CINXE.COM

Search results for: minimal delamination

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: minimal delamination</title> <meta name="description" content="Search results for: minimal delamination"> <meta name="keywords" content="minimal delamination"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="minimal delamination" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="minimal delamination"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 964</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: minimal delamination</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">964</span> Interaction of the Circumferential Lamb Wave with Delamination in the Middle of Pipe Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Ziming">Li Ziming</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Cunfu"> He Cunfu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Zenghua"> Liu Zenghua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With aim for delamination type defects detection in manufacturing process of seamless pipe,this paper studies the interaction of the circumferential lamb wave with delamination in aluminum pipe.The delamination is located in the middle of pipe wall.A numerical study is carried out,the circumferential lamb wave used here is CL0 mode,which is generated with a finite element method code.Wave structures from the simulation are compared with theoretical results to verify the model’s accuracy.Delamination along the circumferential direction is established by demerging nodes of the same coordinates.When CL0 mode is incident at the entrance and exit of a delamination,it generates new mode-CL1,undergoes multiple reverberation and mode conversions between the two ends of the delamination. Signals of different receptions are obtained to provide insight in using CL0 mode for locating the delamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circumferential%20lamb%20wave" title="circumferential lamb wave">circumferential lamb wave</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=seamless%20pipe" title=" seamless pipe"> seamless pipe</a> </p> <a href="https://publications.waset.org/abstracts/33095/interaction-of-the-circumferential-lamb-wave-with-delamination-in-the-middle-of-pipe-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">963</span> Static Study of Piezoelectric Bimorph Beams with Delamination Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zemirline%20Adel">Zemirline Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouali%20Mohammed"> Ouali Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahieddine%20Ali"> Mahieddine Ali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The FOSDT (First Order Shear Deformation Theory) is taking into consideration to study the static behavior of a bimorph beam, with a delamination zone between the upper and the lower layer. The effect of limit conditions and lengths of the delamination zone are presented in this paper, with a PVDF piezoelectric material application. A FEM “Finite Element Method” is used to discretize the beam. In the axial displacement, a displacement field appears in the debonded zone with inverse effect between the upper and the lower layer was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=static" title="static">static</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectricity" title=" piezoelectricity"> piezoelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=beam" title=" beam"> beam</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a> </p> <a href="https://publications.waset.org/abstracts/20773/static-study-of-piezoelectric-bimorph-beams-with-delamination-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">962</span> Investigation of Failure Mechanisms of Composite Laminates with Delamination and Repaired with Bolts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuxin%20Li">Shuxin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Peihao%20Song"> Peihao Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Haixiao%20Hu"> Haixiao Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongfeng%20Cao"> Dongfeng Cao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interactive deformation and failure mechanisms, including local bucking/delamination propagation and global bucking, are investigated in this paper with numerical simulation and validation with experimental results. Three dimensional numerical models using ABAQUS brick elements combined with cohesive elements and contact elements are developed to simulate the deformation and failure characteristics of composite laminates with and without delamination under compressive loading. The zero-thickness cohesive elements are inserted on the possible path of delamination propagation, and the inter-laminate behavior is characterized by the mixed-mode traction-separation law. The numerical simulations identified the complex feature of interaction among local buckling and/or delamination propagation and final global bucking for composite laminates with delamination under compressive loading. Firstly there is an interaction between the local buckling and delamination propagation, i.e., local buckling induces delamination propagation, and then delamination growth further enhances the local buckling. Secondly, the interaction between the out-plan deformation caused by local buckling and the global bucking deformation results in final failure of the composite laminates. The simulation results are validated by the good agreement with the experimental results published in the literature. The numerical simulation validated with experimental results revealed that the degradation of the load capacity, in particular of the compressive strength of composite structures with delamination, is mainly attributed to the combined local buckling/delamination propagation effects. Consequently, a simple field-bolt repair approach that can hinder the local buckling and prevent delamination growth is explored. The analysis and simulation results demonstrated field-bolt repair could effectively restore compressive strength of composite laminates with delamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cohesive%20elements" title="cohesive elements">cohesive elements</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20laminates" title=" composite laminates"> composite laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20and%20global%20bucking" title=" local and global bucking"> local and global bucking</a>, <a href="https://publications.waset.org/abstracts/search?q=field-bolt%20repair" title=" field-bolt repair"> field-bolt repair</a> </p> <a href="https://publications.waset.org/abstracts/118657/investigation-of-failure-mechanisms-of-composite-laminates-with-delamination-and-repaired-with-bolts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">961</span> A Numerical Investigation of Lamb Wave Damage Diagnosis for Composite Delamination Using Instantaneous Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haode%20Huo">Haode Huo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingjing%20He"> Jingjing He</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Kang"> Rui Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuefei%20Guan"> Xuefei Guan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study of Lamb wave damage diagnosis of composite delamination using instantaneous phase data. Numerical experiments are performed using the finite element method. Different sizes of delamination damages are modeled using finite element package ABAQUS. Lamb wave excitation and responses data are obtained using a pitch-catch configuration. Empirical mode decomposition is employed to extract the intrinsic mode functions (IMF). Hilbert&ndash;Huang Transform is applied to each of the resulting IMFs to obtain the instantaneous phase information. The baseline data for healthy plates are also generated using the same procedure. The size of delamination is correlated with the instantaneous phase change for damage diagnosis. It is observed that the unwrapped instantaneous phase of shows a consistent behavior with the increasing delamination size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delamination" title="delamination">delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=lamb%20wave" title=" lamb wave"> lamb wave</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=EMD" title=" EMD"> EMD</a>, <a href="https://publications.waset.org/abstracts/search?q=instantaneous%20phase" title=" instantaneous phase"> instantaneous phase</a> </p> <a href="https://publications.waset.org/abstracts/86184/a-numerical-investigation-of-lamb-wave-damage-diagnosis-for-composite-delamination-using-instantaneous-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">960</span> The Effect of Chisel Edge on Drilling-Induced Delamination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parnian%20Kianfar">Parnian Kianfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Zarif%20Karimi"> Navid Zarif Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giangiacomo%20Minak"> Giangiacomo Minak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling is one of the most important machining operations as numerous holes must be drilled in order to install mechanical fasteners for assembly in composite structures. Delamination is a major problem associated with the drilling of fiber reinforced composite materials, which degrades the mechanical properties of these materials. In drilling, delamination is initiated when the drilling force exceeds a threshold value, particularly at the critical entry and exit locations of the drill bit. The chisel edge of twist drill is a major contributor to the thrust force which is the primary cause of delamination. The main objective of this paper is to study the effect of chisel edge and pilot hole on thrust force and delamination during drilling of glass fiber reinforced composites. For this purpose, two sets of experiments, with and without pilot hole, were conducted with different drilling conditions. The results show a great reduction in the thrust force when a pilot hole is present which removes the chisel edge contribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites" title="composites">composites</a>, <a href="https://publications.waset.org/abstracts/search?q=chisel%20edge" title=" chisel edge"> chisel edge</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a> </p> <a href="https://publications.waset.org/abstracts/36250/the-effect-of-chisel-edge-on-drilling-induced-delamination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">959</span> Static Modeling of the Delamination of a Composite Material Laminate in Mode II</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Madani">Y. Madani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Achache"> H. Achache</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Boutabout"> B. Boutabout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to analyze numerically by the three-dimensional finite element method, using ABAQUS calculation code, the mechanical behavior of a unidirectional and multidirectional delaminated stratified composite under mechanical loading in Mode II. This study consists of the determination of the energy release rate G in mode II as well as the distribution of equivalent von Mises stresses along the damaged zone by varying several parameters such as the applied load and the delamination length. It allowed us to deduce that the high energy release rate favors delamination at the free edges of a stratified plate subjected to bending. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delamination" title="delamination">delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20release%20rate" title=" energy release rate"> energy release rate</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20composite" title=" stratified composite"> stratified composite</a> </p> <a href="https://publications.waset.org/abstracts/97210/static-modeling-of-the-delamination-of-a-composite-material-laminate-in-mode-ii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">958</span> Residual Compressive Strength of Drilled Glass Fiber Reinforced Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navid%20Zarif%20Karimi">Navid Zarif Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giangiacomo%20Minak"> Giangiacomo Minak</a>, <a href="https://publications.waset.org/abstracts/search?q=Parnian%20Kianfar"> Parnian Kianfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling is one of the most frequently used machining process for glass fiber reinforced polymer composites due to the need for structural joining. In drilling of composite laminates, interlaminar cracking, or delamination, has a detrimental effect on the compressive strength of these materials. The delamination can be controlled by adopting proper drilling condition. In this paper, the effect of feed rate, cutting speed and drill point angle on delamination and residual compressive strength of drilled GFRPs is studied. The objective is to find optimal conditions for maximum residual compressive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20compressive%20strength" title=" residual compressive strength"> residual compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/36171/residual-compressive-strength-of-drilled-glass-fiber-reinforced-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">957</span> Effect of Mechanical Loading on the Delamination of Stratified Composite in Mode I</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Achache">H. Achache</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Madani"> Y. Madani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benzerdjeb"> A. Benzerdjeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is based on the three-dimensional digital analysis by the finite elements method of the mechanical loading effect on the delamination of unidirectional and multidirectional stratified composites. The aim of this work is the determination of the release energy rate G in mode I and the Von Mises equivalent constraint distribution along the damaged area under the influence of several parameters such as the applied load and the delamination size. The results obtained in this study show that the unidirectional composite laminates have better mechanical resistance one the loading line than the multidirectional composite laminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delamination" title="delamination">delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=release%20energy%20rate" title=" release energy rate"> release energy rate</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20composite" title=" stratified composite"> stratified composite</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=ply" title=" ply"> ply</a> </p> <a href="https://publications.waset.org/abstracts/43493/effect-of-mechanical-loading-on-the-delamination-of-stratified-composite-in-mode-i" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">956</span> Delamination of Scale in a Fe Carbon Steel Surface by Effect of Interface Roughness and Oxide Scale Thickness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Lee">J. M. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20R.%20Noh"> W. R. Noh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Y.%20Kim"> C. Y. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Lee"> M. G. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Delamination of oxide scale has been often discovered at the interface between Fe carbon steel and oxide scale. Among several mechanisms of this delamination behavior, the normal tensile stress to the substrate-scale interface has been described as one of the main factors. The stress distribution at the interface is also known to be affected by thermal expansion mismatch between substrate and oxide scale, creep behavior during cooling and the geometry of the interface. In this study, stress states near the interface in a Fe carbon steel with oxide scale have been investigated using FE simulations. The thermal and mechanical properties of oxide scales are indicated in literature and Fe carbon steel is measured using tensile testing machine. In particular, the normal and shear stress components developed at the interface during bending are investigated. Preliminary numerical sensitivity analyses are provided to explain the effects of the interface geometry and oxide thickness on the delamination behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxide%20scale" title="oxide scale">oxide scale</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%20analysis" title=" Fe analysis"> Fe analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20state" title=" stress state"> stress state</a> </p> <a href="https://publications.waset.org/abstracts/43731/delamination-of-scale-in-a-fe-carbon-steel-surface-by-effect-of-interface-roughness-and-oxide-scale-thickness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">955</span> Forced Vibration of a Fiber Metal Laminated Beam Containing a Delamination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Mirhosseini">Sh. Mirhosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Haghighatfar"> Y. Haghighatfar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sedighi"> M. Sedighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forced vibration problem of a delaminated beam made of fiber metal laminates is studied in this paper. Firstly, a delamination is considered to divide the beam into four sections. The classic beam theory is assumed to dominate each section. The layers on two sides of the delamination are constrained to have the same deflection. This hypothesis approves the conditions of compatibility as well. Consequently, dynamic response of the beam is obtained by the means of differential transform method (DTM). In order to verify the correctness of the results, a model is constructed using commercial software ABAQUS 6.14. A linear spring with constant stiffness takes the effect of contact between delaminated layers into account. The attained semi-analytical outcomes are in great agreement with finite element analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delamination" title="delamination">delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20vibration" title=" forced vibration"> forced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modelling" title=" finite element modelling"> finite element modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a> </p> <a href="https://publications.waset.org/abstracts/90789/forced-vibration-of-a-fiber-metal-laminated-beam-containing-a-delamination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">954</span> Effect of an Interface Defect in a Patch/Layer Joint under Dynamic Time Harmonic Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elisaveta%20Kirilova">Elisaveta Kirilova</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilfried%20Becker"> Wilfried Becker</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordanka%20Ivanova"> Jordanka Ivanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20Petrova"> Tatyana Petrova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is a continuation of the research on the hygrothermal piezoelectric response of a smart patch/layer joint with undesirable interface defect (gap) at dynamic time harmonic mechanical and electrical load and environmental conditions. In order to find the axial displacements, shear stress and interface debond length in a closed analytical form for different positions of the interface gap, the 1D modified shear lag analysis is used. The debond length is represented as a function of many parameters (frequency, magnitude, electric displacement, moisture and temperature, joint geometry, position of the gap along the interface, etc.). Then the Genetic algorithm (GA) is implemented to find this position of the gap along the interface at which a vanishing/minimal debond length is ensured, e.g to find the most harmless position for the safe work of the structure. The illustrative example clearly shows that analytical shear-lag solutions and GA method can be combined successfully to give an effective prognosis of interface shear stress and interface delamination in patch/layer structure at combined loading with existing defects. To show the effect of the position of the interface gap, all obtained results are given in figures and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20delamination" title=" minimal delamination"> minimal delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20gap%20position" title=" optimal gap position"> optimal gap position</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20lag%20solution" title=" shear lag solution"> shear lag solution</a> </p> <a href="https://publications.waset.org/abstracts/74794/effect-of-an-interface-defect-in-a-patchlayer-joint-under-dynamic-time-harmonic-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">953</span> Structural Properties of RC Beam with Progression of Corrosion Induced Delamination Cracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupam%20Saxena">Anupam Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Achin%20Agrawal"> Achin Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rishabh%20Shukla"> Rishabh Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mandal"> S. Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is quite important that the properties of structural elements do not change significantly before and after cracking, and if they do, it adversely affects the structure. Corrosion in rebars causes cracking in concrete which can lead to the change in properties of beam. In the present study, two RC beams with same flexural strength but with different reinforcement arrangements are considered and modelling of cracks of RC beams has been done at different degrees of corrosion in the case of delamination using boundary conditions of Three Point Bending Test. Finite Element Analysis (FEA) has been done at different degree of corrosion to observe the variation of different parameters like modal frequency, Elasticity and Flexural strength in case of delamination. Also, the comparison between two different RC arrangements is made to conclude which one of them is more suitable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delamination" title="delamination">delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20frequency" title=" modal frequency"> modal frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20beam" title=" RC beam"> RC beam</a> </p> <a href="https://publications.waset.org/abstracts/57700/structural-properties-of-rc-beam-with-progression-of-corrosion-induced-delamination-cracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">952</span> Optimization of Cutting Parameters on Delamination Using Taguchi Method during Drilling of GFRP Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vimanyu%20Chadha">Vimanyu Chadha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranganath%20M.%20Singari"> Ranganath M. Singari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling composite materials is a frequently practiced machining process during assembling in various industries such as automotive and aerospace. However, drilling of glass fiber reinforced plastic (GFRP) composites is significantly affected by damage tendency of these materials under cutting forces such as thrust force and torque. The aim of this paper is to investigate the influence of the various cutting parameters such as cutting speed and feed rate; subsequently also to study the influence of number of layers on delamination produced while drilling a GFRP composite. A plan of experiments, based on Taguchi techniques, was instituted considering drilling with prefixed cutting parameters in a hand lay-up GFRP material. The damage induced associated with drilling GFRP composites were measured. Moreover, Analysis of Variance (ANOVA) was performed to obtain minimization of delamination influenced by drilling parameters and number layers. The optimum drilling factor combination was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that feed rate was the most influential factor on the delamination. The best results of the delamination were obtained with composites with a greater number of layers at lower cutting speeds and feed rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis%20of%20variance" title="analysis of variance">analysis of variance</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20optimization" title=" design optimization"> design optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber%20reinforced%20plastic%20composites" title=" glass fiber reinforced plastic composites"> glass fiber reinforced plastic composites</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/58018/optimization-of-cutting-parameters-on-delamination-using-taguchi-method-during-drilling-of-gfrp-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">951</span> The Effect of Nylon and Kevlar Stitching on the Mode I Fracture of Carbon/Epoxy Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisrin%20R.%20Abdelal">Nisrin R. Abdelal</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20L.%20Donaldson"> Steven L. Donaldson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials are widely used in aviation industry due to their superior properties; however, they are susceptible to delamination. Through-thickness stitching is one of the techniques to alleviate delamination. Kevlar is one of the most common stitching materials; in contrast, it is expensive and presents stitching fabrication challenges. Therefore, this study compares the performance of Kevlar with an inexpensive and easy-to-use nylon fiber in stitching to alleviate delamination. Three laminates of unidirectional carbon fiber-epoxy composites were manufactured using vacuum assisted resin transfer molding process. One panel was stitched with Kevlar, one with nylon, and one unstitched. Mode I interlaminar fracture tests were carried out on specimens from the three composite laminates, and the results were compared. Fractographic analysis using optical and scanning electron microscope were conducted to reveal the differences between stitching with Kevlar and nylon on the internal microstructure of the composite with respect to the interlaminar fracture toughness values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon" title="carbon">carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevlar" title=" Kevlar"> Kevlar</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20I" title=" mode I"> mode I</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon" title=" nylon"> nylon</a>, <a href="https://publications.waset.org/abstracts/search?q=stitching" title=" stitching"> stitching</a> </p> <a href="https://publications.waset.org/abstracts/79708/the-effect-of-nylon-and-kevlar-stitching-on-the-mode-i-fracture-of-carbonepoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">950</span> Finite Element Analysis of Resonance Frequency Shift of Laminated Composite Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Yang%20Kwa">Cheng Yang Kwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoke%20Rung%20Wong"> Yoke Rung Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laminated composite materials are widely employed in automotive, aerospace, and other industries. These materials provide distinct benefits due to their high specific strength, high specific modulus, and ability to be customized for a specific function. However, delamination of laminated composite materials is one of the main defects which can occur during manufacturing, regular operations, or maintenance. Delamination can bring about considerable internal damage, unobservable by visual check, that causes significant loss in strength and stability, leading to composite structure catastrophic failure. Structural health monitoring (SHM) is known to be the automated method for monitoring and evaluating the condition of a monitored object. There are several ways to conduct SHM in aerospace. One of the effective methods is to monitor the natural frequency shift of structure due to the presence of defect. This study investigated the mechanical resonance frequency shift of a multi-layer composite cantilever beam due to interlaminar delamination. ANSYS Workbench® was used to create a 4-plies laminated composite cantilever finite element model with [90/0]s fiber setting. Epoxy Carbon UD (230GPA) Prepreg was chosen, and the thickness was 2.5mm for each ply. The natural frequencies of the finite element model with various degree of delamination were simulated based on modal analysis and then validated by using literature. It was shown that the model without delamination had natural frequency of 40.412 Hz, which was 1.55% different from the calculated result (41.050 Hz). Thereafter, the various degree of delamination was mimicked by changing the frictional conditions at the middle ply-to-ply interface. The results suggested that delamination in the laminated composite cantilever induced a change in its stiffness which alters its mechanical resonance frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title="structural health monitoring">structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=cantilever" title=" cantilever"> cantilever</a>, <a href="https://publications.waset.org/abstracts/search?q=laminate" title=" laminate"> laminate</a> </p> <a href="https://publications.waset.org/abstracts/148092/finite-element-analysis-of-resonance-frequency-shift-of-laminated-composite-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">949</span> Fabrication, Testing and Machinability Evaluation of Glass Fiber Reinforced Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Panda">S. S. Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=Arkesh%20Chouhan"> Arkesh Chouhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20Deshpande"> Yogesh Deshpande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper deals with designing and fabricating an apparatus for the speedy and accurate manufacturing of fiber reinforced composite lamina of different orientation, thickness and stacking sequences for testing. Properties derived through an analytical approach are verified through measuring the elastic modulus, ultimate tensile strength, flexural modulus and flexural strength of the samples. The 0<sup>0</sup> orientation ply looks stiffer compared to the 90<sup>0</sup> ply. Similarly, the flexural strength of 0<sup>0</sup> ply is higher than to the 90<sup>0</sup> ply. Sample machinability has been studied by conducting numbers of drilling based on Taguchi Design experiments. Multi Responses (Delamination and Damage grading) is obtained using the desirability approach and optimum cutting condition (spindle speed, feed and drill diameter), at which responses are minimized is obtained thereafter. Delamination increases nonlinearly with the increase in spindle speed. Similarly, the influence of the drill diameter on delamination is higher than the spindle speed and feed rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delamination" title="delamination">delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP%20composite" title=" FRP composite"> FRP composite</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20design" title=" Taguchi design"> Taguchi design</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20response%20optimization" title=" multi response optimization"> multi response optimization</a> </p> <a href="https://publications.waset.org/abstracts/54696/fabrication-testing-and-machinability-evaluation-of-glass-fiber-reinforced-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">948</span> A Composite Beam Element Based on Global-Local Superposition Theory for Prediction of Delamination in Composite Laminates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Mota%20Possatti%20J%C3%BAnior">Charles Mota Possatti Júnior</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Schwanz%20de%20Lima"> André Schwanz de Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Maur%C3%ADcio%20Vicente%20Donadon"> Maurício Vicente Donadon</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Rocha%20de%20Faria"> Alfredo Rocha de Faria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An interlaminar damage model is combined with a beam element formulation based on global-local superposition to assess delamination in composite laminates. The variations in the mechanical properties in the laminate, generated by the presence of delamination, are calculated as a function of the displacements in the interface layers. The global-local superposition of displacement fields ensures the zig-zag behaviour of stresses and displacement, and the number of degrees of freedom (DOFs) is independent of the number of layers. The displacements and stresses are calculated as a function of DOFs commonly used in traditional beam elements. Finally, the finite element(FE) formulation is extended to handle cases of different thicknesses, and then the FE model predictions are compared with results obtained from analytical solutions and commercial finite element codes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delamination" title="delamination">delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=global-local%20superposition%20theory" title=" global-local superposition theory"> global-local superposition theory</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20beam%20element" title=" single beam element"> single beam element</a>, <a href="https://publications.waset.org/abstracts/search?q=zig-zag" title=" zig-zag"> zig-zag</a>, <a href="https://publications.waset.org/abstracts/search?q=interlaminar%20damage%20model" title=" interlaminar damage model"> interlaminar damage model</a> </p> <a href="https://publications.waset.org/abstracts/157413/a-composite-beam-element-based-on-global-local-superposition-theory-for-prediction-of-delamination-in-composite-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">947</span> Evaluation of Drilling-Induced Delamination of Flax/Epoxy Composites by Non-Destructive Testing Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Rezghimaleki">Hadi Rezghimaleki</a>, <a href="https://publications.waset.org/abstracts/search?q=Masatoshi%20Kubouchi"> Masatoshi Kubouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshihiko%20Arao"> Yoshihiko Arao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of natural fiber composites (NFCs) is growing at a fast rate regarding industrial applications and principle researches due to their eco-friendly, renewable nature, and low density/costs. Drilling is one of the most important machining operations that are carried out on natural fiber composites. Delamination is a major concern in the drilling process of NFCs that affects the structural integrity and long-term reliability of the machined components. Flax fiber reinforced epoxy composite laminates were prepared by hot press technique. In this research, we evaluated drilling-induced delamination of flax/epoxy composites by X-ray computed tomography (CT), ultrasonic testing (UT), and optical methods and compared the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber%20composites" title="natural fiber composites">natural fiber composites</a>, <a href="https://publications.waset.org/abstracts/search?q=flax%2Fepoxy" title=" flax/epoxy"> flax/epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20CT" title=" X-ray CT"> X-ray CT</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20testing" title=" ultrasonic testing"> ultrasonic testing</a> </p> <a href="https://publications.waset.org/abstracts/50723/evaluation-of-drilling-induced-delamination-of-flaxepoxy-composites-by-non-destructive-testing-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">946</span> Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Hassoon">O. Hassoon</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tarfoui"> M. Tarfoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El%20Malk"> A. El Malk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20bragg%20grating" title="fiber bragg grating">fiber bragg grating</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination%20detection" title=" delamination detection"> delamination detection</a>, <a href="https://publications.waset.org/abstracts/search?q=DCB" title=" DCB"> DCB</a>, <a href="https://publications.waset.org/abstracts/search?q=FBG%20spectrum" title=" FBG spectrum"> FBG spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20health%20monitoring" title=" structure health monitoring "> structure health monitoring </a> </p> <a href="https://publications.waset.org/abstracts/14913/numerical-simulation-of-fiber-bragg-grating-spectrum-for-mode-i-delamination-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">945</span> New Drug Discoveries and Packaging Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupam%20Chanda">Anupam Chanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Presently Packaging plays a significant role for drug discoveries. The process of selecting materials and the type of packaging also offers an opportunity for the Packaging scientist to look for biological delivery choices. Most injectable protein products were supplied in some sort of glass vial, prefilled syringe, cartridge. Those product having high Ph content there is a chance of “delamination “from inner surface of glass vial. With protein-based drugs, the biggest issue is the effect of packaging derivatives on the protein’s threedimensional and surface structure. These are any effects that relate to denaturation or aggregation of the protein due to oxidation or interactions from contaminants or impurities in the preparation. The potential for these effects needs to be carefully considered in choosing the container and the container closure system to avoid putting patients in jeopardy. Cause of Delamination : -Formulations with a high pH include phosphate and citrate buffers increase the risk of glass delamination. -High alkali content in glass could accelerate erosion. -High temperature during the vial-forming process increase the risk of glass delamination. -Terminal sterilization (irradiated at 20-40 kGy for 150 min) also is a risk factor for specific products(veterinary parenteral administration),could cause delamination. -High product-storage temperatures and long exposure times can increase the rate and severity of glass delamination. How to prevent Delamination -Treating the surface of the glass vials with materials, such as ammonium sulfate or siliconization can reduce the rate of glass erosion. -Consider alternative sterilization methods only in rare cases. -The correct specification for the glass to ensure its suitability for the pH of the product. -Use Cyclic olefin copolymer(COC)/Cyclic olefin Polymer(COP) Adsorption of protein and Solutions: Option#1 Coat with linear methoxylated polyglycerol and hyperbranchedmethoxylated polyglycerol. Option#2 Thehyperbranched non-methoxylated coating performed best. Option#3 Coat with hyperbranched polyglycerol Option#4 Right selection of Sterilization of glass vial/syringe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delamination%20of%20glass" title="delamination of glass">delamination of glass</a>, <a href="https://publications.waset.org/abstracts/search?q=ptrotien%20adoptions%20inside%20the%20glass%20surface" title=" ptrotien adoptions inside the glass surface"> ptrotien adoptions inside the glass surface</a>, <a href="https://publications.waset.org/abstracts/search?q=extractable%20%26%20leachable%20solutions" title=" extractable &amp; leachable solutions"> extractable &amp; leachable solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=injectable%20designs%20for%20new%20drugs" title=" injectable designs for new drugs"> injectable designs for new drugs</a> </p> <a href="https://publications.waset.org/abstracts/159853/new-drug-discoveries-and-packaging-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">944</span> Experimental and Numerical Investigation on Delaminated Composite Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreekanth%20T.%20G.">Sreekanth T. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kishorekumar%20S."> Kishorekumar S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sowndhariya%20Kumar%20J."> Sowndhariya Kumar J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Karthick%20R."> Karthick R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanmugasuriyan%20S."> Shanmugasuriyan S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composites are increasingly being used in industries due to their unique properties, such as high specific stiffness and specific strength, higher fatigue and wear resistances, and higher damage tolerance capability. Composites are prone to failures or damages that are difficult to identify, locate, and characterize due to their complex design features and complicated loading conditions. The lack of understanding of the damage mechanism of the composites leads to the uncertainties in the structural integrity and durability. Delamination is one of the most critical failure mechanisms in laminated composites because it progressively affects the mechanical performance of fiber-reinforced polymer composite structures over time. The identification and severity characterization of delamination in engineering fields such as the aviation industry is critical for both safety and economic concerns. The presence of delamination alters the vibration properties of composites, such as natural frequencies, mode shapes, and so on. In this study, numerical analysis and experimental analysis were performed on delaminated and non-delaminated glass fiber reinforced polymer (GFRP) plate, and the numerical and experimental analysis results were compared, and error percentage has been found out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites" title="composites">composites</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shapes" title=" mode shapes"> mode shapes</a> </p> <a href="https://publications.waset.org/abstracts/151026/experimental-and-numerical-investigation-on-delaminated-composite-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">943</span> Analysis of Delamination in Drilling of Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navid%20Zarif%20Karimi">Navid Zarif Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Heidary"> Hossein Heidary</a>, <a href="https://publications.waset.org/abstracts/search?q=Giangiacomo%20Minak"> Giangiacomo Minak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ahmadi"> Mehdi Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper analytical model based on the mechanics of oblique cutting, linear elastic fracture mechanics (LEFM) and bending plate theory has been presented to determine the critical feed rate causing delamination in drilling of composite materials. Most of the models in this area used LEFM and bending plate theory; hence, they can only determine the critical thrust force which is an incorporable parameter. In this model by adding cutting oblique mechanics to previous models, critical feed rate has been determined. Also instead of simplification in loading condition, actual thrust force induced by chisel edge and cutting lips on composite plate is modeled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20force" title=" thrust force"> thrust force</a> </p> <a href="https://publications.waset.org/abstracts/35552/analysis-of-delamination-in-drilling-of-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">942</span> Delamination Fracture Toughness Benefits of Inter-Woven Plies in Composite Laminates Produced through Automated Fibre Placement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayden%20Levy">Jayden Levy</a>, <a href="https://publications.waset.org/abstracts/search?q=Garth%20M.%20K.%20Pearce"> Garth M. K. Pearce</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An automated fibre placement method has been developed to build through-thickness reinforcement into carbon fibre reinforced plastic laminates during their production, with the goal of increasing delamination fracture toughness while circumventing the additional costs and defects imposed by post-layup stitching and z-pinning. Termed &lsquo;inter-weaving&rsquo;, the method uses custom placement sequences of thermoset prepreg tows to distribute regular fibre link regions in traditionally clean ply interfaces. Inter-weaving&rsquo;s impact on mode I delamination fracture toughness was evaluated experimentally through double cantilever beam tests (ASTM standard D5528-13) on [&plusmn;15&deg;]9 laminates made from Park Electrochemical Corp. E-752-LT 1/4&rdquo; carbon fibre prepreg tape. Unwoven and inter-woven automated fibre placement samples were compared to those of traditional laminates produced from standard uni-directional plies of the same material system. Unwoven automated fibre placement laminates were found to suffer a mostly constant 3.5% decrease in mode I delamination fracture toughness compared to flat uni-directional plies. Inter-weaving caused significant local fracture toughness increases (up to 50%), though these were offset by a matching overall reduction. These positive and negative behaviours of inter-woven laminates were respectively found to be caused by fibre breakage and matrix deformation at inter-weave sites, and the 3D layering of inter-woven ply interfaces providing numerous paths of least resistance for crack propagation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFP" title="AFP">AFP</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20fibre%20placement" title=" automated fibre placement"> automated fibre placement</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-weaving" title=" inter-weaving"> inter-weaving</a> </p> <a href="https://publications.waset.org/abstracts/80136/delamination-fracture-toughness-benefits-of-inter-woven-plies-in-composite-laminates-produced-through-automated-fibre-placement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">941</span> Nondestructive Testing for Reinforced Concrete Buildings with Active Infrared Thermography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huy%20Q.%20Tran">Huy Q. Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungwon%20Huh"> Jungwon Huh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiseok%20Kwak"> Kiseok Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Choonghyun%20Kang"> Choonghyun Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infrared thermography (IRT) technique has been proven to be a good method for nondestructive evaluation of concrete material. In the building, a broad range of applications has been used such as subsurface defect inspection, energy loss, and moisture detection. The purpose of this research is to consider the qualitative and quantitative performance of reinforced concrete deteriorations using active infrared thermography technique. An experiment of three different heating regimes was conducted on a concrete slab in the laboratory. The thermal characteristics of the IRT method, i.e., absolute contrast and observation time, are investigated. A linear relationship between the observation time and the real depth was established with a well linear regression R-squared of 0.931. The results showed that the absolute contrast above defective area increases with the rise of the size of delamination and the heating time. In addition, the depth of delamination can be predicted by using the proposal relationship of this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20building" title="concrete building">concrete building</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20evaluation" title=" nondestructive evaluation"> nondestructive evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20delamination" title=" subsurface delamination"> subsurface delamination</a> </p> <a href="https://publications.waset.org/abstracts/84378/nondestructive-testing-for-reinforced-concrete-buildings-with-active-infrared-thermography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">940</span> Numerical Study of Nonlinear Guided Waves in Composite Laminates with Delaminations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Soleimanpour">Reza Soleimanpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching%20Tai%20Ng"> Ching Tai Ng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fibre-composites are widely used in various structures due to their attractive properties such as higher stiffness to mass ratio and better corrosion resistance compared to metallic materials. However, one serious weakness of this composite material is delamination, which is a subsurface separation of laminae. A low level of this barely visible damage can cause a significant reduction in residual compressive strength. In the last decade, the application of guided waves for damage detection has been a topic of significant interest for many researches. Among all guided wave techniques, nonlinear guided wave has shown outstanding sensitivity and capability for detecting different types of damages, e.g. cracks and delaminations. So far, most of researches on applications of nonlinear guided wave have been dedicated to isotropic material, such as aluminium and steel, while only a few works have been done on applications of nonlinear characteristics of guided waves in anisotropic materials. This study investigates the nonlinear interactions of the fundamental antisymmetric lamb wave (A0) with delamination in composite laminates using three-dimensional (3D) explicit finite element (FE) simulations. The nonlinearity considered in this study arises from interactions of two interfaces of sub-laminates at the delamination region, which generates contact acoustic nonlinearity (CAN). The aim of this research is to investigate the phenomena of CAN in composite laminated beams by a series of numerical case studies. In this study interaction of fundamental antisymmetric lamb wave with delamination of different sizes are studied in detail. The results show that the A0 lamb wave interacts with the delaminations generating CAN in the form of higher harmonics, which is a good indicator for determining the existence of delaminations in composite laminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20acoustic%20nonlinearity" title="contact acoustic nonlinearity">contact acoustic nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20reinforced%20composite%20beam" title=" fibre reinforced composite beam"> fibre reinforced composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20guided%20waves" title=" nonlinear guided waves"> nonlinear guided waves</a> </p> <a href="https://publications.waset.org/abstracts/45425/numerical-study-of-nonlinear-guided-waves-in-composite-laminates-with-delaminations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">939</span> Nondestructive Evaluation of Hidden Delamination in Glass Fiber Composite Using Terahertz Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung-Hyeon%20Ryu">Chung-Hyeon Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Do-Hyoung%20Kim"> Do-Hyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hak-Sung%20Kim"> Hak-Sung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the use of the composites was increased, the detecting method of hidden damages which have an effect on performance of the composite was important. Terahertz (THz) spectroscopy was assessed as one of the new powerful nondestructive evaluation (NDE) techniques for fiber reinforced composite structures because it has many advantages which can overcome the limitations of conventional NDE techniques such as x-rays or ultrasound. The THz wave offers noninvasive, noncontact and nonionizing methods evaluating composite damages, also it gives a broad range of information about the material properties. In additions, it enables to detect the multiple-delaminations of various nonmetallic materials. In this study, the pulse type THz spectroscopy imaging system was devised and used for detecting and evaluating the hidden delamination in the glass fiber reinforced plastic (GFRP) composite laminates. The interaction between THz and the GFRP composite was analyzed respect to the type of delamination, including their thickness, size and numbers of overlaps among multiple-delaminations in through-thickness direction. Both of transmission and reflection configurations were used for evaluation of hidden delaminations and THz wave propagations through the delaminations were also discussed. From these results, various hidden delaminations inside of the GFRP composite were successfully detected using time-domain THz spectroscopy imaging system and also compared to the results of C-scan inspection. It is expected that THz NDE technique will be widely used to evaluate the reliability of composite structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terahertz" title="terahertz">terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber%20reinforced%20plastic%20composites" title=" glass fiber reinforced plastic composites"> glass fiber reinforced plastic composites</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz%20spectroscopy" title=" terahertz spectroscopy"> terahertz spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/20529/nondestructive-evaluation-of-hidden-delamination-in-glass-fiber-composite-using-terahertz-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">938</span> Soap Film Enneper Minimal Surface Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yee%20Hooi%20Min">Yee Hooi Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohdnasir%20Abdul%20Hadi"> Mohdnasir Abdul Hadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tensioned membrane structure in the form of Enneper minimal surface can be considered as a sustainable development for the green environment and technology, it also can be used to support the effectiveness used of energy and the structure. Soap film in the form of Enneper minimal surface model has been studied. The combination of shape and internal forces for the purpose of stiffness and strength is an important feature of membrane surface. For this purpose, form-finding using soap film model has been carried out for Enneper minimal surface models with variables u=v=0.6 and u=v=1.0. Enneper soap film models with variables u=v=0.6 and u=v=1.0 provides an alternative choice for structural engineers to consider the tensioned membrane structure in the form of Enneper minimal surface applied in the building industry. It is expected to become an alternative building material to be considered by the designer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enneper" title="Enneper">Enneper</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20surface" title=" minimal surface"> minimal surface</a>, <a href="https://publications.waset.org/abstracts/search?q=soap%20film" title=" soap film"> soap film</a>, <a href="https://publications.waset.org/abstracts/search?q=tensioned%20membrane%20structure" title=" tensioned membrane structure"> tensioned membrane structure</a> </p> <a href="https://publications.waset.org/abstracts/20780/soap-film-enneper-minimal-surface-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">937</span> An Improved Lower Bound for Minimal-Area Convex Cover for Closed Unit Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Som-Am">S. Som-Am</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Grechuk"> B. Grechuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moser’s worm problem is the unsolved problem in geometry which asks for the minimal area of a convex region on the plane which can cover all curves of unit length, assuming that curves may be rotated and translated to fit inside the region. We study a version of this problem asking for a minimal convex cover for closed unit curves. By combining geometric methods with numerical box’s search algorithm, we show that any such cover should have an area at least 0.0975. This improves the best previous lower bound of 0.096694. In fact, we show that the minimal area of convex hull of circle, equilateral triangle, and rectangle of perimeter 1 is between 0.0975 and 0.09763. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moser%E2%80%99s%20worm%20problem" title="Moser’s worm problem">Moser’s worm problem</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20arcs" title=" closed arcs"> closed arcs</a>, <a href="https://publications.waset.org/abstracts/search?q=convex%20cover" title=" convex cover"> convex cover</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal-area%20cover" title=" minimal-area cover"> minimal-area cover</a> </p> <a href="https://publications.waset.org/abstracts/92526/an-improved-lower-bound-for-minimal-area-convex-cover-for-closed-unit-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">936</span> An Investigation on the Energy Absorption of Sandwich Panels With Aluminium Foam Core under Perforation Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minoo%20Tavakoli">Minoo Tavakoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Zebarjad"> Mojtaba Zebarjad</a>, <a href="https://publications.waset.org/abstracts/search?q=Golestanipour"> Golestanipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metallic sandwich structures with aluminum foam core are good energy absorbers. In this paper, perforation test were carried out on different samples to study energy absorption. In the experiments, effect of several parameters, i.e. skin thickness and thickness of foam core, on the energy absorption, delamination zone of back faces and deformation strain(φ) are discussed. Results show that increasing plates thickness will results in more absorbed energy and delamination. Moreover, thickening foam core has the same effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandwich%20panel" title="sandwich panel">sandwich panel</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium%20foam" title=" aluminium foam"> aluminium foam</a>, <a href="https://publications.waset.org/abstracts/search?q=perforation" title=" perforation"> perforation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a> </p> <a href="https://publications.waset.org/abstracts/15966/an-investigation-on-the-energy-absorption-of-sandwich-panels-with-aluminium-foam-core-under-perforation-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">935</span> Analytical Solution of the Boundary Value Problem of Delaminated Doubly-Curved Composite Shells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A1s%20Szekr%C3%A9nyes">András Szekrényes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Delamination is one of the major failure modes in laminated composite structures. Delamination tips are mostly captured by spatial numerical models in order to predict crack growth. This paper presents some mechanical models of delaminated composite shells based on shallow shell theories. The mechanical fields are based on a third-order displacement field in terms of the through-thickness coordinate of the laminated shell. The undelaminated and delaminated parts are captured by separate models and the continuity and boundary conditions are also formulated in a general way providing a large size boundary value problem. The system of differential equations is solved by the state space method for an elliptic delaminated shell having simply supported edges. The comparison of the proposed and a numerical model indicates that the primary indicator of the model is the deflection, the secondary is the widthwise distribution of the energy release rate. The model is promising and suitable to determine accurately the J-integral distribution along the delamination front. Based on the proposed model it is also possible to develop finite elements which are able to replace the computationally expensive spatial models of delaminated structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=J-integral" title="J-integral">J-integral</a>, <a href="https://publications.waset.org/abstracts/search?q=levy%20method" title=" levy method"> levy method</a>, <a href="https://publications.waset.org/abstracts/search?q=third-order%20shell%20theory" title=" third-order shell theory"> third-order shell theory</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20space%20solution" title=" state space solution"> state space solution</a> </p> <a href="https://publications.waset.org/abstracts/110163/analytical-solution-of-the-boundary-value-problem-of-delaminated-doubly-curved-composite-shells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20delamination&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20delamination&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20delamination&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20delamination&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20delamination&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20delamination&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20delamination&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20delamination&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20delamination&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20delamination&amp;page=32">32</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20delamination&amp;page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20delamination&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10