> <span class="toctext">External links</span></a></li> </ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="The_first_1000_prime_numbers">The first 1000 prime numbers</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=1" title="Edit section: The first 1000 prime numbers" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>The following table lists the first 1000 primes, with 20 columns of consecutive primes in each of the 50 rows.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable"> <tbody><tr> <th> </th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9</th> <th>10</th> <th>11</th> <th>12</th> <th>13</th> <th>14</th> <th>15</th> <th>16</th> <th>17</th> <th>18</th> <th>19</th> <th>20 </th></tr> <tr style="text-align: center;"> <th>1–20 </th> <td><a href="/wiki/2" title="2">2</a></td> <td><a href="/wiki/3" title="3">3</a></td> <td><a href="/wiki/5" title="5">5</a></td> <td><a href="/wiki/7" title="7">7</a></td> <td><a href="/wiki/11_(number)" title="11 (number)">11</a></td> <td><a href="/wiki/13_(number)" title="13 (number)">13</a></td> <td><a href="/wiki/17_(number)" title="17 (number)">17</a></td> <td><a href="/wiki/19_(number)" title="19 (number)">19</a></td> <td><a href="/wiki/23_(number)" title="23 (number)">23</a></td> <td><a href="/wiki/29_(number)" title="29 (number)">29</a></td> <td><a href="/wiki/31_(number)" title="31 (number)">31</a></td> <td><a href="/wiki/37_(number)" title="37 (number)">37</a></td> <td><a href="/wiki/41_(number)" title="41 (number)">41</a></td> <td><a href="/wiki/43_(number)" title="43 (number)">43</a></td> <td><a href="/wiki/47_(number)" title="47 (number)">47</a></td> <td><a href="/wiki/53_(number)" title="53 (number)">53</a></td> <td><a href="/wiki/59_(number)" title="59 (number)">59</a></td> <td><a href="/wiki/61_(number)" title="61 (number)">61</a></td> <td><a href="/wiki/67_(number)" title="67 (number)">67</a></td> <td><a href="/wiki/71_(number)" title="71 (number)">71</a> </td></tr> <tr style="text-align: center;"> <th>21–40 </th> <td><a href="/wiki/73_(number)" title="73 (number)">73</a></td> <td><a href="/wiki/79_(number)" title="79 (number)">79</a></td> <td><a href="/wiki/83_(number)" title="83 (number)">83</a></td> <td><a href="/wiki/89_(number)" title="89 (number)">89</a></td> <td><a href="/wiki/97_(number)" title="97 (number)">97</a></td> <td><a href="/wiki/101_(number)" title="101 (number)">101</a></td> <td><a href="/wiki/103_(number)" title="103 (number)">103</a></td> <td><a href="/wiki/107_(number)" title="107 (number)">107</a></td> <td><a href="/wiki/109_(number)" title="109 (number)">109</a></td> <td><a href="/wiki/113_(number)" title="113 (number)">113</a></td> <td><a href="/wiki/127_(number)" title="127 (number)">127</a></td> <td><a href="/wiki/131_(number)" title="131 (number)">131</a></td> <td><a href="/wiki/137_(number)" title="137 (number)">137</a></td> <td><a href="/wiki/139_(number)" title="139 (number)">139</a></td> <td><a href="/wiki/149_(number)" title="149 (number)">149</a></td> <td><a href="/wiki/151_(number)" title="151 (number)">151</a></td> <td><a href="/wiki/157_(number)" title="157 (number)">157</a></td> <td><a href="/wiki/163_(number)" title="163 (number)">163</a></td> <td><a href="/wiki/167_(number)" title="167 (number)">167</a></td> <td><a href="/wiki/173_(number)" title="173 (number)">173</a> </td></tr> <tr style="text-align: center;"> <th>41–60 </th> <td><a href="/wiki/179_(number)" title="179 (number)">179</a></td> <td><a href="/wiki/181_(number)" title="181 (number)">181</a></td> <td><a href="/wiki/191_(number)" title="191 (number)">191</a></td> <td><a href="/wiki/193_(number)" title="193 (number)">193</a></td> <td><a href="/wiki/197_(number)" title="197 (number)">197</a></td> <td><a href="/wiki/199_(number)" title="199 (number)">199</a></td> <td><a href="/wiki/211_(number)" title="211 (number)">211</a></td> <td><a href="/wiki/223_(number)" title="223 (number)">223</a></td> <td><a href="/wiki/227_(number)" title="227 (number)">227</a></td> <td><a href="/wiki/229_(number)" title="229 (number)">229</a></td> <td><a href="/wiki/233_(number)" title="233 (number)">233</a></td> <td><a href="/wiki/239_(number)" title="239 (number)">239</a></td> <td><a href="/wiki/241_(number)" title="241 (number)">241</a></td> <td><a href="/wiki/251_(number)" title="251 (number)">251</a></td> <td><a href="/wiki/257_(number)" title="257 (number)">257</a></td> <td><a href="/wiki/263_(number)" title="263 (number)">263</a></td> <td><a href="/wiki/269_(number)" title="269 (number)">269</a></td> <td><a href="/wiki/271_(number)" title="271 (number)">271</a></td> <td><a href="/wiki/277_(number)" title="277 (number)">277</a></td> <td><a href="/wiki/281_(number)" title="281 (number)">281</a> </td></tr> <tr style="text-align: center;"> <th>61–80 </th> <td><a href="/wiki/283_(number)" title="283 (number)">283</a></td> <td><a href="/wiki/293_(number)" title="293 (number)">293</a></td> <td><a href="/wiki/307_(number)" title="307 (number)">307</a></td> <td><a href="/wiki/311_(number)" title="311 (number)">311</a></td> <td><a href="/wiki/313_(number)" title="313 (number)">313</a></td> <td><a href="/wiki/317_(number)" class="mw-redirect" title="317 (number)">317</a></td> <td><a href="/wiki/331_(number)" class="mw-redirect" title="331 (number)">331</a></td> <td><a href="/wiki/337_(number)" class="mw-redirect" title="337 (number)">337</a></td> <td><a href="/wiki/347_(number)" class="mw-redirect" title="347 (number)">347</a></td> <td><a href="/wiki/349_(number)" class="mw-redirect" title="349 (number)">349</a></td> <td><a href="/wiki/353_(number)" title="353 (number)">353</a></td> <td><a href="/wiki/359_(number)" title="359 (number)">359</a></td> <td><a href="/wiki/367_(number)" class="mw-redirect" title="367 (number)">367</a></td> <td><a href="/wiki/373_(number)" class="mw-redirect" title="373 (number)">373</a></td> <td><a href="/wiki/379_(number)" class="mw-redirect" title="379 (number)">379</a></td> <td><a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a></td> <td><a href="/wiki/389_(number)" class="mw-redirect" title="389 (number)">389</a></td> <td><a href="/wiki/397_(number)" class="mw-redirect" title="397 (number)">397</a></td> <td><a href="/wiki/401_(number)" class="mw-redirect" title="401 (number)">401</a></td> <td><a href="/wiki/409_(number)" class="mw-redirect" title="409 (number)">409</a> </td></tr> <tr style="text-align: center;"> <th>81–100 </th> <td><a href="/wiki/419_(number)" class="mw-redirect" title="419 (number)">419</a></td> <td><a href="/wiki/421_(number)" class="mw-redirect" title="421 (number)">421</a></td> <td><a href="/wiki/431_(number)" class="mw-redirect" title="431 (number)">431</a></td> <td><a href="/wiki/433_(number)" class="mw-redirect" title="433 (number)">433</a></td> <td><a href="/wiki/439_(number)" class="mw-redirect" title="439 (number)">439</a></td> <td><a href="/wiki/443_(number)" class="mw-redirect" title="443 (number)">443</a></td> <td><a href="/wiki/449_(number)" class="mw-redirect" title="449 (number)">449</a></td> <td><a href="/wiki/457_(number)" class="mw-redirect" title="457 (number)">457</a></td> <td><a href="/wiki/461_(number)" class="mw-redirect" title="461 (number)">461</a></td> <td><a href="/wiki/463_(number)" class="mw-redirect" title="463 (number)">463</a></td> <td><a href="/wiki/467_(number)" class="mw-redirect" title="467 (number)">467</a></td> <td><a href="/wiki/479_(number)" class="mw-redirect" title="479 (number)">479</a></td> <td><a href="/wiki/487_(number)" class="mw-redirect" title="487 (number)">487</a></td> <td><a href="/wiki/491_(number)" class="mw-redirect" title="491 (number)">491</a></td> <td><a href="/wiki/499_(number)" class="mw-redirect" title="499 (number)">499</a></td> <td><a href="/wiki/503_(number)" class="mw-redirect" title="503 (number)">503</a></td> <td><a href="/wiki/509_(number)" class="mw-redirect" title="509 (number)">509</a></td> <td><a href="/wiki/521_(number)" class="mw-redirect" title="521 (number)">521</a></td> <td><a href="/wiki/523_(number)" class="mw-redirect" title="523 (number)">523</a></td> <td><a href="/wiki/541_(number)" class="mw-redirect" title="541 (number)">541</a> </td></tr> <tr style="text-align: center;"> <th>101–120 </th> <td><a href="/wiki/547_(number)" class="mw-redirect" title="547 (number)">547</a></td> <td><a href="/wiki/557_(number)" class="mw-redirect" title="557 (number)">557</a></td> <td><a href="/wiki/563_(number)" class="mw-redirect" title="563 (number)">563</a></td> <td><a href="/wiki/569_(number)" class="mw-redirect" title="569 (number)">569</a></td> <td><a href="/wiki/571_(number)" class="mw-redirect" title="571 (number)">571</a></td> <td><a href="/wiki/577_(number)" class="mw-redirect" title="577 (number)">577</a></td> <td><a href="/wiki/587_(number)" class="mw-redirect" title="587 (number)">587</a></td> <td><a href="/wiki/593_(number)" class="mw-redirect" title="593 (number)">593</a></td> <td><a href="/wiki/599_(number)" class="mw-redirect" title="599 (number)">599</a></td> <td><a href="/wiki/601_(number)" class="mw-redirect" title="601 (number)">601</a></td> <td><a href="/wiki/607_(number)" class="mw-redirect" title="607 (number)">607</a></td> <td><a href="/wiki/613_(number)" title="613 (number)">613</a></td> <td><a href="/wiki/617_(number)" class="mw-redirect" title="617 (number)">617</a></td> <td><a href="/wiki/619_(number)" class="mw-redirect" title="619 (number)">619</a></td> <td><a href="/wiki/631_(number)" class="mw-redirect" title="631 (number)">631</a></td> <td><a href="/wiki/641_(number)" class="mw-redirect" title="641 (number)">641</a></td> <td><a href="/wiki/643_(number)" class="mw-redirect" title="643 (number)">643</a></td> <td><a href="/wiki/647_(number)" class="mw-redirect" title="647 (number)">647</a> </td> <td><a href="/wiki/653_(number)" class="mw-redirect" title="653 (number)">653</a></td> <td><a href="/wiki/659_(number)" class="mw-redirect" title="659 (number)">659</a> </td></tr> <tr style="text-align: center;"> <th>121–140 </th> <td><a href="/wiki/661_(number)" class="mw-redirect" title="661 (number)">661</a></td> <td><a href="/wiki/673_(number)" class="mw-redirect" title="673 (number)">673</a></td> <td><a href="/wiki/677_(number)" class="mw-redirect" title="677 (number)">677</a></td> <td><a href="/wiki/683_(number)" class="mw-redirect" title="683 (number)">683</a></td> <td><a href="/wiki/691_(number)" class="mw-redirect" title="691 (number)">691</a></td> <td><a href="/wiki/701_(number)" class="mw-redirect" title="701 (number)">701</a></td> <td><a href="/wiki/709_(number)" class="mw-redirect" title="709 (number)">709</a></td> <td><a href="/wiki/719_(number)" class="mw-redirect" title="719 (number)">719</a></td> <td><a href="/wiki/727_(number)" class="mw-redirect" title="727 (number)">727</a></td> <td><a href="/wiki/733_(number)" class="mw-redirect" title="733 (number)">733</a></td> <td><a href="/wiki/739_(number)" class="mw-redirect" title="739 (number)">739</a></td> <td><a href="/wiki/743_(number)" title="743 (number)">743</a></td> <td><a href="/wiki/751_(number)" class="mw-redirect" title="751 (number)">751</a></td> <td><a href="/wiki/757_(number)" class="mw-redirect" title="757 (number)">757</a></td> <td><a href="/wiki/761_(number)" class="mw-redirect" title="761 (number)">761</a></td> <td><a href="/wiki/769_(number)" class="mw-redirect" title="769 (number)">769</a></td> <td><a href="/wiki/773_(number)" class="mw-redirect" title="773 (number)">773</a></td> <td><a href="/wiki/787_(number)" class="mw-redirect" title="787 (number)">787</a></td> <td><a href="/wiki/797_(number)" class="mw-redirect" title="797 (number)">797</a></td> <td><a href="/wiki/809_(number)" class="mw-redirect" title="809 (number)">809</a> </td></tr> <tr style="text-align: center;"> <th>141–160 </th> <td><a href="/wiki/811_(number)" class="mw-redirect" title="811 (number)">811</a></td> <td><a href="/wiki/821_(number)" class="mw-redirect" title="821 (number)">821</a></td> <td><a href="/wiki/823_(number)" class="mw-redirect" title="823 (number)">823</a></td> <td><a href="/wiki/827_(number)" class="mw-redirect" title="827 (number)">827</a></td> <td><a href="/wiki/829_(number)" class="mw-redirect" title="829 (number)">829</a></td> <td><a href="/wiki/839_(number)" class="mw-redirect" title="839 (number)">839</a></td> <td><a href="/wiki/853_(number)" class="mw-redirect" title="853 (number)">853</a></td> <td><a href="/wiki/857_(number)" class="mw-redirect" title="857 (number)">857</a></td> <td><a href="/wiki/859_(number)" class="mw-redirect" title="859 (number)">859</a></td> <td><a href="/wiki/863_(number)" class="mw-redirect" title="863 (number)">863</a></td> <td><a href="/wiki/877_(number)" class="mw-redirect" title="877 (number)">877</a></td> <td><a href="/wiki/881_(number)" title="881 (number)">881</a></td> <td><a href="/wiki/883_(number)" class="mw-redirect" title="883 (number)">883</a></td> <td><a href="/wiki/887_(number)" class="mw-redirect" title="887 (number)">887</a></td> <td><a href="/wiki/907_(number)" class="mw-redirect" title="907 (number)">907</a></td> <td><a href="/wiki/911_(number)" title="911 (number)">911</a></td> <td><a href="/wiki/919_(number)" class="mw-redirect" title="919 (number)">919</a></td> <td><a href="/wiki/929_(number)" class="mw-redirect" title="929 (number)">929</a></td> <td><a href="/wiki/937_(number)" class="mw-redirect" title="937 (number)">937</a></td> <td><a href="/wiki/941_(number)" class="mw-redirect" title="941 (number)">941</a> </td></tr> <tr style="text-align: center;"> <th>161–180 </th> <td><a href="/wiki/947_(number)" class="mw-redirect" title="947 (number)">947</a></td> <td><a href="/wiki/953_(number)" class="mw-redirect" title="953 (number)">953</a></td> <td><a href="/wiki/967_(number)" class="mw-redirect" title="967 (number)">967</a></td> <td><a href="/wiki/971_(number)" title="971 (number)">971</a></td> <td><a href="/wiki/977_(number)" class="mw-redirect" title="977 (number)">977</a></td> <td><a href="/wiki/983_(number)" class="mw-redirect" title="983 (number)">983</a></td> <td><a href="/wiki/991_(number)" class="mw-redirect" title="991 (number)">991</a></td> <td><a href="/wiki/997_(number)" class="mw-redirect" title="997 (number)">997</a></td> <td><a href="/wiki/1009_(number)" class="mw-redirect" title="1009 (number)">1009</a></td> <td><a href="/wiki/1013_(number)" class="mw-redirect" title="1013 (number)">1013</a></td> <td><a href="/wiki/1019_(number)" class="mw-redirect" title="1019 (number)">1019</a></td> <td><a href="/wiki/1021_(number)" class="mw-redirect" title="1021 (number)">1021</a></td> <td><a href="/wiki/1031_(number)" class="mw-redirect" title="1031 (number)">1031</a></td> <td><a href="/wiki/1033_(number)" class="mw-redirect" title="1033 (number)">1033</a></td> <td><a href="/wiki/1039_(number)" class="mw-redirect" title="1039 (number)">1039</a></td> <td><a href="/wiki/1049_(number)" class="mw-redirect" title="1049 (number)">1049</a></td> <td><a href="/wiki/1051_(number)" class="mw-redirect" title="1051 (number)">1051</a></td> <td><a href="/wiki/1061_(number)" class="mw-redirect" title="1061 (number)">1061</a></td> <td><a href="/wiki/1063_(number)" class="mw-redirect" title="1063 (number)">1063</a></td> <td><a href="/wiki/1069_(number)" class="mw-redirect" title="1069 (number)">1069</a> </td></tr> <tr style="text-align: center;"> <th>181–200 </th> <td><a href="/wiki/1087_(number)" class="mw-redirect" title="1087 (number)">1087</a></td> <td><a href="/wiki/1091_(number)" class="mw-redirect" title="1091 (number)">1091</a></td> <td><a href="/wiki/1093_(number)" title="1093 (number)">1093</a></td> <td><a href="/wiki/1097_(number)" class="mw-redirect" title="1097 (number)">1097</a></td> <td><a href="/wiki/1103_(number)" class="mw-redirect" title="1103 (number)">1103</a></td> <td><a href="/wiki/1109_(number)" class="mw-redirect" title="1109 (number)">1109</a></td> <td><a href="/wiki/1117_(number)" class="mw-redirect" title="1117 (number)">1117</a></td> <td><a href="/wiki/1123_(number)" class="mw-redirect" title="1123 (number)">1123</a></td> <td><a href="/wiki/1129_(number)" class="mw-redirect" title="1129 (number)">1129</a></td> <td><a href="/wiki/1151_(number)" class="mw-redirect" title="1151 (number)">1151</a></td> <td><a href="/wiki/1153_(number)" class="mw-redirect" title="1153 (number)">1153</a></td> <td><a href="/wiki/1163_(number)" class="mw-redirect" title="1163 (number)">1163</a></td> <td><a href="/wiki/1171_(number)" class="mw-redirect" title="1171 (number)">1171</a></td> <td><a href="/wiki/1181_(number)" class="mw-redirect" title="1181 (number)">1181</a></td> <td><a href="/wiki/1187_(number)" class="mw-redirect" title="1187 (number)">1187</a></td> <td><a href="/wiki/1193_(number)" class="mw-redirect" title="1193 (number)">1193</a></td> <td><a href="/wiki/1201_(number)" class="mw-redirect" title="1201 (number)">1201</a></td> <td><a href="/wiki/1213_(number)" class="mw-redirect" title="1213 (number)">1213</a></td> <td><a href="/wiki/1217_(number)" class="mw-redirect" title="1217 (number)">1217</a></td> <td><a href="/wiki/1223_(number)" class="mw-redirect" title="1223 (number)">1223</a> </td></tr> <tr style="text-align: center;"> <th>201–220 </th> <td><a href="/wiki/1229_(number)" class="mw-redirect" title="1229 (number)">1229</a></td> <td><a href="/wiki/1231_(number)" class="mw-redirect" title="1231 (number)">1231</a></td> <td><a href="/wiki/1237_(number)" class="mw-redirect" title="1237 (number)">1237</a></td> <td><a href="/wiki/1249_(number)" class="mw-redirect" title="1249 (number)">1249</a></td> <td><a href="/wiki/1259_(number)" class="mw-redirect" title="1259 (number)">1259</a></td> <td><a href="/wiki/1277_(number)" class="mw-redirect" title="1277 (number)">1277</a></td> <td><a href="/wiki/1279_(number)" class="mw-redirect" title="1279 (number)">1279</a></td> <td><a href="/wiki/1283_(number)" class="mw-redirect" title="1283 (number)">1283</a></td> <td><a href="/wiki/1289_(number)" title="1289 (number)">1289</a></td> <td><a href="/wiki/1291_(number)" class="mw-redirect" title="1291 (number)">1291</a></td> <td><a href="/wiki/1297_(number)" class="mw-redirect" title="1297 (number)">1297</a></td> <td><a href="/wiki/1301_(number)" class="mw-redirect" title="1301 (number)">1301</a></td> <td><a href="/wiki/1303_(number)" class="mw-redirect" title="1303 (number)">1303</a></td> <td><a href="/wiki/1307_(number)" class="mw-redirect" title="1307 (number)">1307</a></td> <td><a href="/wiki/1319_(number)" class="mw-redirect" title="1319 (number)">1319</a></td> <td><a href="/wiki/1321_(number)" class="mw-redirect" title="1321 (number)">1321</a></td> <td><a href="/wiki/1327_(number)" class="mw-redirect" title="1327 (number)">1327</a></td> <td><a href="/wiki/1361_(number)" class="mw-redirect" title="1361 (number)">1361</a></td> <td><a href="/wiki/1367_(number)" class="mw-redirect" title="1367 (number)">1367</a></td> <td><a href="/wiki/1373_(number)" class="mw-redirect" title="1373 (number)">1373</a> </td></tr> <tr style="text-align: center;"> <th>221–240 </th> <td><a href="/wiki/1381_(number)" class="mw-redirect" title="1381 (number)">1381</a></td> <td><a href="/wiki/1399_(number)" class="mw-redirect" title="1399 (number)">1399</a></td> <td><a href="/wiki/1409_(number)" class="mw-redirect" title="1409 (number)">1409</a></td> <td><a href="/wiki/1423_(number)" class="mw-redirect" title="1423 (number)">1423</a></td> <td><a href="/wiki/1427_(number)" class="mw-redirect" title="1427 (number)">1427</a></td> <td><a href="/wiki/1429_(number)" class="mw-redirect" title="1429 (number)">1429</a></td> <td><a href="/wiki/1433_(number)" class="mw-redirect" title="1433 (number)">1433</a></td> <td><a href="/wiki/1439_(number)" class="mw-redirect" title="1439 (number)">1439</a></td> <td><a href="/wiki/1447_(number)" class="mw-redirect" title="1447 (number)">1447</a></td> <td><a href="/wiki/1451_(number)" class="mw-redirect" title="1451 (number)">1451</a></td> <td><a href="/wiki/1453_(number)" class="mw-redirect" title="1453 (number)">1453</a></td> <td><a href="/wiki/1459_(number)" class="mw-redirect" title="1459 (number)">1459</a></td> <td><a href="/wiki/1471_(number)" class="mw-redirect" title="1471 (number)">1471</a></td> <td><a href="/wiki/1481_(number)" class="mw-redirect" title="1481 (number)">1481</a></td> <td><a href="/wiki/1483_(number)" class="mw-redirect" title="1483 (number)">1483</a></td> <td><a href="/wiki/1487_(number)" class="mw-redirect" title="1487 (number)">1487</a></td> <td><a href="/wiki/1489_(number)" class="mw-redirect" title="1489 (number)">1489</a></td> <td><a href="/wiki/1493_(number)" class="mw-redirect" title="1493 (number)">1493</a></td> <td><a href="/wiki/1499_(number)" class="mw-redirect" title="1499 (number)">1499</a></td> <td><a href="/wiki/1511_(number)" class="mw-redirect" title="1511 (number)">1511</a> </td></tr> <tr style="text-align: center;"> <th>241–260 </th> <td><a href="/wiki/1523_(number)" class="mw-redirect" title="1523 (number)">1523</a></td> <td><a href="/wiki/1531_(number)" class="mw-redirect" title="1531 (number)">1531</a></td> <td><a href="/wiki/1543_(number)" class="mw-redirect" title="1543 (number)">1543</a></td> <td><a href="/wiki/1549_(number)" class="mw-redirect" title="1549 (number)">1549</a></td> <td><a href="/wiki/1553_(number)" class="mw-redirect" title="1553 (number)">1553</a></td> <td><a href="/wiki/1559_(number)" class="mw-redirect" title="1559 (number)">1559</a></td> <td><a href="/wiki/1567_(number)" class="mw-redirect" title="1567 (number)">1567</a></td> <td><a href="/wiki/1571_(number)" class="mw-redirect" title="1571 (number)">1571</a></td> <td><a href="/wiki/1579_(number)" class="mw-redirect" title="1579 (number)">1579</a></td> <td><a href="/wiki/1583_(number)" class="mw-redirect" title="1583 (number)">1583</a></td> <td><a href="/wiki/1597_(number)" class="mw-redirect" title="1597 (number)">1597</a></td> <td><a href="/wiki/1601_(number)" class="mw-redirect" title="1601 (number)">1601</a></td> <td><a href="/wiki/1607_(number)" class="mw-redirect" title="1607 (number)">1607</a></td> <td><a href="/wiki/1609_(number)" class="mw-redirect" title="1609 (number)">1609</a></td> <td><a href="/wiki/1613_(number)" class="mw-redirect" title="1613 (number)">1613</a></td> <td><a href="/wiki/1619_(number)" class="mw-redirect" title="1619 (number)">1619</a></td> <td><a href="/wiki/1621_(number)" class="mw-redirect" title="1621 (number)">1621</a></td> <td><a href="/wiki/1627_(number)" class="mw-redirect" title="1627 (number)">1627</a></td> <td><a href="/wiki/1637_(number)" class="mw-redirect" title="1637 (number)">1637</a></td> <td><a href="/wiki/1657_(number)" class="mw-redirect" title="1657 (number)">1657</a> </td></tr> <tr style="text-align: center;"> <th>261–280 </th> <td><a href="/wiki/1663_(number)" class="mw-redirect" title="1663 (number)">1663</a></td> <td><a href="/wiki/1667_(number)" class="mw-redirect" title="1667 (number)">1667</a></td> <td><a href="/wiki/1669_(number)" class="mw-redirect" title="1669 (number)">1669</a></td> <td><a href="/wiki/1693_(number)" class="mw-redirect" title="1693 (number)">1693</a></td> <td><a href="/wiki/1697_(number)" class="mw-redirect" title="1697 (number)">1697</a></td> <td><a href="/wiki/1699_(number)" class="mw-redirect" title="1699 (number)">1699</a></td> <td><a href="/wiki/1709_(number)" class="mw-redirect" title="1709 (number)">1709</a></td> <td><a href="/wiki/1721_(number)" class="mw-redirect" title="1721 (number)">1721</a></td> <td><a href="/wiki/1723_(number)" class="mw-redirect" title="1723 (number)">1723</a></td> <td><a href="/wiki/1733_(number)" class="mw-redirect" title="1733 (number)">1733</a></td> <td><a href="/wiki/1741_(number)" class="mw-redirect" title="1741 (number)">1741</a></td> <td><a href="/wiki/1747_(number)" class="mw-redirect" title="1747 (number)">1747</a></td> <td><a href="/wiki/1753_(number)" class="mw-redirect" title="1753 (number)">1753</a></td> <td><a href="/wiki/1759_(number)" class="mw-redirect" title="1759 (number)">1759</a></td> <td><a href="/wiki/1777_(number)" class="mw-redirect" title="1777 (number)">1777</a></td> <td><a href="/wiki/1783_(number)" class="mw-redirect" title="1783 (number)">1783</a></td> <td><a href="/wiki/1787_(number)" class="mw-redirect" title="1787 (number)">1787</a></td> <td><a href="/wiki/1789_(number)" class="mw-redirect" title="1789 (number)">1789</a></td> <td><a href="/wiki/1801_(number)" class="mw-redirect" title="1801 (number)">1801</a></td> <td><a href="/wiki/1811_(number)" class="mw-redirect" title="1811 (number)">1811</a> </td></tr> <tr style="text-align: center;"> <th>281–300 </th> <td><a href="/wiki/1823_(number)" class="mw-redirect" title="1823 (number)">1823</a></td> <td><a href="/wiki/1831_(number)" class="mw-redirect" title="1831 (number)">1831</a></td> <td><a href="/wiki/1847_(number)" class="mw-redirect" title="1847 (number)">1847</a></td> <td><a href="/wiki/1861_(number)" class="mw-redirect" title="1861 (number)">1861</a></td> <td><a href="/wiki/1867_(number)" class="mw-redirect" title="1867 (number)">1867</a></td> <td><a href="/wiki/1871_(number)" class="mw-redirect" title="1871 (number)">1871</a></td> <td><a href="/wiki/1873_(number)" class="mw-redirect" title="1873 (number)">1873</a></td> <td><a href="/wiki/1877_(number)" class="mw-redirect" title="1877 (number)">1877</a></td> <td><a href="/wiki/1879_(number)" class="mw-redirect" title="1879 (number)">1879</a></td> <td><a href="/wiki/1889_(number)" class="mw-redirect" title="1889 (number)">1889</a></td> <td><a href="/wiki/1901_(number)" class="mw-redirect" title="1901 (number)">1901</a></td> <td><a href="/wiki/1907_(number)" class="mw-redirect" title="1907 (number)">1907</a></td> <td><a href="/wiki/1913_(number)" class="mw-redirect" title="1913 (number)">1913</a></td> <td><a href="/wiki/1931_(number)" class="mw-redirect" title="1931 (number)">1931</a></td> <td><a href="/wiki/1933_(number)" class="mw-redirect" title="1933 (number)">1933</a></td> <td><a href="/wiki/1949_(number)" class="mw-redirect" title="1949 (number)">1949</a></td> <td><a href="/wiki/1951_(number)" class="mw-redirect" title="1951 (number)">1951</a></td> <td><a href="/wiki/1973_(number)" class="mw-redirect" title="1973 (number)">1973</a></td> <td><a href="/wiki/1000_(number)#1900_to_1999" title="1000 (number)">1979</a></td> <td><a href="/wiki/1987_(number)" title="1987 (number)">1987</a> </td></tr> <tr style="text-align: center;"> <th>301–320 </th> <td><a href="/wiki/1993_(number)" class="mw-redirect" title="1993 (number)">1993</a></td> <td><a href="/wiki/1997_(number)" class="mw-redirect" title="1997 (number)">1997</a></td> <td><a href="/wiki/1999_(number)" class="mw-redirect" title="1999 (number)">1999</a></td> <td><a href="/wiki/2003_(number)" class="mw-redirect" title="2003 (number)">2003</a></td> <td><a href="/wiki/2011_(number)" class="mw-redirect" title="2011 (number)">2011</a></td> <td><a href="/wiki/2017_(number)" class="mw-redirect" title="2017 (number)">2017</a></td> <td><a href="/wiki/2027_(number)" class="mw-redirect" title="2027 (number)">2027</a></td> <td><a href="/wiki/2029_(number)" class="mw-redirect" title="2029 (number)">2029</a></td> <td><a href="/wiki/2039_(number)" class="mw-redirect" title="2039 (number)">2039</a></td> <td><a href="/wiki/2053_(number)" class="mw-redirect" title="2053 (number)">2053</a></td> <td><a href="/wiki/2063_(number)" class="mw-redirect" title="2063 (number)">2063</a></td> <td><a href="/wiki/2069_(number)" class="mw-redirect" title="2069 (number)">2069</a></td> <td><a href="/wiki/2081_(number)" class="mw-redirect" title="2081 (number)">2081</a></td> <td><a href="/wiki/2083_(number)" class="mw-redirect" title="2083 (number)">2083</a></td> <td><a href="/wiki/2087_(number)" class="mw-redirect" title="2087 (number)">2087</a></td> <td><a href="/wiki/2089_(number)" class="mw-redirect" title="2089 (number)">2089</a></td> <td><a href="/wiki/2099_(number)" class="mw-redirect" title="2099 (number)">2099</a></td> <td><a href="/wiki/2111_(number)" class="mw-redirect" title="2111 (number)">2111</a></td> <td><a href="/wiki/2113_(number)" class="mw-redirect" title="2113 (number)">2113</a></td> <td><a href="/wiki/2129_(number)" class="mw-redirect" title="2129 (number)">2129</a> </td></tr> <tr style="text-align: center;"> <th>321–340 </th> <td><a href="/wiki/2131_(number)" class="mw-redirect" title="2131 (number)">2131</a></td> <td><a href="/wiki/2137_(number)" class="mw-redirect" title="2137 (number)">2137</a></td> <td><a href="/wiki/2141_(number)" class="mw-redirect" title="2141 (number)">2141</a></td> <td><a href="/wiki/2143_(number)" class="mw-redirect" title="2143 (number)">2143</a></td> <td><a href="/wiki/2153_(number)" class="mw-redirect" title="2153 (number)">2153</a></td> <td><a href="/wiki/2161_(number)" class="mw-redirect" title="2161 (number)">2161</a></td> <td><a href="/wiki/2179_(number)" class="mw-redirect" title="2179 (number)">2179</a></td> <td><a href="/wiki/2203_(number)" class="mw-redirect" title="2203 (number)">2203</a></td> <td><a href="/wiki/2207_(number)" class="mw-redirect" title="2207 (number)">2207</a></td> <td><a href="/wiki/2213_(number)" class="mw-redirect" title="2213 (number)">2213</a></td> <td><a href="/wiki/2221_(number)" class="mw-redirect" title="2221 (number)">2221</a></td> <td><a href="/wiki/2237_(number)" class="mw-redirect" title="2237 (number)">2237</a></td> <td><a href="/wiki/2239_(number)" class="mw-redirect" title="2239 (number)">2239</a></td> <td><a href="/wiki/2243_(number)" class="mw-redirect" title="2243 (number)">2243</a></td> <td><a href="/wiki/2251_(number)" class="mw-redirect" title="2251 (number)">2251</a></td> <td><a href="/wiki/2267_(number)" class="mw-redirect" title="2267 (number)">2267</a></td> <td><a href="/wiki/2269_(number)" class="mw-redirect" title="2269 (number)">2269</a></td> <td><a href="/wiki/2273_(number)" class="mw-redirect" title="2273 (number)">2273</a></td> <td><a href="/wiki/2281_(number)" class="mw-redirect" title="2281 (number)">2281</a></td> <td><a href="/wiki/2287_(number)" class="mw-redirect" title="2287 (number)">2287</a> </td></tr> <tr style="text-align: center;"> <th>341–360 </th> <td><a href="/wiki/2293_(number)" class="mw-redirect" title="2293 (number)">2293</a></td> <td><a href="/wiki/2297_(number)" class="mw-redirect" title="2297 (number)">2297</a></td> <td><a href="/wiki/2309_(number)" class="mw-redirect" title="2309 (number)">2309</a></td> <td><a href="/wiki/2311_(number)" class="mw-redirect" title="2311 (number)">2311</a></td> <td><a href="/wiki/2333_(number)" class="mw-redirect" title="2333 (number)">2333</a></td> <td><a href="/wiki/2339_(number)" class="mw-redirect" title="2339 (number)">2339</a></td> <td><a href="/wiki/2341_(number)" class="mw-redirect" title="2341 (number)">2341</a></td> <td><a href="/wiki/2347_(number)" class="mw-redirect" title="2347 (number)">2347</a></td> <td><a href="/wiki/2351_(number)" class="mw-redirect" title="2351 (number)">2351</a></td> <td><a href="/wiki/2357_(number)" class="mw-redirect" title="2357 (number)">2357</a></td> <td><a href="/wiki/2371_(number)" class="mw-redirect" title="2371 (number)">2371</a></td> <td><a href="/wiki/2377_(number)" class="mw-redirect" title="2377 (number)">2377</a></td> <td><a href="/wiki/2381_(number)" class="mw-redirect" title="2381 (number)">2381</a></td> <td><a href="/wiki/2383_(number)" class="mw-redirect" title="2383 (number)">2383</a></td> <td><a href="/wiki/2389_(number)" class="mw-redirect" title="2389 (number)">2389</a></td> <td><a href="/wiki/2393_(number)" class="mw-redirect" title="2393 (number)">2393</a></td> <td><a href="/wiki/2399_(number)" class="mw-redirect" title="2399 (number)">2399</a></td> <td><a href="/wiki/2411_(number)" class="mw-redirect" title="2411 (number)">2411</a></td> <td><a href="/wiki/2417_(number)" class="mw-redirect" title="2417 (number)">2417</a></td> <td><a href="/wiki/2423_(number)" class="mw-redirect" title="2423 (number)">2423</a> </td></tr> <tr style="text-align: center;"> <th>361–380 </th> <td><a href="/wiki/2437_(number)" class="mw-redirect" title="2437 (number)">2437</a></td> <td><a href="/wiki/2441_(number)" class="mw-redirect" title="2441 (number)">2441</a></td> <td><a href="/wiki/2447_(number)" class="mw-redirect" title="2447 (number)">2447</a></td> <td><a href="/wiki/2459_(number)" class="mw-redirect" title="2459 (number)">2459</a></td> <td><a href="/wiki/2467_(number)" class="mw-redirect" title="2467 (number)">2467</a></td> <td><a href="/wiki/2473_(number)" class="mw-redirect" title="2473 (number)">2473</a></td> <td><a href="/wiki/2477_(number)" class="mw-redirect" title="2477 (number)">2477</a></td> <td><a href="/wiki/2503_(number)" class="mw-redirect" title="2503 (number)">2503</a></td> <td><a href="/wiki/2521_(number)" class="mw-redirect" title="2521 (number)">2521</a></td> <td><a href="/wiki/2531_(number)" class="mw-redirect" title="2531 (number)">2531</a></td> <td><a href="/wiki/2539_(number)" class="mw-redirect" title="2539 (number)">2539</a></td> <td><a href="/wiki/2543_(number)" class="mw-redirect" title="2543 (number)">2543</a></td> <td><a href="/wiki/2549_(number)" class="mw-redirect" title="2549 (number)">2549</a></td> <td><a href="/wiki/2551_(number)" class="mw-redirect" title="2551 (number)">2551</a></td> <td><a href="/wiki/2557_(number)" class="mw-redirect" title="2557 (number)">2557</a></td> <td><a href="/wiki/2579_(number)" class="mw-redirect" title="2579 (number)">2579</a></td> <td><a href="/wiki/2591_(number)" class="mw-redirect" title="2591 (number)">2591</a></td> <td><a href="/wiki/2593_(number)" class="mw-redirect" title="2593 (number)">2593</a></td> <td><a href="/wiki/2609_(number)" class="mw-redirect" title="2609 (number)">2609</a></td> <td><a href="/wiki/2617_(number)" class="mw-redirect" title="2617 (number)">2617</a> </td></tr> <tr style="text-align: center;"> <th>381–400 </th> <td><a href="/wiki/2621_(number)" class="mw-redirect" title="2621 (number)">2621</a></td> <td><a href="/wiki/2633_(number)" class="mw-redirect" title="2633 (number)">2633</a></td> <td><a href="/wiki/2647_(number)" class="mw-redirect" title="2647 (number)">2647</a></td> <td><a href="/wiki/2657_(number)" class="mw-redirect" title="2657 (number)">2657</a></td> <td><a href="/wiki/2659_(number)" class="mw-redirect" title="2659 (number)">2659</a></td> <td><a href="/wiki/2663_(number)" class="mw-redirect" title="2663 (number)">2663</a></td> <td><a href="/wiki/2671_(number)" class="mw-redirect" title="2671 (number)">2671</a></td> <td><a href="/wiki/2677_(number)" class="mw-redirect" title="2677 (number)">2677</a></td> <td><a href="/wiki/2683_(number)" class="mw-redirect" title="2683 (number)">2683</a></td> <td><a href="/wiki/2687_(number)" class="mw-redirect" title="2687 (number)">2687</a></td> <td><a href="/wiki/2689_(number)" class="mw-redirect" title="2689 (number)">2689</a></td> <td><a href="/wiki/2693_(number)" class="mw-redirect" title="2693 (number)">2693</a></td> <td><a href="/wiki/2699_(number)" class="mw-redirect" title="2699 (number)">2699</a></td> <td><a href="/wiki/2707_(number)" class="mw-redirect" title="2707 (number)">2707</a></td> <td><a href="/wiki/2711_(number)" class="mw-redirect" title="2711 (number)">2711</a></td> <td><a href="/wiki/2713_(number)" class="mw-redirect" title="2713 (number)">2713</a></td> <td><a href="/wiki/2719_(number)" class="mw-redirect" title="2719 (number)">2719</a></td> <td><a href="/wiki/2729_(number)" class="mw-redirect" title="2729 (number)">2729</a></td> <td><a href="/wiki/2731_(number)" class="mw-redirect" title="2731 (number)">2731</a></td> <td><a href="/wiki/2741_(number)" class="mw-redirect" title="2741 (number)">2741</a> </td></tr> <tr style="text-align: center;"> <th>401–420 </th> <td><a href="/wiki/2749_(number)" class="mw-redirect" title="2749 (number)">2749</a></td> <td><a href="/wiki/2753_(number)" class="mw-redirect" title="2753 (number)">2753</a></td> <td><a href="/wiki/2767_(number)" class="mw-redirect" title="2767 (number)">2767</a></td> <td><a href="/wiki/2777_(number)" class="mw-redirect" title="2777 (number)">2777</a></td> <td><a href="/wiki/2789_(number)" class="mw-redirect" title="2789 (number)">2789</a></td> <td><a href="/wiki/2791_(number)" class="mw-redirect" title="2791 (number)">2791</a></td> <td><a href="/wiki/2797_(number)" class="mw-redirect" title="2797 (number)">2797</a></td> <td><a href="/wiki/2801_(number)" class="mw-redirect" title="2801 (number)">2801</a></td> <td><a href="/wiki/2803_(number)" class="mw-redirect" title="2803 (number)">2803</a></td> <td><a href="/wiki/2819_(number)" class="mw-redirect" title="2819 (number)">2819</a></td> <td><a href="/wiki/2833_(number)" class="mw-redirect" title="2833 (number)">2833</a></td> <td><a href="/wiki/2837_(number)" class="mw-redirect" title="2837 (number)">2837</a></td> <td><a href="/wiki/2843_(number)" class="mw-redirect" title="2843 (number)">2843</a></td> <td><a href="/wiki/2851_(number)" class="mw-redirect" title="2851 (number)">2851</a></td> <td><a href="/wiki/2857_(number)" class="mw-redirect" title="2857 (number)">2857</a></td> <td><a href="/wiki/2861_(number)" class="mw-redirect" title="2861 (number)">2861</a></td> <td><a href="/wiki/2879_(number)" class="mw-redirect" title="2879 (number)">2879</a></td> <td><a href="/wiki/2887_(number)" class="mw-redirect" title="2887 (number)">2887</a></td> <td><a href="/wiki/2897_(number)" class="mw-redirect" title="2897 (number)">2897</a></td> <td><a href="/wiki/2903_(number)" class="mw-redirect" title="2903 (number)">2903</a> </td></tr> <tr style="text-align: center;"> <th>421–440 </th> <td><a href="/wiki/2909_(number)" class="mw-redirect" title="2909 (number)">2909</a></td> <td><a href="/wiki/2917_(number)" class="mw-redirect" title="2917 (number)">2917</a></td> <td><a href="/wiki/2927_(number)" class="mw-redirect" title="2927 (number)">2927</a></td> <td><a href="/wiki/2939_(number)" class="mw-redirect" title="2939 (number)">2939</a></td> <td><a href="/wiki/2953_(number)" class="mw-redirect" title="2953 (number)">2953</a></td> <td><a href="/wiki/2957_(number)" class="mw-redirect" title="2957 (number)">2957</a></td> <td><a href="/wiki/2963_(number)" class="mw-redirect" title="2963 (number)">2963</a></td> <td><a href="/wiki/2969_(number)" class="mw-redirect" title="2969 (number)">2969</a></td> <td><a href="/wiki/2971_(number)" class="mw-redirect" title="2971 (number)">2971</a></td> <td><a href="/wiki/2999_(number)" class="mw-redirect" title="2999 (number)">2999</a></td> <td><a href="/wiki/3001_(number)" class="mw-redirect" title="3001 (number)">3001</a></td> <td><a href="/wiki/3011_(number)" class="mw-redirect" title="3011 (number)">3011</a></td> <td><a href="/wiki/3019_(number)" class="mw-redirect" title="3019 (number)">3019</a></td> <td><a href="/wiki/3023_(number)" class="mw-redirect" title="3023 (number)">3023</a></td> <td><a href="/wiki/3037_(number)" class="mw-redirect" title="3037 (number)">3037</a></td> <td><a href="/wiki/3041_(number)" class="mw-redirect" title="3041 (number)">3041</a></td> <td><a href="/wiki/3049_(number)" class="mw-redirect" title="3049 (number)">3049</a></td> <td><a href="/wiki/3061_(number)" class="mw-redirect" title="3061 (number)">3061</a></td> <td><a href="/wiki/3067_(number)" class="mw-redirect" title="3067 (number)">3067</a></td> <td><a href="/wiki/3079_(number)" class="mw-redirect" title="3079 (number)">3079</a> </td></tr> <tr style="text-align: center;"> <th>441–460 </th> <td><a href="/wiki/3083_(number)" class="mw-redirect" title="3083 (number)">3083</a></td> <td><a href="/wiki/3089_(number)" class="mw-redirect" title="3089 (number)">3089</a></td> <td><a href="/wiki/3109_(number)" class="mw-redirect" title="3109 (number)">3109</a></td> <td><a href="/wiki/3119_(number)" class="mw-redirect" title="3119 (number)">3119</a></td> <td><a href="/wiki/3121_(number)" class="mw-redirect" title="3121 (number)">3121</a></td> <td><a href="/wiki/3137_(number)" class="mw-redirect" title="3137 (number)">3137</a></td> <td><a href="/wiki/3163_(number)" class="mw-redirect" title="3163 (number)">3163</a></td> <td><a href="/wiki/3167_(number)" class="mw-redirect" title="3167 (number)">3167</a></td> <td><a href="/wiki/3169_(number)" class="mw-redirect" title="3169 (number)">3169</a></td> <td><a href="/wiki/3181_(number)" class="mw-redirect" title="3181 (number)">3181</a></td> <td><a href="/wiki/3187_(number)" class="mw-redirect" title="3187 (number)">3187</a></td> <td><a href="/wiki/3191_(number)" class="mw-redirect" title="3191 (number)">3191</a></td> <td><a href="/wiki/3203_(number)" class="mw-redirect" title="3203 (number)">3203</a></td> <td><a href="/wiki/3209_(number)" class="mw-redirect" title="3209 (number)">3209</a></td> <td><a href="/wiki/3217_(number)" class="mw-redirect" title="3217 (number)">3217</a></td> <td><a href="/wiki/3221_(number)" class="mw-redirect" title="3221 (number)">3221</a></td> <td><a href="/wiki/3229_(number)" class="mw-redirect" title="3229 (number)">3229</a></td> <td><a href="/wiki/3251_(number)" class="mw-redirect" title="3251 (number)">3251</a></td> <td><a href="/wiki/3253_(number)" class="mw-redirect" title="3253 (number)">3253</a></td> <td><a href="/wiki/3257_(number)" class="mw-redirect" title="3257 (number)">3257</a> </td></tr> <tr style="text-align: center;"> <th>461–480 </th> <td><a href="/wiki/3259_(number)" class="mw-redirect" title="3259 (number)">3259</a></td> <td><a href="/wiki/3271_(number)" class="mw-redirect" title="3271 (number)">3271</a></td> <td><a href="/wiki/3299_(number)" class="mw-redirect" title="3299 (number)">3299</a></td> <td><a href="/wiki/3301_(number)" class="mw-redirect" title="3301 (number)">3301</a></td> <td><a href="/wiki/3307_(number)" class="mw-redirect" title="3307 (number)">3307</a></td> <td><a href="/wiki/3313_(number)" class="mw-redirect" title="3313 (number)">3313</a></td> <td><a href="/wiki/3319_(number)" class="mw-redirect" title="3319 (number)">3319</a></td> <td><a href="/wiki/3323_(number)" class="mw-redirect" title="3323 (number)">3323</a></td> <td><a href="/wiki/3329_(number)" class="mw-redirect" title="3329 (number)">3329</a></td> <td><a href="/wiki/3331_(number)" class="mw-redirect" title="3331 (number)">3331</a></td> <td><a href="/wiki/3343_(number)" class="mw-redirect" title="3343 (number)">3343</a></td> <td><a href="/wiki/3347_(number)" class="mw-redirect" title="3347 (number)">3347</a></td> <td><a href="/wiki/3359_(number)" class="mw-redirect" title="3359 (number)">3359</a></td> <td><a href="/wiki/3361_(number)" class="mw-redirect" title="3361 (number)">3361</a></td> <td><a href="/wiki/3371_(number)" class="mw-redirect" title="3371 (number)">3371</a></td> <td><a href="/wiki/3373_(number)" class="mw-redirect" title="3373 (number)">3373</a></td> <td><a href="/wiki/3389_(number)" class="mw-redirect" title="3389 (number)">3389</a></td> <td><a href="/wiki/3391_(number)" class="mw-redirect" title="3391 (number)">3391</a></td> <td><a href="/wiki/3407_(number)" class="mw-redirect" title="3407 (number)">3407</a></td> <td><a href="/wiki/3413_(number)" class="mw-redirect" title="3413 (number)">3413</a> </td></tr> <tr style="text-align: center;"> <th>481–500 </th> <td><a href="/wiki/3433_(number)" class="mw-redirect" title="3433 (number)">3433</a></td> <td><a href="/wiki/3449_(number)" class="mw-redirect" title="3449 (number)">3449</a></td> <td><a href="/wiki/3457_(number)" class="mw-redirect" title="3457 (number)">3457</a></td> <td><a href="/wiki/3461_(number)" class="mw-redirect" title="3461 (number)">3461</a></td> <td><a href="/wiki/3463_(number)" class="mw-redirect" title="3463 (number)">3463</a></td> <td><a href="/wiki/3467_(number)" class="mw-redirect" title="3467 (number)">3467</a></td> <td><a href="/wiki/3469_(number)" class="mw-redirect" title="3469 (number)">3469</a></td> <td><a href="/wiki/3491_(number)" class="mw-redirect" title="3491 (number)">3491</a></td> <td><a href="/wiki/3499_(number)" class="mw-redirect" title="3499 (number)">3499</a></td> <td><a href="/wiki/3511_(number)" class="mw-redirect" title="3511 (number)">3511</a></td> <td><a href="/wiki/3517_(number)" class="mw-redirect" title="3517 (number)">3517</a></td> <td><a href="/wiki/3527_(number)" class="mw-redirect" title="3527 (number)">3527</a></td> <td><a href="/wiki/3529_(number)" class="mw-redirect" title="3529 (number)">3529</a></td> <td><a href="/wiki/3533_(number)" class="mw-redirect" title="3533 (number)">3533</a></td> <td><a href="/wiki/3539_(number)" class="mw-redirect" title="3539 (number)">3539</a></td> <td><a href="/wiki/3541_(number)" class="mw-redirect" title="3541 (number)">3541</a></td> <td><a href="/wiki/3547_(number)" class="mw-redirect" title="3547 (number)">3547</a></td> <td><a href="/wiki/3557_(number)" class="mw-redirect" title="3557 (number)">3557</a></td> <td><a href="/wiki/3559_(number)" class="mw-redirect" title="3559 (number)">3559</a></td> <td><a href="/wiki/3571_(number)" class="mw-redirect" title="3571 (number)">3571</a> </td></tr> <tr style="text-align: center;"> <th>501–520 </th> <td><a href="/wiki/3581_(number)" class="mw-redirect" title="3581 (number)">3581</a></td> <td><a href="/wiki/3583_(number)" class="mw-redirect" title="3583 (number)">3583</a></td> <td><a href="/wiki/3593_(number)" class="mw-redirect" title="3593 (number)">3593</a></td> <td><a href="/wiki/3607_(number)" class="mw-redirect" title="3607 (number)">3607</a></td> <td><a href="/wiki/3613_(number)" class="mw-redirect" title="3613 (number)">3613</a></td> <td><a href="/wiki/3617_(number)" class="mw-redirect" title="3617 (number)">3617</a></td> <td><a href="/wiki/3623_(number)" class="mw-redirect" title="3623 (number)">3623</a></td> <td><a href="/wiki/3631_(number)" class="mw-redirect" title="3631 (number)">3631</a></td> <td><a href="/wiki/3637_(number)" class="mw-redirect" title="3637 (number)">3637</a></td> <td><a href="/wiki/3643_(number)" class="mw-redirect" title="3643 (number)">3643</a></td> <td><a href="/wiki/3659_(number)" class="mw-redirect" title="3659 (number)">3659</a></td> <td><a href="/wiki/3671_(number)" class="mw-redirect" title="3671 (number)">3671</a></td> <td><a href="/wiki/3673_(number)" class="mw-redirect" title="3673 (number)">3673</a></td> <td><a href="/wiki/3677_(number)" class="mw-redirect" title="3677 (number)">3677</a></td> <td><a href="/wiki/3691_(number)" class="mw-redirect" title="3691 (number)">3691</a></td> <td><a href="/wiki/3697_(number)" class="mw-redirect" title="3697 (number)">3697</a></td> <td><a href="/wiki/3701_(number)" class="mw-redirect" title="3701 (number)">3701</a></td> <td><a href="/wiki/3709_(number)" class="mw-redirect" title="3709 (number)">3709</a></td> <td><a href="/wiki/3719_(number)" class="mw-redirect" title="3719 (number)">3719</a></td> <td><a href="/wiki/3727_(number)" class="mw-redirect" title="3727 (number)">3727</a> </td></tr> <tr style="text-align: center;"> <th>521–540 </th> <td><a href="/wiki/3733_(number)" class="mw-redirect" title="3733 (number)">3733</a></td> <td><a href="/wiki/3739_(number)" class="mw-redirect" title="3739 (number)">3739</a></td> <td><a href="/wiki/3761_(number)" class="mw-redirect" title="3761 (number)">3761</a></td> <td><a href="/wiki/3767_(number)" class="mw-redirect" title="3767 (number)">3767</a></td> <td><a href="/wiki/3769_(number)" class="mw-redirect" title="3769 (number)">3769</a></td> <td><a href="/wiki/3779_(number)" class="mw-redirect" title="3779 (number)">3779</a></td> <td><a href="/wiki/3793_(number)" class="mw-redirect" title="3793 (number)">3793</a></td> <td><a href="/wiki/3797_(number)" class="mw-redirect" title="3797 (number)">3797</a></td> <td><a href="/wiki/3803_(number)" class="mw-redirect" title="3803 (number)">3803</a></td> <td><a href="/wiki/3821_(number)" class="mw-redirect" title="3821 (number)">3821</a></td> <td><a href="/wiki/3823_(number)" class="mw-redirect" title="3823 (number)">3823</a></td> <td><a href="/wiki/3833_(number)" class="mw-redirect" title="3833 (number)">3833</a></td> <td><a href="/wiki/3847_(number)" class="mw-redirect" title="3847 (number)">3847</a></td> <td><a href="/wiki/3851_(number)" class="mw-redirect" title="3851 (number)">3851</a></td> <td><a href="/wiki/3853_(number)" class="mw-redirect" title="3853 (number)">3853</a></td> <td><a href="/wiki/3863_(number)" class="mw-redirect" title="3863 (number)">3863</a></td> <td><a href="/wiki/3877_(number)" class="mw-redirect" title="3877 (number)">3877</a></td> <td><a href="/wiki/3881_(number)" class="mw-redirect" title="3881 (number)">3881</a></td> <td><a href="/wiki/3889_(number)" class="mw-redirect" title="3889 (number)">3889</a></td> <td><a href="/wiki/3907_(number)" class="mw-redirect" title="3907 (number)">3907</a> </td></tr> <tr style="text-align: center;"> <th>541–560 </th> <td><a href="/wiki/3911_(number)" class="mw-redirect" title="3911 (number)">3911</a></td> <td><a href="/wiki/3917_(number)" class="mw-redirect" title="3917 (number)">3917</a></td> <td><a href="/wiki/3919_(number)" class="mw-redirect" title="3919 (number)">3919</a></td> <td><a href="/wiki/3923_(number)" class="mw-redirect" title="3923 (number)">3923</a></td> <td><a href="/wiki/3929_(number)" class="mw-redirect" title="3929 (number)">3929</a></td> <td><a href="/wiki/3931_(number)" class="mw-redirect" title="3931 (number)">3931</a></td> <td><a href="/wiki/3943_(number)" class="mw-redirect" title="3943 (number)">3943</a></td> <td><a href="/wiki/3947_(number)" class="mw-redirect" title="3947 (number)">3947</a></td> <td><a href="/wiki/3967_(number)" class="mw-redirect" title="3967 (number)">3967</a></td> <td><a href="/wiki/3989_(number)" class="mw-redirect" title="3989 (number)">3989</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4001</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4003</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4007</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4013</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4019</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4021</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4027</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4049</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4051</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4057</a> </td></tr> <tr style="text-align: center;"> <th>561–580 </th> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4073</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4079</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4091</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4093</a></td> <td><a href="/wiki/4000_(number)#4001_to_4099" title="4000 (number)">4099</a></td> <td><a href="/wiki/4000_(number)#4100_to_4199" title="4000 (number)">4111</a></td> <td><a href="/wiki/4000_(number)#4100_to_4199" title="4000 (number)">4127</a></td> <td><a href="/wiki/4000_(number)#4100_to_4199" title="4000 (number)">4129</a></td> <td><a href="/wiki/4000_(number)#4100_to_4199" title="4000 (number)">4133</a></td> <td><a href="/wiki/4000_(number)#4100_to_4199" title="4000 (number)">4139</a></td> <td><a href="/wiki/4000_(number)#4100_to_4199" title="4000 (number)">4153</a></td> <td><a href="/wiki/4000_(number)#4100_to_4199" title="4000 (number)">4157</a></td> <td><a href="/wiki/4000_(number)#4100_to_4199" title="4000 (number)">4159</a></td> <td><a href="/wiki/4000_(number)#4100_to_4199" title="4000 (number)">4177</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4201</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4211</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4217</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4219</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4229</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4231</a> </td></tr> <tr style="text-align: center;"> <th>581–600 </th> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4241</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4243</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4253</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4259</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4261</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4271</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4273</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4283</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4289</a></td> <td><a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4297</a></td> <td><a href="/wiki/4000_(number)#4300_to_4399" title="4000 (number)">4327</a></td> <td><a href="/wiki/4000_(number)#4300_to_4399" title="4000 (number)">4337</a></td> <td><a href="/wiki/4000_(number)#4300_to_4399" title="4000 (number)">4339</a></td> <td><a href="/wiki/4000_(number)#4300_to_4399" title="4000 (number)">4349</a></td> <td><a href="/wiki/4000_(number)#4300_to_4399" title="4000 (number)">4357</a></td> <td><a href="/wiki/4000_(number)#4300_to_4399" title="4000 (number)">4363</a></td> <td><a href="/wiki/4000_(number)#4300_to_4399" title="4000 (number)">4373</a></td> <td><a href="/wiki/4000_(number)#4300_to_4399" title="4000 (number)">4391</a></td> <td><a href="/wiki/4000_(number)#4300_to_4399" title="4000 (number)">4397</a></td> <td><a href="/wiki/4000_(number)#4400_to_4499" title="4000 (number)">4409</a> </td></tr> <tr style="text-align: center;"> <th>601–620 </th> <td><a href="/wiki/4000_(number)#4400_to_4499" title="4000 (number)">4421</a></td> <td><a href="/wiki/4000_(number)#4400_to_4499" title="4000 (number)">4423</a></td> <td><a href="/wiki/4000_(number)#4400_to_4499" title="4000 (number)">4441</a></td> <td><a href="/wiki/4000_(number)#4400_to_4499" title="4000 (number)">4447</a></td> <td><a href="/wiki/4000_(number)#4400_to_4499" title="4000 (number)">4451</a></td> <td><a href="/wiki/4000_(number)#4400_to_4499" title="4000 (number)">4457</a></td> <td><a href="/wiki/4000_(number)#4400_to_4499" title="4000 (number)">4463</a></td> <td><a href="/wiki/4000_(number)#4400_to_4499" title="4000 (number)">4481</a></td> <td><a href="/wiki/4000_(number)#4400_to_4499" title="4000 (number)">4483</a></td> <td><a href="/wiki/4000_(number)#4400_to_4499" title="4000 (number)">4493</a></td> <td><a href="/wiki/4000_(number)#4500_to_4599" title="4000 (number)">4507</a></td> <td><a href="/wiki/4000_(number)#4500_to_4599" title="4000 (number)">4513</a></td> <td><a href="/wiki/4000_(number)#4500_to_4599" title="4000 (number)">4517</a></td> <td><a href="/wiki/4000_(number)#4500_to_4599" title="4000 (number)">4519</a></td> <td><a href="/wiki/4000_(number)#4500_to_4599" title="4000 (number)">4523</a></td> <td><a href="/wiki/4000_(number)#4500_to_4599" title="4000 (number)">4547</a></td> <td><a href="/wiki/4000_(number)#4500_to_4599" title="4000 (number)">4549</a></td> <td><a href="/wiki/4000_(number)#4500_to_4599" title="4000 (number)">4561</a></td> <td><a href="/wiki/4000_(number)#4500_to_4599" title="4000 (number)">4567</a></td> <td><a href="/wiki/4000_(number)#4500_to_4599" title="4000 (number)">4583</a> </td></tr> <tr style="text-align: center;"> <th>621–640 </th> <td><a href="/wiki/4000_(number)#4500_to_4599" title="4000 (number)">4591</a></td> <td><a href="/wiki/4000_(number)#4500_to_4599" title="4000 (number)">4597</a></td> <td><a href="/wiki/4000_(number)#4600_to_4699" title="4000 (number)">4603</a></td> <td><a href="/wiki/4000_(number)#4600_to_4699" title="4000 (number)">4621</a></td> <td><a href="/wiki/4000_(number)#4600_to_4699" title="4000 (number)">4637</a></td> <td><a href="/wiki/4000_(number)#4600_to_4699" title="4000 (number)">4639</a></td> <td><a href="/wiki/4000_(number)#4600_to_4699" title="4000 (number)">4643</a></td> <td><a href="/wiki/4000_(number)#4600_to_4699" title="4000 (number)">4649</a></td> <td><a href="/wiki/4000_(number)#4600_to_4699" title="4000 (number)">4651</a></td> <td><a href="/wiki/4000_(number)#4600_to_4699" title="4000 (number)">4657</a></td> <td><a href="/wiki/4000_(number)#4600_to_4699" title="4000 (number)">4663</a></td> <td><a href="/wiki/4000_(number)#4600_to_4699" title="4000 (number)">4673</a></td> <td><a href="/wiki/4000_(number)#4600_to_4699" title="4000 (number)">4679</a></td> <td><a href="/wiki/4000_(number)#4600_to_4699" title="4000 (number)">4691</a></td> <td><a href="/wiki/4000_(number)#4700_to_4799" title="4000 (number)">4703</a></td> <td><a href="/wiki/4000_(number)#4700_to_4799" title="4000 (number)">4721</a></td> <td><a href="/wiki/4000_(number)#4700_to_4799" title="4000 (number)">4723</a></td> <td><a href="/wiki/4000_(number)#4700_to_4799" title="4000 (number)">4729</a></td> <td><a href="/wiki/4000_(number)#4700_to_4799" title="4000 (number)">4733</a></td> <td><a href="/wiki/4000_(number)#4700_to_4799" title="4000 (number)">4751</a> </td></tr> <tr style="text-align: center;"> <th>641–660 </th> <td><a href="/wiki/4000_(number)#4700_to_4799" title="4000 (number)">4759</a></td> <td><a href="/wiki/4000_(number)#4700_to_4799" title="4000 (number)">4783</a></td> <td><a href="/wiki/4000_(number)#4700_to_4799" title="4000 (number)">4787</a></td> <td><a href="/wiki/4000_(number)#4700_to_4799" title="4000 (number)">4789</a></td> <td><a href="/wiki/4000_(number)#4700_to_4799" title="4000 (number)">4793</a></td> <td><a href="/wiki/4000_(number)#4700_to_4799" title="4000 (number)">4799</a></td> <td><a href="/wiki/4000_(number)#4800_to_4899" title="4000 (number)">4801</a></td> <td><a href="/wiki/4000_(number)#4800_to_4899" title="4000 (number)">4813</a></td> <td><a href="/wiki/4000_(number)#4800_to_4899" title="4000 (number)">4817</a></td> <td><a href="/wiki/4000_(number)#4800_to_4899" title="4000 (number)">4831</a></td> <td><a href="/wiki/4000_(number)#4800_to_4899" title="4000 (number)">4861</a></td> <td><a href="/wiki/4000_(number)#4800_to_4899" title="4000 (number)">4871</a></td> <td><a href="/wiki/4000_(number)#4800_to_4899" title="4000 (number)">4877</a></td> <td><a href="/wiki/4000_(number)#4800_to_4899" title="4000 (number)">4889</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4903</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4909</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4919</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4931</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4933</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4937</a> </td></tr> <tr style="text-align: center;"> <th>661–680 </th> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4943</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4951</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4957</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4967</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4969</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4973</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4987</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4993</a></td> <td><a href="/wiki/4000_(number)#4900_to_4999" title="4000 (number)">4999</a></td> <td><a href="/wiki/5000_(number)#5001_to_5099" title="5000 (number)">5003</a></td> <td><a href="/wiki/5000_(number)#5001_to_5099" title="5000 (number)">5009</a></td> <td><a href="/wiki/5000_(number)#5001_to_5099" title="5000 (number)">5011</a></td> <td><a href="/wiki/5000_(number)#5001_to_5099" title="5000 (number)">5021</a></td> <td><a href="/wiki/5000_(number)#5001_to_5099" title="5000 (number)">5023</a></td> <td><a href="/wiki/5000_(number)#5001_to_5099" title="5000 (number)">5039</a></td> <td><a href="/wiki/5000_(number)#5001_to_5099" title="5000 (number)">5051</a></td> <td><a href="/wiki/5000_(number)#5001_to_5099" title="5000 (number)">5059</a></td> <td><a href="/wiki/5000_(number)#5001_to_5099" title="5000 (number)">5077</a></td> <td><a href="/wiki/5000_(number)#5001_to_5099" title="5000 (number)">5081</a></td> <td><a href="/wiki/5000_(number)#5001_to_5099" title="5000 (number)">5087</a> </td></tr> <tr style="text-align: center;"> <th>681–700 </th> <td><a href="/wiki/5000_(number)#5001_to_5099" title="5000 (number)">5099</a></td> <td><a href="/wiki/5000_(number)#5100_to_5199" title="5000 (number)">5101</a></td> <td><a href="/wiki/5000_(number)#5100_to_5199" title="5000 (number)">5107</a></td> <td><a href="/wiki/5000_(number)#5100_to_5199" title="5000 (number)">5113</a></td> <td><a href="/wiki/5000_(number)#5100_to_5199" title="5000 (number)">5119</a></td> <td><a href="/wiki/5000_(number)#5100_to_5199" title="5000 (number)">5147</a></td> <td><a href="/wiki/5000_(number)#5100_to_5199" title="5000 (number)">5153</a></td> <td><a href="/wiki/5000_(number)#5100_to_5199" title="5000 (number)">5167</a></td> <td><a href="/wiki/5000_(number)#5100_to_5199" title="5000 (number)">5171</a></td> <td><a href="/wiki/5000_(number)#5100_to_5199" title="5000 (number)">5179</a></td> <td><a href="/wiki/5000_(number)#5100_to_5199" title="5000 (number)">5189</a></td> <td><a href="/wiki/5000_(number)#5100_to_5199" title="5000 (number)">5197</a></td> <td><a href="/wiki/5000_(number)#5200_to_5299" title="5000 (number)">5209</a></td> <td><a href="/wiki/5000_(number)#5200_to_5299" title="5000 (number)">5227</a></td> <td><a href="/wiki/5000_(number)#5200_to_5299" title="5000 (number)">5231</a></td> <td><a href="/wiki/5000_(number)#5200_to_5299" title="5000 (number)">5233</a></td> <td><a href="/wiki/5000_(number)#5200_to_5299" title="5000 (number)">5237</a></td> <td><a href="/wiki/5000_(number)#5200_to_5299" title="5000 (number)">5261</a></td> <td><a href="/wiki/5000_(number)#5200_to_5299" title="5000 (number)">5273</a></td> <td><a href="/wiki/5000_(number)#5200_to_5299" title="5000 (number)">5279</a> </td></tr> <tr style="text-align: center;"> <th>701–720 </th> <td><a href="/wiki/5000_(number)#5200_to_5299" title="5000 (number)">5281</a></td> <td><a href="/wiki/5000_(number)#5200_to_5299" title="5000 (number)">5297</a></td> <td><a href="/wiki/5000_(number)#5300_to_5399" title="5000 (number)">5303</a></td> <td><a href="/wiki/5000_(number)#5300_to_5399" title="5000 (number)">5309</a></td> <td><a href="/wiki/5000_(number)#5300_to_5399" title="5000 (number)">5323</a></td> <td><a href="/wiki/5000_(number)#5300_to_5399" title="5000 (number)">5333</a></td> <td><a href="/wiki/5000_(number)#5300_to_5399" title="5000 (number)">5347</a></td> <td><a href="/wiki/5000_(number)#5300_to_5399" title="5000 (number)">5351</a></td> <td><a href="/wiki/5000_(number)#5300_to_5399" title="5000 (number)">5381</a></td> <td><a href="/wiki/5000_(number)#5300_to_5399" title="5000 (number)">5387</a></td> <td><a href="/wiki/5000_(number)#5300_to_5399" title="5000 (number)">5393</a></td> <td><a href="/wiki/5000_(number)#5300_to_5399" title="5000 (number)">5399</a></td> <td><a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5407</a></td> <td><a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5413</a></td> <td><a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5417</a></td> <td><a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5419</a></td> <td><a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5431</a></td> <td><a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5437</a></td> <td><a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5441</a></td> <td><a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5443</a> </td></tr> <tr style="text-align: center;"> <th>721–740 </th> <td><a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5449</a></td> <td><a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5471</a></td> <td><a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5477</a></td> <td><a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5479</a></td> <td><a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5483</a></td> <td><a href="/wiki/5000_(number)#5500_to_5599" title="5000 (number)">5501</a></td> <td><a href="/wiki/5000_(number)#5500_to_5599" title="5000 (number)">5503</a></td> <td><a href="/wiki/5000_(number)#5500_to_5599" title="5000 (number)">5507</a></td> <td><a href="/wiki/5000_(number)#5500_to_5599" title="5000 (number)">5519</a></td> <td><a href="/wiki/5000_(number)#5500_to_5599" title="5000 (number)">5521</a></td> <td><a href="/wiki/5000_(number)#5500_to_5599" title="5000 (number)">5527</a></td> <td><a href="/wiki/5000_(number)#5500_to_5599" title="5000 (number)">5531</a></td> <td><a href="/wiki/5000_(number)#5500_to_5599" title="5000 (number)">5557</a></td> <td><a href="/wiki/5000_(number)#5500_to_5599" title="5000 (number)">5563</a></td> <td><a href="/wiki/5000_(number)#5500_to_5599" title="5000 (number)">5569</a></td> <td><a href="/wiki/5000_(number)#5500_to_5599" title="5000 (number)">5573</a></td> <td><a href="/wiki/5000_(number)#5500_to_5599" title="5000 (number)">5581</a></td> <td><a href="/wiki/5000_(number)#5500_to_5599" title="5000 (number)">5591</a></td> <td><a href="/wiki/5000_(number)#5600_to_5699" title="5000 (number)">5623</a></td> <td><a href="/wiki/5000_(number)#5600_to_5699" title="5000 (number)">5639</a> </td></tr> <tr style="text-align: center;"> <th>741–760 </th> <td><a href="/wiki/5000_(number)#5600_to_5699" title="5000 (number)">5641</a></td> <td><a href="/wiki/5000_(number)#5600_to_5699" title="5000 (number)">5647</a></td> <td><a href="/wiki/5000_(number)#5600_to_5699" title="5000 (number)">5651</a></td> <td><a href="/wiki/5000_(number)#5600_to_5699" title="5000 (number)">5653</a></td> <td><a href="/wiki/5000_(number)#5600_to_5699" title="5000 (number)">5657</a></td> <td><a href="/wiki/5000_(number)#5600_to_5699" title="5000 (number)">5659</a></td> <td><a href="/wiki/5000_(number)#5600_to_5699" title="5000 (number)">5669</a></td> <td><a href="/wiki/5000_(number)#5600_to_5699" title="5000 (number)">5683</a></td> <td><a href="/wiki/5000_(number)#5600_to_5699" title="5000 (number)">5689</a></td> <td><a href="/wiki/5000_(number)#5600_to_5699" title="5000 (number)">5693</a></td> <td><a href="/wiki/5000_(number)#5700_to_5799" title="5000 (number)">5701</a></td> <td><a href="/wiki/5000_(number)#5700_to_5799" title="5000 (number)">5711</a></td> <td><a href="/wiki/5000_(number)#5700_to_5799" title="5000 (number)">5717</a></td> <td><a href="/wiki/5000_(number)#5700_to_5799" title="5000 (number)">5737</a></td> <td><a href="/wiki/5000_(number)#5700_to_5799" title="5000 (number)">5741</a></td> <td><a href="/wiki/5000_(number)#5700_to_5799" title="5000 (number)">5743</a></td> <td><a href="/wiki/5000_(number)#5700_to_5799" title="5000 (number)">5749</a></td> <td><a href="/wiki/5000_(number)#5700_to_5799" title="5000 (number)">5779</a></td> <td><a href="/wiki/5000_(number)#5700_to_5799" title="5000 (number)">5783</a></td> <td><a href="/wiki/5000_(number)#5700_to_5799" title="5000 (number)">5791</a> </td></tr> <tr style="text-align: center;"> <th>761–780 </th> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5801</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5807</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5813</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5821</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5827</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5839</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5843</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5849</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5851</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5857</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5861</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5867</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5869</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5879</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5881</a></td> <td><a href="/wiki/5000_(number)#5800_to_5899" title="5000 (number)">5897</a></td> <td><a href="/wiki/5000_(number)#5900_to_5999" title="5000 (number)">5903</a></td> <td><a href="/wiki/5000_(number)#5900_to_5999" title="5000 (number)">5923</a></td> <td><a href="/wiki/5000_(number)#5900_to_5999" title="5000 (number)">5927</a></td> <td><a href="/wiki/5000_(number)#5900_to_5999" title="5000 (number)">5939</a> </td></tr> <tr style="text-align: center;"> <th>781–800 </th> <td><a href="/wiki/5000_(number)#5900_to_5999" title="5000 (number)">5953</a></td> <td><a href="/wiki/5000_(number)#5900_to_5999" title="5000 (number)">5981</a></td> <td><a href="/wiki/5000_(number)#5900_to_5999" title="5000 (number)">5987</a></td> <td><a href="/wiki/6000_(number)#6001_to_6099" title="6000 (number)">6007</a></td> <td><a href="/wiki/6000_(number)#6001_to_6099" title="6000 (number)">6011</a></td> <td><a href="/wiki/6000_(number)#6001_to_6099" title="6000 (number)">6029</a></td> <td><a href="/wiki/6000_(number)#6001_to_6099" title="6000 (number)">6037</a></td> <td><a href="/wiki/6000_(number)#6001_to_6099" title="6000 (number)">6043</a></td> <td><a href="/wiki/6000_(number)#6001_to_6099" title="6000 (number)">6047</a></td> <td><a href="/wiki/6000_(number)#6001_to_6099" title="6000 (number)">6053</a></td> <td><a href="/wiki/6000_(number)#6001_to_6099" title="6000 (number)">6067</a></td> <td><a href="/wiki/6000_(number)#6001_to_6099" title="6000 (number)">6073</a></td> <td><a href="/wiki/6000_(number)#6001_to_6099" title="6000 (number)">6079</a></td> <td><a href="/wiki/6000_(number)#6001_to_6099" title="6000 (number)">6089</a></td> <td><a href="/wiki/6000_(number)#6001_to_6099" title="6000 (number)">6091</a></td> <td><a href="/wiki/6000_(number)#6100_to_6199" title="6000 (number)">6101</a></td> <td><a href="/wiki/6000_(number)#6100_to_6199" title="6000 (number)">6113</a></td> <td><a href="/wiki/6000_(number)#6100_to_6199" title="6000 (number)">6121</a></td> <td><a href="/wiki/6000_(number)#6100_to_6199" title="6000 (number)">6131</a></td> <td><a href="/wiki/6000_(number)#6100_to_6199" title="6000 (number)">6133</a> </td></tr> <tr style="text-align: center;"> <th>801–820 </th> <td><a href="/wiki/6000_(number)#6100_to_6199" title="6000 (number)">6143</a></td> <td><a href="/wiki/6000_(number)#6100_to_6199" title="6000 (number)">6151</a></td> <td><a href="/wiki/6000_(number)#6100_to_6199" title="6000 (number)">6163</a></td> <td><a href="/wiki/6000_(number)#6100_to_6199" title="6000 (number)">6173</a></td> <td><a href="/wiki/6000_(number)#6100_to_6199" title="6000 (number)">6197</a></td> <td><a href="/wiki/6000_(number)#6100_to_6199" title="6000 (number)">6199</a></td> <td><a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6203</a></td> <td><a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6211</a></td> <td><a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6217</a></td> <td><a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6221</a></td> <td><a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6229</a></td> <td><a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6247</a></td> <td><a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6257</a></td> <td><a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6263</a></td> <td><a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6269</a></td> <td><a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6271</a></td> <td><a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6277</a></td> <td><a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6287</a></td> <td><a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6299</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6301</a> </td></tr> <tr style="text-align: center;"> <th>821–840 </th> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6311</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6317</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6323</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6329</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6337</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6343</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6353</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6359</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6361</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6367</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6373</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6379</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6389</a></td> <td><a href="/wiki/6000_(number)#6300_to_6399" title="6000 (number)">6397</a></td> <td><a href="/wiki/6000_(number)#6400_to_6499" title="6000 (number)">6421</a></td> <td><a href="/wiki/6000_(number)#6400_to_6499" title="6000 (number)">6427</a></td> <td><a href="/wiki/6000_(number)#6400_to_6499" title="6000 (number)">6449</a></td> <td><a href="/wiki/6000_(number)#6400_to_6499" title="6000 (number)">6451</a></td> <td><a href="/wiki/6000_(number)#6400_to_6499" title="6000 (number)">6469</a></td> <td><a href="/wiki/6000_(number)#6400_to_6499" title="6000 (number)">6473</a> </td></tr> <tr style="text-align: center;"> <th>841–860 </th> <td><a href="/wiki/6000_(number)#6400_to_6499" title="6000 (number)">6481</a></td> <td><a href="/wiki/6000_(number)#6400_to_6499" title="6000 (number)">6491</a></td> <td><a href="/wiki/6000_(number)#6500_to_6599" title="6000 (number)">6521</a></td> <td><a href="/wiki/6000_(number)#6500_to_6599" title="6000 (number)">6529</a></td> <td><a href="/wiki/6000_(number)#6500_to_6599" title="6000 (number)">6547</a></td> <td><a href="/wiki/6000_(number)#6500_to_6599" title="6000 (number)">6551</a></td> <td><a href="/wiki/6000_(number)#6500_to_6599" title="6000 (number)">6553</a></td> <td><a href="/wiki/6000_(number)#6500_to_6599" title="6000 (number)">6563</a></td> <td><a href="/wiki/6000_(number)#6500_to_6599" title="6000 (number)">6569</a></td> <td><a href="/wiki/6000_(number)#6500_to_6599" title="6000 (number)">6571</a></td> <td><a href="/wiki/6000_(number)#6500_to_6599" title="6000 (number)">6577</a></td> <td><a href="/wiki/6000_(number)#6500_to_6599" title="6000 (number)">6581</a></td> <td><a href="/wiki/6000_(number)#6500_to_6599" title="6000 (number)">6599</a></td> <td><a href="/wiki/6000_(number)#6600_to_6699" title="6000 (number)">6607</a></td> <td><a href="/wiki/6000_(number)#6600_to_6699" title="6000 (number)">6619</a></td> <td><a href="/wiki/6000_(number)#6600_to_6699" title="6000 (number)">6637</a></td> <td><a href="/wiki/6000_(number)#6600_to_6699" title="6000 (number)">6653</a></td> <td><a href="/wiki/6000_(number)#6600_to_6699" title="6000 (number)">6659</a></td> <td><a href="/wiki/6000_(number)#6600_to_6699" title="6000 (number)">6661</a></td> <td><a href="/wiki/6000_(number)#6600_to_6699" title="6000 (number)">6673</a> </td></tr> <tr style="text-align: center;"> <th>861–880 </th> <td><a href="/wiki/6000_(number)#6600_to_6699" title="6000 (number)">6679</a></td> <td><a href="/wiki/6000_(number)#6600_to_6699" title="6000 (number)">6689</a></td> <td><a href="/wiki/6000_(number)#6600_to_6699" title="6000 (number)">6691</a></td> <td><a href="/wiki/6000_(number)#6700_to_6799" title="6000 (number)">6701</a></td> <td><a href="/wiki/6000_(number)#6700_to_6799" title="6000 (number)">6703</a></td> <td><a href="/wiki/6000_(number)#6700_to_6799" title="6000 (number)">6709</a></td> <td><a href="/wiki/6000_(number)#6700_to_6799" title="6000 (number)">6719</a></td> <td><a href="/wiki/6000_(number)#6700_to_6799" title="6000 (number)">6733</a></td> <td><a href="/wiki/6000_(number)#6700_to_6799" title="6000 (number)">6737</a></td> <td><a href="/wiki/6000_(number)#6700_to_6799" title="6000 (number)">6761</a></td> <td><a href="/wiki/6000_(number)#6700_to_6799" title="6000 (number)">6763</a></td> <td><a href="/wiki/6000_(number)#6700_to_6799" title="6000 (number)">6779</a></td> <td><a href="/wiki/6000_(number)#6700_to_6799" title="6000 (number)">6781</a></td> <td><a href="/wiki/6000_(number)#6700_to_6799" title="6000 (number)">6791</a></td> <td><a href="/wiki/6000_(number)#6700_to_6799" title="6000 (number)">6793</a></td> <td><a href="/wiki/6000_(number)#6800_to_6899" title="6000 (number)">6803</a></td> <td><a href="/wiki/6000_(number)#6800_to_6899" title="6000 (number)">6823</a></td> <td><a href="/wiki/6000_(number)#6800_to_6899" title="6000 (number)">6827</a></td> <td><a href="/wiki/6000_(number)#6800_to_6899" title="6000 (number)">6829</a></td> <td><a href="/wiki/6000_(number)#6800_to_6899" title="6000 (number)">6833</a> </td></tr> <tr style="text-align: center;"> <th>881–900 </th> <td><a href="/wiki/6000_(number)#6800_to_6899" title="6000 (number)">6841</a></td> <td><a href="/wiki/6000_(number)#6800_to_6899" title="6000 (number)">6857</a></td> <td><a href="/wiki/6000_(number)#6800_to_6899" title="6000 (number)">6863</a></td> <td><a href="/wiki/6000_(number)#6800_to_6899" title="6000 (number)">6869</a></td> <td><a href="/wiki/6000_(number)#6800_to_6899" title="6000 (number)">6871</a></td> <td><a href="/wiki/6000_(number)#6800_to_6899" title="6000 (number)">6883</a></td> <td><a href="/wiki/6000_(number)#6800_to_6899" title="6000 (number)">6899</a></td> <td><a href="/wiki/6000_(number)#6900_to_6999" title="6000 (number)">6907</a></td> <td><a href="/wiki/6000_(number)#6900_to_6999" title="6000 (number)">6911</a></td> <td><a href="/wiki/6000_(number)#6900_to_6999" title="6000 (number)">6917</a></td> <td><a href="/wiki/6000_(number)#6900_to_6999" title="6000 (number)">6947</a></td> <td><a href="/wiki/6000_(number)#6900_to_6999" title="6000 (number)">6949</a></td> <td><a href="/wiki/6000_(number)#6900_to_6999" title="6000 (number)">6959</a></td> <td><a href="/wiki/6000_(number)#6900_to_6999" title="6000 (number)">6961</a></td> <td><a href="/wiki/6000_(number)#6900_to_6999" title="6000 (number)">6967</a></td> <td><a href="/wiki/6000_(number)#6900_to_6999" title="6000 (number)">6971</a></td> <td><a href="/wiki/6000_(number)#6900_to_6999" title="6000 (number)">6977</a></td> <td><a href="/wiki/6000_(number)#6900_to_6999" title="6000 (number)">6983</a></td> <td><a href="/wiki/6000_(number)#6900_to_6999" title="6000 (number)">6991</a></td> <td><a href="/wiki/6000_(number)#6900_to_6999" title="6000 (number)">6997</a> </td></tr> <tr style="text-align: center;"> <th>901–920 </th> <td><a href="/wiki/7000_(number)#7001_to_7099" title="7000 (number)">7001</a></td> <td><a href="/wiki/7000_(number)#7001_to_7099" title="7000 (number)">7013</a></td> <td><a href="/wiki/7000_(number)#7001_to_7099" title="7000 (number)">7019</a></td> <td><a href="/wiki/7000_(number)#7001_to_7099" title="7000 (number)">7027</a></td> <td><a href="/wiki/7000_(number)#7001_to_7099" title="7000 (number)">7039</a></td> <td><a href="/wiki/7000_(number)#7001_to_7099" title="7000 (number)">7043</a></td> <td><a href="/wiki/7000_(number)#7001_to_7099" title="7000 (number)">7057</a></td> <td><a href="/wiki/7000_(number)#7001_to_7099" title="7000 (number)">7069</a></td> <td><a href="/wiki/7000_(number)#7001_to_7099" title="7000 (number)">7079</a></td> <td><a href="/wiki/7000_(number)#7100_to_7199" title="7000 (number)">7103</a></td> <td><a href="/wiki/7000_(number)#7100_to_7199" title="7000 (number)">7109</a></td> <td><a href="/wiki/7000_(number)#7100_to_7199" title="7000 (number)">7121</a></td> <td><a href="/wiki/7000_(number)#7100_to_7199" title="7000 (number)">7127</a></td> <td><a href="/wiki/7000_(number)#7100_to_7199" title="7000 (number)">7129</a></td> <td><a href="/wiki/7000_(number)#7100_to_7199" title="7000 (number)">7151</a></td> <td><a href="/wiki/7000_(number)#7100_to_7199" title="7000 (number)">7159</a></td> <td><a href="/wiki/7000_(number)#7100_to_7199" title="7000 (number)">7177</a></td> <td><a href="/wiki/7000_(number)#7100_to_7199" title="7000 (number)">7187</a></td> <td><a href="/wiki/7000_(number)#7100_to_7199" title="7000 (number)">7193</a></td> <td><a href="/wiki/7000_(number)#7200_to_7299" title="7000 (number)">7207</a> </td></tr> <tr style="text-align: center;"> <th>921–940 </th> <td><a href="/wiki/7000_(number)#7200_to_7299" title="7000 (number)">7211</a></td> <td><a href="/wiki/7000_(number)#7200_to_7299" title="7000 (number)">7213</a></td> <td><a href="/wiki/7000_(number)#7200_to_7299" title="7000 (number)">7219</a></td> <td><a href="/wiki/7000_(number)#7200_to_7299" title="7000 (number)">7229</a></td> <td><a href="/wiki/7000_(number)#7200_to_7299" title="7000 (number)">7237</a></td> <td><a href="/wiki/7000_(number)#7200_to_7299" title="7000 (number)">7243</a></td> <td><a href="/wiki/7000_(number)#7200_to_7299" title="7000 (number)">7247</a></td> <td><a href="/wiki/7000_(number)#7200_to_7299" title="7000 (number)">7253</a></td> <td><a href="/wiki/7000_(number)#7200_to_7299" title="7000 (number)">7283</a></td> <td><a href="/wiki/7000_(number)#7200_to_7299" title="7000 (number)">7297</a></td> <td><a href="/wiki/7000_(number)#7300_to_7399" title="7000 (number)">7307</a></td> <td><a href="/wiki/7000_(number)#7300_to_7399" title="7000 (number)">7309</a></td> <td><a href="/wiki/7000_(number)#7300_to_7399" title="7000 (number)">7321</a></td> <td><a href="/wiki/7000_(number)#7300_to_7399" title="7000 (number)">7331</a></td> <td><a href="/wiki/7000_(number)#7300_to_7399" title="7000 (number)">7333</a></td> <td><a href="/wiki/7000_(number)#7300_to_7399" title="7000 (number)">7349</a></td> <td><a href="/wiki/7000_(number)#7300_to_7399" title="7000 (number)">7351</a></td> <td><a href="/wiki/7000_(number)#7300_to_7399" title="7000 (number)">7369</a></td> <td><a href="/wiki/7000_(number)#7300_to_7399" title="7000 (number)">7393</a></td> <td><a href="/wiki/7000_(number)#7400_to_7499" title="7000 (number)">7411</a> </td></tr> <tr style="text-align: center;"> <th>941–960 </th> <td><a href="/wiki/7000_(number)#7400_to_7499" title="7000 (number)">7417</a></td> <td><a href="/wiki/7000_(number)#7400_to_7499" title="7000 (number)">7433</a></td> <td><a href="/wiki/7000_(number)#7400_to_7499" title="7000 (number)">7451</a></td> <td><a href="/wiki/7000_(number)#7400_to_7499" title="7000 (number)">7457</a></td> <td><a href="/wiki/7000_(number)#7400_to_7499" title="7000 (number)">7459</a></td> <td><a href="/wiki/7000_(number)#7400_to_7499" title="7000 (number)">7477</a></td> <td><a href="/wiki/7000_(number)#7400_to_7499" title="7000 (number)">7481</a></td> <td><a href="/wiki/7000_(number)#7400_to_7499" title="7000 (number)">7487</a></td> <td><a href="/wiki/7000_(number)#7400_to_7499" title="7000 (number)">7489</a></td> <td><a href="/wiki/7000_(number)#7400_to_7499" title="7000 (number)">7499</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7507</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7517</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7523</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7529</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7537</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7541</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7547</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7549</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7559</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7561</a> </td></tr> <tr style="text-align: center;"> <th>961–980 </th> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7573</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7577</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7583</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7589</a></td> <td><a href="/wiki/7000_(number)#7500_to_7599" title="7000 (number)">7591</a></td> <td><a href="/wiki/7000_(number)#7600_to_7699" title="7000 (number)">7603</a></td> <td><a href="/wiki/7000_(number)#7600_to_7699" title="7000 (number)">7607</a></td> <td><a href="/wiki/7000_(number)#7600_to_7699" title="7000 (number)">7621</a></td> <td><a href="/wiki/7000_(number)#7600_to_7699" title="7000 (number)">7639</a></td> <td><a href="/wiki/7000_(number)#7600_to_7699" title="7000 (number)">7643</a></td> <td><a href="/wiki/7000_(number)#7600_to_7699" title="7000 (number)">7649</a></td> <td><a href="/wiki/7000_(number)#7600_to_7699" title="7000 (number)">7669</a></td> <td><a href="/wiki/7000_(number)#7600_to_7699" title="7000 (number)">7673</a></td> <td><a href="/wiki/7000_(number)#7600_to_7699" title="7000 (number)">7681</a></td> <td><a href="/wiki/7000_(number)#7600_to_7699" title="7000 (number)">7687</a></td> <td><a href="/wiki/7000_(number)#7600_to_7699" title="7000 (number)">7691</a></td> <td><a href="/wiki/7000_(number)#7600_to_7699" title="7000 (number)">7699</a></td> <td><a href="/wiki/7000_(number)#7700_to_7799" title="7000 (number)">7703</a></td> <td><a href="/wiki/7000_(number)#7700_to_7799" title="7000 (number)">7717</a></td> <td><a href="/wiki/7000_(number)#7700_to_7799" title="7000 (number)">7723</a> </td></tr> <tr style="text-align: center;"> <th>981–1000 </th> <td><a href="/wiki/7000_(number)#7700_to_7799" title="7000 (number)">7727</a></td> <td><a href="/wiki/7000_(number)#7700_to_7799" title="7000 (number)">7741</a></td> <td><a href="/wiki/7000_(number)#7700_to_7799" title="7000 (number)">7753</a></td> <td><a href="/wiki/7000_(number)#7700_to_7799" title="7000 (number)">7757</a></td> <td><a href="/wiki/7000_(number)#7700_to_7799" title="7000 (number)">7759</a></td> <td><a href="/wiki/7000_(number)#7700_to_7799" title="7000 (number)">7789</a></td> <td><a href="/wiki/7000_(number)#7700_to_7799" title="7000 (number)">7793</a></td> <td><a href="/wiki/7000_(number)#7800_to_7899" title="7000 (number)">7817</a></td> <td><a href="/wiki/7000_(number)#7800_to_7899" title="7000 (number)">7823</a></td> <td><a href="/wiki/7000_(number)#7800_to_7899" title="7000 (number)">7829</a></td> <td><a href="/wiki/7000_(number)#7800_to_7899" title="7000 (number)">7841</a></td> <td><a href="/wiki/7000_(number)#7800_to_7899" title="7000 (number)">7853</a></td> <td><a href="/wiki/7000_(number)#7800_to_7899" title="7000 (number)">7867</a></td> <td><a href="/wiki/7000_(number)#7800_to_7899" title="7000 (number)">7873</a></td> <td><a href="/wiki/7000_(number)#7800_to_7899" title="7000 (number)">7877</a></td> <td><a href="/wiki/7000_(number)#7800_to_7899" title="7000 (number)">7879</a></td> <td><a href="/wiki/7000_(number)#7800_to_7899" title="7000 (number)">7883</a></td> <td><a href="/wiki/7000_(number)#7900_to_7999" title="7000 (number)">7901</a></td> <td><a href="/wiki/7000_(number)#7900_to_7999" title="7000 (number)">7907</a></td> <td><a href="/wiki/7000_(number)#7900_to_7999" title="7000 (number)">7919</a> </td></tr></tbody></table> <p>(sequence <span class="nowrap external"><a href="//oeis.org/A000040" class="extiw" title="oeis:A000040">A000040</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>). </p><p>The <a href="/wiki/Goldbach%27s_conjecture" title="Goldbach's conjecture">Goldbach conjecture</a> verification project reports that it has computed all primes smaller than 4×10<sup>18</sup>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> That means 95,676,260,903,887,607 primes<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> (nearly 10<sup>17</sup>), but they were not stored. There are known formulae to evaluate the <a href="/wiki/Prime-counting_function" title="Prime-counting function">prime-counting function</a> (the number of primes smaller than a given value) faster than computing the primes. This has been used to compute that there are 1,925,320,391,606,803,968,923 primes (roughly 2<span style="margin:0 .15em 0 .25em">×</span>10<sup><span class="nowrap"><span data-sort-value="7001210000000000000♠"></span>21</span></sup>) smaller than 10<sup>23</sup>. A different computation found that there are 18,435,599,767,349,200,867,866 primes (roughly 2<span style="margin:0 .15em 0 .25em">×</span>10<sup><span class="nowrap"><span data-sort-value="7001220000000000000♠"></span>22</span></sup>) smaller than 10<sup>24</sup>, if the <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a> is true.<sup id="cite_ref-Franke_4-0" class="reference"><a href="#cite_note-Franke-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Lists_of_primes_by_type">Lists of primes by type</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=2" title="Edit section: Lists of primes by type" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-2 collapsible-block" id="mf-section-2"> <p>Below are listed the first prime numbers of many named forms and types. More details are in the article for the name. <i>n</i> is a <a href="/wiki/Natural_number" title="Natural number">natural number</a> (including 0) in the definitions. </p> <div class="mw-heading mw-heading3"><h3 id="Balanced_primes"><a href="/wiki/Balanced_prime" title="Balanced prime">Balanced primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=3" title="Edit section: Balanced primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes with equal-sized <a href="/wiki/Prime_gap" title="Prime gap">prime gaps</a> after and before them, so that they are equal to the <a href="/wiki/Arithmetic_mean" title="Arithmetic mean">arithmetic mean</a> of the nearest primes after and before. </p> <ul><li><a href="/wiki/5_(number)" class="mw-redirect" title="5 (number)">5</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, 157, <a href="/wiki/173_(number)" title="173 (number)">173</a>, 211, <a href="/wiki/257_(number)" title="257 (number)">257</a>, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A006562" class="extiw" title="oeis:A006562">A006562</a></span>).</li></ul> <div class="mw-heading mw-heading3"><h3 id="Bell_primes"><a href="/wiki/Bell_prime" class="mw-redirect" title="Bell prime">Bell primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=4" title="Edit section: Bell primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes that are the number of <a href="/wiki/Partition_of_a_set" title="Partition of a set">partitions of a set</a> with <i>n</i> members. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/877_(number)" class="mw-redirect" title="877 (number)">877</a>, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837. The next term has 6,539 digits. (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A051131" class="extiw" title="oeis:A051131">A051131</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Chen_primes"><a href="/wiki/Chen_primes" class="mw-redirect" title="Chen primes">Chen primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=5" title="Edit section: Chen primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Where <i>p</i> is prime and <i>p</i>+2 is either a prime or <a href="/wiki/Semiprime" title="Semiprime">semiprime</a>. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/109_(number)" title="109 (number)">109</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/131_(number)" title="131 (number)">131</a>, <a href="/wiki/137_(number)" title="137 (number)">137</a>, <a href="/wiki/139_(number)" title="139 (number)">139</a>, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/157_(number)" title="157 (number)">157</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/181_(number)" title="181 (number)">181</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>, <a href="/wiki/211_(number)" title="211 (number)">211</a>, <a href="/wiki/227_(number)" title="227 (number)">227</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/239_(number)" title="239 (number)">239</a>, <a href="/wiki/251_(number)" title="251 (number)">251</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/263_(number)" title="263 (number)">263</a>, <a href="/wiki/269_(number)" title="269 (number)">269</a>, <a href="/wiki/281_(number)" title="281 (number)">281</a>, <a href="/wiki/293_(number)" title="293 (number)">293</a>, <a href="/wiki/307_(number)" title="307 (number)">307</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/317_(number)" class="mw-redirect" title="317 (number)">317</a>, <a href="/wiki/337_(number)" class="mw-redirect" title="337 (number)">337</a>, <a href="/wiki/347_(number)" class="mw-redirect" title="347 (number)">347</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>, <a href="/wiki/359_(number)" title="359 (number)">359</a>, <a href="/wiki/379_(number)" class="mw-redirect" title="379 (number)">379</a>, <a href="/wiki/389_(number)" class="mw-redirect" title="389 (number)">389</a>, <a href="/wiki/401_(number)" class="mw-redirect" title="401 (number)">401</a>, <a href="/wiki/409_(number)" class="mw-redirect" title="409 (number)">409</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A109611" class="extiw" title="oeis:A109611">A109611</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Circular_primes"><a href="/wiki/Circular_prime" title="Circular prime">Circular primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=6" title="Edit section: Circular primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A circular prime number is a number that remains prime on any cyclic rotation of its digits (in base 10). </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/131_(number)" title="131 (number)">131</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/337_(number)" class="mw-redirect" title="337 (number)">337</a>, <a href="/wiki/373_(number)" class="mw-redirect" title="373 (number)">373</a>, <a href="/wiki/719_(number)" class="mw-redirect" title="719 (number)">719</a>, <a href="/wiki/733_(number)" class="mw-redirect" title="733 (number)">733</a>, <a href="/wiki/919_(number)" class="mw-redirect" title="919 (number)">919</a>, <a href="/wiki/971_(number)" title="971 (number)">971</a>, <a href="/wiki/991_(number)" class="mw-redirect" title="991 (number)">991</a>, <a href="/wiki/1193_(number)" class="mw-redirect" title="1193 (number)">1193</a>, <a href="/wiki/1931_(number)" class="mw-redirect" title="1931 (number)">1931</a>, <a href="/wiki/3119_(number)" class="mw-redirect" title="3119 (number)">3119</a>, <a href="/wiki/3779_(number)" class="mw-redirect" title="3779 (number)">3779</a>, <a href="/wiki/7000_(number)#7700_to_7799" title="7000 (number)">7793</a>, <a href="/wiki/7000_(number)#7900_to_7999" title="7000 (number)">7937</a>, <a href="/wiki/9000_(number)#9300_to_9399" title="9000 (number)">9311</a>, <a href="/wiki/9000_(number)#9300_to_9399" title="9000 (number)">9377</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">11939</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">19391</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">19937</a>, <a href="/wiki/30000_(number)" class="mw-redirect" title="30000 (number)">37199</a>, <a href="/wiki/30000_(number)" class="mw-redirect" title="30000 (number)">39119</a>, <a href="/wiki/70000_(number)" class="mw-redirect" title="70000 (number)">71993</a>, <a href="/wiki/90000_(number)" class="mw-redirect" title="90000 (number)">91193</a>, <a href="/wiki/90000_(number)" class="mw-redirect" title="90000 (number)">93719</a>, <a href="/wiki/90000_(number)" class="mw-redirect" title="90000 (number)">93911</a>, <a href="/wiki/90000_(number)" class="mw-redirect" title="90000 (number)">99371</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">193939</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">199933</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">319993</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">331999</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">391939</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">393919</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">919393</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">933199</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">939193</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">939391</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">993319</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">999331</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A068652" class="extiw" title="oeis:A068652">A068652</a></span>) </p><p>Some sources only list the smallest prime in each cycle, for example, listing 13, but omitting 31 (<a href="/wiki/OEIS" class="mw-redirect" title="OEIS">OEIS</a> really calls this sequence circular primes, but not the above sequence): </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>, <a href="/wiki/337_(number)" class="mw-redirect" title="337 (number)">337</a>, <a href="/wiki/1193_(number)" class="mw-redirect" title="1193 (number)">1193</a>, <a href="/wiki/3779_(number)" class="mw-redirect" title="3779 (number)">3779</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">11939</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">19937</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">193939</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">199933</a>, 1111111111111111111, 11111111111111111111111 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A016114" class="extiw" title="oeis:A016114">A016114</a></span>) </p><p>All <a href="/wiki/Repunit" title="Repunit">repunit</a> primes are circular. </p> <div class="mw-heading mw-heading3"><h3 id="Cluster_primes"><a href="/wiki/Cluster_prime" title="Cluster prime">Cluster primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=7" title="Edit section: Cluster primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A cluster prime is a prime <i>p</i> such that every even <a href="/wiki/Natural_number" title="Natural number">natural number</a> <i>k</i> ≤ <i>p</i> − 3 is the difference of two primes not exceeding <i>p</i>. </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, ... (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A038134" class="extiw" title="oeis:A038134">A038134</a></span>) </p><p>All odd primes between 3 and 89, inclusive, are cluster primes. The first 10 primes that are <i>not</i> cluster primes are: </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/211_(number)" title="211 (number)">211</a>, <a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/227_(number)" title="227 (number)">227</a>, <a href="/wiki/229_(number)" title="229 (number)">229</a>, <a href="/wiki/251_(number)" title="251 (number)">251</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Cousin_primes"><a href="/wiki/Cousin_primes" class="mw-redirect" title="Cousin primes">Cousin primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=8" title="Edit section: Cousin primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="#Twin_primes">§ Twin primes</a>, <a href="#Prime_triplets">§ Prime triplets</a>, and <a href="#Prime_quadruplets">§ Prime quadruplets</a></div> <p>Where (<i>p</i>, <i>p</i> + 4) are both prime. </p><p>(<a href="/wiki/3" title="3">3</a>, <a href="/wiki/7" title="7">7</a>), (<a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>), (<a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>), (<a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>), (<a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>), (<a href="/wiki/43_(number)" title="43 (number)">43</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>), (<a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>), (<a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>), (<a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>), (<a href="/wiki/103_(number)" title="103 (number)">103</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>), (<a href="/wiki/109_(number)" title="109 (number)">109</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>), (<a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/131_(number)" title="131 (number)">131</a>), (<a href="/wiki/163_(number)" title="163 (number)">163</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>), (<a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>), (<a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/227_(number)" title="227 (number)">227</a>), (<a href="/wiki/229_(number)" title="229 (number)">229</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>), (<a href="/wiki/277_(number)" title="277 (number)">277</a>, <a href="/wiki/281_(number)" title="281 (number)">281</a>) (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A023200" class="extiw" title="oeis:A023200">A023200</a></span>, <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A046132" class="extiw" title="oeis:A046132">A046132</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Cuban_primes"><a href="/wiki/Cuban_prime" title="Cuban prime">Cuban primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=9" title="Edit section: Cuban primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {x^{3}-y^{3}}{x-y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>y</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {x^{3}-y^{3}}{x-y}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/198e178dc155c09b94b72dbe36915997c89d89fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:5.539ex; height:4.676ex;" alt="{\displaystyle {\tfrac {x^{3}-y^{3}}{x-y}}}"></noscript><span class="lazy-image-placeholder" style="width: 5.539ex;height: 4.676ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/198e178dc155c09b94b72dbe36915997c89d89fb" data-alt="{\displaystyle {\tfrac {x^{3}-y^{3}}{x-y}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> where <i>x</i> = <i>y</i> + 1. </p><p><a href="/wiki/7" title="7">7</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/271_(number)" title="271 (number)">271</a>, <a href="/wiki/331_(number)" class="mw-redirect" title="331 (number)">331</a>, <a href="/wiki/397_(number)" class="mw-redirect" title="397 (number)">397</a>, <a href="/wiki/547_(number)" class="mw-redirect" title="547 (number)">547</a>, <a href="/wiki/631_(number)" class="mw-redirect" title="631 (number)">631</a>, <a href="/wiki/919_(number)" class="mw-redirect" title="919 (number)">919</a>, <a href="/wiki/1657_(number)" class="mw-redirect" title="1657 (number)">1657</a>, <a href="/wiki/1801_(number)" class="mw-redirect" title="1801 (number)">1801</a>, <a href="/wiki/1951_(number)" class="mw-redirect" title="1951 (number)">1951</a>, <a href="/wiki/2269_(number)" class="mw-redirect" title="2269 (number)">2269</a>, <a href="/wiki/2437_(number)" class="mw-redirect" title="2437 (number)">2437</a>, <a href="/wiki/2791_(number)" class="mw-redirect" title="2791 (number)">2791</a>, <a href="/wiki/3169_(number)" class="mw-redirect" title="3169 (number)">3169</a>, <a href="/wiki/3571_(number)" class="mw-redirect" title="3571 (number)">3571</a>, <a href="/wiki/4000_(number)#4200_to_4299" title="4000 (number)">4219</a>, <a href="/wiki/4000_(number)#4400_to_4499" title="4000 (number)">4447</a>, <a href="/wiki/5000_(number)#5100_to_5199" title="5000 (number)">5167</a>, <a href="/wiki/5000_(number)#5400_to_5499" title="5000 (number)">5419</a>, <a href="/wiki/6000_(number)#6200_to_6299" title="6000 (number)">6211</a>, <a href="/wiki/7000_(number)#7001_to_7099" title="7000 (number)">7057</a>, <a href="/wiki/7000_(number)#7300_to_7399" title="7000 (number)">7351</a>, <a href="/wiki/8000_(number)#8200_to_8299" title="8000 (number)">8269</a>, <a href="/wiki/9000_(number)#9200_to_9299" title="9000 (number)">9241</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">10267</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">11719</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">12097</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">13267</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">13669</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">16651</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">19441</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">19927</a>, <a href="/wiki/20000_(number)" class="mw-redirect" title="20000 (number)">22447</a>, <a href="/wiki/20000_(number)" class="mw-redirect" title="20000 (number)">23497</a>, <a href="/wiki/20000_(number)" class="mw-redirect" title="20000 (number)">24571</a>, <a href="/wiki/20000_(number)" class="mw-redirect" title="20000 (number)">25117</a>, <a href="/wiki/20000_(number)" class="mw-redirect" title="20000 (number)">26227</a>, <a href="/wiki/20000_(number)" class="mw-redirect" title="20000 (number)">27361</a>, <a href="/wiki/30000_(number)" class="mw-redirect" title="30000 (number)">33391</a>, <a href="/wiki/30000_(number)" class="mw-redirect" title="30000 (number)">35317</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A002407" class="extiw" title="oeis:A002407">A002407</a></span>) </p><p>Of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {x^{3}-y^{3}}{x-y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>y</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {x^{3}-y^{3}}{x-y}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/198e178dc155c09b94b72dbe36915997c89d89fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:5.539ex; height:4.676ex;" alt="{\displaystyle {\tfrac {x^{3}-y^{3}}{x-y}}}"></noscript><span class="lazy-image-placeholder" style="width: 5.539ex;height: 4.676ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/198e178dc155c09b94b72dbe36915997c89d89fb" data-alt="{\displaystyle {\tfrac {x^{3}-y^{3}}{x-y}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> where <i>x</i> = <i>y</i> + 2. </p><p><a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/109_(number)" title="109 (number)">109</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/433_(number)" class="mw-redirect" title="433 (number)">433</a>, <a href="/wiki/769_(number)" class="mw-redirect" title="769 (number)">769</a>, <a href="/wiki/1201_(number)" class="mw-redirect" title="1201 (number)">1201</a>, <a href="/wiki/1453_(number)" class="mw-redirect" title="1453 (number)">1453</a>, <a href="/wiki/2029_(number)" class="mw-redirect" title="2029 (number)">2029</a>, <a href="/wiki/3469_(number)" class="mw-redirect" title="3469 (number)">3469</a>, <a href="/wiki/3889_(number)" class="mw-redirect" title="3889 (number)">3889</a>, <a href="/wiki/4000_(number)#4800_to_4899" title="4000 (number)">4801</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">10093</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">12289</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">13873</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">18253</a>, <a href="/wiki/20000_(number)" class="mw-redirect" title="20000 (number)">20173</a>, <a href="/wiki/20000_(number)" class="mw-redirect" title="20000 (number)">21169</a>, <a href="/wiki/20000_(number)" class="mw-redirect" title="20000 (number)">22189</a>, <a href="/wiki/20000_(number)" class="mw-redirect" title="20000 (number)">28813</a>, <a href="/wiki/30000_(number)" class="mw-redirect" title="30000 (number)">37633</a>, <a href="/wiki/40000_(number)" class="mw-redirect" title="40000 (number)">43201</a>, <a href="/wiki/40000_(number)" class="mw-redirect" title="40000 (number)">47629</a>, <a href="/wiki/60000_(number)" class="mw-redirect" title="60000 (number)">60493</a>, <a href="/wiki/60000_(number)" class="mw-redirect" title="60000 (number)">63949</a>, <a href="/wiki/60000_(number)" class="mw-redirect" title="60000 (number)">65713</a>, <a href="/wiki/60000_(number)" class="mw-redirect" title="60000 (number)">69313</a>, <a href="/wiki/70000_(number)" class="mw-redirect" title="70000 (number)">73009</a>, <a href="/wiki/70000_(number)" class="mw-redirect" title="70000 (number)">76801</a>, <a href="/wiki/80000_(number)" class="mw-redirect" title="80000 (number)">84673</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">106033</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">108301</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">112909</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">115249</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A002648" class="extiw" title="oeis:A002648">A002648</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Cullen_primes"><a href="/wiki/Cullen_number" title="Cullen number">Cullen primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=10" title="Edit section: Cullen primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form <i>n</i>×2<sup><i>n</i></sup> + 1. </p><p><a href="/wiki/3" title="3">3</a>, 393050634124102232869567034555427371542904833 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A050920" class="extiw" title="oeis:A050920">A050920</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Delicate_primes"><a href="/wiki/Delicate_prime" title="Delicate prime">Delicate primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=11" title="Edit section: Delicate primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes that having any one of their (base 10) digits changed to any other value will always result in a composite number. </p><p>294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A050249" class="extiw" title="oeis:A050249">A050249</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Dihedral_primes"><a href="/wiki/Dihedral_prime" title="Dihedral prime">Dihedral primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=12" title="Edit section: Dihedral primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes that remain prime when read upside down or mirrored in a <a href="/wiki/Seven-segment_display" title="Seven-segment display">seven-segment display</a>. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/181_(number)" title="181 (number)">181</a>, <a href="/wiki/1181_(number)" class="mw-redirect" title="1181 (number)">1181</a>, <a href="/wiki/1000_(number)#1800_to_1899" title="1000 (number)">1811</a>, <a href="/wiki/10000_(number)" class="mw-redirect" title="10000 (number)">18181</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">108881</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">110881</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">118081</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">120121</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">121021</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">121151</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">150151</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">151051</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">151121</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">180181</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">180811</a>, <a href="/wiki/100000_(number)" class="mw-redirect" title="100000 (number)">181081</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A134996" class="extiw" title="oeis:A134996">A134996</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Eisenstein_primes_without_imaginary_part"><a href="/wiki/Eisenstein_primes" class="mw-redirect" title="Eisenstein primes">Eisenstein primes</a> without imaginary part</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=13" title="Edit section: Eisenstein primes without imaginary part" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p><a href="/wiki/Eisenstein_integer" title="Eisenstein integer">Eisenstein integers</a> that are <a href="/wiki/Irreducible_element" title="Irreducible element">irreducible</a> and real numbers (primes of the form 3<i>n</i> − 1). </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/131_(number)" title="131 (number)">131</a>, <a href="/wiki/137_(number)" title="137 (number)">137</a>, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/173_(number)" title="173 (number)">173</a>, <a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>, <a href="/wiki/227_(number)" title="227 (number)">227</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/239_(number)" title="239 (number)">239</a>, <a href="/wiki/251_(number)" title="251 (number)">251</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/263_(number)" title="263 (number)">263</a>, <a href="/wiki/269_(number)" title="269 (number)">269</a>, <a href="/wiki/281_(number)" title="281 (number)">281</a>, <a href="/wiki/293_(number)" title="293 (number)">293</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/317_(number)" class="mw-redirect" title="317 (number)">317</a>, <a href="/wiki/347_(number)" class="mw-redirect" title="347 (number)">347</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>, <a href="/wiki/359_(number)" title="359 (number)">359</a>, <a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a>, <a href="/wiki/389_(number)" class="mw-redirect" title="389 (number)">389</a>, <a href="/wiki/401_(number)" class="mw-redirect" title="401 (number)">401</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A003627" class="extiw" title="oeis:A003627">A003627</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Emirps"><a href="/wiki/Emirps" class="mw-redirect" title="Emirps">Emirps</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=14" title="Edit section: Emirps" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes that become a different prime when their decimal digits are reversed. The name "emirp" is the reverse of the word "prime". </p><p><a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/157_(number)" title="157 (number)">157</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/337_(number)" class="mw-redirect" title="337 (number)">337</a>, <a href="/wiki/347_(number)" class="mw-redirect" title="347 (number)">347</a>, <a href="/wiki/359_(number)" title="359 (number)">359</a>, <a href="/wiki/389_(number)" class="mw-redirect" title="389 (number)">389</a>, <a href="/wiki/701_(number)" class="mw-redirect" title="701 (number)">701</a>, <a href="/wiki/709_(number)" class="mw-redirect" title="709 (number)">709</a>, <a href="/wiki/733_(number)" class="mw-redirect" title="733 (number)">733</a>, <a href="/wiki/739_(number)" class="mw-redirect" title="739 (number)">739</a>, <a href="/wiki/743_(number)" title="743 (number)">743</a>, <a href="/wiki/751_(number)" class="mw-redirect" title="751 (number)">751</a>, <a href="/wiki/761_(number)" class="mw-redirect" title="761 (number)">761</a>, <a href="/wiki/769_(number)" class="mw-redirect" title="769 (number)">769</a>, <a href="/wiki/907_(number)" class="mw-redirect" title="907 (number)">907</a>, <a href="/wiki/937_(number)" class="mw-redirect" title="937 (number)">937</a>, <a href="/wiki/941_(number)" class="mw-redirect" title="941 (number)">941</a>, <a href="/wiki/953_(number)" class="mw-redirect" title="953 (number)">953</a>, <a href="/wiki/967_(number)" class="mw-redirect" title="967 (number)">967</a>, <a href="/wiki/971_(number)" title="971 (number)">971</a>, <a href="/wiki/983_(number)" class="mw-redirect" title="983 (number)">983</a>, <a href="/wiki/991_(number)" class="mw-redirect" title="991 (number)">991</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A006567" class="extiw" title="oeis:A006567">A006567</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Euclid_primes"><a href="/wiki/Euclid_number" title="Euclid number">Euclid primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=15" title="Edit section: Euclid primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form <i>p</i><sub><i>n</i></sub># + 1 (a subset of <a href="/wiki/Primorial_prime" title="Primorial prime">primorial primes</a>). </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/211_(number)" title="211 (number)">211</a>, <a href="/wiki/2311_(number)" class="mw-redirect" title="2311 (number)">2311</a>, 200560490131 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A018239" class="extiw" title="oeis:A018239">A018239</a></span><sup id="cite_ref-A018239_5-0" class="reference"><a href="#cite_note-A018239-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup>) </p> <div class="mw-heading mw-heading3"><h3 id="Euler_irregular_primes"><a href="/wiki/Regular_prime#Euler_irregular_primes" title="Regular prime">Euler irregular primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=16" title="Edit section: Euler irregular primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A prime <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></noscript><span class="lazy-image-placeholder" style="width: 1.259ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" data-alt="{\displaystyle p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> that divides <a href="/wiki/Euler_number" class="mw-redirect" title="Euler number">Euler number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{2n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{2n}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cdf2d8572a17f02edb3dd4e71f9b5e15250948b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.756ex; height:2.509ex;" alt="{\displaystyle E_{2n}}"></noscript><span class="lazy-image-placeholder" style="width: 3.756ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cdf2d8572a17f02edb3dd4e71f9b5e15250948b" data-alt="{\displaystyle E_{2n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> for some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq 2n\leq p-3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>≤<!-- ≤ --></mo> <mn>2</mn> <mi>n</mi> <mo>≤<!-- ≤ --></mo> <mi>p</mi> <mo>−<!-- − --></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq 2n\leq p-3}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ed755cd663cd984b87468bd71a66c42fa306a21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.089ex; height:2.509ex;" alt="{\displaystyle 0\leq 2n\leq p-3}"></noscript><span class="lazy-image-placeholder" style="width: 15.089ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ed755cd663cd984b87468bd71a66c42fa306a21" data-alt="{\displaystyle 0\leq 2n\leq p-3}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </p><p><a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/43_(number)" title="43 (number)">43</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/137_(number)" title="137 (number)">137</a>, <a href="/wiki/139_(number)" title="139 (number)">139</a>, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/241_(number)" title="241 (number)">241</a>, <a href="/wiki/251_(number)" title="251 (number)">251</a>, <a href="/wiki/263_(number)" title="263 (number)">263</a>, <a href="/wiki/277_(number)" title="277 (number)">277</a>, <a href="/wiki/307_(number)" title="307 (number)">307</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/349_(number)" class="mw-redirect" title="349 (number)">349</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>, <a href="/wiki/359_(number)" title="359 (number)">359</a>, <a href="/wiki/373_(number)" class="mw-redirect" title="373 (number)">373</a>, <a href="/wiki/379_(number)" class="mw-redirect" title="379 (number)">379</a>, <a href="/wiki/419_(number)" class="mw-redirect" title="419 (number)">419</a>, <a href="/wiki/433_(number)" class="mw-redirect" title="433 (number)">433</a>, <a href="/wiki/461_(number)" class="mw-redirect" title="461 (number)">461</a>, <a href="/wiki/463_(number)" class="mw-redirect" title="463 (number)">463</a>, <a href="/wiki/491_(number)" class="mw-redirect" title="491 (number)">491</a>, <a href="/wiki/509_(number)" class="mw-redirect" title="509 (number)">509</a>, <a href="/wiki/541_(number)" class="mw-redirect" title="541 (number)">541</a>, <a href="/wiki/563_(number)" class="mw-redirect" title="563 (number)">563</a>, <a href="/wiki/571_(number)" class="mw-redirect" title="571 (number)">571</a>, <a href="/wiki/577_(number)" class="mw-redirect" title="577 (number)">577</a>, <a href="/wiki/587_(number)" class="mw-redirect" title="587 (number)">587</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A120337" class="extiw" title="oeis:A120337">A120337</a></span>) </p> <div class="mw-heading mw-heading4"><h4 id="Euler_(p,_p_−_3)_irregular_primes"><span id="Euler_.28p.2C_p_.E2.88.92_3.29_irregular_primes"></span><a href="/wiki/Regular_prime#Irregular_pairs" title="Regular prime">Euler (<i>p</i>, <i>p</i> − 3) irregular primes</a></h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=17" title="Edit section: Euler (p, p − 3) irregular primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></noscript><span class="lazy-image-placeholder" style="width: 1.259ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" data-alt="{\displaystyle p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (p,p-3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (p,p-3)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295415066d02f57efa52aef361f1eb4d14771135" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.185ex; height:2.843ex;" alt="{\displaystyle (p,p-3)}"></noscript><span class="lazy-image-placeholder" style="width: 9.185ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295415066d02f57efa52aef361f1eb4d14771135" data-alt="{\displaystyle (p,p-3)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is an Euler irregular pair. </p><p><a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/241_(number)" title="241 (number)">241</a>, <a href="/wiki/1000000_(number)" class="mw-redirect" title="1000000 (number)">2946901</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A198245" class="extiw" title="oeis:A198245">A198245</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Factorial_primes"><a href="/wiki/Factorial_prime" title="Factorial prime">Factorial primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=18" title="Edit section: Factorial primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form <i>n</i><a href="/wiki/Factorial" title="Factorial">!</a> − 1 or <i>n</i><a href="/wiki/Factorial" title="Factorial">!</a> + 1. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/719_(number)" class="mw-redirect" title="719 (number)">719</a>, <a href="/wiki/5000_(number)#5001_to_5099" title="5000 (number)">5039</a>, <a href="/wiki/10000000_(number)" class="mw-redirect" title="10000000 (number)">39916801</a>, <a href="/wiki/100000000_(number)" class="mw-redirect" title="100000000 (number)">479001599</a>, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A088054" class="extiw" title="oeis:A088054">A088054</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Fermat_primes"><a href="/wiki/Fermat_prime" class="mw-redirect" title="Fermat prime">Fermat primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=19" title="Edit section: Fermat primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form 2<sup>2<sup><i>n</i></sup></sup> + 1. </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/65537_(number)" class="mw-redirect" title="65537 (number)">65537</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A019434" class="extiw" title="oeis:A019434">A019434</a></span>) </p><p>As of June 2024<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=List_of_prime_numbers&amp;action=edit">[update]</a></sup> these are the only known Fermat primes, and conjecturally the only Fermat primes. The probability of the existence of another Fermat prime is less than one in a billion.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Generalized_Fermat_primes">Generalized <a href="/wiki/Fermat_primes" class="mw-redirect" title="Fermat primes">Fermat primes</a></h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=20" title="Edit section: Generalized Fermat primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form <i>a</i><sup>2<sup><i>n</i></sup></sup> + 1 for fixed integer <i>a</i>. </p><p><i>a</i> = 2: <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/65537_(number)" class="mw-redirect" title="65537 (number)">65537</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A019434" class="extiw" title="oeis:A019434">A019434</a></span>) </p><p><i>a</i> = 4: <a href="/wiki/5" title="5">5</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/65537_(number)" class="mw-redirect" title="65537 (number)">65537</a> </p><p><i>a</i> = 6: <a href="/wiki/7" title="7">7</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/1297_(number)" class="mw-redirect" title="1297 (number)">1297</a> </p><p><i>a</i> = 8: (does not exist) </p><p><i>a</i> = 10: <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a> </p><p><i>a</i> = 12: <a href="/wiki/13_(number)" title="13 (number)">13</a> </p><p><i>a</i> = 14: <a href="/wiki/197_(number)" title="197 (number)">197</a> </p><p><i>a</i> = 16: <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/65537_(number)" class="mw-redirect" title="65537 (number)">65537</a> </p><p><i>a</i> = 18: <a href="/wiki/19_(number)" title="19 (number)">19</a> </p><p><i>a</i> = 20: <a href="/wiki/401_(number)" class="mw-redirect" title="401 (number)">401</a>, 160001 </p><p><i>a</i> = 22: <a href="/wiki/23_(number)" title="23 (number)">23</a> </p><p><i>a</i> = 24: <a href="/wiki/577_(number)" class="mw-redirect" title="577 (number)">577</a>, 331777 </p> <div class="mw-heading mw-heading3"><h3 id="Fibonacci_primes"><a href="/wiki/Fibonacci_prime" title="Fibonacci prime">Fibonacci primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=21" title="Edit section: Fibonacci primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes in the <a href="/wiki/Fibonacci_sequence" title="Fibonacci sequence">Fibonacci sequence</a> <i>F</i><sub>0</sub> = 0, <i>F</i><sub>1</sub> = 1, <i>F</i><sub><i>n</i></sub> = <i>F</i><sub><i>n</i>−1</sub> + <i>F</i><sub><i>n</i>−2</sub>. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/1597_(number)" class="mw-redirect" title="1597 (number)">1597</a>, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A005478" class="extiw" title="oeis:A005478">A005478</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Fortunate_primes"><a href="/wiki/Fortunate_number" title="Fortunate number">Fortunate primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=22" title="Edit section: Fortunate primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p><a href="/wiki/Fortunate_number" title="Fortunate number">Fortunate numbers</a> that are prime (it has been conjectured they all are). </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/103_(number)" title="103 (number)">103</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/109_(number)" title="109 (number)">109</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/151_(number)" title="151 (number)">151</a>, <a href="/wiki/157_(number)" title="157 (number)">157</a>, <a href="/wiki/163_(number)" title="163 (number)">163</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>, <a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/229_(number)" title="229 (number)">229</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/239_(number)" title="239 (number)">239</a>, <a href="/wiki/271_(number)" title="271 (number)">271</a>, <a href="/wiki/277_(number)" title="277 (number)">277</a>, <a href="/wiki/283_(number)" title="283 (number)">283</a>, <a href="/wiki/293_(number)" title="293 (number)">293</a>, <a href="/wiki/307_(number)" title="307 (number)">307</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/313_(number)" title="313 (number)">313</a>, <a href="/wiki/331_(number)" class="mw-redirect" title="331 (number)">331</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>, <a href="/wiki/373_(number)" class="mw-redirect" title="373 (number)">373</a>, <a href="/wiki/379_(number)" class="mw-redirect" title="379 (number)">379</a>, <a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a>, <a href="/wiki/397_(number)" class="mw-redirect" title="397 (number)">397</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A046066" class="extiw" title="oeis:A046066">A046066</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Gaussian_primes"><a href="/wiki/Gaussian_prime" class="mw-redirect" title="Gaussian prime">Gaussian primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=23" title="Edit section: Gaussian primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p><a href="/wiki/Prime_element" title="Prime element">Prime elements</a> of the Gaussian integers; equivalently, primes of the form 4<i>n</i> + 3. </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/43_(number)" title="43 (number)">43</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/103_(number)" title="103 (number)">103</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/131_(number)" title="131 (number)">131</a>, <a href="/wiki/139_(number)" title="139 (number)">139</a>, <a href="/wiki/151_(number)" title="151 (number)">151</a>, <a href="/wiki/163_(number)" title="163 (number)">163</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>, <a href="/wiki/211_(number)" title="211 (number)">211</a>, <a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/227_(number)" title="227 (number)">227</a>, <a href="/wiki/239_(number)" title="239 (number)">239</a>, <a href="/wiki/251_(number)" title="251 (number)">251</a>, <a href="/wiki/263_(number)" title="263 (number)">263</a>, <a href="/wiki/271_(number)" title="271 (number)">271</a>, <a href="/wiki/283_(number)" title="283 (number)">283</a>, <a href="/wiki/307_(number)" title="307 (number)">307</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/331_(number)" class="mw-redirect" title="331 (number)">331</a>, <a href="/wiki/347_(number)" class="mw-redirect" title="347 (number)">347</a>, <a href="/wiki/359_(number)" title="359 (number)">359</a>, <a href="/wiki/367_(number)" class="mw-redirect" title="367 (number)">367</a>, <a href="/wiki/379_(number)" class="mw-redirect" title="379 (number)">379</a>, <a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a>, <a href="/wiki/419_(number)" class="mw-redirect" title="419 (number)">419</a>, <a href="/wiki/431_(number)" class="mw-redirect" title="431 (number)">431</a>, <a href="/wiki/439_(number)" class="mw-redirect" title="439 (number)">439</a>, <a href="/wiki/443_(number)" class="mw-redirect" title="443 (number)">443</a>, <a href="/wiki/463_(number)" class="mw-redirect" title="463 (number)">463</a>, <a href="/wiki/467_(number)" class="mw-redirect" title="467 (number)">467</a>, <a href="/wiki/479_(number)" class="mw-redirect" title="479 (number)">479</a>, <a href="/wiki/487_(number)" class="mw-redirect" title="487 (number)">487</a>, <a href="/wiki/491_(number)" class="mw-redirect" title="491 (number)">491</a>, <a href="/wiki/499_(number)" class="mw-redirect" title="499 (number)">499</a>, <a href="/wiki/503_(number)" class="mw-redirect" title="503 (number)">503</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A002145" class="extiw" title="oeis:A002145">A002145</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Good_primes"><a href="/wiki/Good_prime" title="Good prime">Good primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=24" title="Edit section: Good primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i><sub><i>n</i></sub> for which <i>p</i><sub><i>n</i></sub><sup>2</sup> &gt; <i>p</i><sub><i>n</i>−<i>i</i></sub> <i>p</i><sub><i>n</i>+<i>i</i></sub> for all 1 ≤ <i>i</i> ≤ <i>n</i>−1, where <i>p</i><sub><i>n</i></sub> is the <i>n</i>th prime. </p><p><a href="/wiki/5" title="5">5</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/227_(number)" title="227 (number)">227</a>, <a href="/wiki/251_(number)" title="251 (number)">251</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/269_(number)" title="269 (number)">269</a>, <a href="/wiki/307_(number)" title="307 (number)">307</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A028388" class="extiw" title="oeis:A028388">A028388</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Happy_primes"><a href="/wiki/Happy_prime" class="mw-redirect" title="Happy prime">Happy primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=25" title="Edit section: Happy primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Happy numbers that are prime. </p><p><a href="/wiki/7" title="7">7</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/103_(number)" title="103 (number)">103</a>, <a href="/wiki/109_(number)" title="109 (number)">109</a>, <a href="/wiki/139_(number)" title="139 (number)">139</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/239_(number)" title="239 (number)">239</a>, <a href="/wiki/263_(number)" title="263 (number)">263</a>, <a href="/wiki/293_(number)" title="293 (number)">293</a>, <a href="/wiki/313_(number)" title="313 (number)">313</a>, <a href="/wiki/331_(number)" class="mw-redirect" title="331 (number)">331</a>, <a href="/wiki/367_(number)" class="mw-redirect" title="367 (number)">367</a>, <a href="/wiki/379_(number)" class="mw-redirect" title="379 (number)">379</a>, <a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a>, <a href="/wiki/397_(number)" class="mw-redirect" title="397 (number)">397</a>, <a href="/wiki/409_(number)" class="mw-redirect" title="409 (number)">409</a>, <a href="/wiki/487_(number)" class="mw-redirect" title="487 (number)">487</a>, <a href="/wiki/563_(number)" class="mw-redirect" title="563 (number)">563</a>, <a href="/wiki/617_(number)" class="mw-redirect" title="617 (number)">617</a>, <a href="/wiki/653_(number)" class="mw-redirect" title="653 (number)">653</a>, <a href="/wiki/673_(number)" class="mw-redirect" title="673 (number)">673</a>, <a href="/wiki/683_(number)" class="mw-redirect" title="683 (number)">683</a>, <a href="/wiki/709_(number)" class="mw-redirect" title="709 (number)">709</a>, <a href="/wiki/739_(number)" class="mw-redirect" title="739 (number)">739</a>, <a href="/wiki/761_(number)" class="mw-redirect" title="761 (number)">761</a>, <a href="/wiki/863_(number)" class="mw-redirect" title="863 (number)">863</a>, <a href="/wiki/881_(number)" title="881 (number)">881</a>, <a href="/wiki/907_(number)" class="mw-redirect" title="907 (number)">907</a>, <a href="/wiki/937_(number)" class="mw-redirect" title="937 (number)">937</a>, <a href="/wiki/1009_(number)" class="mw-redirect" title="1009 (number)">1009</a>, <a href="/wiki/1033_(number)" class="mw-redirect" title="1033 (number)">1033</a>, <a href="/wiki/1039_(number)" class="mw-redirect" title="1039 (number)">1039</a>, <a href="/wiki/1093_(number)" title="1093 (number)">1093</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A035497" class="extiw" title="oeis:A035497">A035497</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Harmonic_primes">Harmonic primes</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=26" title="Edit section: Harmonic primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> for which there are no solutions to <i>H</i><sub><i>k</i></sub> ≡ 0 (mod <i>p</i>) and <i>H</i><sub><i>k</i></sub> ≡ −<i>ω</i><sub><i>p</i></sub> (mod <i>p</i>) for 1 ≤ <i>k</i> ≤ <i>p</i>−2, where <i>H</i><sub><i>k</i></sub> denotes the <i>k</i>-th <a href="/wiki/Harmonic_number" title="Harmonic number">harmonic number</a> and <i>ω</i><sub><i>p</i></sub> denotes the <a href="/wiki/Wolstenholme_quotient" class="mw-redirect" title="Wolstenholme quotient">Wolstenholme quotient</a>.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/5" title="5">5</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/139_(number)" title="139 (number)">139</a>, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/157_(number)" title="157 (number)">157</a>, <a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/239_(number)" title="239 (number)">239</a>, <a href="/wiki/241_(number)" title="241 (number)">241</a>, <a href="/wiki/251_(number)" title="251 (number)">251</a>, <a href="/wiki/263_(number)" title="263 (number)">263</a>, <a href="/wiki/277_(number)" title="277 (number)">277</a>, <a href="/wiki/281_(number)" title="281 (number)">281</a>, <a href="/wiki/293_(number)" title="293 (number)">293</a>, <a href="/wiki/307_(number)" title="307 (number)">307</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/317_(number)" class="mw-redirect" title="317 (number)">317</a>, <a href="/wiki/331_(number)" class="mw-redirect" title="331 (number)">331</a>, <a href="/wiki/337_(number)" class="mw-redirect" title="337 (number)">337</a>, <a href="/wiki/349_(number)" class="mw-redirect" title="349 (number)">349</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A092101" class="extiw" title="oeis:A092101">A092101</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Higgs_primes_for_squares"><a href="/wiki/Higgs_prime" title="Higgs prime">Higgs primes</a> for squares</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=27" title="Edit section: Higgs primes for squares" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> for which <i>p</i> − 1 divides the square of the product of all earlier terms. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/43_(number)" title="43 (number)">43</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/131_(number)" title="131 (number)">131</a>, <a href="/wiki/139_(number)" title="139 (number)">139</a>, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/151_(number)" title="151 (number)">151</a>, <a href="/wiki/157_(number)" title="157 (number)">157</a>, <a href="/wiki/173_(number)" title="173 (number)">173</a>, <a href="/wiki/181_(number)" title="181 (number)">181</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>, <a href="/wiki/211_(number)" title="211 (number)">211</a>, <a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/229_(number)" title="229 (number)">229</a>, <a href="/wiki/263_(number)" title="263 (number)">263</a>, <a href="/wiki/269_(number)" title="269 (number)">269</a>, <a href="/wiki/277_(number)" title="277 (number)">277</a>, <a href="/wiki/283_(number)" title="283 (number)">283</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/317_(number)" class="mw-redirect" title="317 (number)">317</a>, <a href="/wiki/331_(number)" class="mw-redirect" title="331 (number)">331</a>, <a href="/wiki/347_(number)" class="mw-redirect" title="347 (number)">347</a>, <a href="/wiki/349_(number)" class="mw-redirect" title="349 (number)">349</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A007459" class="extiw" title="oeis:A007459">A007459</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Highly_cototient_primes"><a href="/wiki/Highly_cototient_number" title="Highly cototient number"> Highly cototient primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=28" title="Edit section: Highly cototient primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes that are a <a href="/wiki/Cototient" class="mw-redirect" title="Cototient">cototient</a> more often than any integer below it except 1. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/269_(number)" title="269 (number)">269</a>, <a href="/wiki/389_(number)" class="mw-redirect" title="389 (number)">389</a>, <a href="/wiki/419_(number)" class="mw-redirect" title="419 (number)">419</a>, <a href="/wiki/509_(number)" class="mw-redirect" title="509 (number)">509</a>, <a href="/wiki/659_(number)" class="mw-redirect" title="659 (number)">659</a>, <a href="/wiki/839_(number)" class="mw-redirect" title="839 (number)">839</a>, <a href="/wiki/1049_(number)" class="mw-redirect" title="1049 (number)">1049</a>, <a href="/wiki/1259_(number)" class="mw-redirect" title="1259 (number)">1259</a>, <a href="/wiki/1889_(number)" class="mw-redirect" title="1889 (number)">1889</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A105440" class="extiw" title="oeis:A105440">A105440</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Home_primes"><a href="/wiki/Home_prime" title="Home prime">Home primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=29" title="Edit section: Home primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>For <span class="texhtml"><i>n</i> ≥ 2</span>, write the prime factorization of <span class="texhtml mvar" style="font-style:italic;">n</span> in base 10 and concatenate the factors; iterate until a prime is reached. </p><p>2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A037274" class="extiw" title="oeis:A037274">A037274</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Irregular_primes"><a href="/wiki/Irregular_prime" class="mw-redirect" title="Irregular prime">Irregular primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=30" title="Edit section: Irregular primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Odd primes <i>p</i> that divide the <a href="/wiki/Class_number_(number_theory)" class="mw-redirect" title="Class number (number theory)">class number</a> of the <i>p</i>-th <a href="/wiki/Cyclotomic_field" title="Cyclotomic field">cyclotomic field</a>. </p><p><a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/103_(number)" title="103 (number)">103</a>, <a href="/wiki/131_(number)" title="131 (number)">131</a>, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/157_(number)" title="157 (number)">157</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/263_(number)" title="263 (number)">263</a>, <a href="/wiki/271_(number)" title="271 (number)">271</a>, <a href="/wiki/283_(number)" title="283 (number)">283</a>, <a href="/wiki/293_(number)" title="293 (number)">293</a>, <a href="/wiki/307_(number)" title="307 (number)">307</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/347_(number)" class="mw-redirect" title="347 (number)">347</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>, <a href="/wiki/379_(number)" class="mw-redirect" title="379 (number)">379</a>, <a href="/wiki/389_(number)" class="mw-redirect" title="389 (number)">389</a>, <a href="/wiki/401_(number)" class="mw-redirect" title="401 (number)">401</a>, <a href="/wiki/409_(number)" class="mw-redirect" title="409 (number)">409</a>, <a href="/wiki/421_(number)" class="mw-redirect" title="421 (number)">421</a>, <a href="/wiki/433_(number)" class="mw-redirect" title="433 (number)">433</a>, <a href="/wiki/461_(number)" class="mw-redirect" title="461 (number)">461</a>, <a href="/wiki/463_(number)" class="mw-redirect" title="463 (number)">463</a>, <a href="/wiki/467_(number)" class="mw-redirect" title="467 (number)">467</a>, <a href="/wiki/491_(number)" class="mw-redirect" title="491 (number)">491</a>, <a href="/wiki/523_(number)" class="mw-redirect" title="523 (number)">523</a>, <a href="/wiki/541_(number)" class="mw-redirect" title="541 (number)">541</a>, <a href="/wiki/547_(number)" class="mw-redirect" title="547 (number)">547</a>, <a href="/wiki/557_(number)" class="mw-redirect" title="557 (number)">557</a>, <a href="/wiki/577_(number)" class="mw-redirect" title="577 (number)">577</a>, <a href="/wiki/587_(number)" class="mw-redirect" title="587 (number)">587</a>, <a href="/wiki/593_(number)" class="mw-redirect" title="593 (number)">593</a>, <a href="/wiki/607_(number)" class="mw-redirect" title="607 (number)">607</a>, <a href="/wiki/613_(number)" title="613 (number)">613</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000928" class="extiw" title="oeis:A000928">A000928</a></span>) </p> <div class="mw-heading mw-heading4"><h4 id="(p,_p_−_3)_irregular_primes"><span id=".28p.2C_p_.E2.88.92_3.29_irregular_primes"></span><a href="/wiki/Regular_prime#Irregular_pairs" title="Regular prime">(<i>p</i>, <i>p</i> − 3) irregular primes</a></h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=31" title="Edit section: (p, p − 3) irregular primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>(See <a href="/wiki/Wolstenholme_prime" title="Wolstenholme prime">Wolstenholme prime</a>) </p> <div class="mw-heading mw-heading4"><h4 id="(p,_p_−_5)_irregular_primes"><span id=".28p.2C_p_.E2.88.92_5.29_irregular_primes"></span><a href="/wiki/Regular_prime#Irregular_pairs" title="Regular prime">(<i>p</i>, <i>p</i> − 5) irregular primes</a></h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=32" title="Edit section: (p, p − 5) irregular primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> such that (<i>p</i>, <i>p</i>−5) is an irregular pair.<sup id="cite_ref-Johnson_8-0" class="reference"><a href="#cite_note-Johnson-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/37_(number)" title="37 (number)">37</a> </p> <div class="mw-heading mw-heading4"><h4 id="(p,_p_−_9)_irregular_primes"><span id=".28p.2C_p_.E2.88.92_9.29_irregular_primes"></span><a href="/wiki/Regular_prime#Irregular_pairs" title="Regular prime">(<i>p</i>, <i>p</i> − 9) irregular primes</a></h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=33" title="Edit section: (p, p − 9) irregular primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> such that (<i>p</i>, <i>p</i> − 9) is an irregular pair.<sup id="cite_ref-Johnson_8-1" class="reference"><a href="#cite_note-Johnson-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/877_(number)" class="mw-redirect" title="877 (number)">877</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A212557" class="extiw" title="oeis:A212557">A212557</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Isolated_primes"><a href="/wiki/Isolated_prime" class="mw-redirect" title="Isolated prime">Isolated primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=34" title="Edit section: Isolated primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> such that neither <i>p</i> − 2 nor <i>p</i> + 2 is prime. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/131_(number)" title="131 (number)">131</a>, <a href="/wiki/157_(number)" title="157 (number)">157</a>, <a href="/wiki/163_(number)" title="163 (number)">163</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/173_(number)" title="173 (number)">173</a>, <a href="/wiki/211_(number)" title="211 (number)">211</a>, <a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/251_(number)" title="251 (number)">251</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/263_(number)" title="263 (number)">263</a>, <a href="/wiki/277_(number)" title="277 (number)">277</a>, <a href="/wiki/293_(number)" title="293 (number)">293</a>, <a href="/wiki/307_(number)" title="307 (number)">307</a>, <a href="/wiki/317_(number)" class="mw-redirect" title="317 (number)">317</a>, <a href="/wiki/331_(number)" class="mw-redirect" title="331 (number)">331</a>, <a href="/wiki/337_(number)" class="mw-redirect" title="337 (number)">337</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>, <a href="/wiki/359_(number)" title="359 (number)">359</a>, <a href="/wiki/367_(number)" class="mw-redirect" title="367 (number)">367</a>, <a href="/wiki/373_(number)" class="mw-redirect" title="373 (number)">373</a>, <a href="/wiki/379_(number)" class="mw-redirect" title="379 (number)">379</a>, <a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a>, <a href="/wiki/389_(number)" class="mw-redirect" title="389 (number)">389</a>, <a href="/wiki/397_(number)" class="mw-redirect" title="397 (number)">397</a>, <a href="/wiki/401_(number)" class="mw-redirect" title="401 (number)">401</a>, <a href="/wiki/409_(number)" class="mw-redirect" title="409 (number)">409</a>, <a href="/wiki/439_(number)" class="mw-redirect" title="439 (number)">439</a>, <a href="/wiki/443_(number)" class="mw-redirect" title="443 (number)">443</a>, <a href="/wiki/449_(number)" class="mw-redirect" title="449 (number)">449</a>, <a href="/wiki/457_(number)" class="mw-redirect" title="457 (number)">457</a>, <a href="/wiki/467_(number)" class="mw-redirect" title="467 (number)">467</a>, <a href="/wiki/479_(number)" class="mw-redirect" title="479 (number)">479</a>, <a href="/wiki/487_(number)" class="mw-redirect" title="487 (number)">487</a>, <a href="/wiki/491_(number)" class="mw-redirect" title="491 (number)">491</a>, <a href="/wiki/499_(number)" class="mw-redirect" title="499 (number)">499</a>, <a href="/wiki/503_(number)" class="mw-redirect" title="503 (number)">503</a>, <a href="/wiki/509_(number)" class="mw-redirect" title="509 (number)">509</a>, <a href="/wiki/541_(number)" class="mw-redirect" title="541 (number)">541</a>, <a href="/wiki/547_(number)" class="mw-redirect" title="547 (number)">547</a>, <a href="/wiki/557_(number)" class="mw-redirect" title="557 (number)">557</a>, <a href="/wiki/563_(number)" class="mw-redirect" title="563 (number)">563</a>, <a href="/wiki/577_(number)" class="mw-redirect" title="577 (number)">577</a>, <a href="/wiki/587_(number)" class="mw-redirect" title="587 (number)">587</a>, <a href="/wiki/593_(number)" class="mw-redirect" title="593 (number)">593</a>, <a href="/wiki/607_(number)" class="mw-redirect" title="607 (number)">607</a>, <a href="/wiki/613_(number)" title="613 (number)">613</a>, <a href="/wiki/631_(number)" class="mw-redirect" title="631 (number)">631</a>, <a href="/wiki/647_(number)" class="mw-redirect" title="647 (number)">647</a>, <a href="/wiki/653_(number)" class="mw-redirect" title="653 (number)">653</a>, <a href="/wiki/673_(number)" class="mw-redirect" title="673 (number)">673</a>, <a href="/wiki/677_(number)" class="mw-redirect" title="677 (number)">677</a>, <a href="/wiki/683_(number)" class="mw-redirect" title="683 (number)">683</a>, <a href="/wiki/691_(number)" class="mw-redirect" title="691 (number)">691</a>, <a href="/wiki/701_(number)" class="mw-redirect" title="701 (number)">701</a>, <a href="/wiki/709_(number)" class="mw-redirect" title="709 (number)">709</a>, <a href="/wiki/719_(number)" class="mw-redirect" title="719 (number)">719</a>, <a href="/wiki/727_(number)" class="mw-redirect" title="727 (number)">727</a>, <a href="/wiki/733_(number)" class="mw-redirect" title="733 (number)">733</a>, <a href="/wiki/739_(number)" class="mw-redirect" title="739 (number)">739</a>, <a href="/wiki/743_(number)" title="743 (number)">743</a>, <a href="/wiki/751_(number)" class="mw-redirect" title="751 (number)">751</a>, <a href="/wiki/757_(number)" class="mw-redirect" title="757 (number)">757</a>, <a href="/wiki/761_(number)" class="mw-redirect" title="761 (number)">761</a>, <a href="/wiki/769_(number)" class="mw-redirect" title="769 (number)">769</a>, <a href="/wiki/773_(number)" class="mw-redirect" title="773 (number)">773</a>, <a href="/wiki/787_(number)" class="mw-redirect" title="787 (number)">787</a>, <a href="/wiki/797_(number)" class="mw-redirect" title="797 (number)">797</a>, <a href="/wiki/839_(number)" class="mw-redirect" title="839 (number)">839</a>, <a href="/wiki/853_(number)" class="mw-redirect" title="853 (number)">853</a>, <a href="/wiki/863_(number)" class="mw-redirect" title="863 (number)">863</a>, <a href="/wiki/877_(number)" class="mw-redirect" title="877 (number)">877</a>, <a href="/wiki/887_(number)" class="mw-redirect" title="887 (number)">887</a>, <a href="/wiki/907_(number)" class="mw-redirect" title="907 (number)">907</a>, <a href="/wiki/911_(number)" title="911 (number)">911</a>, <a href="/wiki/919_(number)" class="mw-redirect" title="919 (number)">919</a>, <a href="/wiki/929_(number)" class="mw-redirect" title="929 (number)">929</a>, <a href="/wiki/937_(number)" class="mw-redirect" title="937 (number)">937</a>, <a href="/wiki/941_(number)" class="mw-redirect" title="941 (number)">941</a>, <a href="/wiki/947_(number)" class="mw-redirect" title="947 (number)">947</a>, <a href="/wiki/953_(number)" class="mw-redirect" title="953 (number)">953</a>, <a href="/wiki/967_(number)" class="mw-redirect" title="967 (number)">967</a>, <a href="/wiki/971_(number)" title="971 (number)">971</a>, <a href="/wiki/977_(number)" class="mw-redirect" title="977 (number)">977</a>, <a href="/wiki/983_(number)" class="mw-redirect" title="983 (number)">983</a>, <a href="/wiki/991_(number)" class="mw-redirect" title="991 (number)">991</a>, <a href="/wiki/997_(number)" class="mw-redirect" title="997 (number)">997</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A007510" class="extiw" title="oeis:A007510">A007510</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Leyland_primes"><a href="/wiki/Leyland_number" title="Leyland number">Leyland primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=35" title="Edit section: Leyland primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form <i>x</i><sup><i>y</i></sup> + <i>y</i><sup><i>x</i></sup>, with 1 &lt; <i>x</i> &lt; <i>y</i>. </p><p><a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/593_(number)" class="mw-redirect" title="593 (number)">593</a>, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A094133" class="extiw" title="oeis:A094133">A094133</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Long_primes"><a href="/wiki/Full_reptend_prime" title="Full reptend prime">Long primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=36" title="Edit section: Long primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> for which, in a given base <i>b</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {b^{p-1}-1}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>p</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {b^{p-1}-1}{p}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d34c8fd8cb6da254d26e8066c4a43457908c53f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.996ex; height:6.176ex;" alt="{\displaystyle {\frac {b^{p-1}-1}{p}}}"></noscript><span class="lazy-image-placeholder" style="width: 8.996ex;height: 6.176ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d34c8fd8cb6da254d26e8066c4a43457908c53f" data-alt="{\displaystyle {\frac {b^{p-1}-1}{p}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> gives a <a href="/wiki/Cyclic_number" title="Cyclic number">cyclic number</a>. They are also called full reptend primes. Primes <i>p</i> for base 10: </p><p><a href="/wiki/7" title="7">7</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/109_(number)" title="109 (number)">109</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/131_(number)" title="131 (number)">131</a>, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/181_(number)" title="181 (number)">181</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/229_(number)" title="229 (number)">229</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/263_(number)" title="263 (number)">263</a>, <a href="/wiki/269_(number)" title="269 (number)">269</a>, <a href="/wiki/313_(number)" title="313 (number)">313</a>, <a href="/wiki/337_(number)" class="mw-redirect" title="337 (number)">337</a>, <a href="/wiki/367_(number)" class="mw-redirect" title="367 (number)">367</a>, <a href="/wiki/379_(number)" class="mw-redirect" title="379 (number)">379</a>, <a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a>, <a href="/wiki/389_(number)" class="mw-redirect" title="389 (number)">389</a>, <a href="/wiki/419_(number)" class="mw-redirect" title="419 (number)">419</a>, <a href="/wiki/433_(number)" class="mw-redirect" title="433 (number)">433</a>, <a href="/wiki/461_(number)" class="mw-redirect" title="461 (number)">461</a>, <a href="/wiki/487_(number)" class="mw-redirect" title="487 (number)">487</a>, <a href="/wiki/491_(number)" class="mw-redirect" title="491 (number)">491</a>, <a href="/wiki/499_(number)" class="mw-redirect" title="499 (number)">499</a>, <a href="/wiki/503_(number)" class="mw-redirect" title="503 (number)">503</a>, <a href="/wiki/509_(number)" class="mw-redirect" title="509 (number)">509</a>, <a href="/wiki/541_(number)" class="mw-redirect" title="541 (number)">541</a>, <a href="/wiki/571_(number)" class="mw-redirect" title="571 (number)">571</a>, <a href="/wiki/577_(number)" class="mw-redirect" title="577 (number)">577</a>, <a href="/wiki/593_(number)" class="mw-redirect" title="593 (number)">593</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A001913" class="extiw" title="oeis:A001913">A001913</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Lucas_primes"><a href="/wiki/Lucas_prime" class="mw-redirect" title="Lucas prime">Lucas primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=37" title="Edit section: Lucas primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes in the Lucas number sequence <i>L</i><sub>0</sub> = 2, <i>L</i><sub>1</sub> = 1, <i>L</i><sub><i>n</i></sub> = <i>L</i><sub><i>n</i>−1</sub> + <i>L</i><sub><i>n</i>−2</sub>. </p><p><a href="/wiki/2" title="2">2</a>,<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> <a href="/wiki/3" title="3">3</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>, <a href="/wiki/521_(number)" class="mw-redirect" title="521 (number)">521</a>, <a href="/wiki/2207_(number)" class="mw-redirect" title="2207 (number)">2207</a>, <a href="/wiki/3571_(number)" class="mw-redirect" title="3571 (number)">3571</a>, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A005479" class="extiw" title="oeis:A005479">A005479</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Lucky_primes"><a href="/wiki/Lucky_number" title="Lucky number">Lucky primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=38" title="Edit section: Lucky primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Lucky numbers that are prime. </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/43_(number)" title="43 (number)">43</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/151_(number)" title="151 (number)">151</a>, <a href="/wiki/163_(number)" title="163 (number)">163</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/211_(number)" title="211 (number)">211</a>, <a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/241_(number)" title="241 (number)">241</a>, <a href="/wiki/283_(number)" title="283 (number)">283</a>, <a href="/wiki/307_(number)" title="307 (number)">307</a>, <a href="/wiki/331_(number)" class="mw-redirect" title="331 (number)">331</a>, <a href="/wiki/349_(number)" class="mw-redirect" title="349 (number)">349</a>, <a href="/wiki/367_(number)" class="mw-redirect" title="367 (number)">367</a>, <a href="/wiki/409_(number)" class="mw-redirect" title="409 (number)">409</a>, <a href="/wiki/421_(number)" class="mw-redirect" title="421 (number)">421</a>, <a href="/wiki/433_(number)" class="mw-redirect" title="433 (number)">433</a>, <a href="/wiki/463_(number)" class="mw-redirect" title="463 (number)">463</a>, <a href="/wiki/487_(number)" class="mw-redirect" title="487 (number)">487</a>, <a href="/wiki/541_(number)" class="mw-redirect" title="541 (number)">541</a>, <a href="/wiki/577_(number)" class="mw-redirect" title="577 (number)">577</a>, <a href="/wiki/601_(number)" class="mw-redirect" title="601 (number)">601</a>, <a href="/wiki/613_(number)" title="613 (number)">613</a>, <a href="/wiki/619_(number)" class="mw-redirect" title="619 (number)">619</a>, <a href="/wiki/631_(number)" class="mw-redirect" title="631 (number)">631</a>, <a href="/wiki/643_(number)" class="mw-redirect" title="643 (number)">643</a>, <a href="/wiki/673_(number)" class="mw-redirect" title="673 (number)">673</a>, <a href="/wiki/727_(number)" class="mw-redirect" title="727 (number)">727</a>, <a href="/wiki/739_(number)" class="mw-redirect" title="739 (number)">739</a>, <a href="/wiki/769_(number)" class="mw-redirect" title="769 (number)">769</a>, <a href="/wiki/787_(number)" class="mw-redirect" title="787 (number)">787</a>, <a href="/wiki/823_(number)" class="mw-redirect" title="823 (number)">823</a>, <a href="/wiki/883_(number)" class="mw-redirect" title="883 (number)">883</a>, <a href="/wiki/937_(number)" class="mw-redirect" title="937 (number)">937</a>, <a href="/wiki/991_(number)" class="mw-redirect" title="991 (number)">991</a>, <a href="/wiki/997_(number)" class="mw-redirect" title="997 (number)">997</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A031157" class="extiw" title="oeis:A031157">A031157</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Mersenne_primes"><a href="/wiki/Mersenne_prime" title="Mersenne prime">Mersenne primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=39" title="Edit section: Mersenne primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form 2<sup><i>n</i></sup> − 1. </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/8191_(number)" class="mw-redirect" title="8191 (number)">8191</a>, <a href="/wiki/131071_(number)" class="mw-redirect" title="131071 (number)">131071</a>, <a href="/wiki/524287_(number)" class="mw-redirect" title="524287 (number)">524287</a>, <a href="/wiki/2147483647" class="mw-redirect" title="2147483647">2147483647</a>, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000668" class="extiw" title="oeis:A000668">A000668</a></span>) </p><p>As of 2024<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=List_of_prime_numbers&amp;action=edit">[update]</a></sup>, there are 52 known Mersenne primes. The 13th, 14th, and 52nd have respectively 157, 183, and 41,024,320 digits. This includes the largest known prime 2<sup>136,279,841</sup>-1, which is the 52nd Mersenne prime. </p> <div class="mw-heading mw-heading4"><h4 id="Mersenne_divisors">Mersenne divisors</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=40" title="Edit section: Mersenne divisors" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> that divide 2<sup><i>n</i></sup> − 1, for some prime number n. </p><p>3, 7, 23, 31, 47, 89, 127, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, 1103, 1319, 1367, 1399, 1433, 1439, 1487, 1823, 1913, 2039, 2063, 2089, 2207, 2351, 2383, 2447, 2687, 2767, 2879, 2903, 2999, 3023, 3119, 3167, 3343 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A122094" class="extiw" title="oeis:A122094">A122094</a></span>) </p><p>All Mersenne primes are, by definition, members of this sequence. </p> <div class="mw-heading mw-heading4"><h4 id="Mersenne_prime_exponents">Mersenne prime exponents</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=41" title="Edit section: Mersenne prime exponents" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> such that 2<sup><i>p</i></sup> − 1 is prime. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/521_(number)" class="mw-redirect" title="521 (number)">521</a>, <a href="/wiki/607_(number)" class="mw-redirect" title="607 (number)">607</a>, <a href="/wiki/1279_(number)" class="mw-redirect" title="1279 (number)">1279</a>, <a href="/wiki/2203_(number)" class="mw-redirect" title="2203 (number)">2203</a>, <a href="/wiki/2281_(number)" class="mw-redirect" title="2281 (number)">2281</a>, <a href="/wiki/3217_(number)" class="mw-redirect" title="3217 (number)">3217</a>, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, <a href="/wiki/43,112,609_(number)" class="mw-redirect" title="43,112,609 (number)">43112609</a>, 57885161 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000043" class="extiw" title="oeis:A000043">A000043</a></span>) </p><p>As of October 2024<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=List_of_prime_numbers&amp;action=edit">[update]</a></sup>, four more are known to be in the sequence, but it is not known whether they are the next:<br> 74207281, 77232917, 82589933, 136279841 </p> <div class="mw-heading mw-heading4"><h4 id="Double_Mersenne_primes"><a href="/wiki/Double_Mersenne_prime" class="mw-redirect" title="Double Mersenne prime">Double Mersenne primes</a></h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=42" title="Edit section: Double Mersenne primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A subset of Mersenne primes of the form 2<sup>2<sup><i>p</i></sup>−1</sup> − 1 for prime <i>p</i>. </p><p><a href="/wiki/7" title="7">7</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/2147483647" class="mw-redirect" title="2147483647">2147483647</a>, 170141183460469231731687303715884105727 (primes in <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A077586" class="extiw" title="oeis:A077586">A077586</a></span>) </p> <div class="mw-heading mw-heading4"><h4 id="Generalized_repunit_primes">Generalized <a href="/wiki/Repunit#Repunit_primes" title="Repunit">repunit primes</a></h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=43" title="Edit section: Generalized repunit primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form (<i>a</i><sup><i>n</i></sup> − 1) / (<i>a</i> − 1) for fixed integer <i>a</i>. </p><p>For <i>a</i> = 2, these are the Mersenne primes, while for <i>a</i> = 10 they are the <a href="#Repunit_primes">repunit primes</a>. For other small <i>a</i>, they are given below: </p><p><i>a</i> = 3: <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/1093_(number)" title="1093 (number)">1093</a>, 797161, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A076481" class="extiw" title="oeis:A076481">A076481</a></span>) </p><p><i>a</i> = 4: <a href="/wiki/5" title="5">5</a> (the only prime for <i>a</i> = 4) </p><p><i>a</i> = 5: <a href="/wiki/31_(number)" title="31 (number)">31</a>, 19531, 12207031, 305175781, 177635683940025046467781066894531, 14693679385278593849609206715278070972733319459651094018859396328480215743184089660644531 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A086122" class="extiw" title="oeis:A086122">A086122</a></span>) </p><p><i>a</i> = 6: <a href="/wiki/7" title="7">7</a>, <a href="/wiki/43_(number)" title="43 (number)">43</a>, 55987, 7369130657357778596659, 3546245297457217493590449191748546458005595187661976371 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A165210" class="extiw" title="oeis:A165210">A165210</a></span>) </p><p><i>a</i> = 7: 2801, 16148168401, 85053461164796801949539541639542805770666392330682673302530819774105141531698707146930307290253537320447270457 </p><p><i>a</i> = 8: <a href="/wiki/73_(number)" title="73 (number)">73</a> (the only prime for <i>a</i> = 8) </p><p><i>a</i> = 9: none exist </p> <div class="mw-heading mw-heading4"><h4 id="Other_generalizations_and_variations">Other generalizations and variations</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=44" title="Edit section: Other generalizations and variations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Many generalizations of Mersenne primes have been defined. This include the following: </p> <ul><li>Primes of the form <span class="texhtml"><i>b<sup>n</sup></i> − (<i>b</i> − 1)<sup><i>n</i></sup></span>,<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> including the Mersenne primes and the <a href="/wiki/Cuban_prime" title="Cuban prime">cuban primes</a> as special cases</li> <li><a href="/wiki/Williams_prime" class="mw-redirect" title="Williams prime">Williams primes</a>, of the form <span class="texhtml">(<i>b</i> − 1)·<i>b<sup>n</sup></i> − 1</span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Mills_primes"><a href="/wiki/Mills%27_constant" title="Mills' constant">Mills primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=45" title="Edit section: Mills primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form ⌊θ<sup>3<sup><i>n</i></sup></sup>⌋, where θ is Mills' constant. This form is prime for all positive integers <i>n</i>. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/1361_(number)" class="mw-redirect" title="1361 (number)">1361</a>, 2521008887, 16022236204009818131831320183 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A051254" class="extiw" title="oeis:A051254">A051254</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Minimal_primes"><a href="/wiki/Minimal_prime_(number_theory)" class="mw-redirect" title="Minimal prime (number theory)">Minimal primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=46" title="Edit section: Minimal primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes for which there is no shorter <a href="/wiki/Subsequence" title="Subsequence">sub-sequence</a> of the decimal digits that form a prime. There are exactly 26 minimal primes: </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>, <a href="/wiki/409_(number)" class="mw-redirect" title="409 (number)">409</a>, <a href="/wiki/449_(number)" class="mw-redirect" title="449 (number)">449</a>, <a href="/wiki/499_(number)" class="mw-redirect" title="499 (number)">499</a>, <a href="/wiki/881_(number)" title="881 (number)">881</a>, <a href="/wiki/991_(number)" class="mw-redirect" title="991 (number)">991</a>, 6469, 6949, <a href="/wiki/9001_(number)" class="mw-redirect" title="9001 (number)">9001</a>, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A071062" class="extiw" title="oeis:A071062">A071062</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Newman–Shanks–Williams_primes"><span id="Newman.E2.80.93Shanks.E2.80.93Williams_primes"></span><a href="/wiki/Newman%E2%80%93Shanks%E2%80%93Williams_prime" title="Newman–Shanks–Williams prime">Newman–Shanks–Williams primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=47" title="Edit section: Newman–Shanks–Williams primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Newman–Shanks–Williams numbers that are prime. </p><p><a href="/wiki/7" title="7">7</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/239_(number)" title="239 (number)">239</a>, 9369319, 63018038201, 489133282872437279, 19175002942688032928599 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A088165" class="extiw" title="oeis:A088165">A088165</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Non-generous_primes">Non-generous primes</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=48" title="Edit section: Non-generous primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> for which the least positive <a href="/wiki/Primitive_root_modulo_n" title="Primitive root modulo n">primitive root</a> is not a primitive root of <i>p</i><sup>2</sup>. Three such primes are known; it is not known whether there are more.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/2" title="2">2</a>, 40487, 6692367337 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A055578" class="extiw" title="oeis:A055578">A055578</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Palindromic_primes"><a href="/wiki/Palindromic_primes" class="mw-redirect" title="Palindromic primes">Palindromic primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=49" title="Edit section: Palindromic primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes that remain the same when their decimal digits are read backwards. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/131_(number)" title="131 (number)">131</a>, <a href="/wiki/151_(number)" title="151 (number)">151</a>, <a href="/wiki/181_(number)" title="181 (number)">181</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/313_(number)" title="313 (number)">313</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>, <a href="/wiki/373_(number)" class="mw-redirect" title="373 (number)">373</a>, <a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a>, <a href="/wiki/727_(number)" class="mw-redirect" title="727 (number)">727</a>, <a href="/wiki/757_(number)" class="mw-redirect" title="757 (number)">757</a>, <a href="/wiki/787_(number)" class="mw-redirect" title="787 (number)">787</a>, <a href="/wiki/797_(number)" class="mw-redirect" title="797 (number)">797</a>, <a href="/wiki/919_(number)" class="mw-redirect" title="919 (number)">919</a>, <a href="/wiki/929_(number)" class="mw-redirect" title="929 (number)">929</a>, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A002385" class="extiw" title="oeis:A002385">A002385</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Palindromic_wing_primes">Palindromic wing primes</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=50" title="Edit section: Palindromic wing primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a{\big (}10^{m}-1{\big )}}{9}}\pm b\times 10^{\frac {m-1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <mn>9</mn> </mfrac> </mrow> <mo>±<!-- ± --></mo> <mi>b</mi> <mo>×<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a{\big (}10^{m}-1{\big )}}{9}}\pm b\times 10^{\frac {m-1}{2}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41c9913cc959216f8e52cc938a4602375888a1dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.147ex; height:6.009ex;" alt="{\displaystyle {\frac {a{\big (}10^{m}-1{\big )}}{9}}\pm b\times 10^{\frac {m-1}{2}}}"></noscript><span class="lazy-image-placeholder" style="width: 25.147ex;height: 6.009ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41c9913cc959216f8e52cc938a4602375888a1dc" data-alt="{\displaystyle {\frac {a{\big (}10^{m}-1{\big )}}{9}}\pm b\times 10^{\frac {m-1}{2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq a\pm b&lt;10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>≤<!-- ≤ --></mo> <mi>a</mi> <mo>±<!-- ± --></mo> <mi>b</mi> <mo>&lt;</mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq a\pm b&lt;10}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82b6af255768db6101ad92d77ba0b89d9bb1645a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.752ex; height:2.343ex;" alt="{\displaystyle 0\leq a\pm b&lt;10}"></noscript><span class="lazy-image-placeholder" style="width: 14.752ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82b6af255768db6101ad92d77ba0b89d9bb1645a" data-alt="{\displaystyle 0\leq a\pm b&lt;10}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> This means all digits except the middle digit are equal. </p><p><a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/131_(number)" title="131 (number)">131</a>, <a href="/wiki/151_(number)" title="151 (number)">151</a>, <a href="/wiki/181_(number)" title="181 (number)">181</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/313_(number)" title="313 (number)">313</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>, <a href="/wiki/373_(number)" class="mw-redirect" title="373 (number)">373</a>, <a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a>, <a href="/wiki/727_(number)" class="mw-redirect" title="727 (number)">727</a>, <a href="/wiki/757_(number)" class="mw-redirect" title="757 (number)">757</a>, <a href="/wiki/787_(number)" class="mw-redirect" title="787 (number)">787</a>, <a href="/wiki/797_(number)" class="mw-redirect" title="797 (number)">797</a>, <a href="/wiki/919_(number)" class="mw-redirect" title="919 (number)">919</a>, <a href="/wiki/929_(number)" class="mw-redirect" title="929 (number)">929</a>, 11311, 11411, 33533, 77377, 77477, 77977, 1114111, 1117111, 3331333, 3337333, 7772777, 7774777, 7778777, 111181111, 111191111, 777767777, 77777677777, 99999199999 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A077798" class="extiw" title="oeis:A077798">A077798</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Partition_primes"><a href="/wiki/Partition_function_(number_theory)" title="Partition function (number theory)">Partition primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=51" title="Edit section: Partition primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Partition function values that are prime. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, 17977, 10619863, 6620830889, 80630964769, 228204732751, 1171432692373, 1398341745571, 10963707205259, 15285151248481, 10657331232548839, 790738119649411319, 18987964267331664557 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A049575" class="extiw" title="oeis:A049575">A049575</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Pell_primes"><a href="/wiki/Pell_number" title="Pell number">Pell primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=52" title="Edit section: Pell primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes in the Pell number sequence <i>P</i><sub>0</sub> = 0, <i>P</i><sub><i>1</i></sub> = 1, <i>P</i><sub><i>n</i></sub> = 2<i>P</i><sub><i>n</i>−1</sub> + <i>P</i><sub><i>n</i>−2</sub>. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A086383" class="extiw" title="oeis:A086383">A086383</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Permutable_primes"><a href="/wiki/Permutable_prime" title="Permutable prime">Permutable primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=53" title="Edit section: Permutable primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Any permutation of the decimal digits is a prime. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/131_(number)" title="131 (number)">131</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/337_(number)" class="mw-redirect" title="337 (number)">337</a>, <a href="/wiki/373_(number)" class="mw-redirect" title="373 (number)">373</a>, <a href="/wiki/733_(number)" class="mw-redirect" title="733 (number)">733</a>, <a href="/wiki/919_(number)" class="mw-redirect" title="919 (number)">919</a>, <a href="/wiki/991_(number)" class="mw-redirect" title="991 (number)">991</a>, 1111111111111111111, 11111111111111111111111 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A003459" class="extiw" title="oeis:A003459">A003459</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Perrin_primes"><a href="/wiki/Perrin_number" title="Perrin number">Perrin primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=54" title="Edit section: Perrin primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes in the Perrin number sequence <i>P</i>(0) = 3, <i>P</i>(1) = 0, <i>P</i>(2) = 2, <i>P</i>(<i>n</i>) = <i>P</i>(<i>n</i>−2) + <i>P</i>(<i>n</i>−3). </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/277_(number)" title="277 (number)">277</a>, <a href="/wiki/367_(number)" class="mw-redirect" title="367 (number)">367</a>, <a href="/wiki/853_(number)" class="mw-redirect" title="853 (number)">853</a>, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A074788" class="extiw" title="oeis:A074788">A074788</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Pierpont_primes"><a href="/wiki/Pierpont_prime" title="Pierpont prime">Pierpont primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=55" title="Edit section: Pierpont primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form 2<sup><i>u</i></sup>3<sup><i>v</i></sup> + 1 for some <a href="/wiki/Integer" title="Integer">integers</a> <i>u</i>,<i>v</i> ≥ 0. </p><p>These are also <a href="/wiki/Prime_number#Classification_of_prime_numbers" title="Prime number">class 1- primes</a>. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/109_(number)" title="109 (number)">109</a>, <a href="/wiki/163_(number)" title="163 (number)">163</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/433_(number)" class="mw-redirect" title="433 (number)">433</a>, <a href="/wiki/487_(number)" class="mw-redirect" title="487 (number)">487</a>, <a href="/wiki/577_(number)" class="mw-redirect" title="577 (number)">577</a>, <a href="/wiki/769_(number)" class="mw-redirect" title="769 (number)">769</a>, <a href="/wiki/1153_(number)" class="mw-redirect" title="1153 (number)">1153</a>, <a href="/wiki/1297_(number)" class="mw-redirect" title="1297 (number)">1297</a>, <a href="/wiki/1459_(number)" class="mw-redirect" title="1459 (number)">1459</a>, <a href="/wiki/2593_(number)" class="mw-redirect" title="2593 (number)">2593</a>, <a href="/wiki/2917_(number)" class="mw-redirect" title="2917 (number)">2917</a>, <a href="/wiki/3457_(number)" class="mw-redirect" title="3457 (number)">3457</a>, <a href="/wiki/3889_(number)" class="mw-redirect" title="3889 (number)">3889</a>, 10369, 12289, 17497, 18433, 39367, 52489, <a href="/wiki/65537_(number)" class="mw-redirect" title="65537 (number)">65537</a>, 139969, 147457 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A005109" class="extiw" title="oeis:A005109">A005109</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Pillai_primes"><a href="/wiki/Pillai_prime" title="Pillai prime">Pillai primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=56" title="Edit section: Pillai primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> for which there exist <i>n</i> &gt; 0 such that <i>p</i> divides <i>n</i>! + 1 and <i>n</i> does not divide <i>p</i> − 1. </p><p><a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/109_(number)" title="109 (number)">109</a>, <a href="/wiki/137_(number)" title="137 (number)">137</a>, <a href="/wiki/139_(number)" title="139 (number)">139</a>, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/227_(number)" title="227 (number)">227</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/239_(number)" title="239 (number)">239</a>, <a href="/wiki/251_(number)" title="251 (number)">251</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/269_(number)" title="269 (number)">269</a>, <a href="/wiki/271_(number)" title="271 (number)">271</a>, <a href="/wiki/277_(number)" title="277 (number)">277</a>, <a href="/wiki/293_(number)" title="293 (number)">293</a>, <a href="/wiki/307_(number)" title="307 (number)">307</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/317_(number)" class="mw-redirect" title="317 (number)">317</a>, <a href="/wiki/359_(number)" title="359 (number)">359</a>, <a href="/wiki/379_(number)" class="mw-redirect" title="379 (number)">379</a>, <a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a>, <a href="/wiki/389_(number)" class="mw-redirect" title="389 (number)">389</a>, <a href="/wiki/397_(number)" class="mw-redirect" title="397 (number)">397</a>, <a href="/wiki/401_(number)" class="mw-redirect" title="401 (number)">401</a>, <a href="/wiki/419_(number)" class="mw-redirect" title="419 (number)">419</a>, <a href="/wiki/431_(number)" class="mw-redirect" title="431 (number)">431</a>, <a href="/wiki/449_(number)" class="mw-redirect" title="449 (number)">449</a>, <a href="/wiki/461_(number)" class="mw-redirect" title="461 (number)">461</a>, <a href="/wiki/463_(number)" class="mw-redirect" title="463 (number)">463</a>, <a href="/wiki/467_(number)" class="mw-redirect" title="467 (number)">467</a>, <a href="/wiki/479_(number)" class="mw-redirect" title="479 (number)">479</a>, <a href="/wiki/499_(number)" class="mw-redirect" title="499 (number)">499</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A063980" class="extiw" title="oeis:A063980">A063980</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Primes_of_the_form_n4_+_1"><span id="Primes_of_the_form_n4_.2B_1"></span>Primes of the form <i>n</i><sup>4</sup> + 1</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=57" title="Edit section: Primes of the form n4 + 1" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form <i>n</i><sup>4</sup> + 1.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/1297_(number)" class="mw-redirect" title="1297 (number)">1297</a>, <a href="/wiki/65537_(number)" class="mw-redirect" title="65537 (number)">65537</a>, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A037896" class="extiw" title="oeis:A037896">A037896</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Primeval_primes"><a href="/wiki/Primeval_prime" class="mw-redirect" title="Primeval prime">Primeval primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=58" title="Edit section: Primeval primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes for which there are more prime permutations of some or all the decimal digits than for any smaller number. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/137_(number)" title="137 (number)">137</a>, <a href="/wiki/1013_(number)" class="mw-redirect" title="1013 (number)">1013</a>, <a href="/wiki/1237_(number)" class="mw-redirect" title="1237 (number)">1237</a>, <a href="/wiki/1367_(number)" class="mw-redirect" title="1367 (number)">1367</a>, 10079 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A119535" class="extiw" title="oeis:A119535">A119535</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Primorial_primes"><a href="/wiki/Primorial_prime" title="Primorial prime">Primorial primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=59" title="Edit section: Primorial primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form <i>p</i><sub><i>n</i></sub># ± 1. </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/211_(number)" title="211 (number)">211</a>, <a href="/wiki/2309_(number)" class="mw-redirect" title="2309 (number)">2309</a>, <a href="/wiki/2311_(number)" class="mw-redirect" title="2311 (number)">2311</a>, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (union of <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A057705" class="extiw" title="oeis:A057705">A057705</a></span> and <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A018239" class="extiw" title="oeis:A018239">A018239</a></span><sup id="cite_ref-A018239_5-1" class="reference"><a href="#cite_note-A018239-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup>) </p> <div class="mw-heading mw-heading3"><h3 id="Proth_primes"><a href="/wiki/Proth_number" class="mw-redirect" title="Proth number">Proth primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=60" title="Edit section: Proth primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form <i>k</i>×2<sup><i>n</i></sup> + 1, with odd <i>k</i> and <i>k</i> &lt; 2<sup><i>n</i></sup>. </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/241_(number)" title="241 (number)">241</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>, <a href="/wiki/449_(number)" class="mw-redirect" title="449 (number)">449</a>, <a href="/wiki/577_(number)" class="mw-redirect" title="577 (number)">577</a>, <a href="/wiki/641_(number)" class="mw-redirect" title="641 (number)">641</a>, <a href="/wiki/673_(number)" class="mw-redirect" title="673 (number)">673</a>, <a href="/wiki/769_(number)" class="mw-redirect" title="769 (number)">769</a>, <a href="/wiki/929_(number)" class="mw-redirect" title="929 (number)">929</a>, <a href="/wiki/1153_(number)" class="mw-redirect" title="1153 (number)">1153</a>, <a href="/wiki/1217_(number)" class="mw-redirect" title="1217 (number)">1217</a>, <a href="/wiki/1409_(number)" class="mw-redirect" title="1409 (number)">1409</a>, <a href="/wiki/1601_(number)" class="mw-redirect" title="1601 (number)">1601</a>, <a href="/wiki/2113_(number)" class="mw-redirect" title="2113 (number)">2113</a>, <a href="/wiki/2689_(number)" class="mw-redirect" title="2689 (number)">2689</a>, <a href="/wiki/2753_(number)" class="mw-redirect" title="2753 (number)">2753</a>, <a href="/wiki/3137_(number)" class="mw-redirect" title="3137 (number)">3137</a>, <a href="/wiki/3329_(number)" class="mw-redirect" title="3329 (number)">3329</a>, <a href="/wiki/3457_(number)" class="mw-redirect" title="3457 (number)">3457</a>, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A080076" class="extiw" title="oeis:A080076">A080076</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Pythagorean_primes"><a href="/wiki/Pythagorean_prime" title="Pythagorean prime">Pythagorean primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=61" title="Edit section: Pythagorean primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form 4<i>n</i> + 1. </p><p><a href="/wiki/5" title="5">5</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, <a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/109_(number)" title="109 (number)">109</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/137_(number)" title="137 (number)">137</a>, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/157_(number)" title="157 (number)">157</a>, <a href="/wiki/173_(number)" title="173 (number)">173</a>, <a href="/wiki/181_(number)" title="181 (number)">181</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>, <a href="/wiki/229_(number)" title="229 (number)">229</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/241_(number)" title="241 (number)">241</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/269_(number)" title="269 (number)">269</a>, <a href="/wiki/277_(number)" title="277 (number)">277</a>, <a href="/wiki/281_(number)" title="281 (number)">281</a>, <a href="/wiki/293_(number)" title="293 (number)">293</a>, <a href="/wiki/313_(number)" title="313 (number)">313</a>, <a href="/wiki/317_(number)" class="mw-redirect" title="317 (number)">317</a>, <a href="/wiki/337_(number)" class="mw-redirect" title="337 (number)">337</a>, <a href="/wiki/349_(number)" class="mw-redirect" title="349 (number)">349</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>, <a href="/wiki/373_(number)" class="mw-redirect" title="373 (number)">373</a>, <a href="/wiki/389_(number)" class="mw-redirect" title="389 (number)">389</a>, <a href="/wiki/397_(number)" class="mw-redirect" title="397 (number)">397</a>, <a href="/wiki/401_(number)" class="mw-redirect" title="401 (number)">401</a>, <a href="/wiki/409_(number)" class="mw-redirect" title="409 (number)">409</a>, <a href="/wiki/421_(number)" class="mw-redirect" title="421 (number)">421</a>, <a href="/wiki/433_(number)" class="mw-redirect" title="433 (number)">433</a>, <a href="/wiki/449_(number)" class="mw-redirect" title="449 (number)">449</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A002144" class="extiw" title="oeis:A002144">A002144</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Prime_quadruplets"><a href="/wiki/Prime_quadruplet" title="Prime quadruplet">Prime quadruplets</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=62" title="Edit section: Prime quadruplets" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="#Cousin_primes">§ Cousin primes</a>, <a href="#Twin_primes">§ Twin primes</a>, and <a href="#Prime_triplets">§ Prime triplets</a></div> <p>Where (<i>p</i>, <i>p</i>+2, <i>p</i>+6, <i>p</i>+8) are all prime. </p><p>(<a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>), (11, 13, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>), (<a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/103_(number)" title="103 (number)">103</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/109_(number)" title="109 (number)">109</a>), (<a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>), (<a href="/wiki/821_(number)" class="mw-redirect" title="821 (number)">821</a>, <a href="/wiki/823_(number)" class="mw-redirect" title="823 (number)">823</a>, <a href="/wiki/827_(number)" class="mw-redirect" title="827 (number)">827</a>, <a href="/wiki/829_(number)" class="mw-redirect" title="829 (number)">829</a>), (<a href="/wiki/1481_(number)" class="mw-redirect" title="1481 (number)">1481</a>, <a href="/wiki/1483_(number)" class="mw-redirect" title="1483 (number)">1483</a>, <a href="/wiki/1487_(number)" class="mw-redirect" title="1487 (number)">1487</a>, <a href="/wiki/1489_(number)" class="mw-redirect" title="1489 (number)">1489</a>), (<a href="/wiki/1871_(number)" class="mw-redirect" title="1871 (number)">1871</a>, <a href="/wiki/1873_(number)" class="mw-redirect" title="1873 (number)">1873</a>, <a href="/wiki/1877_(number)" class="mw-redirect" title="1877 (number)">1877</a>, <a href="/wiki/1879_(number)" class="mw-redirect" title="1879 (number)">1879</a>), (<a href="/wiki/2081_(number)" class="mw-redirect" title="2081 (number)">2081</a>, <a href="/wiki/2083_(number)" class="mw-redirect" title="2083 (number)">2083</a>, <a href="/wiki/2087_(number)" class="mw-redirect" title="2087 (number)">2087</a>, <a href="/wiki/2089_(number)" class="mw-redirect" title="2089 (number)">2089</a>), (<a href="/wiki/3251_(number)" class="mw-redirect" title="3251 (number)">3251</a>, <a href="/wiki/3253_(number)" class="mw-redirect" title="3253 (number)">3253</a>, <a href="/wiki/3257_(number)" class="mw-redirect" title="3257 (number)">3257</a>, <a href="/wiki/3259_(number)" class="mw-redirect" title="3259 (number)">3259</a>), (<a href="/wiki/3461_(number)" class="mw-redirect" title="3461 (number)">3461</a>, <a href="/wiki/3463_(number)" class="mw-redirect" title="3463 (number)">3463</a>, <a href="/wiki/3467_(number)" class="mw-redirect" title="3467 (number)">3467</a>, <a href="/wiki/3469_(number)" class="mw-redirect" title="3469 (number)">3469</a>), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439) (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A007530" class="extiw" title="oeis:A007530">A007530</a></span>, <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A136720" class="extiw" title="oeis:A136720">A136720</a></span>, <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A136721" class="extiw" title="oeis:A136721">A136721</a></span>, <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A090258" class="extiw" title="oeis:A090258">A090258</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Quartan_primes"><a href="/wiki/Quartan_prime" title="Quartan prime">Quartan primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=63" title="Edit section: Quartan primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form <i>x</i><sup>4</sup> + <i>y</i><sup>4</sup>, where <i>x</i>,<i>y</i> &gt; 0. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/337_(number)" class="mw-redirect" title="337 (number)">337</a>, <a href="/wiki/641_(number)" class="mw-redirect" title="641 (number)">641</a>, <a href="/wiki/881_(number)" title="881 (number)">881</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A002645" class="extiw" title="oeis:A002645">A002645</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Ramanujan_primes"><a href="/wiki/Ramanujan_prime" title="Ramanujan prime">Ramanujan primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=64" title="Edit section: Ramanujan primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Integers <i>R</i><sub><i>n</i></sub> that are the smallest to give at least <i>n</i> primes from <i>x</i>/2 to <i>x</i> for all <i>x</i> ≥ <i>R</i><sub><i>n</i></sub> (all such integers are primes). </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/151_(number)" title="151 (number)">151</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/181_(number)" title="181 (number)">181</a>, <a href="/wiki/227_(number)" title="227 (number)">227</a>, <a href="/wiki/229_(number)" title="229 (number)">229</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/239_(number)" title="239 (number)">239</a>, <a href="/wiki/241_(number)" title="241 (number)">241</a>, <a href="/wiki/263_(number)" title="263 (number)">263</a>, <a href="/wiki/269_(number)" title="269 (number)">269</a>, <a href="/wiki/281_(number)" title="281 (number)">281</a>, <a href="/wiki/307_(number)" title="307 (number)">307</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/347_(number)" class="mw-redirect" title="347 (number)">347</a>, <a href="/wiki/349_(number)" class="mw-redirect" title="349 (number)">349</a>, <a href="/wiki/367_(number)" class="mw-redirect" title="367 (number)">367</a>, <a href="/wiki/373_(number)" class="mw-redirect" title="373 (number)">373</a>, <a href="/wiki/401_(number)" class="mw-redirect" title="401 (number)">401</a>, <a href="/wiki/409_(number)" class="mw-redirect" title="409 (number)">409</a>, <a href="/wiki/419_(number)" class="mw-redirect" title="419 (number)">419</a>, <a href="/wiki/431_(number)" class="mw-redirect" title="431 (number)">431</a>, <a href="/wiki/433_(number)" class="mw-redirect" title="433 (number)">433</a>, <a href="/wiki/439_(number)" class="mw-redirect" title="439 (number)">439</a>, <a href="/wiki/461_(number)" class="mw-redirect" title="461 (number)">461</a>, <a href="/wiki/487_(number)" class="mw-redirect" title="487 (number)">487</a>, <a href="/wiki/491_(number)" class="mw-redirect" title="491 (number)">491</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A104272" class="extiw" title="oeis:A104272">A104272</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Regular_primes"><a href="/wiki/Regular_prime" title="Regular prime">Regular primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=65" title="Edit section: Regular primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> that do not divide the <a href="/wiki/Class_number_(number_theory)" class="mw-redirect" title="Class number (number theory)">class number</a> of the <i>p</i>-th <a href="/wiki/Cyclotomic_field" title="Cyclotomic field">cyclotomic field</a>. </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/43_(number)" title="43 (number)">43</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, <a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/109_(number)" title="109 (number)">109</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/137_(number)" title="137 (number)">137</a>, <a href="/wiki/139_(number)" title="139 (number)">139</a>, <a href="/wiki/151_(number)" title="151 (number)">151</a>, <a href="/wiki/163_(number)" title="163 (number)">163</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/173_(number)" title="173 (number)">173</a>, <a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/181_(number)" title="181 (number)">181</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>, <a href="/wiki/211_(number)" title="211 (number)">211</a>, <a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/227_(number)" title="227 (number)">227</a>, <a href="/wiki/229_(number)" title="229 (number)">229</a>, <a href="/wiki/239_(number)" title="239 (number)">239</a>, <a href="/wiki/241_(number)" title="241 (number)">241</a>, <a href="/wiki/251_(number)" title="251 (number)">251</a>, <a href="/wiki/269_(number)" title="269 (number)">269</a>, <a href="/wiki/277_(number)" title="277 (number)">277</a>, <a href="/wiki/281_(number)" title="281 (number)">281</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A007703" class="extiw" title="oeis:A007703">A007703</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Repunit_primes"><a href="/wiki/Repunit#Decimal_repunit_primes" title="Repunit">Repunit primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=66" title="Edit section: Repunit primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes containing only the decimal digit 1. </p><p><a href="/wiki/11_(number)" title="11 (number)">11</a>, 1111111111111111111 (19 digits), 11111111111111111111111 (23 digits) (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A004022" class="extiw" title="oeis:A004022">A004022</a></span>) </p><p>The next have 317, 1031, 49081, 86453, 109297, 270343 digits (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A004023" class="extiw" title="oeis:A004023">A004023</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Residue_classes_of_primes"><a href="/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions" title="Dirichlet's theorem on arithmetic progressions">Residue classes of primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=67" title="Edit section: Residue classes of primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form <i>an</i> + <i>d</i> for fixed integers <i>a</i> and <i>d</i>. Also called primes congruent to <i>d</i> <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">modulo</a> <i>a</i>. </p><p>The primes of the form 2<i>n</i>+1 are the odd primes, including all primes other than 2. Some sequences have alternate names: 4<i>n</i>+1 are Pythagorean primes, 4<i>n</i>+3 are the integer Gaussian primes, and 6<i>n</i>+5 are the Eisenstein primes (with 2 omitted). The classes 10<i>n</i>+<i>d</i> (<i>d</i> = 1, 3, 7, 9) are primes ending in the decimal digit <i>d</i>. </p><p>2<i>n</i>+1: <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/43_(number)" title="43 (number)">43</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A065091" class="extiw" title="oeis:A065091">A065091</a></span>)<br> 4<i>n</i>+1: 5, 13, 17, 29, 37, 41, 53, <a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/109_(number)" title="109 (number)">109</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/137_(number)" title="137 (number)">137</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A002144" class="extiw" title="oeis:A002144">A002144</a></span>)<br> 4<i>n</i>+3: 3, 7, 11, 19, 23, 31, 43, 47, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/103_(number)" title="103 (number)">103</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A002145" class="extiw" title="oeis:A002145">A002145</a></span>)<br> 6<i>n</i>+1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/139_(number)" title="139 (number)">139</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A002476" class="extiw" title="oeis:A002476">A002476</a></span>)<br> 6<i>n</i>+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A007528" class="extiw" title="oeis:A007528">A007528</a></span>)<br> 8<i>n</i>+1: 17, 41, 73, 89, 97, 113, 137, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/241_(number)" title="241 (number)">241</a>, <a href="/wiki/257_(number)" title="257 (number)">257</a>, <a href="/wiki/281_(number)" title="281 (number)">281</a>, <a href="/wiki/313_(number)" title="313 (number)">313</a>, <a href="/wiki/337_(number)" class="mw-redirect" title="337 (number)">337</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A007519" class="extiw" title="oeis:A007519">A007519</a></span>)<br> 8<i>n</i>+3: 3, 11, 19, 43, 59, 67, 83, 107, <a href="/wiki/131_(number)" title="131 (number)">131</a>, 139, <a href="/wiki/163_(number)" title="163 (number)">163</a>, <a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/211_(number)" title="211 (number)">211</a>, <a href="/wiki/227_(number)" title="227 (number)">227</a>, <a href="/wiki/251_(number)" title="251 (number)">251</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A007520" class="extiw" title="oeis:A007520">A007520</a></span>)<br> 8<i>n</i>+5: 5, 13, 29, 37, 53, 61, 101, 109, <a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/157_(number)" title="157 (number)">157</a>, <a href="/wiki/173_(number)" title="173 (number)">173</a>, <a href="/wiki/181_(number)" title="181 (number)">181</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>, <a href="/wiki/229_(number)" title="229 (number)">229</a>, <a href="/wiki/269_(number)" title="269 (number)">269</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A007521" class="extiw" title="oeis:A007521">A007521</a></span>)<br> 8<i>n</i>+7: 7, 23, 31, 47, 71, 79, 103, 127, <a href="/wiki/151_(number)" title="151 (number)">151</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>, <a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/239_(number)" title="239 (number)">239</a>, <a href="/wiki/263_(number)" title="263 (number)">263</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A007522" class="extiw" title="oeis:A007522">A007522</a></span>)<br> 10<i>n</i>+1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, <a href="/wiki/271_(number)" title="271 (number)">271</a>, 281 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A030430" class="extiw" title="oeis:A030430">A030430</a></span>)<br> 10<i>n</i>+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A030431" class="extiw" title="oeis:A030431">A030431</a></span>)<br> 10<i>n</i>+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, <a href="/wiki/277_(number)" title="277 (number)">277</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A030432" class="extiw" title="oeis:A030432">A030432</a></span>)<br> 10<i>n</i>+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, <a href="/wiki/349_(number)" class="mw-redirect" title="349 (number)">349</a>, <a href="/wiki/359_(number)" title="359 (number)">359</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A030433" class="extiw" title="oeis:A030433">A030433</a></span>)<br> 12<i>n</i>+1: 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A068228" class="extiw" title="oeis:A068228">A068228</a></span>)<br> 12<i>n</i>+5: 5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A040117" class="extiw" title="oeis:A040117">A040117</a></span>)<br> 12<i>n</i>+7: 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A068229" class="extiw" title="oeis:A068229">A068229</a></span>)<br> 12<i>n</i>+11: 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A068231" class="extiw" title="oeis:A068231">A068231</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Safe_primes"><a href="/wiki/Safe_prime" class="mw-redirect" title="Safe prime">Safe primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=68" title="Edit section: Safe primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Where <i>p</i> and (<i>p</i>−1) / 2 are both prime. </p><p><a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/227_(number)" title="227 (number)">227</a>, <a href="/wiki/263_(number)" title="263 (number)">263</a>, <a href="/wiki/347_(number)" class="mw-redirect" title="347 (number)">347</a>, <a href="/wiki/359_(number)" title="359 (number)">359</a>, <a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a>, <a href="/wiki/467_(number)" class="mw-redirect" title="467 (number)">467</a>, <a href="/wiki/479_(number)" class="mw-redirect" title="479 (number)">479</a>, <a href="/wiki/503_(number)" class="mw-redirect" title="503 (number)">503</a>, <a href="/wiki/563_(number)" class="mw-redirect" title="563 (number)">563</a>, <a href="/wiki/587_(number)" class="mw-redirect" title="587 (number)">587</a>, <a href="/wiki/719_(number)" class="mw-redirect" title="719 (number)">719</a>, <a href="/wiki/839_(number)" class="mw-redirect" title="839 (number)">839</a>, <a href="/wiki/863_(number)" class="mw-redirect" title="863 (number)">863</a>, <a href="/wiki/887_(number)" class="mw-redirect" title="887 (number)">887</a>, <a href="/wiki/983_(number)" class="mw-redirect" title="983 (number)">983</a>, <a href="/wiki/1019_(number)" class="mw-redirect" title="1019 (number)">1019</a>, <a href="/wiki/1187_(number)" class="mw-redirect" title="1187 (number)">1187</a>, <a href="/wiki/1283_(number)" class="mw-redirect" title="1283 (number)">1283</a>, <a href="/wiki/1307_(number)" class="mw-redirect" title="1307 (number)">1307</a>, <a href="/wiki/1319_(number)" class="mw-redirect" title="1319 (number)">1319</a>, <a href="/wiki/1367_(number)" class="mw-redirect" title="1367 (number)">1367</a>, <a href="/wiki/1439_(number)" class="mw-redirect" title="1439 (number)">1439</a>, <a href="/wiki/1487_(number)" class="mw-redirect" title="1487 (number)">1487</a>, <a href="/wiki/1523_(number)" class="mw-redirect" title="1523 (number)">1523</a>, <a href="/wiki/1619_(number)" class="mw-redirect" title="1619 (number)">1619</a>, <a href="/wiki/1823_(number)" class="mw-redirect" title="1823 (number)">1823</a>, <a href="/wiki/1907_(number)" class="mw-redirect" title="1907 (number)">1907</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A005385" class="extiw" title="oeis:A005385">A005385</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Self_primes_in_base_10"><a href="/wiki/Self_number" title="Self number">Self primes</a> in base 10</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=69" title="Edit section: Self primes in base 10" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes that cannot be generated by any integer added to the sum of its decimal digits. </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/211_(number)" title="211 (number)">211</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/277_(number)" title="277 (number)">277</a>, <a href="/wiki/367_(number)" class="mw-redirect" title="367 (number)">367</a>, <a href="/wiki/389_(number)" class="mw-redirect" title="389 (number)">389</a>, <a href="/wiki/457_(number)" class="mw-redirect" title="457 (number)">457</a>, <a href="/wiki/479_(number)" class="mw-redirect" title="479 (number)">479</a>, <a href="/wiki/547_(number)" class="mw-redirect" title="547 (number)">547</a>, <a href="/wiki/569_(number)" class="mw-redirect" title="569 (number)">569</a>, <a href="/wiki/613_(number)" title="613 (number)">613</a>, <a href="/wiki/659_(number)" class="mw-redirect" title="659 (number)">659</a>, <a href="/wiki/727_(number)" class="mw-redirect" title="727 (number)">727</a>, <a href="/wiki/839_(number)" class="mw-redirect" title="839 (number)">839</a>, <a href="/wiki/883_(number)" class="mw-redirect" title="883 (number)">883</a>, <a href="/wiki/929_(number)" class="mw-redirect" title="929 (number)">929</a>, <a href="/wiki/1021_(number)" class="mw-redirect" title="1021 (number)">1021</a>, <a href="/wiki/1087_(number)" class="mw-redirect" title="1087 (number)">1087</a>, <a href="/wiki/1109_(number)" class="mw-redirect" title="1109 (number)">1109</a>, <a href="/wiki/1223_(number)" class="mw-redirect" title="1223 (number)">1223</a>, <a href="/wiki/1289_(number)" title="1289 (number)">1289</a>, <a href="/wiki/1447_(number)" class="mw-redirect" title="1447 (number)">1447</a>, <a href="/wiki/1559_(number)" class="mw-redirect" title="1559 (number)">1559</a>, <a href="/wiki/1627_(number)" class="mw-redirect" title="1627 (number)">1627</a>, <a href="/wiki/1693_(number)" class="mw-redirect" title="1693 (number)">1693</a>, <a href="/wiki/1783_(number)" class="mw-redirect" title="1783 (number)">1783</a>, <a href="/wiki/1873_(number)" class="mw-redirect" title="1873 (number)">1873</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A006378" class="extiw" title="oeis:A006378">A006378</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Sexy_primes"><a href="/wiki/Sexy_prime" title="Sexy prime">Sexy primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=70" title="Edit section: Sexy primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Where (<i>p</i>, <i>p</i> + 6) are both prime. </p><p>(<a href="/wiki/5" title="5">5</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>), (<a href="/wiki/7" title="7">7</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>), (11, <a href="/wiki/17_(number)" title="17 (number)">17</a>), (13, <a href="/wiki/19_(number)" title="19 (number)">19</a>), (17, <a href="/wiki/23_(number)" title="23 (number)">23</a>), (23, <a href="/wiki/29_(number)" title="29 (number)">29</a>), (<a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>), (37, <a href="/wiki/43_(number)" title="43 (number)">43</a>), (<a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>), (47, <a href="/wiki/53_(number)" title="53 (number)">53</a>), (53, <a href="/wiki/59_(number)" title="59 (number)">59</a>), (<a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>), (67, <a href="/wiki/73_(number)" title="73 (number)">73</a>), (73, <a href="/wiki/79_(number)" title="79 (number)">79</a>), (<a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>), (<a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/103_(number)" title="103 (number)">103</a>), (<a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/107_(number)" title="107 (number)">107</a>), (103, <a href="/wiki/109_(number)" title="109 (number)">109</a>), (107, <a href="/wiki/113_(number)" title="113 (number)">113</a>), (<a href="/wiki/131_(number)" title="131 (number)">131</a>, <a href="/wiki/137_(number)" title="137 (number)">137</a>), (<a href="/wiki/151_(number)" title="151 (number)">151</a>, <a href="/wiki/157_(number)" title="157 (number)">157</a>), (157, <a href="/wiki/163_(number)" title="163 (number)">163</a>), (<a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/173_(number)" title="173 (number)">173</a>), (173, <a href="/wiki/179_(number)" title="179 (number)">179</a>), (<a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>), (<a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>) (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A023201" class="extiw" title="oeis:A023201">A023201</a></span>, <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A046117" class="extiw" title="oeis:A046117">A046117</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Smarandache–Wellin_primes"><span id="Smarandache.E2.80.93Wellin_primes"></span><a href="/wiki/Smarandache%E2%80%93Wellin_number" title="Smarandache–Wellin number">Smarandache–Wellin primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=71" title="Edit section: Smarandache–Wellin primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes that are the concatenation of the first <i>n</i> primes written in decimal. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/2357_(number)" class="mw-redirect" title="2357 (number)">2357</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A069151" class="extiw" title="oeis:A069151">A069151</a></span>) </p><p>The fourth Smarandache-Wellin prime is the 355-digit concatenation of the first 128 primes that end with 719. </p> <div class="mw-heading mw-heading3"><h3 id="Solinas_primes"><a href="/wiki/Solinas_prime" title="Solinas prime">Solinas primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=72" title="Edit section: Solinas primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form 2<sup><i>a</i></sup> ± 2<sup><i>b</i></sup> ± 1, where 0 &lt; <i>b</i> &lt; <i>a</i>. </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A165255" class="extiw" title="oeis:A165255">A165255</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Sophie_Germain_primes"><a href="/wiki/Sophie_Germain_prime" class="mw-redirect" title="Sophie Germain prime">Sophie Germain primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=73" title="Edit section: Sophie Germain primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Where <i>p</i> and 2<i>p</i> + 1 are both prime. A Sophie Germain prime has a corresponding <a href="#Safe_primes">safe prime</a>. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/89_(number)" title="89 (number)">89</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/131_(number)" title="131 (number)">131</a>, <a href="/wiki/173_(number)" title="173 (number)">173</a>, <a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/239_(number)" title="239 (number)">239</a>, <a href="/wiki/251_(number)" title="251 (number)">251</a>, <a href="/wiki/281_(number)" title="281 (number)">281</a>, <a href="/wiki/293_(number)" title="293 (number)">293</a>, <a href="/wiki/359_(number)" title="359 (number)">359</a>, <a href="/wiki/419_(number)" class="mw-redirect" title="419 (number)">419</a>, <a href="/wiki/431_(number)" class="mw-redirect" title="431 (number)">431</a>, <a href="/wiki/443_(number)" class="mw-redirect" title="443 (number)">443</a>, <a href="/wiki/491_(number)" class="mw-redirect" title="491 (number)">491</a>, <a href="/wiki/509_(number)" class="mw-redirect" title="509 (number)">509</a>, <a href="/wiki/593_(number)" class="mw-redirect" title="593 (number)">593</a>, <a href="/wiki/641_(number)" class="mw-redirect" title="641 (number)">641</a>, <a href="/wiki/653_(number)" class="mw-redirect" title="653 (number)">653</a>, <a href="/wiki/659_(number)" class="mw-redirect" title="659 (number)">659</a>, <a href="/wiki/683_(number)" class="mw-redirect" title="683 (number)">683</a>, <a href="/wiki/719_(number)" class="mw-redirect" title="719 (number)">719</a>, <a href="/wiki/743_(number)" title="743 (number)">743</a>, <a href="/wiki/761_(number)" class="mw-redirect" title="761 (number)">761</a>, <a href="/wiki/809_(number)" class="mw-redirect" title="809 (number)">809</a>, <a href="/wiki/911_(number)" title="911 (number)">911</a>, <a href="/wiki/953_(number)" class="mw-redirect" title="953 (number)">953</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A005384" class="extiw" title="oeis:A005384">A005384</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Stern_primes"><a href="/wiki/Stern_prime" title="Stern prime">Stern primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=74" title="Edit section: Stern primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes that are not the sum of a smaller prime and twice the square of a nonzero integer. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/137_(number)" title="137 (number)">137</a>, <a href="/wiki/227_(number)" title="227 (number)">227</a>, <a href="/wiki/977_(number)" class="mw-redirect" title="977 (number)">977</a>, <a href="/wiki/1187_(number)" class="mw-redirect" title="1187 (number)">1187</a>, <a href="/wiki/1493_(number)" class="mw-redirect" title="1493 (number)">1493</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A042978" class="extiw" title="oeis:A042978">A042978</a></span>) </p><p>As of 2011<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=List_of_prime_numbers&amp;action=edit">[update]</a></sup>, these are the only known Stern primes, and possibly the only existing. </p> <div class="mw-heading mw-heading3"><h3 id="Super-primes"><a href="/wiki/Super-prime" title="Super-prime">Super-primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=75" title="Edit section: Super-primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes with prime-numbered indexes in the sequence of prime numbers (the 2nd, 3rd, 5th, ... prime). </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/109_(number)" title="109 (number)">109</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/157_(number)" title="157 (number)">157</a>, <a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/211_(number)" title="211 (number)">211</a>, <a href="/wiki/241_(number)" title="241 (number)">241</a>, <a href="/wiki/277_(number)" title="277 (number)">277</a>, <a href="/wiki/283_(number)" title="283 (number)">283</a>, <a href="/wiki/331_(number)" class="mw-redirect" title="331 (number)">331</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>, <a href="/wiki/367_(number)" class="mw-redirect" title="367 (number)">367</a>, <a href="/wiki/401_(number)" class="mw-redirect" title="401 (number)">401</a>, <a href="/wiki/431_(number)" class="mw-redirect" title="431 (number)">431</a>, <a href="/wiki/461_(number)" class="mw-redirect" title="461 (number)">461</a>, <a href="/wiki/509_(number)" class="mw-redirect" title="509 (number)">509</a>, <a href="/wiki/547_(number)" class="mw-redirect" title="547 (number)">547</a>, <a href="/wiki/563_(number)" class="mw-redirect" title="563 (number)">563</a>, <a href="/wiki/587_(number)" class="mw-redirect" title="587 (number)">587</a>, <a href="/wiki/599_(number)" class="mw-redirect" title="599 (number)">599</a>, <a href="/wiki/617_(number)" class="mw-redirect" title="617 (number)">617</a>, <a href="/wiki/709_(number)" class="mw-redirect" title="709 (number)">709</a>, <a href="/wiki/739_(number)" class="mw-redirect" title="739 (number)">739</a>, <a href="/wiki/773_(number)" class="mw-redirect" title="773 (number)">773</a>, <a href="/wiki/797_(number)" class="mw-redirect" title="797 (number)">797</a>, <a href="/wiki/859_(number)" class="mw-redirect" title="859 (number)">859</a>, <a href="/wiki/877_(number)" class="mw-redirect" title="877 (number)">877</a>, <a href="/wiki/919_(number)" class="mw-redirect" title="919 (number)">919</a>, <a href="/wiki/967_(number)" class="mw-redirect" title="967 (number)">967</a>, <a href="/wiki/991_(number)" class="mw-redirect" title="991 (number)">991</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A006450" class="extiw" title="oeis:A006450">A006450</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Supersingular_primes"><a href="/wiki/Supersingular_prime_(moonshine_theory)" title="Supersingular prime (moonshine theory)">Supersingular primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=76" title="Edit section: Supersingular primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>There are exactly fifteen supersingular primes: </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A002267" class="extiw" title="oeis:A002267">A002267</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Thabit_primes"><a href="/wiki/Thabit_prime" class="mw-redirect" title="Thabit prime">Thabit primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=77" title="Edit section: Thabit primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form 3×2<sup><i>n</i></sup> − 1. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a>, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A007505" class="extiw" title="oeis:A007505">A007505</a></span>) </p><p>The primes of the form 3×2<sup><i>n</i></sup> + 1 are related. </p><p><a href="/wiki/7" title="7">7</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/769_(number)" class="mw-redirect" title="769 (number)">769</a>, 12289, 786433, 3221225473, 206158430209, 6597069766657 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A039687" class="extiw" title="oeis:A039687">A039687</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Prime_triplets"><a href="/wiki/Prime_triplet" title="Prime triplet">Prime triplets</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=78" title="Edit section: Prime triplets" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="#Cousin_primes">§ Cousin primes</a>, <a href="#Twin_primes">§ Twin primes</a>, and <a href="#Prime_quadruplets">§ Prime quadruplets</a></div> <p>Where (<i>p</i>, <i>p</i>+2, <i>p</i>+6) or (<i>p</i>, <i>p</i>+4, <i>p</i>+6) are all prime. </p><p>(<a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>), (7, 11, <a href="/wiki/13_(number)" title="13 (number)">13</a>), (11, 13, <a href="/wiki/17_(number)" title="17 (number)">17</a>), (13, 17, <a href="/wiki/19_(number)" title="19 (number)">19</a>), (17, 19, <a href="/wiki/23_(number)" title="23 (number)">23</a>), (<a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/43_(number)" title="43 (number)">43</a>), (41, 43, <a href="/wiki/47_(number)" title="47 (number)">47</a>), (<a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>), (<a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/103_(number)" title="103 (number)">103</a>), (101, 103, <a href="/wiki/107_(number)" title="107 (number)">107</a>), (103, 107, <a href="/wiki/109_(number)" title="109 (number)">109</a>), (107, 109, <a href="/wiki/113_(number)" title="113 (number)">113</a>), (<a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>), (193, 197, <a href="/wiki/199_(number)" title="199 (number)">199</a>), (<a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/227_(number)" title="227 (number)">227</a>, <a href="/wiki/229_(number)" title="229 (number)">229</a>), (227, 229, <a href="/wiki/233_(number)" title="233 (number)">233</a>), (<a href="/wiki/277_(number)" title="277 (number)">277</a>, <a href="/wiki/281_(number)" title="281 (number)">281</a>, <a href="/wiki/283_(number)" title="283 (number)">283</a>), (<a href="/wiki/307_(number)" title="307 (number)">307</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/313_(number)" title="313 (number)">313</a>), (311, 313, <a href="/wiki/317_(number)" class="mw-redirect" title="317 (number)">317</a>), (<a href="/wiki/347_(number)" class="mw-redirect" title="347 (number)">347</a>, <a href="/wiki/349_(number)" class="mw-redirect" title="349 (number)">349</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>) (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A007529" class="extiw" title="oeis:A007529">A007529</a></span>, <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A098414" class="extiw" title="oeis:A098414">A098414</a></span>, <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A098415" class="extiw" title="oeis:A098415">A098415</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Truncatable_prime"><a href="/wiki/Truncatable_prime" title="Truncatable prime">Truncatable prime</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=79" title="Edit section: Truncatable prime" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <div class="mw-heading mw-heading4"><h4 id="Left-truncatable">Left-truncatable</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=80" title="Edit section: Left-truncatable" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes that remain prime when the leading decimal digit is successively removed. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/43_(number)" title="43 (number)">43</a>, <a href="/wiki/47_(number)" title="47 (number)">47</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, <a href="/wiki/67_(number)" title="67 (number)">67</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>, <a href="/wiki/83_(number)" title="83 (number)">83</a>, <a href="/wiki/97_(number)" title="97 (number)">97</a>, <a href="/wiki/113_(number)" title="113 (number)">113</a>, <a href="/wiki/137_(number)" title="137 (number)">137</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/173_(number)" title="173 (number)">173</a>, <a href="/wiki/197_(number)" title="197 (number)">197</a>, <a href="/wiki/223_(number)" title="223 (number)">223</a>, <a href="/wiki/283_(number)" title="283 (number)">283</a>, <a href="/wiki/313_(number)" title="313 (number)">313</a>, <a href="/wiki/317_(number)" class="mw-redirect" title="317 (number)">317</a>, <a href="/wiki/337_(number)" class="mw-redirect" title="337 (number)">337</a>, <a href="/wiki/347_(number)" class="mw-redirect" title="347 (number)">347</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>, <a href="/wiki/367_(number)" class="mw-redirect" title="367 (number)">367</a>, <a href="/wiki/373_(number)" class="mw-redirect" title="373 (number)">373</a>, <a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a>, <a href="/wiki/397_(number)" class="mw-redirect" title="397 (number)">397</a>, <a href="/wiki/443_(number)" class="mw-redirect" title="443 (number)">443</a>, <a href="/wiki/467_(number)" class="mw-redirect" title="467 (number)">467</a>, <a href="/wiki/523_(number)" class="mw-redirect" title="523 (number)">523</a>, <a href="/wiki/547_(number)" class="mw-redirect" title="547 (number)">547</a>, <a href="/wiki/613_(number)" title="613 (number)">613</a>, <a href="/wiki/617_(number)" class="mw-redirect" title="617 (number)">617</a>, <a href="/wiki/643_(number)" class="mw-redirect" title="643 (number)">643</a>, <a href="/wiki/647_(number)" class="mw-redirect" title="647 (number)">647</a>, <a href="/wiki/653_(number)" class="mw-redirect" title="653 (number)">653</a>, <a href="/wiki/673_(number)" class="mw-redirect" title="673 (number)">673</a>, <a href="/wiki/683_(number)" class="mw-redirect" title="683 (number)">683</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A024785" class="extiw" title="oeis:A024785">A024785</a></span>) </p> <div class="mw-heading mw-heading4"><h4 id="Right-truncatable">Right-truncatable</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=81" title="Edit section: Right-truncatable" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes that remain prime when the least significant decimal digit is successively removed. </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, <a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/233_(number)" title="233 (number)">233</a>, <a href="/wiki/239_(number)" title="239 (number)">239</a>, <a href="/wiki/293_(number)" title="293 (number)">293</a>, <a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/313_(number)" title="313 (number)">313</a>, <a href="/wiki/317_(number)" class="mw-redirect" title="317 (number)">317</a>, <a href="/wiki/373_(number)" class="mw-redirect" title="373 (number)">373</a>, <a href="/wiki/379_(number)" class="mw-redirect" title="379 (number)">379</a>, <a href="/wiki/593_(number)" class="mw-redirect" title="593 (number)">593</a>, <a href="/wiki/599_(number)" class="mw-redirect" title="599 (number)">599</a>, <a href="/wiki/719_(number)" class="mw-redirect" title="719 (number)">719</a>, <a href="/wiki/733_(number)" class="mw-redirect" title="733 (number)">733</a>, <a href="/wiki/739_(number)" class="mw-redirect" title="739 (number)">739</a>, <a href="/wiki/797_(number)" class="mw-redirect" title="797 (number)">797</a>, <a href="/wiki/2333_(number)" class="mw-redirect" title="2333 (number)">2333</a>, <a href="/wiki/2339_(number)" class="mw-redirect" title="2339 (number)">2339</a>, <a href="/wiki/2393_(number)" class="mw-redirect" title="2393 (number)">2393</a>, <a href="/wiki/2399_(number)" class="mw-redirect" title="2399 (number)">2399</a>, <a href="/wiki/2939_(number)" class="mw-redirect" title="2939 (number)">2939</a>, <a href="/wiki/3119_(number)" class="mw-redirect" title="3119 (number)">3119</a>, <a href="/wiki/3137_(number)" class="mw-redirect" title="3137 (number)">3137</a>, <a href="/wiki/3733_(number)" class="mw-redirect" title="3733 (number)">3733</a>, <a href="/wiki/3739_(number)" class="mw-redirect" title="3739 (number)">3739</a>, <a href="/wiki/3793_(number)" class="mw-redirect" title="3793 (number)">3793</a>, <a href="/wiki/3797_(number)" class="mw-redirect" title="3797 (number)">3797</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A024770" class="extiw" title="oeis:A024770">A024770</a></span>) </p> <div class="mw-heading mw-heading4"><h4 id="Two-sided">Two-sided</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=82" title="Edit section: Two-sided" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes that are both left-truncatable and right-truncatable. There are exactly fifteen two-sided primes: </p><p><a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/53_(number)" title="53 (number)">53</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>, <a href="/wiki/313_(number)" title="313 (number)">313</a>, <a href="/wiki/317_(number)" class="mw-redirect" title="317 (number)">317</a>, <a href="/wiki/373_(number)" class="mw-redirect" title="373 (number)">373</a>, <a href="/wiki/797_(number)" class="mw-redirect" title="797 (number)">797</a>, <a href="/wiki/3137_(number)" class="mw-redirect" title="3137 (number)">3137</a>, <a href="/wiki/3797_(number)" class="mw-redirect" title="3797 (number)">3797</a>, 739397 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A020994" class="extiw" title="oeis:A020994">A020994</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Twin_primes"><a href="/wiki/Twin_prime" title="Twin prime">Twin primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=83" title="Edit section: Twin primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="#Cousin_primes">§ Cousin primes</a>, <a href="#Prime_triplets">§ Prime triplets</a>, and <a href="#Prime_quadruplets">§ Prime quadruplets</a></div> <p>Where (<i>p</i>, <i>p</i>+2) are both prime. </p><p>(<a href="/wiki/3" title="3">3</a>, <a href="/wiki/5" title="5">5</a>), (5, <a href="/wiki/7" title="7">7</a>), (<a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>), (<a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>), (<a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>), (<a href="/wiki/41_(number)" title="41 (number)">41</a>, <a href="/wiki/43_(number)" title="43 (number)">43</a>), (<a href="/wiki/59_(number)" title="59 (number)">59</a>, <a href="/wiki/61_(number)" title="61 (number)">61</a>), (<a href="/wiki/71_(number)" title="71 (number)">71</a>, <a href="/wiki/73_(number)" title="73 (number)">73</a>), (<a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/103_(number)" title="103 (number)">103</a>), (<a href="/wiki/107_(number)" title="107 (number)">107</a>, <a href="/wiki/109_(number)" title="109 (number)">109</a>), (<a href="/wiki/137_(number)" title="137 (number)">137</a>, <a href="/wiki/139_(number)" title="139 (number)">139</a>), (<a href="/wiki/149_(number)" title="149 (number)">149</a>, <a href="/wiki/151_(number)" title="151 (number)">151</a>), (<a href="/wiki/179_(number)" title="179 (number)">179</a>, <a href="/wiki/181_(number)" title="181 (number)">181</a>), (<a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/193_(number)" title="193 (number)">193</a>), (<a href="/wiki/197_(number)" title="197 (number)">197</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>), (<a href="/wiki/227_(number)" title="227 (number)">227</a>, <a href="/wiki/229_(number)" title="229 (number)">229</a>), (<a href="/wiki/239_(number)" title="239 (number)">239</a>, <a href="/wiki/241_(number)" title="241 (number)">241</a>), (<a href="/wiki/269_(number)" title="269 (number)">269</a>, <a href="/wiki/271_(number)" title="271 (number)">271</a>), (<a href="/wiki/281_(number)" title="281 (number)">281</a>, <a href="/wiki/283_(number)" title="283 (number)">283</a>), (<a href="/wiki/311_(number)" title="311 (number)">311</a>, <a href="/wiki/313_(number)" title="313 (number)">313</a>), (<a href="/wiki/347_(number)" class="mw-redirect" title="347 (number)">347</a>, <a href="/wiki/349_(number)" class="mw-redirect" title="349 (number)">349</a>), (<a href="/wiki/419_(number)" class="mw-redirect" title="419 (number)">419</a>, <a href="/wiki/421_(number)" class="mw-redirect" title="421 (number)">421</a>), (<a href="/wiki/431_(number)" class="mw-redirect" title="431 (number)">431</a>, <a href="/wiki/433_(number)" class="mw-redirect" title="433 (number)">433</a>), (<a href="/wiki/461_(number)" class="mw-redirect" title="461 (number)">461</a>, <a href="/wiki/463_(number)" class="mw-redirect" title="463 (number)">463</a>) (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A001359" class="extiw" title="oeis:A001359">A001359</a></span>, <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A006512" class="extiw" title="oeis:A006512">A006512</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Unique_primes"><a href="/wiki/Unique_prime" class="mw-redirect" title="Unique prime">Unique primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=84" title="Edit section: Unique primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The list of primes <i>p</i> for which the <a href="/wiki/Period_length" class="mw-redirect" title="Period length">period length</a> of the decimal expansion of 1/<i>p</i> is unique (no other prime gives the same period). </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A040017" class="extiw" title="oeis:A040017">A040017</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Wagstaff_primes"><a href="/wiki/Wagstaff_prime" title="Wagstaff prime">Wagstaff primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=85" title="Edit section: Wagstaff primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form (2<sup><i>n</i></sup> + 1) / 3. </p><p><a href="/wiki/3" title="3">3</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, <a href="/wiki/43_(number)" title="43 (number)">43</a>, <a href="/wiki/683_(number)" class="mw-redirect" title="683 (number)">683</a>, <a href="/wiki/2731_(number)" class="mw-redirect" title="2731 (number)">2731</a>, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000979" class="extiw" title="oeis:A000979">A000979</a></span>) </p><p>Values of <i>n</i>: </p><p>3, <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, 11, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/17_(number)" title="17 (number)">17</a>, <a href="/wiki/19_(number)" title="19 (number)">19</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/31_(number)" title="31 (number)">31</a>, 43, <a href="/wiki/61_(number)" title="61 (number)">61</a>, <a href="/wiki/79_(number)" title="79 (number)">79</a>, <a href="/wiki/101_(number)" title="101 (number)">101</a>, <a href="/wiki/127_(number)" title="127 (number)">127</a>, <a href="/wiki/167_(number)" title="167 (number)">167</a>, <a href="/wiki/191_(number)" title="191 (number)">191</a>, <a href="/wiki/199_(number)" title="199 (number)">199</a>, <a href="/wiki/313_(number)" title="313 (number)">313</a>, <a href="/wiki/347_(number)" class="mw-redirect" title="347 (number)">347</a>, <a href="/wiki/701_(number)" class="mw-redirect" title="701 (number)">701</a>, <a href="/wiki/1709_(number)" class="mw-redirect" title="1709 (number)">1709</a>, <a href="/wiki/2617_(number)" class="mw-redirect" title="2617 (number)">2617</a>, <a href="/wiki/3539_(number)" class="mw-redirect" title="3539 (number)">3539</a>, <a href="/wiki/5807_(number)" class="mw-redirect" title="5807 (number)">5807</a>, <a href="/wiki/10501_(number)" class="mw-redirect" title="10501 (number)">10501</a>, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000978" class="extiw" title="oeis:A000978">A000978</a></span>) </p> <div class="mw-heading mw-heading3"><h3 id="Wall–Sun–Sun_primes"><span id="Wall.E2.80.93Sun.E2.80.93Sun_primes"></span><a href="/wiki/Wall%E2%80%93Sun%E2%80%93Sun_prime" title="Wall–Sun–Sun prime">Wall–Sun–Sun primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=86" title="Edit section: Wall–Sun–Sun primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A prime <i>p</i> &gt; 5, if <i>p</i><sup>2</sup> divides the <a href="/wiki/Fibonacci_number" class="mw-redirect" title="Fibonacci number">Fibonacci number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{p-\left({\frac {p}{5}}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mn>5</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{p-\left({\frac {p}{5}}\right)}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/966c07b341b72613573a8e208730e595c5368ef0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:7.302ex; height:4.176ex;" alt="{\displaystyle F_{p-\left({\frac {p}{5}}\right)}}"></noscript><span class="lazy-image-placeholder" style="width: 7.302ex;height: 4.176ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/966c07b341b72613573a8e208730e595c5368ef0" data-alt="{\displaystyle F_{p-\left({\frac {p}{5}}\right)}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, where the <a href="/wiki/Legendre_symbol" title="Legendre symbol">Legendre symbol</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {p}{5}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mn>5</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {p}{5}}\right)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fe8e481a09e455d04b82d1d7dfddd04c6193d38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:4.781ex; height:4.843ex;" alt="{\displaystyle \left({\frac {p}{5}}\right)}"></noscript><span class="lazy-image-placeholder" style="width: 4.781ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fe8e481a09e455d04b82d1d7dfddd04c6193d38" data-alt="{\displaystyle \left({\frac {p}{5}}\right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {p}{5}}\right)={\begin{cases}1&{\textrm {if}}\;p\equiv \pm 1{\pmod {5}}\\-1&{\textrm {if}}\;p\equiv \pm 2{\pmod {5}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mn>5</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>if</mtext> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mi>p</mi> <mo>≡<!-- ≡ --></mo> <mo>±<!-- ± --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em"></mspace> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em"></mspace> <mn>5</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>if</mtext> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mi>p</mi> <mo>≡<!-- ≡ --></mo> <mo>±<!-- ± --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em"></mspace> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em"></mspace> <mn>5</mn> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {p}{5}}\right)={\begin{cases}1&amp;{\textrm {if}}\;p\equiv \pm 1{\pmod {5}}\\-1&amp;{\textrm {if}}\;p\equiv \pm 2{\pmod {5}}.\end{cases}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29ec64c65cf6c164aa6a4d1860543e95a45a9171" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.113ex; height:6.176ex;" alt="{\displaystyle \left({\frac {p}{5}}\right)={\begin{cases}1&{\textrm {if}}\;p\equiv \pm 1{\pmod {5}}\\-1&{\textrm {if}}\;p\equiv \pm 2{\pmod {5}}.\end{cases}}}"></noscript><span class="lazy-image-placeholder" style="width: 35.113ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29ec64c65cf6c164aa6a4d1860543e95a45a9171" data-alt="{\displaystyle \left({\frac {p}{5}}\right)={\begin{cases}1&{\textrm {if}}\;p\equiv \pm 1{\pmod {5}}\\-1&{\textrm {if}}\;p\equiv \pm 2{\pmod {5}}.\end{cases}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></dd></dl> <p>As of 2018<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=List_of_prime_numbers&amp;action=edit">[update]</a></sup>, no Wall-Sun-Sun primes are known. </p> <div class="mw-heading mw-heading3"><h3 id="Wieferich_primes"><a href="/wiki/Wieferich_prime" title="Wieferich prime">Wieferich primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=87" title="Edit section: Wieferich primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> such that <span class="nowrap"><i>a</i><sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>)</span> for fixed integer <i>a</i> &gt; 1. </p><p>2<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/1093_(number)" title="1093 (number)">1093</a>, <a href="/wiki/3511_(number)" class="mw-redirect" title="3511 (number)">3511</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A001220" class="extiw" title="oeis:A001220">A001220</a></span>)<br> 3<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/11_(number)" title="11 (number)">11</a>, 1006003 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A014127" class="extiw" title="oeis:A014127">A014127</a></span>)<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><br> 4<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/1093_(number)" title="1093 (number)">1093</a>, <a href="/wiki/3511_(number)" class="mw-redirect" title="3511 (number)">3511</a><br> 5<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/2" title="2">2</a>, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A123692" class="extiw" title="oeis:A123692">A123692</a></span>)<br> 6<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): 66161, 534851, 3152573 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A212583" class="extiw" title="oeis:A212583">A212583</a></span>)<br> 7<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/5" title="5">5</a>, 491531 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A123693" class="extiw" title="oeis:A123693">A123693</a></span>)<br> 8<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/3" title="3">3</a>, <a href="/wiki/1093_(number)" title="1093 (number)">1093</a>, <a href="/wiki/3511_(number)" class="mw-redirect" title="3511 (number)">3511</a><br> 9<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/2" title="2">2</a>, <a href="/wiki/11_(number)" title="11 (number)">11</a>, 1006003<br> 10<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/3" title="3">3</a>, <a href="/wiki/487_(number)" class="mw-redirect" title="487 (number)">487</a>, 56598313 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A045616" class="extiw" title="oeis:A045616">A045616</a></span>)<br> 11<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/71_(number)" title="71 (number)">71</a><sup id="cite_ref-RibenboimWelt_20-0" class="reference"><a href="#cite_note-RibenboimWelt-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><br> 12<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/2693_(number)" class="mw-redirect" title="2693 (number)">2693</a>, 123653 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A111027" class="extiw" title="oeis:A111027">A111027</a></span>)<br> 13<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/2" title="2">2</a>, <a href="/wiki/863_(number)" class="mw-redirect" title="863 (number)">863</a>, 1747591 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A128667" class="extiw" title="oeis:A128667">A128667</a></span>)<sup id="cite_ref-RibenboimWelt_20-1" class="reference"><a href="#cite_note-RibenboimWelt-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><br> 14<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/29_(number)" title="29 (number)">29</a>, <a href="/wiki/353_(number)" title="353 (number)">353</a>, 7596952219 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A234810" class="extiw" title="oeis:A234810">A234810</a></span>)<br> 15<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): 29131, 119327070011 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A242741" class="extiw" title="oeis:A242741">A242741</a></span>)<br> 16<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/1093_(number)" title="1093 (number)">1093</a>, <a href="/wiki/3511_(number)" class="mw-redirect" title="3511 (number)">3511</a><br> 17<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/2" title="2">2</a>, <a href="/wiki/3" title="3">3</a>, 46021, 48947 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A128668" class="extiw" title="oeis:A128668">A128668</a></span>)<sup id="cite_ref-RibenboimWelt_20-2" class="reference"><a href="#cite_note-RibenboimWelt-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><br> 18<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/5" title="5">5</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/37_(number)" title="37 (number)">37</a>, <a href="/wiki/331_(number)" class="mw-redirect" title="331 (number)">331</a>, 33923, 1284043 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A244260" class="extiw" title="oeis:A244260">A244260</a></span>)<br> 19<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/3" title="3">3</a>, <a href="/wiki/7" title="7">7</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/43_(number)" title="43 (number)">43</a>, <a href="/wiki/137_(number)" title="137 (number)">137</a>, 63061489 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A090968" class="extiw" title="oeis:A090968">A090968</a></span>)<sup id="cite_ref-RibenboimWelt_20-3" class="reference"><a href="#cite_note-RibenboimWelt-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><br> 20<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/281_(number)" title="281 (number)">281</a>, 46457, 9377747, 122959073 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A242982" class="extiw" title="oeis:A242982">A242982</a></span>)<br> 21<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/2" title="2">2</a><br> 22<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/673_(number)" class="mw-redirect" title="673 (number)">673</a>, 1595813, 492366587, 9809862296159 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A298951" class="extiw" title="oeis:A298951">A298951</a></span>)<br> 23<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/13_(number)" title="13 (number)">13</a>, 2481757, 13703077, 15546404183, 2549536629329 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A128669" class="extiw" title="oeis:A128669">A128669</a></span>)<br> 24<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/5" title="5">5</a>, 25633<br> 25<sup><i>p</i> − 1</sup> ≡ 1 (mod <i>p</i><sup>2</sup>): <a href="/wiki/2" title="2">2</a>, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 </p><p>As of 2018<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=List_of_prime_numbers&amp;action=edit">[update]</a></sup>, these are all known Wieferich primes with <i>a</i> ≤ 25. </p> <div class="mw-heading mw-heading3"><h3 id="Wilson_primes"><a href="/wiki/Wilson_prime" title="Wilson prime">Wilson primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=88" title="Edit section: Wilson primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> for which <i>p</i><sup>2</sup> divides (<i>p</i>−1)! + 1. </p><p><a href="/wiki/5" title="5">5</a>, <a href="/wiki/13_(number)" title="13 (number)">13</a>, <a href="/wiki/563_(number)" class="mw-redirect" title="563 (number)">563</a> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A007540" class="extiw" title="oeis:A007540">A007540</a></span>) </p><p>As of 2018<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=List_of_prime_numbers&amp;action=edit">[update]</a></sup>, these are the only known Wilson primes. </p> <div class="mw-heading mw-heading3"><h3 id="Wolstenholme_primes"><a href="/wiki/Wolstenholme_prime" title="Wolstenholme prime">Wolstenholme primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=89" title="Edit section: Wolstenholme primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Primes <i>p</i> for which the <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficient</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{2p-1} \choose {p-1}}\equiv 1{\pmod {p^{4}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>≡<!-- ≡ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em"></mspace> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em"></mspace> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{2p-1} \choose {p-1}}\equiv 1{\pmod {p^{4}}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2511f4d35103fd2b8d9128de1494539626a465ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.571ex; height:6.176ex;" alt="{\displaystyle {{2p-1} \choose {p-1}}\equiv 1{\pmod {p^{4}}}.}"></noscript><span class="lazy-image-placeholder" style="width: 26.571ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2511f4d35103fd2b8d9128de1494539626a465ef" data-alt="{\displaystyle {{2p-1} \choose {p-1}}\equiv 1{\pmod {p^{4}}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </p><p><a href="/wiki/16843_(number)" class="mw-redirect" title="16843 (number)">16843</a>, 2124679 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A088164" class="extiw" title="oeis:A088164">A088164</a></span>) </p><p>As of 2018<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=List_of_prime_numbers&amp;action=edit">[update]</a></sup>, these are the only known Wolstenholme primes. </p> <div class="mw-heading mw-heading3"><h3 id="Woodall_primes"><a href="/wiki/Woodall_number" title="Woodall number">Woodall primes</a></h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=90" title="Edit section: Woodall primes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Of the form <i>n</i>×2<sup><i>n</i></sup> − 1. </p><p><a href="/wiki/7" title="7">7</a>, <a href="/wiki/23_(number)" title="23 (number)">23</a>, <a href="/wiki/383_(number)" class="mw-redirect" title="383 (number)">383</a>, 32212254719, 2833419889721787128217599, 195845982777569926302400511, 4776913109852041418248056622882488319 (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A050918" class="extiw" title="oeis:A050918">A050918</a></span>) </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=91" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-3 collapsible-block" id="mf-section-3"> <style data-mw-deduplicate="TemplateStyles:r1239009302">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><noscript><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" data-file-width="128" data-file-height="128"></noscript><span class="lazy-image-placeholder" style="width: 28px;height: 28px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" data-alt="icon" data-width="28" data-height="28" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-class="mw-file-element">&nbsp;</span></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col div-col-small" style="column-width: 20em;"> <ul><li><a href="/wiki/Illegal_prime" class="mw-redirect" title="Illegal prime">Illegal prime</a> – Number representing illegal information<span style="display:none" class="category-annotation-with-redirected-description">Pages displaying short descriptions of redirect targets</span></li> <li><a href="/wiki/Largest_known_prime_number" title="Largest known prime number">Largest known prime number</a></li> <li><a href="/wiki/List_of_largest_known_primes_and_probable_primes" title="List of largest known primes and probable primes">List of largest known primes and probable primes</a></li> <li><a href="/wiki/List_of_numbers" title="List of numbers">List of numbers</a> – Notable numbers</li> <li><a href="/wiki/Prime_gap" title="Prime gap">Prime gap</a> – Difference between two successive prime numbers</li> <li><a href="/wiki/Prime_number_theorem" title="Prime number theorem">Prime number theorem</a> – Characterization of how many integers are prime</li> <li><a href="/wiki/Probable_prime" title="Probable prime">Probable prime</a> – Integers that satisfy a specific condition</li> <li><a href="/wiki/Pseudoprime" title="Pseudoprime">Pseudoprime</a> – Probable prime that is composite</li> <li><a href="/wiki/Strong_prime" title="Strong prime">Strong prime</a></li> <li><a href="/wiki/Table_of_prime_factors" title="Table of prime factors">Table of prime factors</a></li> <li><a href="/wiki/Wieferich_pair" title="Wieferich pair">Wieferich pair</a></li></ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=92" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-4 collapsible-block" id="mf-section-4"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFLehmer1982" class="citation book cs1"><a href="/wiki/Derrick_Norman_Lehmer" title="Derrick Norman Lehmer">Lehmer, D. N.</a> (1982). <i>List of prime numbers from 1 to 10,006,721</i>. Vol. 165. Washington D.C.: Carnegie Institution of Washington. <a href="/wiki/OL_(identifier)" class="mw-redirect" title="OL (identifier)">OL</a> <a rel="nofollow" class="external text" href="https://openlibrary.org/books/OL16553580M">16553580M</a>. OL16553580M.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=List+of+prime+numbers+from+1+to+10%2C006%2C721&amp;rft.place=Washington+D.C.&amp;rft.pub=Carnegie+Institution+of+Washington&amp;rft.date=1982&amp;rft_id=https%3A%2F%2Fopenlibrary.org%2Fbooks%2FOL16553580M%23id-name%3DOL&amp;rft.aulast=Lehmer&amp;rft.aufirst=D.+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Tomás Oliveira e Silva, <a rel="nofollow" class="external text" href="http://www.ieeta.pt/~tos/goldbach.html">Goldbach conjecture verification</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110524084452/http://www.ieeta.pt/~tos/goldbach.html">Archived</a> 24 May 2011 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Retrieved 16 July 2013</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">(sequence <span class="nowrap external"><a href="//oeis.org/A080127" class="extiw" title="oeis:A080127">A080127</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>)</span> </li> <li id="cite_note-Franke-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Franke_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJens_Franke2010" class="citation web cs1">Jens Franke (29 July 2010). <a rel="nofollow" class="external text" href="http://primes.utm.edu/notes/pi(10%5E24).html">"Conditional Calculation of pi(10<sup>24</sup>)"</a>. <a rel="nofollow" class="external text" href="http://archive.wikiwix.com/cache/20140824032441/http://primes.utm.edu/notes/pi(10%5E24).html">Archived</a> from the original on 24 August 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">17 May</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Conditional+Calculation+of+pi%2810%3Csup%3E24%3C%2Fsup%3E%29&amp;rft.date=2010-07-29&amp;rft.au=Jens+Franke&amp;rft_id=http%3A%2F%2Fprimes.utm.edu%2Fnotes%2Fpi%2810%255E24%29.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-A018239-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-A018239_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-A018239_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A018239" class="extiw" title="oeis:A018239">A018239</a></span> includes 2 = <a href="/wiki/Empty_product" title="Empty product">empty product</a> of first 0 primes plus 1, but 2 is excluded in this list.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoklanConway2016" class="citation arxiv cs1">Boklan, Kent D.; Conway, John H. (2016). "Expect at most one billionth of a new Fermat Prime!". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1605.01371">1605.01371</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.NT">math.NT</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Expect+at+most+one+billionth+of+a+new+Fermat+Prime%21&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1605.01371&amp;rft.aulast=Boklan&amp;rft.aufirst=Kent+D.&amp;rft.au=Conway%2C+John+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyd1994" class="citation journal cs1">Boyd, D. W. (1994). <a rel="nofollow" class="external text" href="http://projecteuclid.org/euclid.em/1048515811">"A <i>p</i>-adic Study of the Partial Sums of the Harmonic Series"</a>. <i><a href="/wiki/Experimental_Mathematics_(journal)" title="Experimental Mathematics (journal)">Experimental Mathematics</a></i>. <b>3</b> (4): 287–302. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F10586458.1994.10504298">10.1080/10586458.1994.10504298</a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0838.11015">0838.11015</a>. <a href="/wiki/CiteSeerX" title="CiteSeerX">CiteSeerX</a>: <span class="url"><a rel="nofollow" class="external text" href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.7026">10.1.1.56.7026</a></span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160127080246/http://projecteuclid.org/euclid.em/1048515811">Archived</a> from the original on 27 January 2016.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Experimental+Mathematics&amp;rft.atitle=A+p-adic+Study+of+the+Partial+Sums+of+the+Harmonic+Series&amp;rft.volume=3&amp;rft.issue=4&amp;rft.pages=287-302&amp;rft.date=1994&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0838.11015%23id-name%3DZbl&amp;rft_id=info%3Adoi%2F10.1080%2F10586458.1994.10504298&amp;rft.aulast=Boyd&amp;rft.aufirst=D.+W.&amp;rft_id=http%3A%2F%2Fprojecteuclid.org%2Feuclid.em%2F1048515811&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-Johnson-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Johnson_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Johnson_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnson1975" class="citation journal cs1">Johnson, W. (1975). <a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2005468">"Irregular Primes and Cyclotomic Invariants"</a>. <i><a href="/wiki/Mathematics_of_Computation" title="Mathematics of Computation">Mathematics of Computation</a></i>. <b>29</b> (129). <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">AMS</a>: 113–120. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2005468">10.2307/2005468</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2005468">2005468</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+of+Computation&amp;rft.atitle=Irregular+Primes+and+Cyclotomic+Invariants&amp;rft.volume=29&amp;rft.issue=129&amp;rft.pages=113-120&amp;rft.date=1975&amp;rft_id=info%3Adoi%2F10.2307%2F2005468&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2005468%23id-name%3DJSTOR&amp;rft.aulast=Johnson&amp;rft.aufirst=W.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.2307%252F2005468&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">It varies whether <i>L</i><sub>0</sub> = 2 is included in the Lucas numbers.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id='CITEREFSloane_"A121091"' class="citation web cs1"><a href="/wiki/Neil_Sloane" title="Neil Sloane">Sloane, N. J. A.</a> (ed.). <a rel="nofollow" class="external text" href="https://oeis.org/A121091">"Sequence A121091 (Smallest nexus prime of the form n^p - (n-1)^p, where p is an odd prime)"</a>. <i>The <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">On-Line Encyclopedia of Integer Sequences</a></i>. OEIS Foundation.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+On-Line+Encyclopedia+of+Integer+Sequences&amp;rft.atitle=Sequence%26%23x20%3BA121091%26%23x20%3B%28Smallest+nexus+prime+of+the+form+n%5Ep+-+%28n-1%29%5Ep%2C+where+p+is+an+odd+prime%29&amp;rft_id=https%3A%2F%2Foeis.org%2FA121091&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id='CITEREFSloane_"A121616"' class="citation web cs1"><a href="/wiki/Neil_Sloane" title="Neil Sloane">Sloane, N. J. A.</a> (ed.). <a rel="nofollow" class="external text" href="https://oeis.org/A121616">"Sequence A121616 (Primes of form (n+1)^5 - n^5)"</a>. <i>The <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">On-Line Encyclopedia of Integer Sequences</a></i>. OEIS Foundation.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+On-Line+Encyclopedia+of+Integer+Sequences&amp;rft.atitle=Sequence%26%23x20%3BA121616%26%23x20%3B%28Primes+of+form+%28n%2B1%29%5E5+-+n%5E5%29&amp;rft_id=https%3A%2F%2Foeis.org%2FA121616&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id='CITEREFSloane_"A121618"' class="citation web cs1"><a href="/wiki/Neil_Sloane" title="Neil Sloane">Sloane, N. J. A.</a> (ed.). <a rel="nofollow" class="external text" href="https://oeis.org/A121618">"Sequence A121618 (Nexus primes of order 7 or primes of form n^7 - (n-1)^7)"</a>. <i>The <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">On-Line Encyclopedia of Integer Sequences</a></i>. OEIS Foundation.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+On-Line+Encyclopedia+of+Integer+Sequences&amp;rft.atitle=Sequence%26%23x20%3BA121618%26%23x20%3B%28Nexus+primes+of+order+7+or+primes+of+form+n%5E7+-+%28n-1%29%5E7%29&amp;rft_id=https%3A%2F%2Foeis.org%2FA121618&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaszkiewicz2009" class="citation journal cs1">Paszkiewicz, Andrzej (2009). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/mcom/2009-78-266/S0025-5718-08-02090-5/S0025-5718-08-02090-5.pdf">"A new prime <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></noscript><span class="lazy-image-placeholder" style="width: 1.259ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" data-alt="{\displaystyle p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> for which the least primitive root <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\textrm {mod}}p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>mod</mtext> </mrow> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\textrm {mod}}p)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25e6d58c64c381a65c0282879fc728c3d974ea66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.37ex; height:2.843ex;" alt="{\displaystyle ({\textrm {mod}}p)}"></noscript><span class="lazy-image-placeholder" style="width: 7.37ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25e6d58c64c381a65c0282879fc728c3d974ea66" data-alt="{\displaystyle ({\textrm {mod}}p)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and the least primitive root <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\textrm {mod}}p^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>mod</mtext> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\textrm {mod}}p^{2})}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d801b105a09e28a76fab50734c43c147f367e3a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.424ex; height:3.176ex;" alt="{\displaystyle ({\textrm {mod}}p^{2})}"></noscript><span class="lazy-image-placeholder" style="width: 8.424ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d801b105a09e28a76fab50734c43c147f367e3a5" data-alt="{\displaystyle ({\textrm {mod}}p^{2})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> are not equal"</a> <span class="cs1-format">(PDF)</span>. <i>Math. Comp</i>. <b>78</b> (266). American Mathematical Society: 1193–1195. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009MaCom..78.1193P">2009MaCom..78.1193P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-08-02090-5">10.1090/S0025-5718-08-02090-5</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Math.+Comp.&amp;rft.atitle=A+new+prime+MATH+RENDER+ERROR+for+which+the+least+primitive+root+MATH+RENDER+ERROR+and+the+least+primitive+root+MATH+RENDER+ERROR+are+not+equal&amp;rft.volume=78&amp;rft.issue=266&amp;rft.pages=1193-1195&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.1090%2FS0025-5718-08-02090-5&amp;rft_id=info%3Abibcode%2F2009MaCom..78.1193P&amp;rft.aulast=Paszkiewicz&amp;rft.aufirst=Andrzej&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fmcom%2F2009-78-266%2FS0025-5718-08-02090-5%2FS0025-5718-08-02090-5.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaldwellDubner1996–97" class="citation journal cs1 cs1-prop-year-range-abbreviated"><a href="/wiki/Chris_Caldwell_(mathematician)" class="mw-redirect" title="Chris Caldwell (mathematician)">Caldwell, C.</a>; <a href="/wiki/Harvey_Dubner" title="Harvey Dubner">Dubner, H.</a> (1996–97). "The near repdigit primes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n-k-1}B_{1}A_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n-k-1}B_{1}A_{k}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2de11a3a8c7548020e6ee41223d3afa233211448" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.847ex; height:2.509ex;" alt="{\displaystyle A_{n-k-1}B_{1}A_{k}}"></noscript><span class="lazy-image-placeholder" style="width: 12.847ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2de11a3a8c7548020e6ee41223d3afa233211448" data-alt="{\displaystyle A_{n-k-1}B_{1}A_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, especially <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 9_{n-k-1}8_{1}9_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>9</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mn>8</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mn>9</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 9_{n-k-1}8_{1}9_{k}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc41cf72d4a10aaec0c28e6e77d4967a68e4d5f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.084ex; height:2.509ex;" alt="{\displaystyle 9_{n-k-1}8_{1}9_{k}}"></noscript><span class="lazy-image-placeholder" style="width: 11.084ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc41cf72d4a10aaec0c28e6e77d4967a68e4d5f8" data-alt="{\displaystyle 9_{n-k-1}8_{1}9_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>". <i><a href="/wiki/Journal_of_Recreational_Mathematics" title="Journal of Recreational Mathematics">Journal of Recreational Mathematics</a></i>. <b>28</b> (1): 1–9.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Recreational+Mathematics&amp;rft.atitle=The+near+repdigit+primes+MATH+RENDER+ERROR%2C+especially+MATH+RENDER+ERROR&amp;rft.volume=28&amp;rft.issue=1&amp;rft.pages=1-9&amp;rft.date=1996%2F1997&amp;rft.aulast=Caldwell&amp;rft.aufirst=C.&amp;rft.au=Dubner%2C+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLal1967" class="citation journal cs1">Lal, M. (1967). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/mcom/1967-21-098/S0025-5718-1967-0222007-9/S0025-5718-1967-0222007-9.pdf">"Primes of the Form n<sup>4</sup> + 1"</a> <span class="cs1-format">(PDF)</span>. <i>Mathematics of Computation</i>. <b>21</b>. <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">AMS</a>: 245–247. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-1967-0222007-9">10.1090/S0025-5718-1967-0222007-9</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1088-6842">1088-6842</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150113214845/http://www.ams.org/journals/mcom/1967-21-098/S0025-5718-1967-0222007-9/S0025-5718-1967-0222007-9.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 13 January 2015.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+of+Computation&amp;rft.atitle=Primes+of+the+Form+n%3Csup%3E4%3C%2Fsup%3E+%2B+1&amp;rft.volume=21&amp;rft.pages=245-247&amp;rft.date=1967&amp;rft_id=info%3Adoi%2F10.1090%2FS0025-5718-1967-0222007-9&amp;rft.issn=1088-6842&amp;rft.aulast=Lal&amp;rft.aufirst=M.&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fmcom%2F1967-21-098%2FS0025-5718-1967-0222007-9%2FS0025-5718-1967-0222007-9.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBohman1973" class="citation journal cs1">Bohman, J. (1973). "New primes of the form <i>n</i><sup>4</sup> + 1". <i>BIT Numerical Mathematics</i>. <b>13</b> (3). Springer: 370–372. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01951947">10.1007/BF01951947</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1572-9125">1572-9125</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123070671">123070671</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=BIT+Numerical+Mathematics&amp;rft.atitle=New+primes+of+the+form+n%3Csup%3E4%3C%2Fsup%3E+%2B+1&amp;rft.volume=13&amp;rft.issue=3&amp;rft.pages=370-372&amp;rft.date=1973&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123070671%23id-name%3DS2CID&amp;rft.issn=1572-9125&amp;rft_id=info%3Adoi%2F10.1007%2FBF01951947&amp;rft.aulast=Bohman&amp;rft.aufirst=J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRibenboim1996" class="citation book cs1"><a href="/wiki/Paulo_Ribenboim" title="Paulo Ribenboim">Ribenboim, P.</a> (22 February 1996). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=72eg8bFw40kC&amp;q=ribenboim"><i>The new book of prime number records</i></a>. New York: Springer-Verlag. p. 347. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-94457-5" title="Special:BookSources/0-387-94457-5"><bdi>0-387-94457-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+new+book+of+prime+number+records&amp;rft.place=New+York&amp;rft.pages=347&amp;rft.pub=Springer-Verlag&amp;rft.date=1996-02-22&amp;rft.isbn=0-387-94457-5&amp;rft.aulast=Ribenboim&amp;rft.aufirst=P.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D72eg8bFw40kC%26q%3Dribenboim&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.museumstuff.com/learn/topics/Mirimanoff%27s_congruence::sub::Other_Congruences">"Mirimanoff's Congruence: Other Congruences"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">26 January</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Mirimanoff%27s+Congruence%3A+Other+Congruences&amp;rft_id=http%3A%2F%2Fwww.museumstuff.com%2Flearn%2Ftopics%2FMirimanoff%2527s_congruence%3A%3Asub%3A%3AOther_Congruences&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGallotMoreeZudilin2011" class="citation journal cs1">Gallot, Y.; Moree, P.; Zudilin, W. (2011). <a rel="nofollow" class="external text" href="http://www.mpim-bonn.mpg.de/preprints/send?bid=4053">"The Erdös-Moser equation 1<sup><i>k</i></sup> + 2<sup><i>k</i></sup> +...+ (m−1)<sup><i>k</i></sup> = m<sup><i>k</i></sup> revisited using continued fractions"</a>. <i>Mathematics of Computation</i>. <b>80</b>. American Mathematical Society: 1221–1237. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0907.1356">0907.1356</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-2010-02439-1">10.1090/S0025-5718-2010-02439-1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16305654">16305654</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+of+Computation&amp;rft.atitle=The+Erd%C3%B6s-Moser+equation+1%3Csup%3Ek%3C%2Fsup%3E+%2B+2%3Csup%3Ek%3C%2Fsup%3E+%2B...%2B+%28m%E2%88%921%29%3Csup%3Ek%3C%2Fsup%3E+%3D+m%3Csup%3Ek%3C%2Fsup%3E+revisited+using+continued+fractions&amp;rft.volume=80&amp;rft.pages=1221-1237&amp;rft.date=2011&amp;rft_id=info%3Aarxiv%2F0907.1356&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16305654%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1090%2FS0025-5718-2010-02439-1&amp;rft.aulast=Gallot&amp;rft.aufirst=Y.&amp;rft.au=Moree%2C+P.&amp;rft.au=Zudilin%2C+W.&amp;rft_id=http%3A%2F%2Fwww.mpim-bonn.mpg.de%2Fpreprints%2Fsend%3Fbid%3D4053&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> <li id="cite_note-RibenboimWelt-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-RibenboimWelt_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-RibenboimWelt_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-RibenboimWelt_20-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-RibenboimWelt_20-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRibenboim2006" class="citation book cs1"><a href="/wiki/Paulo_Ribenboim" title="Paulo Ribenboim">Ribenboim, P.</a> (2006). <a rel="nofollow" class="external text" href="https://www.gbv.de/dms/bs/toc/495799599.pdf"><i>Die Welt der Primzahlen</i></a> <span class="cs1-format">(PDF)</span>. Berlin: Springer. p. 240. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-540-34283-4" title="Special:BookSources/3-540-34283-4"><bdi>3-540-34283-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Die+Welt+der+Primzahlen&amp;rft.place=Berlin&amp;rft.pages=240&amp;rft.pub=Springer&amp;rft.date=2006&amp;rft.isbn=3-540-34283-4&amp;rft.aulast=Ribenboim&amp;rft.aufirst=P.&amp;rft_id=https%3A%2F%2Fwww.gbv.de%2Fdms%2Fbs%2Ftoc%2F495799599.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span> </li> </ol></div></div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="External_links">External links</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=List_of_prime_numbers&amp;action=edit&amp;section=93" title="Edit section: External links" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-5 collapsible-block" id="mf-section-5"> <ul><li><a rel="nofollow" class="external autonumber" href="https://prime-numbers.de">[1]</a> All prime numbers from 31 to 6,469,693,189 for free download.</li> <li><a rel="nofollow" class="external text" href="http://primes.utm.edu/lists/">Lists of Primes</a> at the Prime Pages.</li> <li><a rel="nofollow" class="external text" href="http://primes.utm.edu/nthprime/">The Nth Prime Page</a> Nth prime through n=10^12, pi(x) through x=3*10^13, Random primes in same range.</li> <li><a rel="nofollow" class="external text" href="http://www.rsok.com/~jrm/printprimes.html">Interface to a list of the first 98 million primes</a> (primes less than 2,000,000,000)</li> <li><span class="citation mathworld" id="Reference-Mathworld-Prime_Number_Sequences"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/topics/PrimeNumberSequences.html">"Prime Number Sequences"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Prime+Number+Sequences&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2Ftopics%2FPrimeNumberSequences.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></span></li> <li><a rel="nofollow" class="external text" href="http://oeis.org/wiki/Index_to_OEIS:_Section_Pri">Selected prime related sequences</a> in <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>.</li> <li>Fischer, R. <a rel="nofollow" class="external text" href="http://www.fermatquotient.com/FermatQuotienten/FermQ_Sort.txt">Thema: Fermatquotient B^(P−1) == 1 (mod P^2)</a> <span class="languageicon">(in German)</span> (Lists Wieferich primes in all bases up to 1052)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1">Padilla, Tony (7 February 2013). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=QSEKzFGpCQs">"New Largest Known Prime Number"</a>. <i>Numberphile</i>. <a href="/wiki/Brady_Haran" title="Brady Haran">Brady Haran</a>. <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211102/QSEKzFGpCQs">Archived</a> from the original on 2 November 2021.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Numberphile&amp;rft.atitle=New+Largest+Known+Prime+Number&amp;rft.date=2013-02-07&amp;rft.aulast=Padilla&amp;rft.aufirst=Tony&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQSEKzFGpCQs&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+prime+numbers" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐fb9fb Cached time: 20241123101317 Cache expiry: 49606 Reduced expiry: true Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.214 seconds Real time usage: 1.475 seconds Preprocessor visited node count: 11915/1000000 Post‐expand include size: 127915/2097152 bytes Template argument size: 12075/2097152 bytes Highest expansion depth: 23/100 Expensive parser function count: 8/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 78736/5000000 bytes Lua time usage: 0.480/10.000 seconds Lua memory usage: 18551110/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 881.717 1 -total 26.74% 235.733 1 Template:Reflist 23.08% 203.470 11 Template:Annotated_link 13.71% 120.908 2 Template:Navbox 13.10% 115.496 1 Template:Prime_number_classes 12.66% 111.655 3 Template:Cite_book 9.00% 79.337 1 Template:Short_description 6.01% 52.974 2 Template:Pagetype 5.66% 49.916 7 Template:Cite_journal 5.38% 47.440 8 Template:As_of --> <!-- Saved in parser cache with key enwiki:pcache:idhash:442370-0!canonical and timestamp 20241123101317 and revision id 1255071013. Rendering was triggered because: page-view --> </section></div> <!-- MobileFormatter took 0.101 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=List_of_prime_numbers&amp;oldid=1255071013">https://en.wikipedia.org/w/index.php?title=List_of_prime_numbers&amp;oldid=1255071013</a>"</div></div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"> <a class="last-modified-bar" href="/w/index.php?title=List_of_prime_numbers&amp;action=history"> <div class="post-content last-modified-bar__content"> <span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="JayBeeEll" data-user-gender="unknown" data-timestamp="1730592510"> <span>Last edited on 3 November 2024, at 00:08</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div> </a> <div class="post-content footer-content"> <div id='mw-data-after-content'> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%82%D8%A7%D8%A6%D9%85%D8%A9_%D8%A7%D9%84%D8%A3%D8%B9%D8%AF%D8%A7%D8%AF_%D8%A7%D9%84%D8%A3%D9%88%D9%84%D9%8A%D8%A9" title="قائمة الأعداد الأولية – Arabic" lang="ar" hreflang="ar" data-title="قائمة الأعداد الأولية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Lista_de_numeros_primers_de_l%271_dica_o_100000" title="Lista de numeros primers de l&#039;1 dica o 100000 – Aragonese" lang="an" hreflang="an" data-title="Lista de numeros primers de l&#039;1 dica o 100000" data-language-autonym="Aragonés" data-language-local-name="Aragonese" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Spisak_1000_prostih_brojeva" title="Spisak 1000 prostih brojeva – Bosnian" lang="bs" hreflang="bs" data-title="Spisak 1000 prostih brojeva" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Seznam_prvo%C4%8D%C3%ADsel" title="Seznam prvočísel – Czech" lang="cs" hreflang="cs" data-title="Seznam prvočísel" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Rhestr_rhifau_cysefin" title="Rhestr rhifau cysefin – Welsh" lang="cy" hreflang="cy" data-title="Rhestr rhifau cysefin" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/El%C3%A8inc_ed_n%C3%B9mer_pr%C3%ACm" title="Elèinc ed nùmer prìm – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Elèinc ed nùmer prìm" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros_primos" title="Anexo:Números primos – Spanish" lang="es" hreflang="es" data-title="Anexo:Números primos" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D9%87%D8%B1%D8%B3%D8%AA_%D8%A7%D8%B9%D8%AF%D8%A7%D8%AF_%D8%A7%D9%88%D9%84" title="فهرست اعداد اول – Persian" lang="fa" hreflang="fa" data-title="فهرست اعداد اول" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Liste_de_nombres_premiers" title="Liste de nombres premiers – French" lang="fr" hreflang="fr" data-title="Liste de nombres premiers" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Lista_de_n%C3%BAmeros_primos" title="Lista de números primos – Galician" lang="gl" hreflang="gl" data-title="Lista de números primos" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%86%8C%EC%88%98_%EB%AA%A9%EB%A1%9D" title="소수 목록 – Korean" lang="ko" hreflang="ko" data-title="소수 목록" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8A%D5%A1%D6%80%D5%A6_%D5%A9%D5%BE%D5%A5%D6%80%D5%AB_%D6%81%D5%A1%D5%B6%D5%AF" title="Պարզ թվերի ցանկ – Armenian" lang="hy" hreflang="hy" data-title="Պարզ թվերի ցանկ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Daftar_bilangan_prima" title="Daftar bilangan prima – Indonesian" lang="id" hreflang="id" data-title="Daftar bilangan prima" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Lista_di_numeri_primi" title="Lista di numeri primi – Italian" lang="it" hreflang="it" data-title="Lista di numeri primi" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Pr%C3%ADmsz%C3%A1mok_list%C3%A1ja" title="Prímszámok listája – Hungarian" lang="hu" hreflang="hu" data-title="Prímszámok listája" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%BD%D0%B0_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%B8_%D0%B1%D1%80%D0%BE%D0%B5%D0%B2%D0%B8" title="Список на прости броеви – Macedonian" lang="mk" hreflang="mk" data-title="Список на прости броеви" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Lijst_van_priemgetallen" title="Lijst van priemgetallen – Dutch" lang="nl" hreflang="nl" data-title="Lijst van priemgetallen" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%B4%A0%E6%95%B0%E3%81%AE%E4%B8%80%E8%A6%A7" title="素数の一覧 – Japanese" lang="ja" hreflang="ja" data-title="素数の一覧" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Liste_over_primtal" title="Liste over primtal – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Liste over primtal" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Tub_sonlar_ro%CA%BByxati" title="Tub sonlar roʻyxati – Uzbek" lang="uz" hreflang="uz" data-title="Tub sonlar roʻyxati" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Lista_de_n%C3%BAmeros_primos" title="Lista de números primos – Portuguese" lang="pt" hreflang="pt" data-title="Lista de números primos" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/List%C4%83_de_numere_prime" title="Listă de numere prime – Romanian" lang="ro" hreflang="ro" data-title="Listă de numere prime" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%8B%D1%85_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Список простых чисел – Russian" lang="ru" hreflang="ru" data-title="Список простых чисел" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/List_of_prime_numbers" title="List of prime numbers – Simple English" lang="en-simple" hreflang="en-simple" data-title="List of prime numbers" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Zoznam_prvo%C4%8D%C3%ADsel" title="Zoznam prvočísel – Slovak" lang="sk" hreflang="sk" data-title="Zoznam prvočísel" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%B0%D0%BA_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%B8%D1%85_%D0%B1%D1%80%D0%BE%D1%98%D0%B5%D0%B2%D0%B0" title="Списак простих бројева – Serbian" lang="sr" hreflang="sr" data-title="Списак простих бројева" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Lista_%C3%B6ver_primtal" title="Lista över primtal – Swedish" lang="sv" hreflang="sv" data-title="Lista över primtal" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AA%E0%AE%95%E0%AE%BE_%E0%AE%8E%E0%AE%A3%E0%AF%8D%E0%AE%95%E0%AE%B3%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%AA%E0%AE%9F%E0%AF%8D%E0%AE%9F%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D" title="பகா எண்களின் பட்டியல் – Tamil" lang="ta" hreflang="ta" data-title="பகா எண்களின் பட்டியல்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B2%E0%B8%A2%E0%B8%8A%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%88%E0%B8%B3%E0%B8%99%E0%B8%A7%E0%B8%99%E0%B9%80%E0%B8%89%E0%B8%9E%E0%B8%B2%E0%B8%B0" title="รายชื่อจำนวนเฉพาะ – Thai" lang="th" hreflang="th" data-title="รายชื่อจำนวนเฉพาะ" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Asal_say%C4%B1lar%C4%B1n_listesi" title="Asal sayıların listesi – Turkish" lang="tr" hreflang="tr" data-title="Asal sayıların listesi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%B8%D1%85_%D1%87%D0%B8%D1%81%D0%B5%D0%BB" title="Список простих чисел – Ukrainian" lang="uk" hreflang="uk" data-title="Список простих чисел" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Danh_s%C3%A1ch_s%E1%BB%91_nguy%C3%AAn_t%E1%BB%91" title="Danh sách số nguyên tố – Vietnamese" lang="vi" hreflang="vi" data-title="Danh sách số nguyên tố" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%B3%AA%E6%95%B8%E5%88%97%E8%A1%A8" title="質數列表 – Chinese" lang="zh" hreflang="zh" data-title="質數列表" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li></ul> </section> </div> <div class="minerva-footer-logo"><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod"> This page was last edited on 3 November 2024, at 00:08<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="//en.wikipedia.org/w/index.php?title=List_of_prime_numbers&amp;mobileaction=toggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div> <!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-lnrz6","wgBackendResponseTime":349,"wgPageParseReport":{"limitreport":{"cputime":"1.214","walltime":"1.475","ppvisitednodes":{"value":11915,"limit":1000000},"postexpandincludesize":{"value":127915,"limit":2097152},"templateargumentsize":{"value":12075,"limit":2097152},"expansiondepth":{"value":23,"limit":100},"expensivefunctioncount":{"value":8,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":78736,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 881.717 1 -total"," 26.74% 235.733 1 Template:Reflist"," 23.08% 203.470 11 Template:Annotated_link"," 13.71% 120.908 2 Template:Navbox"," 13.10% 115.496 1 Template:Prime_number_classes"," 12.66% 111.655 3 Template:Cite_book"," 9.00% 79.337 1 Template:Short_description"," 6.01% 52.974 2 Template:Pagetype"," 5.66% 49.916 7 Template:Cite_journal"," 5.38% 47.440 8 Template:As_of"]},"scribunto":{"limitreport-timeusage":{"value":"0.480","limit":"10.000"},"limitreport-memusage":{"value":18551110,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-fb9fb","timestamp":"20241123101317","ttl":49606,"transientcontent":true}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"List of prime numbers","url":"https:\/\/en.wikipedia.org\/wiki\/List_of_prime_numbers","sameAs":"http:\/\/www.wikidata.org\/entity\/Q225987","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q225987","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-01-25T22:44:55Z","dateModified":"2024-11-03T00:08:30Z","headline":"Wikimedia list article"}</script><script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10