CINXE.COM

Search results for: micro and nanostructures

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: micro and nanostructures</title> <meta name="description" content="Search results for: micro and nanostructures"> <meta name="keywords" content="micro and nanostructures"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="micro and nanostructures" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="micro and nanostructures"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2074</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: micro and nanostructures</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2074</span> Study on Fabrication of Surface Functional Micro and Nanostructures by Femtosecond Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shengzhu%20Cao">Shengzhu Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhou"> Hui Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Gan%20Wu"> Gan Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lanxi%20Wanhg"> Lanxi Wanhg</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaifeng%20Zhang"> Kaifeng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Wang"> Rui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Wang"> Hu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The functional micro and nanostructures, which can endow material surface with unique properties such as super-absorptance, hydrophobic and drag reduction. Recently, femtosecond laser ablation has been demonstrated to be a promising technology for surface functional micro and nanostructures fabrication. In this paper, using femtosecond laser ablation processing technique, we fabricated functional micro and nanostructures on Ti and Al alloy surfaces, test results showed that processed surfaces have 82%~96% absorptance over a broad wavelength range from ultraviolet to infrared. The surface function properties, which determined by micro and nanostructures, could be modulated by variation laser parameters. These functional surfaces may find applications in such areas as photonics, plasmonics, spaceborne devices, thermal radiation sources, solar energy absorbers and biomedicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20functional" title="surface functional">surface functional</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures" title=" micro and nanostructures"> micro and nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=femtosecond%20laser" title=" femtosecond laser"> femtosecond laser</a>, <a href="https://publications.waset.org/abstracts/search?q=ablation" title=" ablation"> ablation</a> </p> <a href="https://publications.waset.org/abstracts/61480/study-on-fabrication-of-surface-functional-micro-and-nanostructures-by-femtosecond-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2073</span> Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Amiri">Mandana Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sima%20Nouhi"> Sima Nouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashar%20Azizan-Kalandaragh"> Yashar Azizan-Kalandaragh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H<sub>2</sub>O<sub>2</sub>. The presented electrode can be employed as sensing element for hydrogen peroxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title="electrochemical sensor">electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanostructures" title=" silver nanostructures "> silver nanostructures </a> </p> <a href="https://publications.waset.org/abstracts/21938/electrodeposited-silver-nanostructures-a-non-enzymatic-sensor-for-hydrogen-peroxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2072</span> Thermomechanical Effects and Nanoscale Ripples in Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roderick%20Melnik">Roderick Melnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Prabhakar"> Sanjay Prabhakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relaxed state of graphene nanostructures due to externally applied tensile stress along both the armchair and zigzag directions are analyzed in detail. The results, obtained with the Finite Element Method (FEM), demonstrate that the amplitude of ripple waves in such nanostructures increases with temperature. Details of the multi-scale multi-physics computational procedure developed for this analysis are also provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title="nanostructures">nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20processes" title=" coupled processes"> coupled processes</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20design" title=" computer-aided design"> computer-aided design</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnological%20applications" title=" nanotechnological applications"> nanotechnological applications</a> </p> <a href="https://publications.waset.org/abstracts/3549/thermomechanical-effects-and-nanoscale-ripples-in-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2071</span> Sol-Gel Derived ZnO Nanostructures: Optical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheo%20K.%20Mishra">Sheo K. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajneesh%20K.%20Srivastava"> Rajneesh K. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Shukla"> R. K. Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, we report on the optical properties including UV-vis absorption and photoluminescence (PL) of ZnO nanostructures synthesized by sol-gel method. Structural and morphological investigations have been performed by X-ray diffraction method (XRD) and scanning electron microscopy (SEM). The XRD result confirms the formation of hexagonal wurtzite phase of ZnO nanostructures. The presence of various diffraction peaks suggests polycrystalline nature. The XRD pattern exhibits no additional peak due to by-products such as Zn(OH)2. The average crystallite size of prepared ZnO sample corresponding to the maximum intensity peaks is to be ~38.22 nm. The SEM micrograph shows different nanostructures of pure ZnO. Photoluminescence (PL) spectrum shows several emission peaks around 353 nm, 382 nm, 419 nm, 441 nm, 483 nm and 522 nm. The obtained results suggest that the prepared phosphors are quite suitable for optoelectronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO" title="ZnO">ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=PL" title=" PL"> PL</a> </p> <a href="https://publications.waset.org/abstracts/39664/sol-gel-derived-zno-nanostructures-optical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2070</span> Bimetallic Cu/Au Nanostructures and Bio-Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Si%20Yin%20Tee">Si Yin Tee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bimetallic nanostructures have received tremendous interests as a new class of nanomaterials which may have better technological usefulness with distinct properties from those of individual atoms and molecules or bulk matter. They excelled over the monometallic counterparts because of their improved electronic, optical and catalytic performances. The properties and the applicability of these bimetallic nanostructures not only depend on their size and shape, but also on the composition and their fine structure. These bimetallic nanostructures are potential candidates for bio-applications such as biosensing, bioimaging, biodiagnostics, drug delivery, targeted therapeutics, and tissue engineering. Herein, gold-incorporated copper (Cu/Au) nanostructures were synthesized through the controlled disproportionation of Cu⁺-oleylamine complex at 220 ºC to form copper nanowires and the subsequent reaction with Au³⁺ at different temperatures of 140, 220 and 300 ºC. This is to achieve their synergistic effect through the combined use of the merits of low-cost transition and high-stability noble metals. Of these Cu/Au nanostructures, Cu/Au nanotubes display the best performance towards electrochemical non-enzymatic glucose sensing, originating from the high conductivity of gold and the high aspect ratio copper nanotubes with high surface area so as to optimise the electroactive sites and facilitate mass transport. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bimetallic" title="bimetallic">bimetallic</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensing" title=" electrochemical sensing"> electrochemical sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20oxidation" title=" glucose oxidation"> glucose oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=gold-incorporated%20copper%20nanostructures" title=" gold-incorporated copper nanostructures"> gold-incorporated copper nanostructures</a> </p> <a href="https://publications.waset.org/abstracts/51765/bimetallic-cuau-nanostructures-and-bio-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2069</span> Nanocomposites Based Micro/Nano Electro-Mechanical Systems for Energy Harvesters and Photodetectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhamanohar%20Aepuru">Radhamanohar Aepuru</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Mangalaraja"> R. V. Mangalaraja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible electronic devices have drawn potential interest and provide significant new insights to develop energy conversion and storage devices such as photodetectors and nanogenerators. Recently, self-powered electronic systems have captivated huge attention for next generation MEMS/NEMS devices that can operate independently by generating built-in field without any need of external bias voltage and have wide variety of applications in telecommunication, imaging, environmental and defence sectors. The basic physical process involved in these devices are charge generation, separation, and charge flow across the electrodes. Many inorganic nanostructures have been exploring to fabricate various optoelectronic and electromechanical devices. However, the interaction of nanostructures and their excited charge carrier dynamics, photoinduced charge separation, and fast carrier mobility are yet to be studied. The proposed research is to address one such area and to realize the self-powered electronic devices. In the present work, nanocomposites of inorganic nanostructures based on ZnO, metal halide perovskites; and polyvinylidene fluoride (PVDF) based nanocomposites are realized for photodetectors and nanogenerators. The characterization of the inorganic nanostructures is carried out through steady state optical absorption and luminescence spectroscopies as well as X-ray diffraction and high-resolution transmission electron microscopy (TEM) studies. The detailed carrier dynamics is investigated using various spectroscopic techniques. The developed composite nanostructures exhibit significant optical and electrical properties, which have wide potential applications in various MEMS/NEMS devices such as photodetectors and nanogenerators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectrics" title="dielectrics">dielectrics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanogenerators" title=" nanogenerators"> nanogenerators</a>, <a href="https://publications.waset.org/abstracts/search?q=photodetectors" title=" photodetectors"> photodetectors</a> </p> <a href="https://publications.waset.org/abstracts/103933/nanocomposites-based-micronano-electro-mechanical-systems-for-energy-harvesters-and-photodetectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2068</span> Novel Scratch Resistant Self-Healing Automotive Clearcoats Using Hyperbranched Polymers and POSS Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.Yari">H.Yari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohseni"> M. Mohseni</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Ranjbar"> Z. Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work a typical automotive clearcoat is modified with a combination of hyperbranched polymer (HBP) and polyhedral oligomeric silsesquioxane (POSS) nanostructures to simultaneously enhance the scratch resistance and healing ability of the resulting films. Micro-scratch and healing data revealed that these goals were achieved at high loadings of modifiers. Enhanced scratch resistance was attributed to the improved elastic recovery of the clearcoats in presence of modifiers. In addition, improved healing performance due to the partial replacement of covalent cross-links with physical ones resulted from the unique globular highly branched structure of HBP and POSS macromolecules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20clearcoat" title="automotive clearcoat">automotive clearcoat</a>, <a href="https://publications.waset.org/abstracts/search?q=POSS%20building%20blocks%20scratch%20resistance" title=" POSS building blocks scratch resistance"> POSS building blocks scratch resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=self-healing" title=" self-healing"> self-healing</a> </p> <a href="https://publications.waset.org/abstracts/17125/novel-scratch-resistant-self-healing-automotive-clearcoats-using-hyperbranched-polymers-and-poss-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2067</span> Hafnium Doped Zno Nanostructures: An Eco-Friendly Synthesis for Optoelectronic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Achehboune">Mohamed Achehboune</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Khenfouch"> Mohammed Khenfouch</a>, <a href="https://publications.waset.org/abstracts/search?q=Issam%20Boukhoubza"> Issam Boukhoubza</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakang%20Mothudi"> Bakang Mothudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Izeddine%20Zorkani"> Izeddine Zorkani</a>, <a href="https://publications.waset.org/abstracts/search?q=Anouar%20Jorio"> Anouar Jorio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc Oxide (ZnO) nanostructures have been attracting growing interest in recent years; their optical and electrical properties make them useful as attractive and promising materials for optoelectronic applications. In this study, pure and Hafnium doped ZnO nanostructures were synthesized using a green processing method. The structural, optical and electrical properties of samples were investigated structural and optical spectroscopies and electrical measurements. The synthesis and chemical composition of pure and Hafnium doped ZnO were confirmed by SEM observation. The XRD studies of Hafnium doped ZnO demonstrate the formation of wurtzite structure with preferred c-axis orientation. Moreover, the optical and electrical properties of doped material have improved after the doping process. The experimental results obtained for our material show that Hf doped ZnO nanostructures could be a promising material in optoelectronic applications such as photovoltaic cell and light emitting diode devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title="green synthesis">green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=hafnium-doped-zinc%20oxide" title=" hafnium-doped-zinc oxide"> hafnium-doped-zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic" title=" optoelectronic"> optoelectronic</a> </p> <a href="https://publications.waset.org/abstracts/80753/hafnium-doped-zno-nanostructures-an-eco-friendly-synthesis-for-optoelectronic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2066</span> Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Woo%20Park">Jin-Woo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Soo%20Lee"> Sung-Soo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Nong-Moon%20Hwang"> Nong-Moon Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapour%20deposition" title="chemical vapour deposition">chemical vapour deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=charged%20cluster%20model" title=" charged cluster model"> charged cluster model</a>, <a href="https://publications.waset.org/abstracts/search?q=generation%20of%20charged%20nanoparticles" title=" generation of charged nanoparticles"> generation of charged nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition%20behaviour" title=" deposition behaviour"> deposition behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=gan" title=" gan"> gan</a>, <a href="https://publications.waset.org/abstracts/search?q=charged%20transfer%20rate" title=" charged transfer rate"> charged transfer rate</a> </p> <a href="https://publications.waset.org/abstracts/2530/generation-of-charged-nanoparticles-in-the-gas-phase-and-their-contribution-to-deposition-of-gan-films-and-nanostructures-during-atmospheric-pressure-chemical-vapor-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2065</span> Hydrothermally Fabricated 3-D Nanostructure Metal Oxide Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alenezi">Mohammad Alenezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hierarchical nanostructures with higher dimensionality, consisting of nanostructure building blocks such as nanowires, nanotubes, or nanosheets are very attractive. They hold great properties like the high surface-to-volume ratio and well-ordered porous structures, which can be very challenging to attain for other mono-morphological nanostructures. Well-ordered hierarchical nanostructures with high surface-to-volume ratios facilitate gas diffusion into their surfaces as well as scattering of light. Therefore, hierarchical nanostructures are expected to perform highly as gas sensors. A multistage controlled hydrothermal synthesis method to fabricate high-performance single ZnO brushlike hierarchical nanostructure gas sensor from initial nanowires is reported. The performance of the sensor based on brush-like hierarchical nanostructure is analyzed and compared to that of a nanowire gas sensor. The hierarchical gas sensor demonstrated high sensitivity toward low concentration of acetone at high speed of response. The enhancement in the hierarchical sensor performance is attributed to the increased surface to volume ratio, reduction in dimensionality of the nanowire building blocks, formation of junctions between the initial nanowire and the secondary nanowires, and enhanced gas diffusion into the surfaces of the hierarchical nanostructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide" title="metal oxide">metal oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/50686/hydrothermally-fabricated-3-d-nanostructure-metal-oxide-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2064</span> Study on Carbon Nanostructures Influence on Changes in Static Friction Forces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Urbaniak">Rafał Urbaniak</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20K%C5%82osowiak"> Robert Kłosowiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Cia%C5%82kowski"> Michał Ciałkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaros%C5%82aw%20Bartoszewicz"> Jarosław Bartoszewicz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20friction" title=" static friction"> static friction</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20friction" title=" dynamic friction"> dynamic friction</a> </p> <a href="https://publications.waset.org/abstracts/26601/study-on-carbon-nanostructures-influence-on-changes-in-static-friction-forces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2063</span> Flow inside Micro-Channel Bounded by Superhydrophobic Surface with Eccentric Micro-Grooves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Chen">Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiwei%20Ren"> Weiwei Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojing%20Mu"> Xiaojing Mu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Zhang"> Feng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Xu"> Yi Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The superhydrophobic surface is widely used to reduce friction for the flow inside micro-channel and can be used to control/manipulate fluid, cells and even proteins in lab-on-chip. Fabricating micro grooves on hydrophobic surfaces is a common method to obtain such superhydrophobic surface. This study utilized the numerical method to investigate the effect of eccentric micro-grooves on the friction of flow inside micro-channel. A detailed parametric study was conducted to reveal how the eccentricity of micro-grooves affects the micro-channel flow under different grooves sizes, channel heights, Reynolds number. The results showed that the superhydrophobic surface with eccentric micro-grooves induces less friction than the counter part with aligning micro-grooves, which means requiring less power for pumps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentricity" title="eccentricity">eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-channel" title=" micro-channel"> micro-channel</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-grooves" title=" micro-grooves"> micro-grooves</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic%20surface" title=" superhydrophobic surface"> superhydrophobic surface</a> </p> <a href="https://publications.waset.org/abstracts/62094/flow-inside-micro-channel-bounded-by-superhydrophobic-surface-with-eccentric-micro-grooves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2062</span> Role of Chloride Ions on The Properties of Electrodeposited ZnO Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Mentar">L. Mentar</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Baka"> O. Baka</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Khelladi"> M. R. Khelladi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Azizi"> A. Azizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc oxide (ZnO), as a transparent semiconductor with a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, is one of the most promising materials for a wide range of modern applications. With the development of film growth technologies and intense recent interest in nanotechnology, several varieties of ZnO nanostructured materials have been synthesized almost exclusively by thermal evaporation methods, particularly chemical vapor deposition (CVD), which generally require a high growth temperature above 550 °C. In contrast, wet chemistry techniques such as hydrothermal synthesis and electro-deposition are promising alternatives to synthesize ZnO nanostructures, especially at a significantly lower temperature (below 200°C). In this study, the electro-deposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate from chloride bath. We present the influence of KCl concentrations on the electro-deposition process, morphological, structural and optical properties of ZnO nanostructures. The potentials of electro-deposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. Field emission scanning electron microscopy (FESEM) images showed different sizes and morphologies of the nanostructures which depends on the concentrations of Cl-. Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. X-ray diffraction (XRD) study confirms the Wurtzite phase of the ZnO nanostructures with a preferred oriented along (002) plane normal to the substrate surface. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cl-" title="Cl-">Cl-</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-deposition" title=" electro-deposition"> electro-deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=FESEM" title=" FESEM"> FESEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Mott-Schottky" title=" Mott-Schottky"> Mott-Schottky</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a> </p> <a href="https://publications.waset.org/abstracts/33048/role-of-chloride-ions-on-the-properties-of-electrodeposited-zno-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2061</span> Role of Cellulose Fibers in Tuning the Microstructure and Crystallographic Phase of α-Fe₂O₃ and α-FeOOH Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indu%20Chauhan">Indu Chauhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhupendra%20S.%20Butola"> Bhupendra S. Butola</a>, <a href="https://publications.waset.org/abstracts/search?q=Paritosh%20Mohanty"> Paritosh Mohanty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is very well known that properties of material changes as their size approach to nanoscale level due to the high surface area to volume ratio. However, in last few decades, a tenet ‘structure dictates function’ is quickly being adopted by researchers working with nanomaterials. The design and exploitation of nanoparticles with tailored shape and size has become one of the primary goals of materials science researchers to expose the properties of nanostructures. To date, various methods, including soft/hard template/surfactant assisted route hydrothermal reaction, seed mediated growth method, capping molecule-assisted synthesis, polyol process, etc. have been adopted to synthesize the nanostructures with controlled size and shape and monodispersity. However controlling the shape and size of nanoparticles is an ultimate challenge of modern material research. In particular, many efforts have been devoted to rational and skillful control of hierarchical and complex nanostructures. Thus in our research work, role of cellulose in manipulating the nanostructures has been discussed. Nanoparticles of α-Fe₂O₃ (diameter ca. 15 to 130 nm) were immobilized on the cellulose fiber surface by a single step in situ hydrothermal method. However, nanoflakes of α-FeOOH having thickness ca. ~25 nm and length ca. ~250 nm were obtained by the same method in absence of cellulose fibers. A possible nucleation and growth mechanism of the formation of nanostructures on cellulose fibers have been proposed. The covalent bond formation between the cellulose fibers and nanostructures has been discussed with supporting evidence from the spectroscopic and other analytical studies such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The role of cellulose in manipulating the nanostructures has been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20fibers" title="cellulose fibers">cellulose fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-Fe%E2%82%82O%E2%82%83" title=" α-Fe₂O₃"> α-Fe₂O₃</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-FeOOH" title=" α-FeOOH"> α-FeOOH</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoflakes" title=" nanoflakes"> nanoflakes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/76789/role-of-cellulose-fibers-in-tuning-the-microstructure-and-crystallographic-phase-of-a-fe2o3-and-a-feooh-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2060</span> Effects of Phase and Morphology on the Electrochemical and Electrochromic Performances of Tungsten Oxide and Tungsten-Molybdenum Oxide Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinjoo%20Jung">Jinjoo Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayeon%20Won"> Hayeon Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Doyeong%20Jeong"> Doyeong Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Do%20Hyung%20Kim"> Do Hyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present the electrochemical and electrochromic performance of the novel crystalline tungsten oxide and tungsten-molybdenum oxide nanostructures synthesized by utilizing solvo-thermal method with hexacarbonyl tungsten, hexacarbonyl molybdenum, and ethyl alcohol. The morphology and phase of the prepared products were highly dependent on the synthesis conditions such as synthesis and annealing temperature, synthesis time, and precursor ratio. The tungsten oxide nanostructures (TCNs) have urchin-like or spherical nanostructure with different phase of W18O49 and WO3. The morphology of tungsten-molybdenum oxide nanostructures (TMONs) is basically similar to that of TCNs. However, the morphology and phase of TMONs are more diverse and are strongly dependent on the composition ratios of W/Mo in the precursor. The electrochemical properties depending on their morphologies and phases of TCNs and TMONs are compared using cyclic voltammetry and galvanostatic charge/discharge tests. The relationship between the electrochromic performance and phase structures/morphologies of nanostructured TCNs and TMONs are systematically investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title="electrochemical">electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochromic" title=" electrochromic"> electrochromic</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20oxide" title=" tungsten oxide"> tungsten oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten-molybdenum%20oxide" title=" tungsten-molybdenum oxide"> tungsten-molybdenum oxide</a> </p> <a href="https://publications.waset.org/abstracts/21623/effects-of-phase-and-morphology-on-the-electrochemical-and-electrochromic-performances-of-tungsten-oxide-and-tungsten-molybdenum-oxide-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2059</span> Towards the Integration of a Micro Pump in μTAS </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Haik">Y. Haik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to present a micro mechanical pump that was fabricated using SwIFT&trade; microfabrication surface micromachining process and to demonstrate the feasibility of integrating such micro pump into a micro analysis system. The micropump circulates the bio-sample and magnetic nanoparticles through different compartments to separate and purify the targeted bio-sample. This article reports the flow characteristics in the microchannels and in a crescent micro pump. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crescent%20micropumps" title="crescent micropumps">crescent micropumps</a>, <a href="https://publications.waset.org/abstracts/search?q=microanalysis" title=" microanalysis"> microanalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a> </p> <a href="https://publications.waset.org/abstracts/85432/towards-the-integration-of-a-micro-pump-in-mtas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2058</span> The Effects of Addition of Chloride Ions on the Properties of ZnO Nanostructures Grown by Electrochemical Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Mentar">L. Mentar</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Baka"> O. Baka</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Azizi"> A. Azizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc oxide as a wide band semiconductor materials, especially nanostructured materials, have potential applications in large-area such as electronics, sensors, photovoltaic cells, photonics, optical devices and optoelectronics due to their unique electrical and optical properties and surface properties. The feasibility of ZnO for these applications is due to the successful synthesis of diverse ZnO nanostructures, including nanorings, nanobows, nanohelixes, nanosprings, nanobelts, nanotubes, nanopropellers, nanodisks, and nanocombs, by different method. Among various synthesis methods, electrochemical deposition represents a simple and inexpensive solution based method for synthesis of semiconductor nanostructures. In this study, the electrodeposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate as TCO from chloride bath. We present a systematic study on the effects of the concentration of chloride anion on the properties of ZnO. The influence of KCl concentrations on the electrodeposition process, morphological, structural and optical properties of ZnO nanostructures was examined. In this research electrochemical deposition of ZnO nanostructures is investigated using conventional electrochemical measurements (cyclic voltammetry and Mott-Schottky), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. The potentials of electrodeposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. SEM images shows different size and morphology of the nanostructures and depends greatly on the KCl concentrations. The morphology of ZnO nanostructures is determined by the corporated action between [Zn(NO3)2] and [Cl-].Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. XRD studies revealed that the all deposited films were polycrystalline in nature with wurtzite phase. The electrodeposited thin films are found to have preferred oriented along (002) plane of the wurtzite structure of ZnO with c-axis normal to the substrate surface for sample at different concentrations of KCl. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=chloride%20ions" title=" chloride ions"> chloride ions</a>, <a href="https://publications.waset.org/abstracts/search?q=Mott-Schottky" title=" Mott-Schottky"> Mott-Schottky</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/23707/the-effects-of-addition-of-chloride-ions-on-the-properties-of-zno-nanostructures-grown-by-electrochemical-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2057</span> Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Zamani%20Kouhpanji">Mohammad Reza Zamani Kouhpanji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere&rsquo;s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS%2FNEMS%20devices" title="MEMS/NEMS devices">MEMS/NEMS devices</a>, <a href="https://publications.waset.org/abstracts/search?q=paired%20wire%20actuators%20and%20sensors" title=" paired wire actuators and sensors"> paired wire actuators and sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20response" title=" dynamical response"> dynamical response</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20and%20fracture%20characterization" title=" fatigue and fracture characterization"> fatigue and fracture characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=Ampere%E2%80%99s%20force%20law" title=" Ampere’s force law"> Ampere’s force law</a> </p> <a href="https://publications.waset.org/abstracts/82093/studying-the-dynamical-response-of-nano-microelectromechanical-devices-for-nanomechanical-testing-of-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2056</span> Sustainable Micro Architecture: A Pattern for Urban Release Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saber%20Fatourechian">Saber Fatourechian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> People within modern cities have faced macro urban values spreads rapidly through current style of living. Unexpected phenomena without any specific features of micro scale, humanity and urban social/cultural patterns. The gap between micro and macro scale is unidentified and people could not recognize where they are especially in the interaction between life and city. Urban life details were verified. Micro architecture is a pattern in which human activity derives from human needs in an unconscious position. Sustainable attitude via micro architecture causes flexibility in decision making through micro urbanism essentially impacts macro scale. In this paper the definition of micro architecture and its relation with city and human activity are argued, there after the interaction between micro and macro scale is presented as an effective way for urban sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20architecture" title="micro architecture">micro architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20activity" title=" human activity"> human activity</a>, <a href="https://publications.waset.org/abstracts/search?q=city" title=" city"> city</a> </p> <a href="https://publications.waset.org/abstracts/34941/sustainable-micro-architecture-a-pattern-for-urban-release-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2055</span> Fabrication of Carbon Nanoparticles and Graphene Using Pulsed Laser Ablation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davoud%20Dorranian">Davoud Dorranian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajar%20Sadeghi"> Hajar Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmira%20Solati"> Elmira Solati </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanostructures in various forms were synthesized using pulsed laser ablation of a graphite target in different liquid environment. The beam of a Q-switched Nd:YAG laser of 1064-nm wavelength at 7-ns pulse width is employed to irradiate the solid target in water, acetone, alcohol, and cetyltrimethylammonium bromide (CTAB). Then the effect of the liquid environment on the characteristic of carbon nanostructures produced by laser ablation was investigated. The optical properties of the carbon nanostructures were examined at room temperature by UV–Vis-NIR spectrophotometer. The crystalline structure of the carbon nanostructures was analyzed by X-ray diffraction (XRD). The morphology of samples was investigated by field emission scanning electron microscope (FE-SEM). Transmission electron microscope (TEM) was employed to investigate the form of carbon nanostructures. Raman spectroscopy was used to determine the quality of carbon nanostructures. Results show that different carbon nanostructures such as nanoparticles and few-layer graphene were formed in various liquid environments. The UV-Vis-NIR absorption spectra of samples reveal that the intensity of absorption peak of nanoparticles in alcohol is higher than the other liquid environments due to the larger number of nanoparticles in this environment. The red shift of the absorption peak of the sample in acetone confirms that produced carbon nanoparticles in this liquid are averagely larger than the other medium. The difference in the intensity and shape of the absorption peak indicated the effect of the liquid environment in producing the nanoparticles. The XRD pattern of the sample in water indicates an amorphous structure due to existence the graphene sheets. X-ray diffraction pattern shows that the degree of crystallinity of sample produced in CTAB is higher than the other liquid environments. Transmission electron microscopy images reveal that the generated carbon materials in water are graphene sheet and in the other liquid environments are graphene sheet and spherical nanostructures. According to the TEM images, we have the larger amount of carbon nanoparticles in the alcohol environment. FE-SEM micrographs indicate that in this liquids sheet like structures are formed however in acetone, produced sheets are adhered and these layers overlap with each other. According to the FE-SEM micrographs, the surface morphology of the sample in CTAB was coarser than that without surfactant. From Raman spectra, it can be concluded the distinct shape, width, and position of the graphene peaks and corresponding graphite source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanostructures" title="carbon nanostructures">carbon nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20ablation" title=" pulsed laser ablation"> pulsed laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a> </p> <a href="https://publications.waset.org/abstracts/36792/fabrication-of-carbon-nanoparticles-and-graphene-using-pulsed-laser-ablation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2054</span> Synthesize of Cobalt Oxide Nanoballs/Carbon Aerogel Nanostructures: Towards High-Performance Materials for Supercapacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bahadoran">A. Bahadoran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zomorodian"> M. Zomorodian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesizer of cobalt oxide nanoballs (length 3−4 μm, width 250−400 nm) was achieved by a simple high-temperature supercritical solution method. Multiwalled carbon aerogels are a step towards high-density nanometer-scale nanostructures. Cobalt oxide nanoballs were prepared by supercritical solution method. Synthesis in an aqueous solution containing cobalt hydroxide at ∼80 °C without any further heat treatment at high temperature. The formation of cobalt oxide nanoballs on carbon aerogel was confirmed by X-ray diffraction and Raman spectroscopy. The FE-SEM images showed the presence of cobalt oxide nanoballs. The reaction mechanism of the ultrasound-assisted synthesis of cobalt oxide nanostructures was proposed on the basis of the XRD, X-ray absorption spectroscopy analysis and FE-SEM observation of the reaction products taken during the course of the synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt%20oxide%20nano%20balls" title="cobalt oxide nano balls">cobalt oxide nano balls</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20aerogel" title=" carbon aerogel"> carbon aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesize" title=" synthesize"> synthesize</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a> </p> <a href="https://publications.waset.org/abstracts/37845/synthesize-of-cobalt-oxide-nanoballscarbon-aerogel-nanostructures-towards-high-performance-materials-for-supercapacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2053</span> Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghanbari">M. Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hossainpour"> S. Hossainpour</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Rezazadeh"> G. Rezazadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model<strong>,</strong> the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-polar%20theory" title="micro-polar theory">micro-polar theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title=" Galerkin method"> Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-fluid" title=" micro-fluid"> micro-fluid</a> </p> <a href="https://publications.waset.org/abstracts/83933/longitudinal-vibration-of-a-micro-beam-in-a-micro-scale-fluid-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2052</span> Different Types of Bismuth Selenide Nanostructures for Targeted Applications: Synthesis and Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Andzane">Jana Andzane</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunta%20Kunakova"> Gunta Kunakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Margarita%20Baitimirova"> Margarita Baitimirova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikelis%20Marnauza"> Mikelis Marnauza</a>, <a href="https://publications.waset.org/abstracts/search?q=Floriana%20Lombardi"> Floriana Lombardi</a>, <a href="https://publications.waset.org/abstracts/search?q=Donats%20Erts"> Donats Erts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bismuth selenide (Bi₂Se₃) is known as a narrow band gap semiconductor with pronounced thermoelectric (TE) and topological insulator (TI) properties. Unique TI properties offer exciting possibilities for fundamental research as observing the exciton condensate and Majorana fermions, as well as practical application in spintronic and quantum information. In turn, TE properties of this material can be applied for wide range of thermoelectric applications, as well as for broadband photodetectors and near-infrared sensors. Nanostructuring of this material results in improvement of TI properties due to suppression of the bulk conductivity, and enhancement of TE properties because of increased phonon scattering at the nanoscale grains and interfaces. Regarding TE properties, crystallographic growth direction, as well as orientation of the nanostructures relative to the growth substrate, play significant role in improvement of TE performance of nanostructured material. For instance, Bi₂Se₃ layers consisting of randomly oriented nanostructures and/or of combination of them with planar nanostructures show significantly enhanced in comparison with bulk and only planar Bi₂Se₃ nanostructures TE properties. In this work, a catalyst-free vapour-solid deposition technique was applied for controlled obtaining of different types of Bi₂Se₃ nanostructures and continuous nanostructured layers for targeted applications. For example, separated Bi₂Se₃ nanoplates, nanobelts and nanowires can be used for investigations of TI properties; consisting from merged planar and/or randomly oriented nanostructures Bi₂Se₃ layers are useful for applications in heat-to-power conversion devices and infrared detectors. The vapour-solid deposition was carried out using quartz tube furnace (MTI Corp), equipped with an inert gas supply and pressure/temperature control system. Bi₂Se₃ nanostructures/nanostructured layers of desired type were obtained by adjustment of synthesis parameters (process temperature, deposition time, pressure, carrier gas flow) and selection of deposition substrate (glass, quartz, mica, indium-tin-oxide, graphene and carbon nanotubes). Morphology, structure and composition of obtained Bi₂Se₃ nanostructures and nanostructured layers were inspected using SEM, AFM, EDX and HRTEM techniques, as well as home-build experimental setup for thermoelectric measurements. It was found that introducing of temporary carrier gas flow into the process tube during the synthesis and deposition substrate choice significantly influence nanostructures formation mechanism. Electrical, thermoelectric, and topological insulator properties of different types of deposited Bi₂Se₃ nanostructures and nanostructured coatings are characterized as a function of thickness and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bismuth%20seleinde" title="bismuth seleinde">bismuth seleinde</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20insulator" title=" topological insulator"> topological insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=vapour-solid%20deposition" title=" vapour-solid deposition"> vapour-solid deposition</a> </p> <a href="https://publications.waset.org/abstracts/74999/different-types-of-bismuth-selenide-nanostructures-for-targeted-applications-synthesis-and-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2051</span> Harnessing the Generation of Ferromagnetic and Silver Nanostructures from Tropical Aquatic Microbial Nanofactories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Jayshree%20Jacob">Patricia Jayshree Jacob</a>, <a href="https://publications.waset.org/abstracts/search?q=Mas%20Jaffri%20Masarudinb"> Mas Jaffri Masarudinb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zobir%20Hussein"> Mohd Zobir Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Raha%20Abdul%20Rahim"> Raha Abdul Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron based ferromagnetic nanoparticles (IONP) and silver nanostructures (AgNP) have found a wide range of application in antimicrobial therapy, cell targeting, and environmental applications. As such, the design of well-defined monodisperse IONPs and AgNPs have become an essential tool in nanotechnology. Fabrication of these nanostructures using conventional methods is not environmentally conducive and weigh heavily on energy and outlays. Selected microorganisms possess the innate ability to reduce metallic ions in colloidal aqueous solution to generate nanoparticles. Hence, harnessing this potential is a way forward in constructing microbial nano-factories, capable of churning out high yields of well-defined IONP’s and AgNP's with physicochemical characteristics on par with the best synthetically produced nanostructures. In this paper, we report the isolation and characterization of bacterial strains isolated from the tropical marine and freshwater ecosystems of Malaysia that demonstrated facile and rapid generation of ferromagnetic nanoparticles and silver nanostructures when precursors such as FeCl₃.6H₂O and AgNO₃ were added to the cell-free bacterial lysate in colloidal solution. Characterization of these nanoparticles was carried out using FESEM, UV Spectrophotometer, XRD, DLS and FTIR. This aerobic bioprocess was carried out at ambient temperature and humidity and has the potential to be developed for environmental friendly, cost effective large scale production of IONP’s. A preliminary bioprocess study on the harvesting time, incubation temperature and pH was also carried out to determine pertinent abiotic parameters contributing to the optimal production of these nanostructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles" title="iron oxide nanoparticles">iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=biosynthesis" title=" biosynthesis"> biosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=aquatic%20bacteria" title=" aquatic bacteria"> aquatic bacteria</a> </p> <a href="https://publications.waset.org/abstracts/64030/harnessing-the-generation-of-ferromagnetic-and-silver-nanostructures-from-tropical-aquatic-microbial-nanofactories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2050</span> Use of Metallic and Bimetallic Nanostructures as Constituents of Active Bio-Based Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lina%20F.%20Ballesteros">Lina F. Ballesteros</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafsae%20Lamsaf"> Hafsae Lamsaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20A.%20Cerqueira"> Miguel A. Cerqueira</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20M.%20Pastrana"> Lorenzo M. Pastrana</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Carvalho"> Sandra Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20A.%20Teixeira"> Jose A. Teixeira</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Calderon%20V."> S. Calderon V.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of bio-based packaging materials containing metallic and bimetallic nanostructures is relatively modern technology. In this sense, the food packaging industry has been investigating biological and renewable resources that can replace petroleum-based materials to reduce the environmental impact and, at the same time, including new functionalities using nanotechnology. Therefore, the main objective of the present work consisted of developing bio-based poly-lactic acid (PLA) films with Zinc (Zn) and Zinc-Iron (Zn-Fe) nanostructures deposited by magnetron sputtering. The structural, antimicrobial, and optical properties of the films were evaluated when exposed at 60% and 96% relative humidity (RH). The morphology and elemental analysis of the samples were determined by scanning (transmission) electron microscopy (SEM and STEM), and inductively coupled plasma optical emission spectroscopy (ICP-OES). The structure of the PLA was monitored before and after deposition by Fourier transform infrared spectroscopy (FTIR) analysis, and the antimicrobial and color assays were performed by using the zone of inhibition (ZOI) test and a Minolta colorimeter, respectively. Finally, the films were correlated in terms of the deposit conditions, Zn or Zn-Fe concentrations, and thickness. The results revealed PLA films with different morphologies, compositions, and thicknesses of Zn or Zn-Fe nanostructures. The samples showed a significant antibacterial and antifungal activity against E. coli, P. aeruginosa, P. fluorescens, S. aureus, and A. niger, and considerable changes of color and opacity at 96% RH, especially for the thinner nanostructures (150-250 nm). On the other hand, when the Fe fraction was increased, the lightness of samples increased, as well as their antimicrobial activity when compared to the films with pure Zn. Hence, these findings are relevant to the food packaging field since intelligent and active films with multiple properties can be developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymers" title="biopolymers">biopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20properties" title=" functional properties"> functional properties</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetron%20sputtering" title=" magnetron sputtering"> magnetron sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=Zn%20and%20Zn-Fe%20nanostructures" title=" Zn and Zn-Fe nanostructures"> Zn and Zn-Fe nanostructures</a> </p> <a href="https://publications.waset.org/abstracts/135084/use-of-metallic-and-bimetallic-nanostructures-as-constituents-of-active-bio-based-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2049</span> The Role of Substrate-Nozzle Distance in Atomic Nebulizers in the Photoelectrochemical Water Splitting Performance of ZnO Nanorods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukman%20Andi%20Priyatna">Lukman Andi Priyatna</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivi%20Fauzia"> Vivi Fauzia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferry%20Anggoro%20Ardy%20Nugroho"> Ferry Anggoro Ardy Nugroho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc oxide (ZnO) based nanostructures are ubiquitous in applications due to their favourable physicochemical properties and ease of fabrication. One widely accessible route to synthesize ZnO nanorods, which show promising performance in e.g. photoelectrochemical water splitting, is hydrothermal growth of ZnO seeds, obtained via an atomic nebulizer. Despite its popularity, study on the impact of the synthesis parameters in atomic nebulizer on the performance of the synthesized ZnO nanostructures is lacking. This study presents an investigation on the impact of the distance between substrates and atomic nebulizer nozzle on the photoelectrochemical water splitting performance of ZnO nanorods. Adjusting such a distance reveals an optimum separation which results in nanostructures with highest absorbance. Such high absorbance translates into improved photoelectrochemistry, as evaluated by higher photocurrent density, from 0.11 mA/cm² to 0.14 mA/cm² and higher Applied Bias Photon-to-Current Efficiency (ABPE) from 0.12% to 0.14%. These results underscore the importance of understanding and optimizing the experimental parameters during ZnO nanostructure synthesis. In a broader context, it advertises the need to carefully assess the corresponding fabrication parameters to optimize the performance of the obtained nanostructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20nebulizer" title="atomic nebulizer">atomic nebulizer</a>, <a href="https://publications.waset.org/abstracts/search?q=photocurrent%20density" title=" photocurrent density"> photocurrent density</a>, <a href="https://publications.waset.org/abstracts/search?q=photoelectrochemical%20water%20splitting" title=" photoelectrochemical water splitting"> photoelectrochemical water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanorods" title=" ZnO nanorods"> ZnO nanorods</a> </p> <a href="https://publications.waset.org/abstracts/190248/the-role-of-substrate-nozzle-distance-in-atomic-nebulizers-in-the-photoelectrochemical-water-splitting-performance-of-zno-nanorods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2048</span> An Atomistic Approach to Define Continuum Mechanical Quantities in One Dimensional Nanostructures at Finite Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smriti">Smriti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajeet%20Kumar"> Ajeet Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a variant of the Irving-Kirkwood procedure to obtain the microscopic expressions of the cross-section averaged continuum fields such as internal force and moment in one-dimensional nanostructures in the non-equilibrium setting. In one-dimensional continuum theories for slender bodies, we deal with quantities such as mass, linear momentum, angular momentum, and strain energy densities, all defined per unit length. These quantities are obtained by integrating the corresponding pointwise (per unit volume) quantities over the cross-section of the slender body. However, no well-defined cross-section exists for these nanostructures at finite temperature. We thus define the cross-section of a nanorod to be an infinite plane which is fixed in space even when time progresses and defines the above continuum quantities by integrating the pointwise microscopic quantities over this infinite plane. The method yields explicit expressions of both the potential and kinetic parts of the above quantities. We further specialize in these expressions for helically repeating one-dimensional nanostructures in order to use them in molecular dynamics study of extension, torsion, and bending of such nanostructures. As, the Irving-Kirkwood procedure does not yield expressions of stiffnesses, we resort to a thermodynamic equilibrium approach to obtain the expressions of axial force, twisting moment, bending moment, and the associated stiffnesses by taking the first and second derivatives of the Helmholtz free energy with respect to conjugate strain measures. The equilibrium approach yields expressions independent of kinetic terms. We then establish the equivalence of the expressions obtained using the two approaches. The derived expressions are used to understand the extension, torsion, and bending of single-walled carbon nanotubes at non-zero temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoelasticity" title="thermoelasticity">thermoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20dimensional%20nanostructures" title=" one dimensional nanostructures"> one dimensional nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotube%20buckling" title=" nanotube buckling"> nanotube buckling</a> </p> <a href="https://publications.waset.org/abstracts/114810/an-atomistic-approach-to-define-continuum-mechanical-quantities-in-one-dimensional-nanostructures-at-finite-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2047</span> Micro-Electrical Discharge Machining (µEDM): Effect of the Electrochemical Etching Parameters on the Fabrication of Cylindrical Tungsten Micro-Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmae%20Tafraouti">Asmae Tafraouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmina%20Layouni"> Yasmina Layouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fabrication of cylindrical Tungsten micro-tools with a high aspect ratio is a real challenge because of several constraints that come into during their manufacture. In this paper, we will describe the process used to fabricate these micro-tools. It consists of using electrochemical etching. We will also present the optimal protocol that makes it possible to fabricate micro-tools with a high aspect ratio in a reproducible way. Next, we will show the limit of the experimental parameters chosen to manufacture micro-tools from a wire with an initial diameter of Φ_0=250µm. The protocol used allows obtaining an average diameter of Φ=88µm ±1 µm over a length of L=3.5mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drop-off%20effect" title="drop-off effect">drop-off effect</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching" title=" electrochemical etching"> electrochemical etching</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-electrical%20discharge%20machining" title=" micro-electrical discharge machining"> micro-electrical discharge machining</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20micro-tools" title=" tungsten micro-tools"> tungsten micro-tools</a> </p> <a href="https://publications.waset.org/abstracts/140730/micro-electrical-discharge-machining-edm-effect-of-the-electrochemical-etching-parameters-on-the-fabrication-of-cylindrical-tungsten-micro-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2046</span> Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghosh">S. Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ramos"> L. Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Kouam%C3%A9"> A. N. Kouamé</a>, <a href="https://publications.waset.org/abstracts/search?q=A.-L.%20Teillout"> A.-L. Teillout</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Remita"> H. Remita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title="conducting polymer">conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=swollen%20hexagonal%20mesophases" title=" swollen hexagonal mesophases"> swollen hexagonal mesophases</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20photocatalysis" title=" solar photocatalysis"> solar photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20depollution" title=" water depollution "> water depollution </a> </p> <a href="https://publications.waset.org/abstracts/10928/polymer-nanostructures-based-catalytic-materials-for-energy-and-environmental-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2045</span> Copper Phthalocyanine Nanostructures: A Potential Material for Field Emission Display</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Kumar%20Ghorai">Uttam Kumar Ghorai</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhupriya%20Samanta"> Madhupriya Samanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhajit%20Saha"> Subhajit Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Das"> Swati Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilesh%20Mazumder"> Nilesh Mazumder</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalyan%20Kumar%20Chattopadhyay"> Kalyan Kumar Chattopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic semiconductors have gained potential interest in the last few decades for their significant contributions in the various fields such as solar cell, non-volatile memory devices, field effect transistors and light emitting diodes etc. The most important advantages of using organic materials are mechanically flexible, light weight and low temperature depositing techniques. Recently with the advancement of nanoscience and technology, one dimensional organic and inorganic nanostructures such as nanowires, nanorods, nanotubes have gained tremendous interests due to their very high aspect ratio and large surface area for electron transport etc. Among them, self-assembled organic nanostructures like Copper, Zinc Phthalocyanine have shown good transport property and thermal stability due to their π conjugated bonds and π-π stacking respectively. Field emission properties of inorganic and carbon based nanostructures are reported in literatures mostly. But there are few reports in case of cold cathode emission characteristics of organic semiconductor nanostructures. In this work, the authors report the field emission characteristics of chemically and physically synthesized Copper Phthalocyanine (CuPc) nanostructures such as nanowires, nanotubes and nanotips. The as prepared samples were characterized by X-Ray diffraction (XRD), Ultra Violet Visible Spectrometer (UV-Vis), Fourier Transform Infra-red Spectroscopy (FTIR), and Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). The field emission characteristics were measured in our home designed field emission set up. The registered turn-on field and local field enhancement factor are found to be less than 5 V/μm and greater than 1000 respectively. The field emission behaviour is also stable for 200 minute. The experimental results are further verified by theoretically using by a finite displacement method as implemented in ANSYS Maxwell simulation package. The obtained results strongly indicate CuPc nanostructures to be the potential candidate as an electron emitter for field emission based display device applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20semiconductor" title="organic semiconductor">organic semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=phthalocyanine" title=" phthalocyanine"> phthalocyanine</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowires" title=" nanowires"> nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotubes" title=" nanotubes"> nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20emission" title=" field emission"> field emission</a> </p> <a href="https://publications.waset.org/abstracts/25872/copper-phthalocyanine-nanostructures-a-potential-material-for-field-emission-display" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures&amp;page=69">69</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures&amp;page=70">70</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20and%20nanostructures&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10