CINXE.COM

A133613 - OEIS

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"> <html> <head> <link rel="stylesheet" href="/styles.css"> <meta name="format-detection" content="telephone=no"> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta name="keywords" content="OEIS,integer sequences,Sloane" /> <title>A133613 - OEIS</title> <link rel="search" type="application/opensearchdescription+xml" title="OEIS" href="/oeis.xml"> <script> var myURL = "\/A133613" function redir() { var host = document.location.hostname; if(host != "oeis.org" && host != "127.0.0.1" && !/^([0-9.]+)$/.test(host) && host != "localhost" && host != "localhost.localdomain") { document.location = "https"+":"+"//"+"oeis"+".org/" + myURL; } } function sf() { if(document.location.pathname == "/" && document.f) document.f.q.focus(); } </script> </head> <body bgcolor=#ffffff onload="redir();sf()"> <div class=loginbar> <div class=login> <a href="/login?redirect=%2fA133613">login</a> </div> </div> <div class=center><div class=top> <center> <div class=donors> The OEIS is supported by <a href="http://oeisf.org/#DONATE">the many generous donors to the OEIS Foundation</a>. </div> <div class=banner> <a href="/"><img class=banner border="0" width="600" src="/banner2021.jpg" alt="A133613 - OEIS"></a> </div> <div class="motdbox"> <div class="motd"> <p>Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).</p> </div> <div class="donate"> <div id="donate-button-container"> <div id="donate-button"></div> <script src="https://www.paypalobjects.com/donate/sdk/donate-sdk.js" charset="UTF-8"></script> <script> PayPal.Donation.Button({ env:'production', hosted_button_id:'SVPGSDDCJ734A', image: { src:'https://www.paypalobjects.com/en_US/i/btn/btn_donateCC_LG.gif', alt:'Donate with PayPal button', title:'PayPal - The safer, easier way to pay online!', } }).render('#donate-button'); </script> </div> <a href="https://oeisf.org/donate/"> <strong>Other ways to Give</strong> </a> </div> </div> </center> </div></div> <div class=center><div class=pagebody> <div class=searchbarcenter> <form name=f action="/search" method="GET"> <div class=searchbargreet> <div class=searchbar> <div class=searchq> <input class=searchbox maxLength=1024 name=q value="" title="Search Query"> </div> <div class=searchsubmit> <input type=submit value="Search" name=go> </div> <div class=hints> <span class=hints><a href="/hints.html">Hints</a></span> </div> </div> <div class=searchgreet> (Greetings from <a href="/welcome">The On-Line Encyclopedia of Integer Sequences</a>!) </div> </div> </form> </div> <div class=sequence> <div class=space1></div> <div class=line></div> <div class=seqhead> <div class=seqnumname> <div class=seqnum> A133613 </div> <div class=seqname> Decimal digits such that for all k &gt;= 1, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n satisfies the congruence 3^A(k) == A(k) (mod 10^k). </div> </div> <div class=scorerefs> 18 </div> </div> <div> <div class=seqdatabox> <div class=seqdata>7, 8, 3, 5, 9, 1, 4, 6, 4, 2, 6, 2, 7, 2, 6, 5, 7, 5, 4, 0, 1, 9, 5, 0, 9, 3, 4, 6, 8, 1, 5, 8, 4, 8, 1, 0, 7, 6, 9, 3, 2, 7, 8, 4, 3, 2, 2, 2, 3, 0, 0, 8, 3, 6, 6, 9, 4, 5, 0, 9, 7, 6, 9, 3, 9, 9, 8, 1, 6, 9, 9, 3, 6, 9, 7, 5, 3, 5, 2, 6, 5, 1, 5, 8, 3, 9, 1, 8, 1, 0, 5, 6, 2, 8, 4, 2, 4, 0, 4, 9, 8, 0, 5, 1, 6</div> <div class=seqdatalinks> (<a href="/A133613/list">list</a>; <a href="/A133613/graph">graph</a>; <a href="/search?q=A133613+-id:A133613">refs</a>; <a href="/A133613/listen">listen</a>; <a href="/history?seq=A133613">history</a>; <a href="/search?q=id:A133613&fmt=text">text</a>; <a href="/A133613/internal">internal format</a>) </div> </div> </div> <div class=entry> <div class=section> <div class=sectname>OFFSET</div> <div class=sectbody> <div class=sectline>0,1</div> </div> </div> <div class=section> <div class=sectname>COMMENTS</div> <div class=sectbody> <div class=sectline>10-adic expansion of the iterated exponential 3^^n for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n&gt;9, 3^^n == 4195387 (mod 10^7).</div> <div class=sectline>This sequence also gives many final digits of Graham's number ...399618993967905496638003222348723967018485186439059104575627262464195387. - <a href="/wiki/User:Paul_Muljadi">Paul Muljadi</a>, Sep 08 2008 and J. Luis A. Yebra, Dec 22 2008</div> <div class=sectline>Graham's number can be represented as G(64):=3^^3^^...^^3 [see M. Gardner and Wikipedia], in which case its G(63) lowermost digits are guaranteed to match this sequence (i.e., the convergence speed of the base 3 is unitary - see <a href="/A317905" title="Convergence speed of m^^m, where m = A067251(n) and n &gt;= 2. a(n) = f(m, m) - f(m, m - 1), where f(x, y) corresponds to the m...">A317905</a>). To avoid such confusion, it would be best to interpret this sequence as a real-valued constant 0.783591464..., corresponding to 3^^k in the limit of k-&gt;infinity, and call it Graham's constant G(3). Generalizations to G(n) and G(n,base) are obvious. - <a href="/wiki/User:Stanislav_Sykora">Stanislav Sykora</a>, Nov 07 2015</div> <div class=sectline>Let G(64) be Graham's number. Let b and c be two (strictly) positive integers so that the super-logarithm base b of c (i.e., slog_b(c)) is well defined. Then, this sequence gives the slog_3(G(64))-1 final digits of G(64) since the congruence speed of 3 is equal to 0 at height 1 while it is 1 for all the integer hyperexponents above 0 (i.e., 3 is characterized by a constant congruence speed of 1, as proved by Lemma 1 of &quot;On the congruence speed of tetration&quot; and also confirmed by Equation (16) of &quot;Number of stable digits of any integer tetration&quot; - see Links). On the other hand, the difference between the slog_3(G(64))-th rightmost digit of G(64) and a(slog_3(G(64))) is congruent to 6 modulo 10 (since the asymptotic phase shift of 3 is [4,6] - see <a href="/A376842" title="Asymptotic phase shift of the tetration base n written by juxtaposing its representative congruence classes modulo 10 (i.e.,...">A376842</a>). - <a href="/wiki/User:Marco_Ripà">Marco Ripà</a>, Oct 17 2024</div> </div> </div> <div class=section> <div class=sectname>REFERENCES</div> <div class=sectbody> <div class=sectline>M. Gardner, Mathematical Games, Scientific American 237, 18 - 28 (1977).</div> <div class=sectline>M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 11-12, 69-78. ISBN 978-88-6178-789-6.</div> <div class=sectline>Ilan Vardi, &quot;Computational Recreations in Mathematica,&quot; Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.</div> </div> </div> <div class=section> <div class=sectname>LINKS</div> <div class=sectbody> <div class=sectline>Robert G. Wilson v, <a href="/A133613/b133613.txt">Table of n, a(n) for n = 0..10039</a></div> <div class=sectline>J. Jimenez Urroz and J. Luis A. Yebra, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Yebra/yebra4.html">On the equation a^x == x (mod b^n)</a>, J. Int. Seq. 12 (2009) #09.8.8.</div> <div class=sectline>Robert P. Munafo, <a href="http://www.mrob.com/pub/math/largenum-4.html#graham">Large Numbers</a> [From <a href="/wiki/User:Robert_G._Wilson_v">Robert G. Wilson v</a>, May 07 2010]</div> <div class=sectline>Reddit user atticdoor, <a href="https://www.reddit.com/r/OEIS/comments/5pylei/spotted_an_error_in_the_comments_of_sequence/">Spotted an error in the comments of sequence A133613.</a></div> <div class=sectline>Marco Ripà, <a href="https://doi.org/10.7546/nntdm.2020.26.3.245-260">On the constant congruence speed of tetration</a>, Notes on Number Theory and Discrete Mathematics, Volume 26, 2020, Number 3, Pages 245—260.</div> <div class=sectline>Marco Ripà, <a href="https://doi.org/10.7546/nntdm.2021.27.4.43-61">The congruence speed formula</a>, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43-61.</div> <div class=sectline>Wikipedia, <a href="https://en.wikipedia.org/wiki/Graham&#39;s_number">Graham's number</a></div> </div> </div> <div class=section> <div class=sectname>FORMULA</div> <div class=sectbody> <div class=sectline>a(n) = floor( <a href="/A183613" title="a(n) = 3^^(n+1) modulo 10^n.">A183613</a>(n+1) / 10^n ).</div> </div> </div> <div class=section> <div class=sectname>EXAMPLE</div> <div class=sectbody> <div class=sectline>783591464262726575401950934681584810769327843222300836694509769399816993697535...</div> <div class=sectline>Consider the sequence 3^^n: 1, 3, 27, 7625597484987, ... From 3^^3 = 7625597484987 onwards, all terms end with the digits 87. This follows from Euler's generalization of Fermat's little theorem.</div> </div> </div> <div class=section> <div class=sectname>MATHEMATICA</div> <div class=sectbody> <div class=sectline>(* Import Mmca coding for &quot;SuperPowerMod&quot; and &quot;LogStar&quot; from text file in <a href="/A133612" title="Unique sequence of digits a(0), a(1), a(2), ... such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n sati...">A133612</a> and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[3, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* <a href="/wiki/User:Robert_G._Wilson_v">Robert G. Wilson v</a>, Mar 06 2014 *)</div> </div> </div> <div class=section> <div class=sectname>CROSSREFS</div> <div class=sectbody> <div class=sectline>Cf. <a href="/A133612" title="Unique sequence of digits a(0), a(1), a(2), ... such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n sati...">A133612</a>, <a href="/A133614" title="Unique sequence of digits a(0), a(1), a(2), ... such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n sati...">A133614</a>, <a href="/A133615" title="Unique sequence of digits a(0), a(1), a(2), ... such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n sati...">A133615</a>, <a href="/A133616" title="Unique sequence of digits a(0), a(1), a(2), ... such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n sati...">A133616</a>, <a href="/A133617" title="Unique sequence of digits a(0), a(1), a(2), ... such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n sati...">A133617</a>, <a href="/A133618" title="Unique sequence of digits a(0), a(1), a(2), ... such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n sati...">A133618</a>, <a href="/A133619" title="Unique sequence of digits a(0), a(1), a(2), ... such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n sati...">A133619</a>, <a href="/A144539" title="Unique sequence of digits a(0), a(1), a(2), .. such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n sati...">A144539</a>, <a href="/A144540" title="Unique sequence of digits a(0), a(1), a(2), .. such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n sati...">A144540</a>, <a href="/A144541" title="Unique sequence of digits a(0), a(1), a(2), .. such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n sati...">A144541</a>, <a href="/A144542" title="Unique sequence of digits a(0), a(1), a(2), .. such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n sati...">A144542</a>, <a href="/A144543" title="Unique sequence of digits a(0), a(1), a(2), .. such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n sati...">A144543</a>, <a href="/A144544" title="Unique sequence of digits a(0), a(1), a(2), .. such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n sati...">A144544</a>, <a href="/A317905" title="Convergence speed of m^^m, where m = A067251(n) and n &gt;= 2. a(n) = f(m, m) - f(m, m - 1), where f(x, y) corresponds to the m...">A317905</a>, <a href="/A318478" title="Decimal digits such that for all k&gt;=1, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n satisfies the congruence 1984^A(k) == ...">A318478</a>, <a href="/A373387" title="Constant congruence speed of the tetration base n (in radix-10) and -1 if n is a multiple of 10.">A373387</a>, <a href="/A376842" title="Asymptotic phase shift of the tetration base n written by juxtaposing its representative congruence classes modulo 10 (i.e.,...">A376842</a>.</div> <div class=sectline>Sequence in context: <a href="/A020843" title="Decimal expansion of 1/sqrt(86).">A020843</a> <a href="/A241296" title="Decimal expansion of 7^(7^(7^7)) = 7^^4.">A241296</a> <a href="/A083648" title="Decimal expansion of Sum_{n&gt;=1} -(-1)^n/n^n = Integral_{x=0..1} x^x dx.">A083648</a> * <a href="/A296140" title="Decimal expansion of 1/sqrt(1 + 1/sqrt(2 + 1/sqrt(3 + 1/sqrt(4 + 1/sqrt(5 + ...))))).">A296140</a> <a href="/A194622" title="Decimal expansion of x with 0 &lt; x &lt; y and x^y = y^x = 17.">A194622</a> <a href="/A193010" title="Decimal expansion of the constant term of the reduction of e^x by x^2-&gt;x+1.">A193010</a></div> <div class=sectline>Adjacent sequences: <a href="/A133610" title="Partial sums of pyramidal sequence A053616.">A133610</a> <a href="/A133611" title="A triangular array of numbers related to factorization and number of parts in Murasaki diagrams.">A133611</a> <a href="/A133612" title="Unique sequence of digits a(0), a(1), a(2), ... such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n sati...">A133612</a> * <a href="/A133614" title="Unique sequence of digits a(0), a(1), a(2), ... such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n sati...">A133614</a> <a href="/A133615" title="Unique sequence of digits a(0), a(1), a(2), ... such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n sati...">A133615</a> <a href="/A133616" title="Unique sequence of digits a(0), a(1), a(2), ... such that for all k &gt;= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n sati...">A133616</a></div> </div> </div> <div class=section> <div class=sectname>KEYWORD</div> <div class=sectbody> <div class=sectline><span title="a sequence of nonnegative numbers">nonn</span>,<span title="dependent on base used for sequence">base</span></div> </div> </div> <div class=section> <div class=sectname>AUTHOR</div> <div class=sectbody> <div class=sectline>Daniel Geisler (daniel(AT)danielgeisler.com), Dec 18 2007</div> </div> </div> <div class=section> <div class=sectname>EXTENSIONS</div> <div class=sectbody> <div class=sectline>More terms from J. Luis A. Yebra, Dec 12 2008</div> <div class=sectline>Edited by <a href="/wiki/User:N._J._A._Sloane">N. J. A. Sloane</a>, Dec 22 2008</div> <div class=sectline>More terms from <a href="/wiki/User:Robert_G._Wilson_v">Robert G. Wilson v</a>, May 07 2010</div> </div> </div> <div class=section> <div class=sectname>STATUS</div> <div class=sectbody> <div class=sectline>approved</div> </div> </div> </div> <div class=space10></div> </div> </div></div> <p> <div class=footerpad></div> <div class=footer> <center> <div class=bottom> <div class=linksbar> <a href="/">Lookup</a> <a href="/wiki/Welcome"><font color="red">Welcome</font></a> <a href="/wiki/Main_Page"><font color="red">Wiki</font></a> <a href="/wiki/Special:RequestAccount">Register</a> <a href="/play.html">Music</a> <a href="/plot2.html">Plot 2</a> <a href="/demo1.html">Demos</a> <a href="/wiki/Index_to_OEIS">Index</a> <a href="/webcam">WebCam</a> <a href="/Submit.html">Contribute</a> <a href="/eishelp2.html">Format</a> <a href="/wiki/Style_Sheet">Style Sheet</a> <a href="/transforms.html">Transforms</a> <a href="/ol.html">Superseeker</a> <a href="/recent">Recents</a> </div> <div class=linksbar> <a href="/community.html">The OEIS Community</a> </div> <div class=linksbar> Maintained by <a href="http://oeisf.org">The OEIS Foundation Inc.</a> </div> <div class=dbinfo>Last modified December 11 23:56 EST 2024. Contains 378630 sequences.</div> <div class=legal> <a href="/wiki/Legal_Documents">License Agreements, Terms of Use, Privacy Policy</a> </div> </div> </center> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10