CINXE.COM
De Broglie–Bohm theory - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>De Broglie–Bohm theory - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"141fa0e1-be32-4b73-acaf-5370a9efc1ae","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"De_Broglie–Bohm_theory","wgTitle":"De Broglie–Bohm theory","wgCurRevisionId":1256040229,"wgRevisionId":1256040229,"wgArticleId":54717,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","Articles with short description","Short description matches Wikidata","Use American English from January 2019","All Wikipedia articles written in American English","Use dmy dates from January 2022","Articles needing additional references from September 2024","All articles needing additional references","Wikipedia articles needing clarification from March 2018","All articles with unsourced statements", "Articles with unsourced statements from August 2024","Wikipedia articles needing clarification from August 2024","Pages using div col with small parameter","Interpretations of quantum mechanics","Quantum measurement"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"De_Broglie–Bohm_theory","wgRelevantArticleId":54717,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[], "wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q899444","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript": "ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="De Broglie–Bohm theory - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/De_Broglie%E2%80%93Bohm_theory"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/De_Broglie%E2%80%93Bohm_theory"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-De_Broglie–Bohm_theory rootpage-De_Broglie–Bohm_theory skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=De+Broglie%E2%80%93Bohm+theory" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=De+Broglie%E2%80%93Bohm+theory" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=De+Broglie%E2%80%93Bohm+theory" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=De+Broglie%E2%80%93Bohm+theory" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Overview" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Overview"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Overview</span> </div> </a> <button aria-controls="toc-Overview-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Overview subsection</span> </button> <ul id="toc-Overview-sublist" class="vector-toc-list"> <li id="toc-Double-slit_experiment" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Double-slit_experiment"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Double-slit experiment</span> </div> </a> <ul id="toc-Double-slit_experiment-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Theory" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Theory</span> </div> </a> <button aria-controls="toc-Theory-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Theory subsection</span> </button> <ul id="toc-Theory-sublist" class="vector-toc-list"> <li id="toc-The_pilot_wave" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_pilot_wave"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>The pilot wave</span> </div> </a> <ul id="toc-The_pilot_wave-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Guiding_equation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Guiding_equation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Guiding equation</span> </div> </a> <ul id="toc-Guiding_equation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Schrödinger's_equation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Schrödinger's_equation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Schrödinger's equation</span> </div> </a> <ul id="toc-Schrödinger's_equation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_to_the_Born_rule" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relation_to_the_Born_rule"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Relation to the Born rule</span> </div> </a> <ul id="toc-Relation_to_the_Born_rule-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_conditional_wavefunction_of_a_subsystem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_conditional_wavefunction_of_a_subsystem"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>The conditional wavefunction of a subsystem</span> </div> </a> <ul id="toc-The_conditional_wavefunction_of_a_subsystem-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Extensions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Extensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Extensions</span> </div> </a> <button aria-controls="toc-Extensions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Extensions subsection</span> </button> <ul id="toc-Extensions-sublist" class="vector-toc-list"> <li id="toc-Relativity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relativity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Relativity</span> </div> </a> <ul id="toc-Relativity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spin" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spin"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Spin</span> </div> </a> <ul id="toc-Spin-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Stochastic_electrodynamics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stochastic_electrodynamics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Stochastic electrodynamics</span> </div> </a> <ul id="toc-Stochastic_electrodynamics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_field_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_field_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Quantum field theory</span> </div> </a> <ul id="toc-Quantum_field_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Curved_space" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Curved_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Curved space</span> </div> </a> <ul id="toc-Curved_space-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Exploiting_nonlocality" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exploiting_nonlocality"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Exploiting nonlocality</span> </div> </a> <ul id="toc-Exploiting_nonlocality-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Results" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Results"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Results</span> </div> </a> <button aria-controls="toc-Results-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Results subsection</span> </button> <ul id="toc-Results-sublist" class="vector-toc-list"> <li id="toc-Measuring_spin_and_polarization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Measuring_spin_and_polarization"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Measuring spin and polarization</span> </div> </a> <ul id="toc-Measuring_spin_and_polarization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Measurements,_the_quantum_formalism,_and_observer_independence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Measurements,_the_quantum_formalism,_and_observer_independence"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Measurements, the quantum formalism, and observer independence</span> </div> </a> <ul id="toc-Measurements,_the_quantum_formalism,_and_observer_independence-sublist" class="vector-toc-list"> <li id="toc-Collapse_of_the_wavefunction" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Collapse_of_the_wavefunction"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.1</span> <span>Collapse of the wavefunction</span> </div> </a> <ul id="toc-Collapse_of_the_wavefunction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Operators_as_observables" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Operators_as_observables"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.2</span> <span>Operators as observables</span> </div> </a> <ul id="toc-Operators_as_observables-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hidden_variables" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Hidden_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.3</span> <span>Hidden variables</span> </div> </a> <ul id="toc-Hidden_variables-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Different_predictions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Different_predictions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Different predictions</span> </div> </a> <ul id="toc-Different_predictions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Heisenberg's_uncertainty_principle" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Heisenberg's_uncertainty_principle"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Heisenberg's uncertainty principle</span> </div> </a> <ul id="toc-Heisenberg's_uncertainty_principle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_entanglement,_Einstein–Podolsky–Rosen_paradox,_Bell's_theorem,_and_nonlocality" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_entanglement,_Einstein–Podolsky–Rosen_paradox,_Bell's_theorem,_and_nonlocality"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Quantum entanglement, Einstein–Podolsky–Rosen paradox, Bell's theorem, and nonlocality</span> </div> </a> <ul id="toc-Quantum_entanglement,_Einstein–Podolsky–Rosen_paradox,_Bell's_theorem,_and_nonlocality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Classical_limit" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Classical_limit"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Classical limit</span> </div> </a> <ul id="toc-Classical_limit-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_trajectory_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_trajectory_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Quantum trajectory method</span> </div> </a> <ul id="toc-Quantum_trajectory_method-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Similarities_with_the_many-worlds_interpretation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Similarities_with_the_many-worlds_interpretation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Similarities with the many-worlds interpretation</span> </div> </a> <ul id="toc-Similarities_with_the_many-worlds_interpretation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Occam's-razor_criticism" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Occam's-razor_criticism"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Occam's-razor criticism</span> </div> </a> <ul id="toc-Occam's-razor_criticism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Derivations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Derivations</span> </div> </a> <ul id="toc-Derivations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Pilot-wave_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pilot-wave_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Pilot-wave theory</span> </div> </a> <ul id="toc-Pilot-wave_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bohmian_mechanics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bohmian_mechanics"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Bohmian mechanics</span> </div> </a> <ul id="toc-Bohmian_mechanics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Causal_interpretation_and_ontological_interpretation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Causal_interpretation_and_ontological_interpretation"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Causal interpretation and ontological interpretation</span> </div> </a> <ul id="toc-Causal_interpretation_and_ontological_interpretation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hydrodynamic_quantum_analogs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hydrodynamic_quantum_analogs"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4</span> <span>Hydrodynamic quantum analogs</span> </div> </a> <ul id="toc-Hydrodynamic_quantum_analogs-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Surrealistic_trajectories" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Surrealistic_trajectories"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Surrealistic trajectories</span> </div> </a> <ul id="toc-Surrealistic_trajectories-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">De Broglie–Bohm theory</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 19 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-19" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">19 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%86%D8%B8%D8%B1%D9%8A%D8%A9_%D8%AF%D9%8A_%D8%A8%D8%B1%D9%88%D9%8A-%D8%A8%D9%88%D9%85" title="نظرية دي بروي-بوم – Arabic" lang="ar" hreflang="ar" data-title="نظرية دي بروي-بوم" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Teoria_de_Broglie-Bohm" title="Teoria de Broglie-Bohm – Catalan" lang="ca" hreflang="ca" data-title="Teoria de Broglie-Bohm" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Pilotb%C3%B8lge-teorien" title="Pilotbølge-teorien – Danish" lang="da" hreflang="da" data-title="Pilotbølge-teorien" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/De-Broglie-Bohm-Theorie" title="De-Broglie-Bohm-Theorie – German" lang="de" hreflang="de" data-title="De-Broglie-Bohm-Theorie" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Interpretaci%C3%B3n_de_Bohm" title="Interpretación de Bohm – Spanish" lang="es" hreflang="es" data-title="Interpretación de Bohm" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%DA%A9%D8%A7%D9%86%DB%8C%DA%A9_%D8%A8%D9%88%D9%87%D9%85%DB%8C" title="مکانیک بوهمی – Persian" lang="fa" hreflang="fa" data-title="مکانیک بوهمی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Th%C3%A9orie_de_De_Broglie-Bohm" title="Théorie de De Broglie-Bohm – French" lang="fr" hreflang="fr" data-title="Théorie de De Broglie-Bohm" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%93%9C_%EB%B8%8C%EB%A1%9C%EC%9D%B4-%EB%B4%84_%EC%9D%B4%EB%A1%A0" title="드 브로이-봄 이론 – Korean" lang="ko" hreflang="ko" data-title="드 브로이-봄 이론" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Interpretazione_di_Bohm" title="Interpretazione di Bohm – Italian" lang="it" hreflang="it" data-title="Interpretazione di Bohm" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%AA%D7%90%D7%95%D7%A8%D7%99%D7%99%D7%AA_%D7%93%D7%94_%D7%91%D7%A8%D7%95%D7%99%D7%99-%D7%91%D7%95%D7%94%D7%9D" title="תאוריית דה ברויי-בוהם – Hebrew" lang="he" hreflang="he" data-title="תאוריית דה ברויי-בוהם" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Theoria_undarum_gubernatoriarum_De_Broglie-Bohm" title="Theoria undarum gubernatoriarum De Broglie-Bohm – Latin" lang="la" hreflang="la" data-title="Theoria undarum gubernatoriarum De Broglie-Bohm" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%9C%E3%83%BC%E3%83%A0%E8%A7%A3%E9%87%88" title="ボーム解釈 – Japanese" lang="ja" hreflang="ja" data-title="ボーム解釈" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%A1%E0%A9%80_%E0%A8%AC%E0%A9%8D%E0%A8%B0%E0%A9%8B%E0%A8%97%E0%A8%B2%E0%A8%BE%E0%A8%87-%E0%A8%AC%E0%A9%8B%E0%A8%B9%E0%A8%AE_%E0%A8%A5%E0%A8%BF%E0%A8%8A%E0%A8%B0%E0%A9%80" title="ਡੀ ਬ੍ਰੋਗਲਾਇ-ਬੋਹਮ ਥਿਊਰੀ – Punjabi" lang="pa" hreflang="pa" data-title="ਡੀ ਬ੍ਰੋਗਲਾਇ-ਬੋਹਮ ਥਿਊਰੀ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Teoria_de_Broglie%E2%80%99a-Bohma" title="Teoria de Broglie’a-Bohma – Polish" lang="pl" hreflang="pl" data-title="Teoria de Broglie’a-Bohma" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Interpreta%C3%A7%C3%A3o_de_Bohm" title="Interpretação de Bohm – Portuguese" lang="pt" hreflang="pt" data-title="Interpretação de Bohm" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B4%D0%B5_%D0%91%D1%80%D0%BE%D0%B9%D0%BB%D1%8F_%E2%80%94_%D0%91%D0%BE%D0%BC%D0%B0" title="Теория де Бройля — Бома – Russian" lang="ru" hreflang="ru" data-title="Теория де Бройля — Бома" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Pilot_dalga_teorisi" title="Pilot dalga teorisi – Turkish" lang="tr" hreflang="tr" data-title="Pilot dalga teorisi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D1%96%D1%8F_%D0%B4%D0%B5_%D0%91%D1%80%D0%BE%D0%B9%D0%BB%D1%8F_%E2%80%94_%D0%91%D0%BE%D0%BC%D0%B0" title="Теорія де Бройля — Бома – Ukrainian" lang="uk" hreflang="uk" data-title="Теорія де Бройля — Бома" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%BE%B7%E5%B8%83%E7%BD%97%E6%84%8F-%E7%8E%BB%E5%A7%86%E7%90%86%E8%AE%BA" title="德布罗意-玻姆理论 – Chinese" lang="zh" hreflang="zh" data-title="德布罗意-玻姆理论" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q899444#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/De_Broglie%E2%80%93Bohm_theory" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:De_Broglie%E2%80%93Bohm_theory" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/De_Broglie%E2%80%93Bohm_theory"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/De_Broglie%E2%80%93Bohm_theory"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/De_Broglie%E2%80%93Bohm_theory" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/De_Broglie%E2%80%93Bohm_theory" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&oldid=1256040229" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=De_Broglie%E2%80%93Bohm_theory&id=1256040229&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDe_Broglie%25E2%2580%2593Bohm_theory"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDe_Broglie%25E2%2580%2593Bohm_theory"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=De_Broglie%E2%80%93Bohm_theory&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/De_Broglie%E2%80%93Bohm_theory" hreflang="en"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q899444" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Interpretation of quantum mechanics</div> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist nowraplinks" style="width:19.0em;"><tbody><tr><td class="sidebar-pretitle">Part of a series of articles about</td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanics</a></th></tr><tr><td class="sidebar-image"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1799e4a910c7d26396922a20ef5ceec25ca1871c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:16.882ex; height:5.509ex;" alt="{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }"></span><div class="sidebar-caption" style="font-size:90%;padding-top:0.4em;font-style:italic;"><a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger equation</a></div></td></tr><tr><td class="sidebar-above hlist nowrap" style="display:block;margin-bottom:0.4em;"> <ul><li><a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">Introduction</a></li> <li><a href="/wiki/Glossary_of_elementary_quantum_mechanics" title="Glossary of elementary quantum mechanics">Glossary</a></li> <li><a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">History</a></li></ul></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Background</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></li> <li><a href="/wiki/Old_quantum_theory" title="Old quantum theory">Old quantum theory</a></li> <li><a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">Bra–ket notation</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a></li> <li><a href="/wiki/Wave_interference" title="Wave interference">Interference</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Fundamentals</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Complementarity_(physics)" title="Complementarity (physics)">Complementarity</a></li> <li><a href="/wiki/Quantum_decoherence" title="Quantum decoherence">Decoherence</a></li> <li><a href="/wiki/Quantum_entanglement" title="Quantum entanglement">Entanglement</a></li> <li><a href="/wiki/Energy_level" title="Energy level">Energy level</a></li> <li><a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">Measurement</a></li> <li><a href="/wiki/Quantum_nonlocality" title="Quantum nonlocality">Nonlocality</a></li> <li><a href="/wiki/Quantum_number" title="Quantum number">Quantum number</a></li> <li><a href="/wiki/Quantum_state" title="Quantum state">State</a></li> <li><a href="/wiki/Quantum_superposition" title="Quantum superposition">Superposition</a></li> <li><a href="/wiki/Symmetry_in_quantum_mechanics" title="Symmetry in quantum mechanics">Symmetry</a></li> <li><a href="/wiki/Quantum_tunnelling" title="Quantum tunnelling">Tunnelling</a></li> <li><a href="/wiki/Uncertainty_principle" title="Uncertainty principle">Uncertainty</a></li> <li><a href="/wiki/Wave_function" title="Wave function">Wave function</a> <ul><li><a href="/wiki/Wave_function_collapse" title="Wave function collapse">Collapse</a></li></ul></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Experiments</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Bell_test" title="Bell test">Bell's inequality</a></li> <li><a href="/wiki/CHSH_inequality" title="CHSH inequality">CHSH inequality</a></li> <li><a href="/wiki/Davisson%E2%80%93Germer_experiment" title="Davisson–Germer experiment">Davisson–Germer</a></li> <li><a href="/wiki/Double-slit_experiment" title="Double-slit experiment">Double-slit</a></li> <li><a href="/wiki/Elitzur%E2%80%93Vaidman_bomb_tester" title="Elitzur–Vaidman bomb tester">Elitzur–Vaidman</a></li> <li><a href="/wiki/Franck%E2%80%93Hertz_experiment" title="Franck–Hertz experiment">Franck–Hertz</a></li> <li><a href="/wiki/Leggett_inequality" title="Leggett inequality">Leggett inequality</a></li> <li><a href="/wiki/Leggett%E2%80%93Garg_inequality" title="Leggett–Garg inequality">Leggett–Garg inequality</a></li> <li><a href="/wiki/Mach%E2%80%93Zehnder_interferometer" title="Mach–Zehnder interferometer">Mach–Zehnder</a></li> <li><a href="/wiki/Popper%27s_experiment" title="Popper's experiment">Popper</a></li></ul> </div> <ul><li><a href="/wiki/Quantum_eraser_experiment" title="Quantum eraser experiment">Quantum eraser</a> <ul><li><a href="/wiki/Delayed-choice_quantum_eraser" title="Delayed-choice quantum eraser">Delayed-choice</a></li></ul></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat" title="Schrödinger's cat">Schrödinger's cat</a></li> <li><a href="/wiki/Stern%E2%80%93Gerlach_experiment" title="Stern–Gerlach experiment">Stern–Gerlach</a></li> <li><a href="/wiki/Wheeler%27s_delayed-choice_experiment" title="Wheeler's delayed-choice experiment">Wheeler's delayed-choice</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Formulations</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">Overview</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Heisenberg_picture" title="Heisenberg picture">Heisenberg</a></li> <li><a href="/wiki/Interaction_picture" title="Interaction picture">Interaction</a></li> <li><a href="/wiki/Matrix_mechanics" title="Matrix mechanics">Matrix</a></li> <li><a href="/wiki/Phase-space_formulation" title="Phase-space formulation">Phase-space</a></li> <li><a href="/wiki/Schr%C3%B6dinger_picture" title="Schrödinger picture">Schrödinger</a></li> <li><a href="/wiki/Path_integral_formulation" title="Path integral formulation">Sum-over-histories (path integral)</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Equations</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Dirac_equation" title="Dirac equation">Dirac</a></li> <li><a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon</a></li> <li><a href="/wiki/Pauli_equation" title="Pauli equation">Pauli</a></li> <li><a href="/wiki/Rydberg_formula" title="Rydberg formula">Rydberg</a></li> <li><a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">Interpretations</a></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Quantum_Bayesianism" title="Quantum Bayesianism">Bayesian</a></li> <li><a href="/wiki/Consistent_histories" title="Consistent histories">Consistent histories</a></li> <li><a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen</a></li> <li><a class="mw-selflink selflink">de Broglie–Bohm</a></li> <li><a href="/wiki/Ensemble_interpretation" title="Ensemble interpretation">Ensemble</a></li> <li><a href="/wiki/Hidden-variable_theory" title="Hidden-variable theory">Hidden-variable</a> <ul><li><a href="/wiki/Local_hidden-variable_theory" title="Local hidden-variable theory">Local</a> <ul><li><a href="/wiki/Superdeterminism" title="Superdeterminism">Superdeterminism</a></li></ul></li></ul></li> <li><a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">Many-worlds</a></li> <li><a href="/wiki/Objective-collapse_theory" title="Objective-collapse theory">Objective-collapse</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Relational_quantum_mechanics" title="Relational quantum mechanics">Relational</a></li> <li><a href="/wiki/Transactional_interpretation" title="Transactional interpretation">Transactional</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Wigner_interpretation" title="Von Neumann–Wigner interpretation">Von Neumann–Wigner</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Advanced topics</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">Relativistic quantum mechanics</a></li> <li><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theory</a></li> <li><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a></li> <li><a href="/wiki/Quantum_chaos" title="Quantum chaos">Quantum chaos</a></li> <li><a href="/wiki/Einstein%E2%80%93Podolsky%E2%80%93Rosen_paradox" title="Einstein–Podolsky–Rosen paradox">EPR paradox</a></li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density matrix</a></li> <li><a href="/wiki/Scattering_theory" class="mw-redirect" title="Scattering theory">Scattering theory</a></li> <li><a href="/wiki/Quantum_statistical_mechanics" title="Quantum statistical mechanics">Quantum statistical mechanics</a></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Scientists</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Yakir_Aharonov" title="Yakir Aharonov">Aharonov</a></li> <li><a href="/wiki/John_Stewart_Bell" title="John Stewart Bell">Bell</a></li> <li><a href="/wiki/Hans_Bethe" title="Hans Bethe">Bethe</a></li> <li><a href="/wiki/Patrick_Blackett" title="Patrick Blackett">Blackett</a></li> <li><a href="/wiki/Felix_Bloch" title="Felix Bloch">Bloch</a></li> <li><a href="/wiki/David_Bohm" title="David Bohm">Bohm</a></li> <li><a href="/wiki/Niels_Bohr" title="Niels Bohr">Bohr</a></li> <li><a href="/wiki/Max_Born" title="Max Born">Born</a></li> <li><a href="/wiki/Satyendra_Nath_Bose" title="Satyendra Nath Bose">Bose</a></li> <li><a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">de Broglie</a></li> <li><a href="/wiki/Arthur_Compton" title="Arthur Compton">Compton</a></li> <li><a href="/wiki/Paul_Dirac" title="Paul Dirac">Dirac</a></li> <li><a href="/wiki/Clinton_Davisson" title="Clinton Davisson">Davisson</a></li> <li><a href="/wiki/Peter_Debye" title="Peter Debye">Debye</a></li> <li><a href="/wiki/Paul_Ehrenfest" title="Paul Ehrenfest">Ehrenfest</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a></li> <li><a href="/wiki/Hugh_Everett_III" title="Hugh Everett III">Everett</a></li> <li><a href="/wiki/Vladimir_Fock" title="Vladimir Fock">Fock</a></li> <li><a href="/wiki/Enrico_Fermi" title="Enrico Fermi">Fermi</a></li> <li><a href="/wiki/Richard_Feynman" title="Richard Feynman">Feynman</a></li> <li><a href="/wiki/Roy_J._Glauber" title="Roy J. Glauber">Glauber</a></li> <li><a href="/wiki/Martin_Gutzwiller" title="Martin Gutzwiller">Gutzwiller</a></li> <li><a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Heisenberg</a></li> <li><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a></li> <li><a href="/wiki/Pascual_Jordan" title="Pascual Jordan">Jordan</a></li> <li><a href="/wiki/Hans_Kramers" title="Hans Kramers">Kramers</a></li> <li><a href="/wiki/Willis_Lamb" title="Willis Lamb">Lamb</a></li> <li><a href="/wiki/Lev_Landau" title="Lev Landau">Landau</a></li> <li><a href="/wiki/Max_von_Laue" title="Max von Laue">Laue</a></li> <li><a href="/wiki/Henry_Moseley" title="Henry Moseley">Moseley</a></li> <li><a href="/wiki/Robert_Andrews_Millikan" title="Robert Andrews Millikan">Millikan</a></li> <li><a href="/wiki/Heike_Kamerlingh_Onnes" title="Heike Kamerlingh Onnes">Onnes</a></li> <li><a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Pauli</a></li> <li><a href="/wiki/Max_Planck" title="Max Planck">Planck</a></li> <li><a href="/wiki/Isidor_Isaac_Rabi" title="Isidor Isaac Rabi">Rabi</a></li> <li><a href="/wiki/C._V._Raman" title="C. V. Raman">Raman</a></li> <li><a href="/wiki/Johannes_Rydberg" title="Johannes Rydberg">Rydberg</a></li> <li><a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Schrödinger</a></li> <li><a href="/wiki/Michelle_Simmons" title="Michelle Simmons">Simmons</a></li> <li><a href="/wiki/Arnold_Sommerfeld" title="Arnold Sommerfeld">Sommerfeld</a></li> <li><a href="/wiki/John_von_Neumann" title="John von Neumann">von Neumann</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl</a></li> <li><a href="/wiki/Wilhelm_Wien" title="Wilhelm Wien">Wien</a></li> <li><a href="/wiki/Eugene_Wigner" title="Eugene Wigner">Wigner</a></li> <li><a href="/wiki/Pieter_Zeeman" title="Pieter Zeeman">Zeeman</a></li> <li><a href="/wiki/Anton_Zeilinger" title="Anton Zeilinger">Zeilinger</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-navbar" style="border-top:1px solid #aaa;padding-top:0.1em;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_mechanics" title="Template:Quantum mechanics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_mechanics" title="Template talk:Quantum mechanics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_mechanics" title="Special:EditPage/Template:Quantum mechanics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>The <b>de Broglie–Bohm theory</b><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> is an <a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">interpretation</a> of <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> which postulates that, in addition to the <a href="/wiki/Wavefunction" class="mw-redirect" title="Wavefunction">wavefunction</a>, an actual configuration of particles exists, even when unobserved. The evolution over time of the configuration of all particles is defined by a <a href="#Guiding_equation">guiding equation</a>. The evolution of the wave function over time is given by the <a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger equation</a>. The theory is named after <a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">Louis de Broglie</a> (1892–1987) and <a href="/wiki/David_Bohm" title="David Bohm">David Bohm</a> (1917–1992). </p><p>The theory is <a href="/wiki/Deterministic_system" title="Deterministic system">deterministic</a><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> and explicitly <a href="/wiki/Principle_of_locality" title="Principle of locality">nonlocal</a>: the velocity of any one particle depends on the value of the guiding equation, which depends on the configuration of all the particles under consideration. </p><p>Measurements are a particular case of quantum processes described by the theory—for which it yields the same quantum predictions as other interpretations of quantum mechanics. The theory does not have a "<a href="/wiki/Measurement_problem" title="Measurement problem">measurement problem</a>", due to the fact that the particles have a definite configuration at all times. The <a href="/wiki/Born_rule" title="Born rule">Born rule</a> in de Broglie–Bohm theory is not a postulate. Rather, in this theory, the link between the probability density and the wave function has the status of a theorem, a result of a separate postulate, the "<a href="/wiki/Quantum_equilibrium_hypothesis" class="mw-redirect" title="Quantum equilibrium hypothesis">quantum equilibrium hypothesis</a>", which is additional to the basic principles governing the wave function. There are several equivalent <a href="#Derivations">mathematical formulations</a> of the theory. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Overview">Overview</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=1" title="Edit section: Overview"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>De Broglie–Bohm theory is based on the following postulates: </p> <ul><li>There is a configuration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> of the universe, described by coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc9b1525f5a653e19f9fd37fd2701a768e171632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.168ex; height:3.009ex;" alt="{\displaystyle q^{k}}"></span>, which is an element of the configuration space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span>. The configuration space is different for different versions of pilot-wave theory. For example, this may be the space of positions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Q} _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Q} _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b5e8415b63b5600e16dd0001ae83bbe85885d63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.097ex; height:2.676ex;" alt="{\displaystyle \mathbf {Q} _{k}}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> particles, or, in case of field theory, the space of field configurations <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546b660b2f3cfb5f34be7b3ed8371d54f5c74227" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.524ex; height:2.843ex;" alt="{\displaystyle \phi (x)}"></span>. The configuration evolves (for spin=0) according to the guiding equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{k}{\frac {dq^{k}}{dt}}(t)=\hbar \nabla _{k}\operatorname {Im} \ln \psi (q,t)=\hbar \operatorname {Im} \left({\frac {\nabla _{k}\psi }{\psi }}\right)(q,t)={\frac {m_{k}\mathbf {j} _{k}}{\psi ^{*}\psi }}=\operatorname {Re} \left({\frac {\mathbf {\hat {P}} _{k}\Psi }{\Psi }}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>Im</mi> <mo>⁡<!-- --></mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mi>Im</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>ψ<!-- ψ --></mi> </mrow> <mi>ψ<!-- ψ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>ψ<!-- ψ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>Re</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">P</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{k}{\frac {dq^{k}}{dt}}(t)=\hbar \nabla _{k}\operatorname {Im} \ln \psi (q,t)=\hbar \operatorname {Im} \left({\frac {\nabla _{k}\psi }{\psi }}\right)(q,t)={\frac {m_{k}\mathbf {j} _{k}}{\psi ^{*}\psi }}=\operatorname {Re} \left({\frac {\mathbf {\hat {P}} _{k}\Psi }{\Psi }}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abd3ad407a1da576a55f7df29d776900c04eb0b4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:75.383ex; height:7.509ex;" alt="{\displaystyle m_{k}{\frac {dq^{k}}{dt}}(t)=\hbar \nabla _{k}\operatorname {Im} \ln \psi (q,t)=\hbar \operatorname {Im} \left({\frac {\nabla _{k}\psi }{\psi }}\right)(q,t)={\frac {m_{k}\mathbf {j} _{k}}{\psi ^{*}\psi }}=\operatorname {Re} \left({\frac {\mathbf {\hat {P}} _{k}\Psi }{\Psi }}\right),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {j} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {j} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca5d874dbb32b8b33e83ca521f592808387a486e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.164ex; width:0.98ex; height:2.509ex;" alt="{\displaystyle \mathbf {j} }"></span> is the <a href="/wiki/Probability_current" title="Probability current">probability current</a> or probability flux, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {P}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">P</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\hat {P}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfc3943cde360004c44c69724f23ec5001088451" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.843ex;" alt="{\displaystyle \mathbf {\hat {P}} }"></span> is the <a href="/wiki/Momentum_operator" title="Momentum operator">momentum operator</a>. Here, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (q,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (q,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ae63ac01548619f4c3c78988c4a0c54d1c73f3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.266ex; height:2.843ex;" alt="{\displaystyle \psi (q,t)}"></span> is the standard complex-valued wavefunction from quantum theory, which evolves according to <a href="/wiki/Schr%C3%B6dinger%27s_equation" class="mw-redirect" title="Schrödinger's equation">Schrödinger's equation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\psi (q,t)=-\sum _{i=1}^{N}{\frac {\hbar ^{2}}{2m_{i}}}\nabla _{i}^{2}\psi (q,t)+V(q)\psi (q,t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msubsup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>V</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {\partial }{\partial t}}\psi (q,t)=-\sum _{i=1}^{N}{\frac {\hbar ^{2}}{2m_{i}}}\nabla _{i}^{2}\psi (q,t)+V(q)\psi (q,t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff5ab65bd1afc1b87cc0e143f6baf8be10fceb76" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:48.917ex; height:7.343ex;" alt="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\psi (q,t)=-\sum _{i=1}^{N}{\frac {\hbar ^{2}}{2m_{i}}}\nabla _{i}^{2}\psi (q,t)+V(q)\psi (q,t).}"></span>This completes the specification of the theory for any quantum theory with Hamilton operator of type <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle H=\sum {\frac {1}{2m_{i}}}{\hat {p}}_{i}^{2}+V({\hat {q}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>H</mi> <mo>=</mo> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>V</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle H=\sum {\frac {1}{2m_{i}}}{\hat {p}}_{i}^{2}+V({\hat {q}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05853a1f365298882626b8a36226925852f46322" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:21.956ex; height:3.843ex;" alt="{\textstyle H=\sum {\frac {1}{2m_{i}}}{\hat {p}}_{i}^{2}+V({\hat {q}})}"></span>.</li> <li>The configuration is distributed according to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi (q,t)|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi (q,t)|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70c45eb3cadd021b2b94b8ffe8b74ad2ab4888a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.613ex; height:3.343ex;" alt="{\displaystyle |\psi (q,t)|^{2}}"></span> at some moment of time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>, and this consequently holds for all times. Such a state is named quantum equilibrium. With quantum equilibrium, this theory agrees with the results of standard quantum mechanics.</li></ul> <p>Even though this latter relation is frequently presented as an axiom of the theory, Bohm presented it as derivable from statistical-mechanical arguments in the original papers of 1952. This argument was further supported by the work of Bohm in 1953 and was substantiated by Vigier and Bohm's paper of 1954, in which they introduced stochastic <i>fluid fluctuations</i> that drive a process of asymptotic relaxation from <a href="/wiki/Quantum_non-equilibrium" title="Quantum non-equilibrium">quantum non-equilibrium</a> to quantum equilibrium (ρ → |ψ|<sup>2</sup>).<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Double-slit_experiment">Double-slit experiment</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=2" title="Edit section: Double-slit experiment"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Doppelspalt.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Doppelspalt.svg/220px-Doppelspalt.svg.png" decoding="async" width="220" height="199" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Doppelspalt.svg/330px-Doppelspalt.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/02/Doppelspalt.svg/440px-Doppelspalt.svg.png 2x" data-file-width="249" data-file-height="225" /></a><figcaption>The Bohmian trajectories for an electron going through the two-slit experiment. A similar pattern was also extrapolated from <a href="/wiki/Weak_measurement" title="Weak measurement">weak measurements</a> of single photons.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>The <a href="/wiki/Double-slit_experiment" title="Double-slit experiment">double-slit experiment</a> is an illustration of <a href="/wiki/Wave%E2%80%93particle_duality" title="Wave–particle duality">wave–particle duality</a>. In it, a beam of particles (such as electrons) travels through a barrier that has two slits. If a detector screen is on the side beyond the barrier, the pattern of detected particles shows interference fringes characteristic of waves arriving at the screen from two sources (the two slits); however, the interference pattern is made up of individual dots corresponding to particles that had arrived on the screen. The system seems to exhibit the behaviour of both waves (interference patterns) and particles (dots on the screen). </p><p>If this experiment is modified so that one slit is closed, no interference pattern is observed. Thus, the state of both slits affects the final results. It can also be arranged to have a minimally invasive detector at one of the slits to detect which slit the particle went through. When that is done, the interference pattern disappears.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>In de Broglie–Bohm theory, the wavefunction is defined at both slits, but each particle has a well-defined trajectory that passes through exactly one of the slits. The final position of the particle on the detector screen and the slit through which the particle passes is determined by the initial position of the particle. Such initial position is not knowable or controllable by the experimenter, so there is an appearance of randomness in the pattern of detection. In Bohm's 1952 papers he used the wavefunction to construct a <a href="/wiki/Quantum_potential" title="Quantum potential">quantum potential</a> that, when included in Newton's equations, gave the trajectories of the particles streaming through the two slits. In effect the wavefunction interferes with itself and guides the particles by the quantum potential in such a way that the particles avoid the regions in which the interference is destructive and are attracted to the regions in which the interference is constructive, resulting in the interference pattern on the detector screen. </p><p>To explain the behavior when the particle is detected to go through one slit, one needs to appreciate the role of the conditional wavefunction and how it results in the collapse of the wavefunction; this is explained below. The basic idea is that the environment registering the detection effectively separates the two wave packets in configuration space. </p> <div class="mw-heading mw-heading2"><h2 id="Theory">Theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=3" title="Edit section: Theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="The_pilot_wave">The pilot wave</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=4" title="Edit section: The pilot wave"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The de Broglie–Bohm theory describes a pilot wave <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (q,t)\in \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (q,t)\in \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3b2a581123491b6a7dd9be1090ae3a33a4003f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.784ex; height:2.843ex;" alt="{\displaystyle \psi (q,t)\in \mathbb {C} }"></span> in a <a href="/wiki/Configuration_space_(physics)" title="Configuration space (physics)"> configuration space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> and trajectories <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q(t)\in Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q(t)\in Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9af5124a7bc57d22d5717abbf1b3e943466c52b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.397ex; height:2.843ex;" alt="{\displaystyle q(t)\in Q}"></span> of particles as in classical mechanics but defined by non-Newtonian mechanics.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> At every moment of time there exists not only a wavefunction, but also a well-defined configuration of the whole universe (i.e., the system as defined by the boundary conditions used in solving the Schrödinger equation). </p><p>The de Broglie–Bohm theory works on particle positions and trajectories like <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a> but the dynamics are different. In classical mechanics, the accelerations of the particles are imparted directly by forces, which exist in physical three-dimensional space. In de Broglie–Bohm theory, the quantum "field exerts a new kind of "quantum-mechanical" force".<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 76">: 76 </span></sup> Bohm hypothesized that each particle has a "complex and subtle inner structure" that provides the capacity to react to the information provided by the wavefunction by the quantum potential.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Also, unlike in classical mechanics, physical properties (e.g., mass, charge) are spread out over the wavefunction in de Broglie–Bohm theory, not localized at the position of the particle.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>The wavefunction itself, and not the particles, determines the dynamical evolution of the system: the particles do not act back onto the wave function. As Bohm and Hiley worded it, "the Schrödinger equation for the quantum field does not have sources, nor does it have any other way by which the field could be directly affected by the condition of the particles [...] the quantum theory can be understood completely in terms of the assumption that the quantum field has no sources or other forms of dependence on the particles".<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> P. Holland considers this lack of reciprocal action of particles and wave function to be one "[a]mong the many nonclassical properties exhibited by this theory".<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> Holland later called this a merely <i>apparent</i> lack of back reaction, due to the incompleteness of the description.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>In what follows below, the setup for one particle moving in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> is given followed by the setup for <i>N</i> particles moving in 3 dimensions. In the first instance, configuration space and real space are the same, while in the second, real space is still <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>, but configuration space becomes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mi>N</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1c256f1c3b38d079269116d276130a4999b0d31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.192ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3N}}"></span>. While the particle positions themselves are in real space, the velocity field and wavefunction are on configuration space, which is how particles are entangled with each other in this theory. </p><p><a href="#Extensions">Extensions</a> to this theory include spin and more complicated configuration spaces. </p><p>We use variations of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132d0144479d6f47c30ad82a65d458966ccbe928" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.008ex; height:2.509ex;" alt="{\displaystyle \mathbf {Q} }"></span> for particle positions, while <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> represents the complex-valued wavefunction on configuration space. </p> <div class="mw-heading mw-heading3"><h3 id="Guiding_equation">Guiding equation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=5" title="Edit section: Guiding equation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a spinless single particle moving in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>, the particle's velocity is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d\mathbf {Q} }{dt}}(t)={\frac {\hbar }{m}}\operatorname {Im} \left({\frac {\nabla \psi }{\psi }}\right)(\mathbf {Q} ,t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mi>m</mi> </mfrac> </mrow> <mi>Im</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>ψ<!-- ψ --></mi> </mrow> <mi>ψ<!-- ψ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d\mathbf {Q} }{dt}}(t)={\frac {\hbar }{m}}\operatorname {Im} \left({\frac {\nabla \psi }{\psi }}\right)(\mathbf {Q} ,t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9227e93adf534410d81d26c92b240576ca87631a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.89ex; height:6.176ex;" alt="{\displaystyle {\frac {d\mathbf {Q} }{dt}}(t)={\frac {\hbar }{m}}\operatorname {Im} \left({\frac {\nabla \psi }{\psi }}\right)(\mathbf {Q} ,t).}"></span></dd></dl> <p>For many particles labeled <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Q} _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Q} _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b5e8415b63b5600e16dd0001ae83bbe85885d63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.097ex; height:2.676ex;" alt="{\displaystyle \mathbf {Q} _{k}}"></span> for the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-th particle their velocities are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d\mathbf {Q} _{k}}{dt}}(t)={\frac {\hbar }{m_{k}}}\operatorname {Im} \left({\frac {\nabla _{k}\psi }{\psi }}\right)(\mathbf {Q} _{1},\mathbf {Q} _{2},\ldots ,\mathbf {Q} _{N},t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mfrac> </mrow> <mi>Im</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>ψ<!-- ψ --></mi> </mrow> <mi>ψ<!-- ψ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d\mathbf {Q} _{k}}{dt}}(t)={\frac {\hbar }{m_{k}}}\operatorname {Im} \left({\frac {\nabla _{k}\psi }{\psi }}\right)(\mathbf {Q} _{1},\mathbf {Q} _{2},\ldots ,\mathbf {Q} _{N},t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9cf5fb6bb023de3dcfe4a7a56a772093c7d7c07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:47.184ex; height:6.176ex;" alt="{\displaystyle {\frac {d\mathbf {Q} _{k}}{dt}}(t)={\frac {\hbar }{m_{k}}}\operatorname {Im} \left({\frac {\nabla _{k}\psi }{\psi }}\right)(\mathbf {Q} _{1},\mathbf {Q} _{2},\ldots ,\mathbf {Q} _{N},t).}"></span></dd></dl> <p>The main fact to notice is that this velocity field depends on the actual positions of all of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> particles in the universe. As explained below, in most experimental situations, the influence of all of those particles can be encapsulated into an effective wavefunction for a subsystem of the universe. </p> <div class="mw-heading mw-heading3"><h3 id="Schrödinger's_equation"><span id="Schr.C3.B6dinger.27s_equation"></span>Schrödinger's equation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=6" title="Edit section: Schrödinger's equation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The one-particle Schrödinger equation governs the time evolution of a complex-valued wavefunction on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>. The equation represents a quantized version of the total energy of a classical system evolving under a real-valued potential function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\psi =-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\psi +V\psi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>ψ<!-- ψ --></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ψ<!-- ψ --></mi> <mo>+</mo> <mi>V</mi> <mi>ψ<!-- ψ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {\partial }{\partial t}}\psi =-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\psi +V\psi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8337e22518371695afec421ceb3e7b819da2840" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26.852ex; height:5.843ex;" alt="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\psi =-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\psi +V\psi .}"></span></dd></dl> <p>For many particles, the equation is the same except that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> are now on configuration space, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mi>N</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1c256f1c3b38d079269116d276130a4999b0d31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.192ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3N}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\psi =-\sum _{k=1}^{N}{\frac {\hbar ^{2}}{2m_{k}}}\nabla _{k}^{2}\psi +V\psi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>ψ<!-- ψ --></mi> <mo>=</mo> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msubsup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>ψ<!-- ψ --></mi> <mo>+</mo> <mi>V</mi> <mi>ψ<!-- ψ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {\partial }{\partial t}}\psi =-\sum _{k=1}^{N}{\frac {\hbar ^{2}}{2m_{k}}}\nabla _{k}^{2}\psi +V\psi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a9fe79b4f86de29aa0a0aef07e31c2d8c27e59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.105ex; height:7.343ex;" alt="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\psi =-\sum _{k=1}^{N}{\frac {\hbar ^{2}}{2m_{k}}}\nabla _{k}^{2}\psi +V\psi .}"></span></dd></dl> <p>This is the same wavefunction as in conventional quantum mechanics. </p> <div class="mw-heading mw-heading3"><h3 id="Relation_to_the_Born_rule">Relation to the Born rule</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=7" title="Edit section: Relation to the Born rule"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Born_rule" title="Born rule">Born rule</a></div> <p>In Bohm's original papers,<sup id="cite_ref-:0_14-0" class="reference"><a href="#cite_note-:0-14"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> he discusses how de Broglie–Bohm theory results in the usual measurement results of quantum mechanics. The main idea is that this is true if the positions of the particles satisfy the statistical distribution given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f1766f8c8e0a96326d9379b65a63900b3be22ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.861ex; height:3.343ex;" alt="{\displaystyle |\psi |^{2}}"></span>. And that distribution is guaranteed to be true for all time by the guiding equation if the initial distribution of the particles satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f1766f8c8e0a96326d9379b65a63900b3be22ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.861ex; height:3.343ex;" alt="{\displaystyle |\psi |^{2}}"></span>. </p><p>For a given experiment, one can postulate this as being true and verify it experimentally. But, as argued by Dürr et al.,<sup id="cite_ref-dgz92_15-0" class="reference"><a href="#cite_note-dgz92-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> one needs to argue that this distribution for subsystems is typical. The authors argue that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f1766f8c8e0a96326d9379b65a63900b3be22ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.861ex; height:3.343ex;" alt="{\displaystyle |\psi |^{2}}"></span>, by virtue of its equivariance under the dynamical evolution of the system, is the appropriate measure of typicality for <a href="/wiki/Initial_condition" title="Initial condition">initial conditions</a> of the positions of the particles. The authors then prove that the vast majority of possible initial configurations will give rise to statistics obeying the Born rule (i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f1766f8c8e0a96326d9379b65a63900b3be22ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.861ex; height:3.343ex;" alt="{\displaystyle |\psi |^{2}}"></span>) for measurement outcomes. In summary, in a universe governed by the de Broglie–Bohm dynamics, Born rule behavior is typical. </p><p>The situation is thus analogous to the situation in classical statistical physics. A low-<a href="/wiki/Entropy" title="Entropy">entropy</a> initial condition will, with overwhelmingly high probability, evolve into a higher-entropy state: behavior consistent with the <a href="/wiki/Second_law_of_thermodynamics" title="Second law of thermodynamics">second law of thermodynamics</a> is typical. There are anomalous initial conditions that would give rise to violations of the second law; however in the absence of some very detailed evidence supporting the realization of one of those conditions, it would be quite unreasonable to expect anything but the actually observed uniform increase of entropy. Similarly in the de Broglie–Bohm theory, there are anomalous initial conditions that would produce measurement statistics in violation of the Born rule (conflicting the predictions of standard quantum theory), but the typicality theorem shows that absent some specific reason to believe one of those special initial conditions was in fact realized, the Born rule behavior is what one should expect. </p><p>It is in this qualified sense that the Born rule is, for the de Broglie–Bohm theory, a <a href="/wiki/Theorem" title="Theorem">theorem</a> rather than (as in ordinary quantum theory) an additional <a href="/wiki/Postulate" class="mw-redirect" title="Postulate">postulate</a>. </p><p>It can also be shown that a distribution of particles which is <i>not</i> distributed according to the Born rule (that is, a distribution "out of quantum equilibrium") and evolving under the de Broglie–Bohm dynamics is overwhelmingly likely to evolve dynamically into a state distributed as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f1766f8c8e0a96326d9379b65a63900b3be22ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.861ex; height:3.343ex;" alt="{\displaystyle |\psi |^{2}}"></span>.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="The_conditional_wavefunction_of_a_subsystem">The conditional wavefunction of a subsystem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=8" title="Edit section: The conditional wavefunction of a subsystem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the formulation of the de Broglie–Bohm theory, there is only a wavefunction for the entire universe (which always evolves by the Schrödinger equation). Here, the "universe" is simply the system limited by the same boundary conditions used to solve the Schrödinger equation. However, once the theory is formulated, it is convenient to introduce a notion of wavefunction also for subsystems of the universe. Let us write the wavefunction of the universe as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (t,q^{\text{I}},q^{\text{II}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (t,q^{\text{I}},q^{\text{II}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/768c126040a32b1715209c9c8fa21ada56b417bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.634ex; height:3.176ex;" alt="{\displaystyle \psi (t,q^{\text{I}},q^{\text{II}})}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q^{\text{I}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q^{\text{I}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7fdac89c862bb052d03d995c0e3e6fe28c77efb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.905ex; height:3.009ex;" alt="{\displaystyle q^{\text{I}}}"></span> denotes the configuration variables associated to some subsystem (I) of the universe, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q^{\text{II}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q^{\text{II}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3e0508438d6211ba35ada56f5ccb4595919cb12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.499ex; height:3.009ex;" alt="{\displaystyle q^{\text{II}}}"></span> denotes the remaining configuration variables. Denote respectively by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q^{\text{I}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q^{\text{I}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c485395b930f3dab78a57f700a4eb3e74d0c8bfa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.313ex; height:3.176ex;" alt="{\displaystyle Q^{\text{I}}(t)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q^{\text{II}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q^{\text{II}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3424998e3e2ae67151b9e5ebae071a12f8aefe45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.907ex; height:3.176ex;" alt="{\displaystyle Q^{\text{II}}(t)}"></span> the actual configuration of subsystem (I) and of the rest of the universe. For simplicity, we consider here only the spinless case. The <i>conditional wavefunction</i> of subsystem (I) is defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ^{\text{I}}(t,q^{\text{I}})=\psi (t,q^{\text{I}},Q^{\text{II}}(t)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo>,</mo> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ^{\text{I}}(t,q^{\text{I}})=\psi (t,q^{\text{I}},Q^{\text{II}}(t)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1d337d6187f75f2026e4b3fa392ed701539efa5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.715ex; height:3.176ex;" alt="{\displaystyle \psi ^{\text{I}}(t,q^{\text{I}})=\psi (t,q^{\text{I}},Q^{\text{II}}(t)).}"></span></dd></dl> <p>It follows immediately from the fact that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(t)=(Q^{\text{I}}(t),Q^{\text{II}}(t))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(t)=(Q^{\text{I}}(t),Q^{\text{II}}(t))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee86e277ae0194cca243b47a896e976893242487" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.649ex; height:3.176ex;" alt="{\displaystyle Q(t)=(Q^{\text{I}}(t),Q^{\text{II}}(t))}"></span> satisfies the guiding equation that also the configuration <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q^{\text{I}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q^{\text{I}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c485395b930f3dab78a57f700a4eb3e74d0c8bfa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.313ex; height:3.176ex;" alt="{\displaystyle Q^{\text{I}}(t)}"></span> satisfies a guiding equation identical to the one presented in the formulation of the theory, with the universal wavefunction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> replaced with the conditional wavefunction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ^{\text{I}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ^{\text{I}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a68e660788eb97125222cafc8fb3510caa04f13a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.339ex; height:3.009ex;" alt="{\displaystyle \psi ^{\text{I}}}"></span>. Also, the fact that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68b7ab35402f0f501cbc361f5309fe64fd678cd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.487ex; height:2.843ex;" alt="{\displaystyle Q(t)}"></span> is random with <a href="/wiki/Probability_density_function" title="Probability density function">probability density</a> given by the <a href="/wiki/Square_modulus" class="mw-redirect" title="Square modulus">square modulus</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (t,\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (t,\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa2cc7a52d0855168c0ab45a438e875eed456c7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.843ex; height:2.843ex;" alt="{\displaystyle \psi (t,\cdot )}"></span> implies that the <a href="/wiki/Conditional_probability_density_function" class="mw-redirect" title="Conditional probability density function">conditional probability density</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q^{\text{I}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q^{\text{I}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c485395b930f3dab78a57f700a4eb3e74d0c8bfa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.313ex; height:3.176ex;" alt="{\displaystyle Q^{\text{I}}(t)}"></span> given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q^{\text{II}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q^{\text{II}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3424998e3e2ae67151b9e5ebae071a12f8aefe45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.907ex; height:3.176ex;" alt="{\displaystyle Q^{\text{II}}(t)}"></span> is given by the square modulus of the (normalized) conditional wavefunction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ^{\text{I}}(t,\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ^{\text{I}}(t,\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a58b689c1945bf773922f500d1da35e9d43a8b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.669ex; height:3.176ex;" alt="{\displaystyle \psi ^{\text{I}}(t,\cdot )}"></span> (in the terminology of Dürr et al.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> this fact is called the <i>fundamental conditional probability formula</i>). </p><p>Unlike the universal wavefunction, the conditional wavefunction of a subsystem does not always evolve by the Schrödinger equation, but in many situations it does. For instance, if the universal wavefunction factors as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (t,q^{\text{I}},q^{\text{II}})=\psi ^{\text{I}}(t,q^{\text{I}})\psi ^{\text{II}}(t,q^{\text{II}}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (t,q^{\text{I}},q^{\text{II}})=\psi ^{\text{I}}(t,q^{\text{I}})\psi ^{\text{II}}(t,q^{\text{II}}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a08e9236cd83291b8eded67ddff602cd7bf5c573" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.422ex; height:3.176ex;" alt="{\displaystyle \psi (t,q^{\text{I}},q^{\text{II}})=\psi ^{\text{I}}(t,q^{\text{I}})\psi ^{\text{II}}(t,q^{\text{II}}),}"></span></dd></dl> <p>then the conditional wavefunction of subsystem (I) is (up to an irrelevant scalar factor) equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ^{\text{I}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ^{\text{I}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a68e660788eb97125222cafc8fb3510caa04f13a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.339ex; height:3.009ex;" alt="{\displaystyle \psi ^{\text{I}}}"></span> (this is what standard quantum theory would regard as the wavefunction of subsystem (I)). If, in addition, the Hamiltonian does not contain an interaction term between subsystems (I) and (II), then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ^{\text{I}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ^{\text{I}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a68e660788eb97125222cafc8fb3510caa04f13a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.339ex; height:3.009ex;" alt="{\displaystyle \psi ^{\text{I}}}"></span> does satisfy a Schrödinger equation. More generally, assume that the universal wave function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> can be written in the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (t,q^{\text{I}},q^{\text{II}})=\psi ^{\text{I}}(t,q^{\text{I}})\psi ^{\text{II}}(t,q^{\text{II}})+\phi (t,q^{\text{I}},q^{\text{II}}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (t,q^{\text{I}},q^{\text{II}})=\psi ^{\text{I}}(t,q^{\text{I}})\psi ^{\text{II}}(t,q^{\text{II}})+\phi (t,q^{\text{I}},q^{\text{II}}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4685a5afe89c2f0cc041e40dbbdb9a1f6d8da46f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.769ex; height:3.176ex;" alt="{\displaystyle \psi (t,q^{\text{I}},q^{\text{II}})=\psi ^{\text{I}}(t,q^{\text{I}})\psi ^{\text{II}}(t,q^{\text{II}})+\phi (t,q^{\text{I}},q^{\text{II}}),}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> solves Schrödinger equation and, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (t,q^{\text{I}},Q^{\text{II}}(t))=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> <mo>,</mo> <msup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>II</mtext> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (t,q^{\text{I}},Q^{\text{II}}(t))=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/784f844f3f395d690f921fc8dc41feeed71eee68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.175ex; height:3.176ex;" alt="{\displaystyle \phi (t,q^{\text{I}},Q^{\text{II}}(t))=0}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q^{\text{I}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q^{\text{I}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7fdac89c862bb052d03d995c0e3e6fe28c77efb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.905ex; height:3.009ex;" alt="{\displaystyle q^{\text{I}}}"></span>. Then, again, the conditional wavefunction of subsystem (I) is (up to an irrelevant scalar factor) equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ^{\text{I}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ^{\text{I}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a68e660788eb97125222cafc8fb3510caa04f13a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.339ex; height:3.009ex;" alt="{\displaystyle \psi ^{\text{I}}}"></span>, and if the Hamiltonian does not contain an interaction term between subsystems (I) and (II), then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ^{\text{I}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>I</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ^{\text{I}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a68e660788eb97125222cafc8fb3510caa04f13a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.339ex; height:3.009ex;" alt="{\displaystyle \psi ^{\text{I}}}"></span> satisfies a Schrödinger equation. </p><p>The fact that the conditional wavefunction of a subsystem does not always evolve by the Schrödinger equation is related to the fact that the usual collapse rule of standard quantum theory emerges from the Bohmian formalism when one considers conditional wavefunctions of subsystems. </p> <div class="mw-heading mw-heading2"><h2 id="Extensions">Extensions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=9" title="Edit section: Extensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Relativity">Relativity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=10" title="Edit section: Relativity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Pilot-wave theory is explicitly nonlocal, which is in ostensible conflict with <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>. Various extensions of "Bohm-like" mechanics exist that attempt to resolve this problem. Bohm himself in 1953 presented an extension of the theory satisfying the <a href="/wiki/Dirac_equation" title="Dirac equation">Dirac equation</a> for a single particle. However, this was not extensible to the many-particle case because it used an absolute time.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>A renewed interest in constructing <a href="/wiki/Lorentz_scalar" title="Lorentz scalar">Lorentz-invariant</a> extensions of Bohmian theory arose in the 1990s; see <i>Bohm and Hiley: The Undivided Universe</i><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> and references therein. Another approach is given by Dürr et al.,<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> who use Bohm–Dirac models and a Lorentz-invariant foliation of space-time. </p><p>Thus, Dürr et al. (1999) showed that it is possible to formally restore Lorentz invariance for the Bohm–Dirac theory by introducing additional structure. This approach still requires a <a href="/wiki/Foliation" title="Foliation">foliation</a> of space-time. While this is in conflict with the standard interpretation of relativity, the preferred foliation, if unobservable, does not lead to any empirical conflicts with relativity. In 2013, Dürr et al. suggested that the required foliation could be covariantly determined by the wavefunction.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p><p>The relation between nonlocality and preferred foliation can be better understood as follows. In de Broglie–Bohm theory, nonlocality manifests as the fact that the velocity and acceleration of one particle depends on the instantaneous positions of all other particles. On the other hand, in the theory of relativity the concept of instantaneousness does not have an invariant meaning. Thus, to define particle trajectories, one needs an additional rule that defines which space-time points should be considered instantaneous. The simplest way to achieve this is to introduce a preferred foliation of space-time by hand, such that each hypersurface of the foliation defines a hypersurface of equal time. </p><p>Initially, it had been considered impossible to set out a description of photon trajectories in the de Broglie–Bohm theory in view of the difficulties of describing bosons relativistically.<sup id="cite_ref-ghose-1996_23-0" class="reference"><a href="#cite_note-ghose-1996-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> In 1996, <a href="/wiki/Partha_Ghose" title="Partha Ghose">Partha Ghose</a> presented a relativistic quantum-mechanical description of spin-0 and spin-1 bosons starting from the <a href="/wiki/Duffin%E2%80%93Kemmer%E2%80%93Petiau_equation" class="mw-redirect" title="Duffin–Kemmer–Petiau equation">Duffin–Kemmer–Petiau equation</a>, setting out Bohmian trajectories for massive bosons and for massless bosons (and therefore <a href="/wiki/Photon" title="Photon">photons</a>).<sup id="cite_ref-ghose-1996_23-1" class="reference"><a href="#cite_note-ghose-1996-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> In 2001, <a href="/wiki/Jean-Pierre_Vigier" title="Jean-Pierre Vigier">Jean-Pierre Vigier</a> emphasized the importance of deriving a well-defined description of light in terms of particle trajectories in the framework of either the Bohmian mechanics or the Nelson stochastic mechanics.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> The same year, Ghose worked out Bohmian photon trajectories for specific cases.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> Subsequent <a href="/wiki/Weak_measurement" title="Weak measurement">weak-measurement</a> experiments yielded trajectories that coincide with the predicted trajectories.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> The significance of these experimental findings is controversial.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p><p>Chris Dewdney and G. Horton have proposed a relativistically covariant, wave-functional formulation of Bohm's quantum field theory<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> and have extended it to a form that allows the inclusion of gravity.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p><p>Nikolić has proposed a Lorentz-covariant formulation of the Bohmian interpretation of many-particle wavefunctions.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> He has developed a generalized relativistic-invariant probabilistic interpretation of quantum theory,<sup id="cite_ref-nikolicqft_33-0" class="reference"><a href="#cite_note-nikolicqft-33"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> in which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f1766f8c8e0a96326d9379b65a63900b3be22ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.861ex; height:3.343ex;" alt="{\displaystyle |\psi |^{2}}"></span> is no longer a probability density in space, but a probability density in space-time. He uses this generalized probabilistic interpretation to formulate a relativistic-covariant version of de Broglie–Bohm theory without introducing a preferred foliation of space-time. His work also covers the extension of the Bohmian interpretation to a quantization of fields and strings.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Quantum_potential#Relativistic_and_field-theoretic_extensions" title="Quantum potential">Quantum potential § Relativistic and field-theoretic extensions</a></div> <p>Roderick I. Sutherland at the University in Sydney has a Lagrangian formalism for the pilot wave and its <a href="https://en.wiktionary.org/wiki/beable" class="extiw" title="wikt:beable">beables</a>. It draws on <a href="/wiki/Yakir_Aharonov" title="Yakir Aharonov">Yakir Aharonov</a>'s retrocasual weak measurements to explain many-particle entanglement in a special relativistic way without the need for configuration space. The basic idea was already published by <a href="/wiki/Olivier_Costa_de_Beauregard" title="Olivier Costa de Beauregard">Costa de Beauregard</a> in the 1950s and is also used by <a href="/wiki/John_G._Cramer" title="John G. Cramer">John Cramer</a> in his transactional interpretation except the beables that exist between the von Neumann strong projection operator measurements. Sutherland's Lagrangian includes two-way action-reaction between pilot wave and beables. Therefore, it is a post-quantum non-statistical theory with final boundary conditions that violate the no-signal theorems of quantum theory. Just as special relativity is a limiting case of general relativity when the spacetime curvature vanishes, so, too is statistical no-entanglement signaling quantum theory with the Born rule a limiting case of the post-quantum action-reaction Lagrangian when the reaction is set to zero and the final boundary condition is integrated out.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Spin">Spin</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=11" title="Edit section: Spin"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To incorporate <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a>, the wavefunction becomes complex-vector-valued. The value space is called spin space; for a <a href="/wiki/Spin-1/2" title="Spin-1/2">spin-1/2</a> particle, spin space can be taken to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f43d6ec8a1e1fe5a85aec0dd9bdcd45ae09b06b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {C} ^{2}}"></span>. The guiding equation is modified by taking <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner products</a> in spin space to reduce the complex vectors to complex numbers. The Schrödinger equation is modified by adding a <a href="/wiki/Pauli_equation" title="Pauli equation">Pauli spin term</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {d\mathbf {Q} _{k}}{dt}}(t)&={\frac {\hbar }{m_{k}}}\operatorname {Im} \left({\frac {(\psi ,D_{k}\psi )}{(\psi ,\psi )}}\right)(\mathbf {Q} _{1},\ldots ,\mathbf {Q} _{N},t),\\i\hbar {\frac {\partial }{\partial t}}\psi &=\left(-\sum _{k=1}^{N}{\frac {\hbar ^{2}}{2m_{k}}}D_{k}^{2}+V-\sum _{k=1}^{N}\mu _{k}{\frac {\mathbf {S} _{k}}{\hbar s_{k}}}\cdot \mathbf {B} (\mathbf {q} _{k})\right)\psi ,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mfrac> </mrow> <mi>Im</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>ψ<!-- ψ --></mi> <mo>,</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>ψ<!-- ψ --></mi> <mo>,</mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>ψ<!-- ψ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msubsup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>V</mi> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {d\mathbf {Q} _{k}}{dt}}(t)&={\frac {\hbar }{m_{k}}}\operatorname {Im} \left({\frac {(\psi ,D_{k}\psi )}{(\psi ,\psi )}}\right)(\mathbf {Q} _{1},\ldots ,\mathbf {Q} _{N},t),\\i\hbar {\frac {\partial }{\partial t}}\psi &=\left(-\sum _{k=1}^{N}{\frac {\hbar ^{2}}{2m_{k}}}D_{k}^{2}+V-\sum _{k=1}^{N}\mu _{k}{\frac {\mathbf {S} _{k}}{\hbar s_{k}}}\cdot \mathbf {B} (\mathbf {q} _{k})\right)\psi ,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36e096c44b9fda59d9004a802686606ad2254c77" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:57.865ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}{\frac {d\mathbf {Q} _{k}}{dt}}(t)&={\frac {\hbar }{m_{k}}}\operatorname {Im} \left({\frac {(\psi ,D_{k}\psi )}{(\psi ,\psi )}}\right)(\mathbf {Q} _{1},\ldots ,\mathbf {Q} _{N},t),\\i\hbar {\frac {\partial }{\partial t}}\psi &=\left(-\sum _{k=1}^{N}{\frac {\hbar ^{2}}{2m_{k}}}D_{k}^{2}+V-\sum _{k=1}^{N}\mu _{k}{\frac {\mathbf {S} _{k}}{\hbar s_{k}}}\cdot \mathbf {B} (\mathbf {q} _{k})\right)\psi ,\end{aligned}}}"></span> </p><p>where </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{k},e_{k},\mu _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{k},e_{k},\mu _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f7b661b0ce81e6775472ae0eb3c9c00d14c2ad7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.86ex; height:2.176ex;" alt="{\displaystyle m_{k},e_{k},\mu _{k}}"></span> — the mass, charge and <a href="/wiki/Magnetic_moment" title="Magnetic moment">magnetic moment</a> of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>–th particle</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {S} _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {S} _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09491d73286bdeeeea46ccc7c69882a9c846a964" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.574ex; height:2.509ex;" alt="{\displaystyle \mathbf {S} _{k}}"></span> — the appropriate <a href="/wiki/Spin_(physics)#Operator" title="Spin (physics)">spin operator</a> acting in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>–th particle's spin space</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04f159343172781e7666dbc88280c91f34117c30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.179ex; height:2.009ex;" alt="{\displaystyle s_{k}}"></span> — <a href="/wiki/Spin_quantum_number" title="Spin quantum number">spin quantum number</a> of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>–th particle (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{k}=1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{k}=1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf719c9fcbd0794d2c6ca3b300c71424c81d0082" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.765ex; height:2.843ex;" alt="{\displaystyle s_{k}=1/2}"></span> for electron)</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {A} }"></span> is <a href="/wiki/Vector_potential" title="Vector potential">vector potential</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} =\nabla \times \mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} =\nabla \times \mathbf {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/436aaad562d4e3626ff807cadb0185658e4e6c51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.795ex; height:2.176ex;" alt="{\displaystyle \mathbf {B} =\nabla \times \mathbf {A} }"></span> is the <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle D_{k}=\nabla _{k}-{\frac {ie_{k}}{\hbar }}\mathbf {A} (\mathbf {q} _{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>i</mi> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle D_{k}=\nabla _{k}-{\frac {ie_{k}}{\hbar }}\mathbf {A} (\mathbf {q} _{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf3131b6215031a20cb07307a071634e409e5844" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:21.334ex; height:4.009ex;" alt="{\textstyle D_{k}=\nabla _{k}-{\frac {ie_{k}}{\hbar }}\mathbf {A} (\mathbf {q} _{k})}"></span> is the covariant derivative, involving the vector potential, ascribed to the coordinates of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>–th particle (in <a href="/wiki/International_System_of_Units" title="International System of Units">SI units</a>)</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> — the wavefunction defined on the multidimensional configuration space; e.g. a system consisting of two spin-1/2 particles and one spin-1 particle has a wavefunction of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi :\mathbb {R} ^{9}\times \mathbb {R} \to \mathbb {C} ^{2}\otimes \mathbb {C} ^{2}\otimes \mathbb {C} ^{3},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msup> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">→<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⊗<!-- ⊗ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⊗<!-- ⊗ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi :\mathbb {R} ^{9}\times \mathbb {R} \to \mathbb {C} ^{2}\otimes \mathbb {C} ^{2}\otimes \mathbb {C} ^{3},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3d38aea01cd5b4378d149f95b477ff05d4e2d4c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:28.84ex; height:3.009ex;" alt="{\displaystyle \psi :\mathbb {R} ^{9}\times \mathbb {R} \to \mathbb {C} ^{2}\otimes \mathbb {C} ^{2}\otimes \mathbb {C} ^{3},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \otimes }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊗<!-- ⊗ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \otimes }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de29098f5a34ee296a505681a0d5e875070f2aea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \otimes }"></span> is a <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a>, so this spin space is 12-dimensional</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\cdot ,\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>⋅<!-- ⋅ --></mo> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\cdot ,\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fc515c912925128800226dd0b017be508069e24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.137ex; height:2.843ex;" alt="{\displaystyle (\cdot ,\cdot )}"></span> is the <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a> in spin space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcc165f5f6c2360e365b6693209c45fe805a0781" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.77ex; height:2.676ex;" alt="{\displaystyle \mathbb {C} ^{d}}"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\phi ,\psi )=\sum _{s=1}^{d}\phi _{s}^{*}\psi _{s}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>ϕ<!-- ϕ --></mi> <mo>,</mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </munderover> <msubsup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\phi ,\psi )=\sum _{s=1}^{d}\phi _{s}^{*}\psi _{s}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/719c2528fe40930f605da18877fd7d9f27bfcafc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.185ex; height:7.343ex;" alt="{\displaystyle (\phi ,\psi )=\sum _{s=1}^{d}\phi _{s}^{*}\psi _{s}.}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Stochastic_electrodynamics">Stochastic electrodynamics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=12" title="Edit section: Stochastic electrodynamics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Stochastic_electrodynamics" title="Stochastic electrodynamics">Stochastic electrodynamics</a> (SED) is an extension of the de Broglie–Bohm interpretation of <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, with the electromagnetic <a href="/wiki/Zero-point_energy" title="Zero-point energy">zero-point field</a> (ZPF) playing a central role as the guiding <a href="/wiki/Pilot-wave" class="mw-redirect" title="Pilot-wave">pilot-wave</a>. Modern approaches to SED, like those proposed by the group around late Gerhard Grössing, among others, consider wave and particle-like quantum effects as well-coordinated emergent systems. These emergent systems are the result of speculated and calculated sub-quantum interactions with the zero-point field.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_field_theory">Quantum field theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=13" title="Edit section: Quantum field theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In Dürr et al.,<sup id="cite_ref-dgtz04_41-0" class="reference"><a href="#cite_note-dgtz04-41"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> the authors describe an extension of de Broglie–Bohm theory for handling <a href="/wiki/Creation_and_annihilation_operators" title="Creation and annihilation operators">creation and annihilation operators</a>, which they refer to as "Bell-type quantum field theories". The basic idea is that configuration space becomes the (disjoint) space of all possible configurations of any number of particles. For part of the time, the system evolves deterministically under the guiding equation with a fixed number of particles. But under a <a href="/wiki/Stochastic_process" title="Stochastic process">stochastic process</a>, particles may be created and annihilated. The distribution of creation events is dictated by the wavefunction. The wavefunction itself is evolving at all times over the full multi-particle configuration space. </p><p>Hrvoje Nikolić<sup id="cite_ref-nikolicqft_33-1" class="reference"><a href="#cite_note-nikolicqft-33"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> introduces a purely deterministic de Broglie–Bohm theory of particle creation and destruction, according to which particle trajectories are continuous, but particle detectors behave as if particles have been created or destroyed even when a true creation or destruction of particles does not take place. </p> <div class="mw-heading mw-heading3"><h3 id="Curved_space">Curved space</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=14" title="Edit section: Curved space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To extend de Broglie–Bohm theory to curved space (<a href="/wiki/Riemannian_manifolds" class="mw-redirect" title="Riemannian manifolds">Riemannian manifolds</a> in mathematical parlance), one simply notes that all of the elements of these equations make sense, such as <a href="/wiki/Gradient" title="Gradient">gradients</a> and <a href="/wiki/Laplacian" class="mw-redirect" title="Laplacian">Laplacians</a>. Thus, we use equations that have the same form as above. Topological and <a href="/wiki/Boundary_conditions" class="mw-redirect" title="Boundary conditions">boundary conditions</a> may apply in supplementing the evolution of Schrödinger's equation. </p><p>For a de Broglie–Bohm theory on curved space with spin, the spin space becomes a <a href="/wiki/Vector_bundle" title="Vector bundle">vector bundle</a> over configuration space, and the potential in Schrödinger's equation becomes a local self-adjoint operator acting on that space.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> The field equations for the de Broglie–Bohm theory in the relativistic case with spin can also be given for curved space-times with torsion.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p><p>In a general spacetime with curvature and torsion, the guiding equation for the <a href="/wiki/Four-velocity" title="Four-velocity">four-velocity</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1794f924463f261d905efba7f417274435899f28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.129ex; height:2.676ex;" alt="{\displaystyle u^{i}}"></span> of an elementary <a href="/wiki/Fermion" title="Fermion">fermion</a> particle is<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u^{i}={\frac {e_{\mu }^{i}{\bar {\psi }}\gamma ^{\mu }\psi }{{\bar {\psi }}\psi }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> <mi>ψ<!-- ψ --></mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>ψ<!-- ψ --></mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u^{i}={\frac {e_{\mu }^{i}{\bar {\psi }}\gamma ^{\mu }\psi }{{\bar {\psi }}\psi }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c35b4491cfbc652b62c2d71c9b5d4c884fe298ba" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.63ex; height:6.843ex;" alt="{\displaystyle u^{i}={\frac {e_{\mu }^{i}{\bar {\psi }}\gamma ^{\mu }\psi }{{\bar {\psi }}\psi }},}"></span>where the wave function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> is a <a href="/wiki/Dirac_spinor" title="Dirac spinor">spinor</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\psi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\psi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/890adebe2730294079a81b7bf08b2fe0f2c59909" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.596ex; height:2.843ex;" alt="{\displaystyle {\bar {\psi }}}"></span> is the corresponding <a href="/wiki/Dirac_adjoint" title="Dirac adjoint">adjoint</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ^{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ^{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb9ad28fd0224d333e10919fe473cf40e52ac6c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.503ex; height:2.843ex;" alt="{\displaystyle \gamma ^{\mu }}"></span> are the <a href="/wiki/Gamma_matrices" title="Gamma matrices">Dirac matrices</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{\mu }^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{\mu }^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fa225b66b3257f59f530d3871ee93a2fabb1cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.307ex; height:3.176ex;" alt="{\displaystyle e_{\mu }^{i}}"></span> is a <a href="/wiki/Tetrad_formalism" title="Tetrad formalism">tetrad</a>.<sup id="cite_ref-FG_46-0" class="reference"><a href="#cite_note-FG-46"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> If the wave function propagates according to the <a href="/wiki/Dirac_equation_in_curved_spacetime" title="Dirac equation in curved spacetime">curved</a> Dirac equation, then the particle moves according to the <a href="/wiki/Mathisson-Papapetrou-Dixon_equations" class="mw-redirect" title="Mathisson-Papapetrou-Dixon equations">Mathisson-Papapetrou equations</a> of motion, which are an extension of the <a href="/wiki/Geodesics_in_general_relativity" title="Geodesics in general relativity">geodesic equation</a>. This relativistic wave-particle duality follows from the <a href="/wiki/Conservation_law" title="Conservation law">conservation laws</a> for the <a href="/wiki/Spin_tensor" title="Spin tensor">spin tensor</a> and <a href="/wiki/Stress-energy_tensor" class="mw-redirect" title="Stress-energy tensor">energy-momentum tensor</a>,<sup id="cite_ref-FG_46-1" class="reference"><a href="#cite_note-FG-46"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> and also from the covariant <a href="/wiki/Heisenberg_picture" title="Heisenberg picture">Heisenberg picture</a> equation of motion.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Exploiting_nonlocality">Exploiting nonlocality</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=15" title="Edit section: Exploiting nonlocality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Quantum_non-equilibrium" title="Quantum non-equilibrium">Quantum non-equilibrium</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Quantum_Theory_is_a_special_case_of_a_wider_physics.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Quantum_Theory_is_a_special_case_of_a_wider_physics.svg/286px-Quantum_Theory_is_a_special_case_of_a_wider_physics.svg.png" decoding="async" width="286" height="153" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Quantum_Theory_is_a_special_case_of_a_wider_physics.svg/429px-Quantum_Theory_is_a_special_case_of_a_wider_physics.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/76/Quantum_Theory_is_a_special_case_of_a_wider_physics.svg/572px-Quantum_Theory_is_a_special_case_of_a_wider_physics.svg.png 2x" data-file-width="750" data-file-height="400" /></a><figcaption>Diagram made by <a href="/wiki/Antony_Valentini" title="Antony Valentini">Antony Valentini</a> in a lecture about the De Broglie–Bohm theory. Valentini argues quantum theory is a special equilibrium case of a wider physics and that it may be possible to observe and exploit <a href="/wiki/Quantum_non-equilibrium" title="Quantum non-equilibrium">quantum non-equilibrium</a><sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p><a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">De Broglie</a> and Bohm's causal interpretation of quantum mechanics was later extended by Bohm, Vigier, Hiley, Valentini and others to include stochastic properties. Bohm and other physicists, including Valentini, view the Born rule linking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> to the <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho =R^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> <mo>=</mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho =R^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d510dfb50093f9115982f0b7b9c08916c936dba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.119ex; height:3.176ex;" alt="{\displaystyle \rho =R^{2}}"></span> as representing not a basic law, but a result of a system having reached <i>quantum equilibrium</i> during the course of the time development under the <a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger equation</a>. It can be shown that, once an equilibrium has been reached, the system remains in such equilibrium over the course of its further evolution: this follows from the <a href="/wiki/Continuity_equation#Quantum_mechanics" title="Continuity equation">continuity equation</a> associated with the Schrödinger evolution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span>.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> It is less straightforward to demonstrate whether and how such an equilibrium is reached in the first place. </p><p><a href="/wiki/Antony_Valentini" title="Antony Valentini">Antony Valentini</a><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> has extended de Broglie–Bohm theory to include signal nonlocality that would allow entanglement to be used as a stand-alone communication channel without a secondary classical "key" signal to "unlock" the message encoded in the entanglement. This violates orthodox quantum theory but has the virtue of making the parallel universes of the <a href="/wiki/Chaotic_inflation_theory" class="mw-redirect" title="Chaotic inflation theory">chaotic inflation theory</a> observable in principle. </p><p>Unlike de Broglie–Bohm theory, Valentini's theory the wavefunction evolution also depends on the ontological variables. This introduces an instability, a feedback loop that pushes the hidden variables out of "sub-quantal heat death". The resulting theory becomes nonlinear and non-unitary. Valentini argues that the laws of quantum mechanics are <a href="/wiki/Emergence" title="Emergence">emergent</a> and form a "quantum equilibrium" that is analogous to thermal equilibrium in classical dynamics, such that other "<a href="/wiki/Quantum_non-equilibrium" title="Quantum non-equilibrium">quantum non-equilibrium</a>" distributions may in principle be observed and exploited, for which the statistical predictions of quantum theory are violated. It is controversially argued that quantum theory is merely a special case of a much wider nonlinear physics, a physics in which non-local (<a href="/wiki/Faster-than-light" title="Faster-than-light">superluminal</a>) signalling is possible, and in which the uncertainty principle can be violated.<sup id="cite_ref-Valentini2009_51-0" class="reference"><a href="#cite_note-Valentini2009-51"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Results">Results</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=16" title="Edit section: Results"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Below are some highlights of the results that arise out of an analysis of de Broglie–Bohm theory. Experimental results agree with all of quantum mechanics' standard predictions insofar as it has them. But while standard quantum mechanics is limited to discussing the results of "measurements", de Broglie–Bohm theory governs the dynamics of a system without the intervention of outside observers (p. 117 in Bell<sup id="cite_ref-bell_53-0" class="reference"><a href="#cite_note-bell-53"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup>). </p><p>The basis for agreement with standard quantum mechanics is that the particles are distributed according to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f1766f8c8e0a96326d9379b65a63900b3be22ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.861ex; height:3.343ex;" alt="{\displaystyle |\psi |^{2}}"></span>. This is a statement of observer ignorance: the initial positions are represented by a statistical distribution so deterministic trajectories will result in a statistical distribution.<sup id="cite_ref-dgz92_15-1" class="reference"><a href="#cite_note-dgz92-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Measuring_spin_and_polarization">Measuring spin and polarization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=17" title="Edit section: Measuring spin and polarization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>According to ordinary quantum theory, it is not possible to measure the <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a> or <a href="/wiki/Polarization_(waves)" title="Polarization (waves)">polarization</a> of a particle directly; instead, the component in one direction is measured; the outcome from a single particle may be 1, meaning that the particle is aligned with the measuring apparatus, or −1, meaning that it is aligned the opposite way. An ensemble of particles prepared by a polarizer to be in state 1 will all measure polarized in state 1 in a subsequent apparatus. A polarized ensemble sent through a polarizer set at angle to the first pass will result in some values of 1 and some of −1 with a probability that depends on the relative alignment. For a full explanation of this, see the <a href="/wiki/Stern%E2%80%93Gerlach_experiment" title="Stern–Gerlach experiment">Stern–Gerlach experiment</a>. </p><p>In de Broglie–Bohm theory, the results of a spin experiment cannot be analyzed without some knowledge of the experimental setup. It is possible<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> to modify the setup so that the trajectory of the particle is unaffected, but that the particle with one setup registers as spin-up, while in the other setup it registers as spin-down. Thus, for the de Broglie–Bohm theory, the particle's spin is not an intrinsic property of the particle; instead spin is, so to speak, in the wavefunction of the particle in relation to the particular device being used to measure the spin. This is an illustration of what is sometimes referred to as contextuality and is related to naive realism about operators.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> Interpretationally, measurement results are a deterministic property of the system and its environment, which includes information about the experimental setup including the context of co-measured observables; in no sense does the system itself possess the property being measured, as would have been the case in classical physics. </p> <div class="mw-heading mw-heading3"><h3 id="Measurements,_the_quantum_formalism,_and_observer_independence"><span id="Measurements.2C_the_quantum_formalism.2C_and_observer_independence"></span>Measurements, the quantum formalism, and observer independence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=18" title="Edit section: Measurements, the quantum formalism, and observer independence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>De Broglie–Bohm theory gives the almost results as (non-relativisitic) quantum mechanics. It treats the wavefunction as a fundamental object in the theory, as the wavefunction describes how the particles move. This means that no experiment can distinguish between the two theories. This section outlines the ideas as to how the standard quantum formalism arises out of quantum mechanics.<sup id="cite_ref-:0_14-1" class="reference"><a href="#cite_note-:0-14"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-dgz92_15-2" class="reference"><a href="#cite_note-dgz92-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Collapse_of_the_wavefunction">Collapse of the wavefunction</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=19" title="Edit section: Collapse of the wavefunction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/De_Broglie%E2%80%93Bohm_theory" title="Special:EditPage/De Broglie–Bohm theory">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">September 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>De Broglie–Bohm theory is a theory that applies primarily to the whole universe. That is, there is a single wavefunction governing the motion of all of the particles in the universe according to the guiding equation. Theoretically, the motion of one particle depends on the positions of all of the other particles in the universe. In some situations, such as in experimental systems, we can represent the system itself in terms of a de Broglie–Bohm theory in which the wavefunction of the system is obtained by conditioning on the environment of the system. Thus, the system can be analyzed with Schrödinger's equation and the guiding equation, with an initial <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f1766f8c8e0a96326d9379b65a63900b3be22ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.861ex; height:3.343ex;" alt="{\displaystyle |\psi |^{2}}"></span> distribution for the particles in the system (see the section on <a href="#The_conditional_wavefunction_of_a_subsystem">the conditional wavefunction of a subsystem</a> for details). </p><p>It requires a special setup for the conditional wavefunction of a system to obey a quantum evolution. When a system interacts with its environment, such as through a measurement, the conditional wavefunction of the system evolves in a different way. The evolution of the universal wavefunction can become such that the wavefunction of the system appears to be in a superposition of distinct states. But if the environment has recorded the results of the experiment, then using the actual Bohmian configuration of the environment to condition on, the conditional wavefunction collapses to just one alternative, the one corresponding with the measurement results. </p><p><a href="/wiki/Wavefunction_collapse" class="mw-redirect" title="Wavefunction collapse">Collapse</a> of the universal wavefunction never occurs in de Broglie–Bohm theory. Its entire evolution is governed by Schrödinger's equation, and the particles' evolutions are governed by the guiding equation. Collapse only occurs in a <a href="/wiki/Phenomenology_(physics)" title="Phenomenology (physics)">phenomenological</a> way for systems that seem to follow their own Schrödinger's equation. As this is an effective description of the system, it is a matter of choice as to what to define the experimental system to include, and this will affect when "collapse" occurs. </p> <div class="mw-heading mw-heading4"><h4 id="Operators_as_observables">Operators as observables</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=20" title="Edit section: Operators as observables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the standard quantum formalism, measuring observables is generally thought of as measuring operators on the Hilbert space. For example, measuring position is considered to be a measurement of the position operator. This relationship between physical measurements and Hilbert space operators is, for standard quantum mechanics, an additional axiom of the theory. The de Broglie–Bohm theory, by contrast, requires no such measurement axioms (and measurement as such is not a dynamically distinct or special sub-category of physical processes in the theory). In particular, the usual operators-as-observables formalism is, for de Broglie–Bohm theory, a theorem.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> A major point of the analysis is that many of the measurements of the observables do not correspond to properties of the particles; they are (as in the case of spin discussed above) measurements of the wavefunction. </p><p>In the history of de Broglie–Bohm theory, the proponents have often had to deal with claims that this theory is impossible. Such arguments are generally based on inappropriate analysis of operators as observables. If one believes that spin measurements are indeed measuring the spin of a particle that existed prior to the measurement, then one does reach contradictions. De Broglie–Bohm theory deals with this by noting that spin is not a feature of the particle, but rather that of the wavefunction. As such, it only has a definite outcome once the experimental apparatus is chosen. Once that is taken into account, the impossibility theorems become irrelevant. There are also objections to this theory based on what it says about particular situations usually involving eigenstates of an operator. For example, the ground state of hydrogen is a real wavefunction. According to the guiding equation, this means that the electron is at rest when in this state. Nevertheless, it is distributed according to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f1766f8c8e0a96326d9379b65a63900b3be22ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.861ex; height:3.343ex;" alt="{\displaystyle |\psi |^{2}}"></span>, and no contradiction to experimental results is possible to detect. </p><p>Operators as observables leads many to believe that many operators are equivalent. De Broglie–Bohm theory, from this perspective, chooses the position observable as a favored observable rather than, say, the momentum observable. Again, the link to the position observable is a consequence of the dynamics. The motivation for de Broglie–Bohm theory is to describe a system of particles. This implies that the goal of the theory is to describe the positions of those particles at all times. Other observables do not have this compelling ontological status. Having definite positions explains having definite results such as flashes on a detector screen. Other observables would not lead to that conclusion, but there need not be any problem in defining a mathematical theory for other observables; see Hyman et al.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> for an exploration of the fact that a probability density and probability current can be defined for any set of commuting operators. </p> <div class="mw-heading mw-heading4"><h4 id="Hidden_variables">Hidden variables</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=21" title="Edit section: Hidden variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>De Broglie–Bohm theory is often referred to as a "hidden-variable" theory. Bohm used this description in his original papers on the subject, writing: "From the point of view of the <a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">usual interpretation</a>, these additional elements or parameters [permitting a detailed causal and continuous description of all processes] could be called 'hidden' variables." Bohm and Hiley later stated that they found Bohm's choice of the term "hidden variables" to be too restrictive. In particular, they argued that a particle is not actually hidden but rather "is what is most directly manifested in an observation [though] its properties cannot be observed with arbitrary precision (within the limits set by <a href="/wiki/Uncertainty_principle" title="Uncertainty principle">uncertainty principle</a>)".<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> However, others nevertheless treat the term "hidden variable" as a suitable description.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> </p><p>Generalized particle trajectories can be extrapolated from numerous weak measurements on an ensemble of equally prepared systems, and such trajectories coincide with the de Broglie–Bohm trajectories. In particular, an experiment with two entangled photons, in which a set of Bohmian trajectories for one of the photons was determined using weak measurements and postselection, can be understood in terms of a nonlocal connection between that photon's trajectory and the other photon's polarization.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-newscientist.com_61-0" class="reference"><a href="#cite_note-newscientist.com-61"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> However, not only the De Broglie–Bohm interpretation, but also many other interpretations of quantum mechanics that do not include such trajectories are consistent with such experimental evidence. </p> <div class="mw-heading mw-heading3"><h3 id="Different_predictions">Different predictions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=22" title="Edit section: Different predictions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A specialized version of the <a href="/wiki/Double_slit_experiment" class="mw-redirect" title="Double slit experiment">double slit experiment</a> has been devised to test characteristics of the trajectory predictions.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> Experimental realization of this concept disagreed with the Bohm predictions.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> where they differed from standard quantum mechanics. These conclusions have been the subject of debate.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Heisenberg's_uncertainty_principle"><span id="Heisenberg.27s_uncertainty_principle"></span>Heisenberg's uncertainty principle</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=23" title="Edit section: Heisenberg's uncertainty principle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/De_Broglie%E2%80%93Bohm_theory" title="Special:EditPage/De Broglie–Bohm theory">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">September 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>The Heisenberg's uncertainty principle states that when two complementary measurements are made, there is a limit to the product of their accuracy. As an example, if one measures the position with an accuracy of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3890eb866b6258d7a304fc34c70ee3fb3a81a70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.266ex; height:2.176ex;" alt="{\displaystyle \Delta x}"></span> and the momentum with an accuracy of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0758c326125ad3d8b96e515c7fd69164ec587b81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.105ex; height:2.509ex;" alt="{\displaystyle \Delta p}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x\Delta p\gtrsim h.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>p</mi> <mo>≳<!-- ≳ --></mo> <mi>h</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x\Delta p\gtrsim h.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d938bd3080a161e9848e1bff0fc54bbe6d374f9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.455ex; height:2.843ex;" alt="{\displaystyle \Delta x\Delta p\gtrsim h.}"></span> </p><p>In de Broglie–Bohm theory, there is always a matter of fact about the position and momentum of a particle. Each particle has a well-defined trajectory, as well as a wavefunction. Observers have limited knowledge as to what this trajectory is (and thus of the position and momentum). It is the lack of knowledge of the particle's trajectory that accounts for the uncertainty relation. What one can know about a particle at any given time is described by the wavefunction. Since the uncertainty relation can be derived from the wavefunction in other interpretations of quantum mechanics, it can be likewise derived (in the <a href="/wiki/Epistemology" title="Epistemology">epistemic</a> sense mentioned above) on the de Broglie–Bohm theory. </p><p>To put the statement differently, the particles' positions are only known statistically. As in <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a>, successive observations of the particles' positions refine the experimenter's knowledge of the particles' <a href="/wiki/Initial_conditions" class="mw-redirect" title="Initial conditions">initial conditions</a>. Thus, with succeeding observations, the initial conditions become more and more restricted. This formalism is consistent with the normal use of the Schrödinger equation. </p><p>For the derivation of the uncertainty relation, see <a href="/wiki/Heisenberg_uncertainty_principle" class="mw-redirect" title="Heisenberg uncertainty principle">Heisenberg uncertainty principle</a>, noting that this article describes the principle from the viewpoint of the <a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen interpretation</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_entanglement,_Einstein–Podolsky–Rosen_paradox,_Bell's_theorem,_and_nonlocality"><span id="Quantum_entanglement.2C_Einstein.E2.80.93Podolsky.E2.80.93Rosen_paradox.2C_Bell.27s_theorem.2C_and_nonlocality"></span>Quantum entanglement, Einstein–Podolsky–Rosen paradox, Bell's theorem, and nonlocality</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=24" title="Edit section: Quantum entanglement, Einstein–Podolsky–Rosen paradox, Bell's theorem, and nonlocality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>De Broglie–Bohm theory highlighted the issue of <a href="/wiki/Quantum_nonlocality" title="Quantum nonlocality">nonlocality</a>: it inspired <a href="/wiki/John_Stewart_Bell" title="John Stewart Bell">John Stewart Bell</a> to prove his now-famous <a href="/wiki/Bell%27s_theorem" title="Bell's theorem">theorem</a>,<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> which in turn led to the <a href="/wiki/Bell_test_experiments" class="mw-redirect" title="Bell test experiments">Bell test experiments</a>. </p><p>In the <a href="/wiki/EPR_paradox" class="mw-redirect" title="EPR paradox">Einstein–Podolsky–Rosen paradox</a>, the authors describe a thought experiment that one could perform on a pair of particles that have interacted, the results of which they interpreted as indicating that quantum mechanics is an incomplete theory.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p><p>Decades later <a href="/wiki/John_Stewart_Bell" title="John Stewart Bell">John Bell</a> proved <a href="/wiki/Bell%27s_theorem" title="Bell's theorem">Bell's theorem</a> (see p. 14 in Bell<sup id="cite_ref-bell_53-1" class="reference"><a href="#cite_note-bell-53"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup>), in which he showed that, if they are to agree with the empirical predictions of quantum mechanics, all such "hidden-variable" completions of quantum mechanics must either be nonlocal (as the Bohm interpretation is) or give up the assumption that experiments produce unique results (see <a href="/wiki/Counterfactual_definiteness" title="Counterfactual definiteness">counterfactual definiteness</a> and <a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">many-worlds interpretation</a>). In particular, Bell proved that any local theory with unique results must make empirical predictions satisfying a statistical constraint called "Bell's inequality". </p><p><a href="/wiki/Alain_Aspect" title="Alain Aspect">Alain Aspect</a> performed a series of <a href="/wiki/Bell_test_experiments" class="mw-redirect" title="Bell test experiments">Bell test experiments</a> that test Bell's inequality using an EPR-type setup. Aspect's results show experimentally that Bell's inequality is in fact violated, meaning that the relevant quantum-mechanical predictions are correct. In these Bell test experiments, entangled pairs of particles are created; the particles are separated, traveling to remote measuring apparatus. The orientation of the measuring apparatus can be changed while the particles are in flight, demonstrating the apparent nonlocality of the effect. </p><p>The de Broglie–Bohm theory makes the same (empirically correct) predictions for the Bell test experiments as ordinary quantum mechanics. It is able to do this because it is manifestly nonlocal. It is often criticized or rejected based on this; Bell's attitude was: "It is a merit of the de Broglie–Bohm version to bring this [nonlocality] out so explicitly that it cannot be ignored."<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> </p><p>The de Broglie–Bohm theory describes the physics in the Bell test experiments as follows: to understand the evolution of the particles, we need to set up a wave equation for both particles; the orientation of the apparatus affects the wavefunction. The particles in the experiment follow the guidance of the wavefunction. It is the wavefunction that carries the faster-than-light effect of changing the orientation of the apparatus. <a href="/wiki/Tim_Maudlin#Philosophical_work" title="Tim Maudlin">Maudlin</a> provides an analysis of exactly what kind of nonlocality is present and how it is compatible with relativity.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> Bell has shown that the nonlocality does not allow <a href="/wiki/Superluminal_communication" title="Superluminal communication">superluminal communication</a>. Maudlin has shown this in greater detail. </p> <div class="mw-heading mw-heading3"><h3 id="Classical_limit">Classical limit</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=25" title="Edit section: Classical limit"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Bohm's formulation of de Broglie–Bohm theory in a classical-looking version has the merits that the emergence of classical behavior seems to follow immediately for any situation in which the quantum potential is negligible, as noted by Bohm in 1952. Modern methods of <a href="/wiki/Decoherence" class="mw-redirect" title="Decoherence">decoherence</a> are relevant to an analysis of this limit. See Allori et al.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> for steps towards a rigorous analysis. </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_trajectory_method">Quantum trajectory method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=26" title="Edit section: Quantum trajectory method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Work by <a href="/wiki/Robert_E._Wyatt" title="Robert E. Wyatt">Robert E. Wyatt</a> in the early 2000s attempted to use the Bohm "particles" as an adaptive mesh that follows the actual trajectory of a quantum state in time and space. In the "quantum trajectory" method, one samples the quantum wavefunction with a mesh of quadrature points. One then evolves the quadrature points in time according to the Bohm equations of motion. At each time step, one then re-synthesizes the wavefunction from the points, recomputes the quantum forces, and continues the calculation. (QuickTime movies of this for H + H<sub>2</sub> reactive scattering can be found on the <a rel="nofollow" class="external text" href="http://research.cm.utexas.edu/rwyatt/movies/qtm/index.html">Wyatt group web-site</a> at UT Austin.) This approach has been adapted, extended, and used by a number of researchers in the chemical physics community as a way to compute semi-classical and quasi-classical molecular dynamics. A 2007 issue of <a href="/wiki/The_Journal_of_Physical_Chemistry_A" title="The Journal of Physical Chemistry A">The Journal of Physical Chemistry A</a> was dedicated to Prof. Wyatt and his work on "computational Bohmian dynamics".<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Eric_R._Bittner" title="Eric R. Bittner">Eric R. Bittner</a>'s group<sup id="cite_ref-h523_72-0" class="reference"><a href="#cite_note-h523-72"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> at the <a href="/wiki/University_of_Houston" title="University of Houston">University of Houston</a> has advanced a statistical variant of this approach that uses Bayesian sampling technique to sample the quantum density and compute the quantum potential on a structureless mesh of points. This technique was recently used to estimate quantum effects in the heat capacity of small clusters Ne<sub>n</sub> for <i>n</i> ≈ 100. </p><p>There remain difficulties using the Bohmian approach, mostly associated with the formation of singularities in the quantum potential due to nodes in the quantum wavefunction. In general, nodes forming due to interference effects lead to the case where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{-1}\nabla ^{2}R\to \infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>R</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{-1}\nabla ^{2}R\to \infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b18b623fce7661225b2df367270953033936e887" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.436ex; height:2.676ex;" alt="{\displaystyle R^{-1}\nabla ^{2}R\to \infty .}"></span> This results in an infinite force on the sample particles forcing them to move away from the node and often crossing the path of other sample points (which violates single-valuedness). Various schemes have been developed to overcome this; however, no general solution has yet emerged. </p><p>These methods, as does Bohm's Hamilton–Jacobi formulation, do not apply to situations in which the full dynamics of spin need to be taken into account. </p><p>The properties of trajectories in the de Broglie–Bohm theory differ significantly from the <a href="/wiki/Method_of_quantum_characteristics" title="Method of quantum characteristics">Moyal quantum trajectories</a> as well as the <a href="/wiki/Quantum_stochastic_calculus#Quantum_trajectories" title="Quantum stochastic calculus">quantum trajectories</a> from the unraveling of an open quantum system. </p> <div class="mw-heading mw-heading2"><h2 id="Similarities_with_the_many-worlds_interpretation">Similarities with the many-worlds interpretation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=27" title="Edit section: Similarities with the many-worlds interpretation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kim Joris Boström has proposed a non-relativistic quantum mechanical theory that combines elements of de Broglie-Bohm mechanics and <a href="/wiki/Hugh_Everett_III" title="Hugh Everett III">Everett</a>'s many-worlds. In particular, the unreal many-worlds interpretation of Hawking and Weinberg is similar to the Bohmian concept of unreal empty branch worlds: </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>The second issue with Bohmian mechanics may, at first sight, appear rather harmless, but which on a closer look develops considerable destructive power: the issue of empty branches. These are the components of the post-measurement state that do not guide any particles because they do not have the actual configuration <i>q</i> in their support. At first sight, the empty branches do not appear problematic but on the contrary very helpful as they enable the theory to explain unique outcomes of measurements. Also, they seem to explain why there is an effective "collapse of the wavefunction", as in ordinary quantum mechanics. On a closer view, though, one must admit that these empty branches do not actually disappear. As the wavefunction is taken to describe a really existing field, all their branches really exist and will evolve forever by the Schrödinger dynamics, no matter how many of them will become empty in the course of the evolution. Every branch of the global wavefunction potentially describes a complete world which is, according to Bohm's ontology, only a possible world that would be the actual world if only it were filled with particles, and which is in every respect identical to a corresponding world in Everett's theory. Only one branch at a time is occupied by particles, thereby representing the actual world, while all other branches, though really existing as part of a really existing wavefunction, are empty and thus contain some sort of "zombie worlds" with planets, oceans, trees, cities, cars and people who talk like us and behave like us, but who do not actually exist. Now, if the Everettian theory may be accused of ontological extravagance, then Bohmian mechanics could be accused of ontological wastefulness. On top of the ontology of empty branches comes the additional ontology of particle positions that are, on account of the quantum equilibrium hypothesis, forever unknown to the observer. Yet, the actual configuration is never needed for the calculation of the statistical predictions in experimental reality, for these can be obtained by mere wavefunction algebra. From this perspective, Bohmian mechanics may appear as a wasteful and redundant theory. I think it is considerations like these that are the biggest obstacle in the way of a general acceptance of Bohmian mechanics.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup></p></blockquote> <p>Many authors have expressed critical views of de Broglie–Bohm theory by comparing it to Everett's many-worlds approach. Many (but not all) proponents of de Broglie–Bohm theory (such as Bohm and Bell) interpret the universal wavefunction as physically real. According to some supporters of Everett's theory, if the (never collapsing) wavefunction is taken to be physically real, then it is natural to interpret the theory as having the same many worlds as Everett's theory. In the Everettian view the role of the Bohmian particle is to act as a "pointer", tagging, or selecting, just one branch of the <a href="/wiki/Universal_wavefunction" title="Universal wavefunction">universal wavefunction</a> (the assumption that this branch indicates which <i>wave packet</i> determines the observed result of a given experiment is called the "result assumption"<sup id="cite_ref-BrownWallace_74-0" class="reference"><a href="#cite_note-BrownWallace-74"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup>); the other branches are designated "empty" and implicitly assumed by Bohm to be devoid of conscious observers.<sup id="cite_ref-BrownWallace_74-1" class="reference"><a href="#cite_note-BrownWallace-74"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> <a href="/wiki/H._Dieter_Zeh" title="H. Dieter Zeh">H. Dieter Zeh</a> comments on these "empty" branches:<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>It is usually overlooked that Bohm's theory contains the same "many worlds" of dynamically separate branches as the Everett interpretation (now regarded as "empty" wave components), since it is based on precisely the same ... <a href="/wiki/Universal_wavefunction" title="Universal wavefunction">global wave function</a> ...</p></blockquote> <p><a href="/wiki/David_Deutsch" title="David Deutsch">David Deutsch</a> has expressed the same point more "acerbically":<sup id="cite_ref-BrownWallace_74-2" class="reference"><a href="#cite_note-BrownWallace-74"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>Pilot-wave theories are parallel-universe theories in a state of chronic denial.</p></blockquote> <p>This conclusion has been challenged by Detlef Dürr and Justin Lazarovici: </p> <blockquote><p>The Bohmian, of course, cannot accept this argument. For her, it is decidedly the particle configuration in three-dimensional space and not the wave function on the abstract configuration space that constitutes a world (or rather, the world). Instead, she will accuse the Everettian of not having local beables (in Bell's sense) in her theory, that is, the ontological variables that refer to localized entities in three-dimensional space or four-dimensional spacetime. The many worlds of her theory thus merely appear as a grotesque consequence of this omission.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup></p></blockquote> <div class="mw-heading mw-heading2"><h2 id="Occam's-razor_criticism"><span id="Occam.27s-razor_criticism"></span>Occam's-razor criticism</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=28" title="Edit section: Occam's-razor criticism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Both <a href="/wiki/Hugh_Everett_III" title="Hugh Everett III">Hugh Everett III</a> and Bohm treated the wavefunction as a <a href="/wiki/Scientific_realism" title="Scientific realism">physically real</a> <a href="/wiki/Field_(physics)" title="Field (physics)">field</a>. Everett's <a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">many-worlds interpretation</a> is an attempt to demonstrate that the wavefunction alone is sufficient to account for all our observations. When we see the particle detectors flash or hear the click of a <a href="/wiki/Geiger_counter" title="Geiger counter">Geiger counter</a>, Everett's theory interprets this as our <i>wavefunction</i> responding to changes in the detector's <i>wavefunction</i>, which is responding in turn to the passage of another <i>wavefunction</i> (which we think of as a "particle", but is actually just another <a href="/wiki/Wave_packet" title="Wave packet">wave packet</a>).<sup id="cite_ref-BrownWallace_74-3" class="reference"><a href="#cite_note-BrownWallace-74"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> No particle (in the Bohm sense of having a defined position and velocity) exists according to that theory. For this reason Everett sometimes referred to his own <a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">many-worlds approach</a> as the "pure wave theory". Of Bohm's 1952 approach, Everett said:<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>Our main criticism of this view is on the grounds of simplicity – if one desires to hold the view that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> is a real field, then the associated particle is superfluous, since, as we have endeavored to illustrate, the pure wave theory is itself satisfactory.</p></blockquote> <p>In the Everettian view, then, the Bohm particles are superfluous entities, similar to, and equally as unnecessary as, for example, the <a href="/wiki/Luminiferous_ether" class="mw-redirect" title="Luminiferous ether">luminiferous ether</a>, which was found to be unnecessary in <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>. This argument is sometimes called the "redundancy argument", since the superfluous particles are redundant in the sense of <a href="/wiki/Occam%27s_razor" title="Occam's razor">Occam's razor</a>.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> </p><p>According to <a href="/wiki/Harvey_Brown_(philosopher)" class="mw-redirect" title="Harvey Brown (philosopher)">Brown</a> & Wallace,<sup id="cite_ref-BrownWallace_74-4" class="reference"><a href="#cite_note-BrownWallace-74"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> the de Broglie–Bohm particles play no role in the solution of the measurement problem. For these authors,<sup id="cite_ref-BrownWallace_74-5" class="reference"><a href="#cite_note-BrownWallace-74"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> the "result assumption" (see above) is inconsistent with the view that there is no measurement problem in the predictable outcome (i.e. single-outcome) case. They also say<sup id="cite_ref-BrownWallace_74-6" class="reference"><a href="#cite_note-BrownWallace-74"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> that a standard <a href="/wiki/Tacit_assumption" title="Tacit assumption">tacit assumption</a> of de Broglie–Bohm theory (that an observer becomes aware of configurations of particles of ordinary objects by means of correlations between such configurations and the configuration of the particles in the observer's brain) is unreasonable. This conclusion has been challenged by <a href="/wiki/Antony_Valentini" title="Antony Valentini">Valentini</a>,<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> who argues that the entirety of such objections arises from a failure to interpret de Broglie–Bohm theory on its own terms. </p><p>According to <a href="/wiki/Peter_R._Holland" title="Peter R. Holland">Peter R. Holland</a>, in a wider Hamiltonian framework, theories can be formulated in which particles <i>do</i> act back on the wave function.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Derivations">Derivations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=29" title="Edit section: Derivations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>De Broglie–Bohm theory has been derived many times and in many ways. Below are six derivations, all of which are very different and lead to different ways of understanding and extending this theory. </p> <ul><li><a href="/wiki/Schr%C3%B6dinger_equation#Derivation" title="Schrödinger equation">Schrödinger's equation</a> can be derived by using <a href="/wiki/Photoelectric_effect" title="Photoelectric effect">Einstein's light quanta hypothesis</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\hbar \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\hbar \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb16565f02349106457258633097e0d0414a8e2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.626ex; height:2.176ex;" alt="{\displaystyle E=\hbar \omega }"></span> and <a href="/wiki/Matter_wave" title="Matter wave">de Broglie's hypothesis</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} =\hbar \mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} =\hbar \mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95e73faf974069648fc56ca99c29c35950e6819c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.301ex; height:2.509ex;" alt="{\displaystyle \mathbf {p} =\hbar \mathbf {k} }"></span>.</li></ul> <dl><dd>The guiding equation can be derived in a similar fashion. We assume a plane wave: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (\mathbf {x} ,t)=Ae^{i(\mathbf {k} \cdot \mathbf {x} -\omega t)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>−<!-- − --></mo> <mi>ω<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (\mathbf {x} ,t)=Ae^{i(\mathbf {k} \cdot \mathbf {x} -\omega t)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/304e6917b9cfd5d622f892a36e126d3aee93cb5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.958ex; height:3.343ex;" alt="{\displaystyle \psi (\mathbf {x} ,t)=Ae^{i(\mathbf {k} \cdot \mathbf {x} -\omega t)}}"></span>. Notice that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\mathbf {k} =\nabla \psi /\psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>=</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\mathbf {k} =\nabla \psi /\psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69096b3f1f12e1abf374f5c0c5ce07a3da37e070" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.437ex; height:2.843ex;" alt="{\displaystyle i\mathbf {k} =\nabla \psi /\psi }"></span>. Assuming that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} =m\mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} =m\mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a271a96e7b925fd39686375167c76d406e87c813" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.035ex; height:2.009ex;" alt="{\displaystyle \mathbf {p} =m\mathbf {v} }"></span> for the particle's actual velocity, we have that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} ={\frac {\hbar }{m}}\operatorname {Im} \left({\frac {\nabla \psi }{\psi }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mi>m</mi> </mfrac> </mrow> <mi>Im</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>ψ<!-- ψ --></mi> </mrow> <mi>ψ<!-- ψ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} ={\frac {\hbar }{m}}\operatorname {Im} \left({\frac {\nabla \psi }{\psi }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/560b1d2cdebfbfe22ac3103a145650b95f3cf9c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.255ex; height:6.176ex;" alt="{\displaystyle \mathbf {v} ={\frac {\hbar }{m}}\operatorname {Im} \left({\frac {\nabla \psi }{\psi }}\right)}"></span>. Thus, we have the guiding equation.</dd> <dd>Notice that this derivation does not use Schrödinger's equation.</dd></dl> <ul><li>Preserving the density under the time evolution is another method of derivation. This is the method that Bell cites. It is this method that generalizes to many possible alternative theories. The starting point is the <a href="/wiki/Continuity_equation" title="Continuity equation">continuity equation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\partial \rho }{\partial t}}=\nabla \cdot (\rho v^{\psi })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>ρ<!-- ρ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>ρ<!-- ρ --></mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ψ<!-- ψ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {\partial \rho }{\partial t}}=\nabla \cdot (\rho v^{\psi })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/410e4ca9324f22fcd035b44f3e623b31a9283ba7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.319ex; height:5.676ex;" alt="{\displaystyle -{\frac {\partial \rho }{\partial t}}=\nabla \cdot (\rho v^{\psi })}"></span> <sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (March 2018)">clarification needed</span></a></i>]</sup> for the density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho =|\psi |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho =|\psi |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3102dd83fdcdaa7cb4ff7c44b81562624d1efc54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.161ex; height:3.343ex;" alt="{\displaystyle \rho =|\psi |^{2}}"></span>. This equation describes a probability flow along a current. We take the velocity field associated with this current as the velocity field whose integral curves yield the motion of the particle.</li> <li>A method applicable for particles without spin is to do a polar decomposition of the wavefunction and transform Schrödinger's equation into two coupled equations: the <a href="/wiki/Continuity_equation" title="Continuity equation">continuity equation</a> from above and the <a href="/wiki/Hamilton%E2%80%93Jacobi_equation" title="Hamilton–Jacobi equation">Hamilton–Jacobi equation</a>. This is the method used by Bohm in 1952. The decomposition and equations are as follows:</li></ul> <dl><dd>Decomposition: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (\mathbf {x} ,t)=R(\mathbf {x} ,t)e^{iS(\mathbf {x} ,t)/\hbar }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (\mathbf {x} ,t)=R(\mathbf {x} ,t)e^{iS(\mathbf {x} ,t)/\hbar }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d7580f43f2d7ef549ed9aceeaff93f5af1bc81d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.227ex; height:3.343ex;" alt="{\displaystyle \psi (\mathbf {x} ,t)=R(\mathbf {x} ,t)e^{iS(\mathbf {x} ,t)/\hbar }.}"></span> Note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{2}(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{2}(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fa16b3e8a4634fab23612c1ad96a5b67abd192c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.912ex; height:3.176ex;" alt="{\displaystyle R^{2}(\mathbf {x} ,t)}"></span> corresponds to the probability density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho (\mathbf {x} ,t)=|\psi (\mathbf {x} ,t)|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho (\mathbf {x} ,t)=|\psi (\mathbf {x} ,t)|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08a1b7a54cbf719de50bcc3f7ae8b98e9ee2a47f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.349ex; height:3.343ex;" alt="{\displaystyle \rho (\mathbf {x} ,t)=|\psi (\mathbf {x} ,t)|^{2}}"></span>.</dd></dl> <dl><dd>Continuity equation: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\partial \rho (\mathbf {x} ,t)}{\partial t}}=\nabla \cdot \left(\rho (\mathbf {x} ,t){\frac {\nabla S(\mathbf {x} ,t)}{m}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mi>m</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {\partial \rho (\mathbf {x} ,t)}{\partial t}}=\nabla \cdot \left(\rho (\mathbf {x} ,t){\frac {\nabla S(\mathbf {x} ,t)}{m}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8efd1c8ffdf4e6ed4a24947e4f72593f50bb1acc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:36.054ex; height:6.343ex;" alt="{\displaystyle -{\frac {\partial \rho (\mathbf {x} ,t)}{\partial t}}=\nabla \cdot \left(\rho (\mathbf {x} ,t){\frac {\nabla S(\mathbf {x} ,t)}{m}}\right)}"></span>.</dd></dl> <dl><dd>Hamilton–Jacobi equation: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial S(\mathbf {x} ,t)}{\partial t}}=-\left[{\frac {1}{2m}}(\nabla S(\mathbf {x} ,t))^{2}+V-{\frac {\hbar ^{2}}{2m}}{\frac {\nabla ^{2}R(\mathbf {x} ,t)}{R(\mathbf {x} ,t)}}\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>V</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>R</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>R</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial S(\mathbf {x} ,t)}{\partial t}}=-\left[{\frac {1}{2m}}(\nabla S(\mathbf {x} ,t))^{2}+V-{\frac {\hbar ^{2}}{2m}}{\frac {\nabla ^{2}R(\mathbf {x} ,t)}{R(\mathbf {x} ,t)}}\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45d074f127c5c63c03adb9c44a9937cb2aaa5b33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:55.408ex; height:7.509ex;" alt="{\displaystyle {\frac {\partial S(\mathbf {x} ,t)}{\partial t}}=-\left[{\frac {1}{2m}}(\nabla S(\mathbf {x} ,t))^{2}+V-{\frac {\hbar ^{2}}{2m}}{\frac {\nabla ^{2}R(\mathbf {x} ,t)}{R(\mathbf {x} ,t)}}\right].}"></span></dd></dl> <dl><dd>The Hamilton–Jacobi equation is the equation derived from a Newtonian system with potential <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V-{\frac {\hbar ^{2}}{2m}}{\frac {\nabla ^{2}R}{R}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>R</mi> </mrow> <mi>R</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V-{\frac {\hbar ^{2}}{2m}}{\frac {\nabla ^{2}R}{R}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f39d1e81d58033ee4855c2f3c75a26608b4eff0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.257ex; height:5.843ex;" alt="{\displaystyle V-{\frac {\hbar ^{2}}{2m}}{\frac {\nabla ^{2}R}{R}}}"></span> and velocity field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\nabla S}{m}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>S</mi> </mrow> <mi>m</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\nabla S}{m}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe965a756faa542d8b733156ffe749da1e9cc414" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:4.918ex; height:5.343ex;" alt="{\displaystyle {\frac {\nabla S}{m}}.}"></span> The potential <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> is the classical potential that appears in Schrödinger's equation, and the other term involving <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> is the <a href="/wiki/Quantum_potential" title="Quantum potential">quantum potential</a>, terminology introduced by Bohm.</dd></dl> <dl><dd>This leads to viewing the quantum theory as particles moving under the classical force modified by a quantum force. However, unlike standard <a href="/wiki/Newtonian_mechanics" class="mw-redirect" title="Newtonian mechanics">Newtonian mechanics</a>, the initial velocity field is already specified by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\nabla S}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>S</mi> </mrow> <mi>m</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\nabla S}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d785e4b5cb66a5b5ea2b3796c59cb5613dcc292f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:4.271ex; height:5.343ex;" alt="{\displaystyle {\frac {\nabla S}{m}}}"></span>, which is a symptom of this being a first-order theory, not a second-order theory.</dd></dl> <ul><li>A fourth derivation was given by Dürr et al.<sup id="cite_ref-dgz92_15-3" class="reference"><a href="#cite_note-dgz92-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> In their derivation, they derive the velocity field by demanding the appropriate transformation properties given by the various symmetries that Schrödinger's equation satisfies, once the wavefunction is suitably transformed. The guiding equation is what emerges from that analysis.</li> <li>A fifth derivation, given by Dürr et al.<sup id="cite_ref-dgtz04_41-1" class="reference"><a href="#cite_note-dgtz04-41"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> is appropriate for generalization to quantum field theory and the Dirac equation. The idea is that a velocity field can also be understood as a first-order differential operator acting on functions. Thus, if we know how it acts on functions, we know what it is. Then given the Hamiltonian operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span>, the equation to satisfy for all functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> (with associated multiplication operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14ce989fd75da938ec6f95a0cdb71037b23a11cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.699ex; height:3.176ex;" alt="{\displaystyle {\hat {f}}}"></span>) is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (v(f))(q)=\operatorname {Re} {\frac {\left(\psi ,{\frac {i}{\hbar }}[H,{\hat {f}}]\psi \right)}{(\psi ,\psi )}}(q)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Re</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>(</mo> <mrow> <mi>ψ<!-- ψ --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mfrac> </mrow> <mo stretchy="false">[</mo> <mi>H</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">]</mo> <mi>ψ<!-- ψ --></mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>ψ<!-- ψ --></mi> <mo>,</mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (v(f))(q)=\operatorname {Re} {\frac {\left(\psi ,{\frac {i}{\hbar }}[H,{\hat {f}}]\psi \right)}{(\psi ,\psi )}}(q)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a152b01c38974ca0aae94ace66f0c754bc0197a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:33.533ex; height:8.343ex;" alt="{\displaystyle (v(f))(q)=\operatorname {Re} {\frac {\left(\psi ,{\frac {i}{\hbar }}[H,{\hat {f}}]\psi \right)}{(\psi ,\psi )}}(q)}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (v,w)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (v,w)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe1ba70e3b2d314bc63be62afe1e5c3a80b95834" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.635ex; height:2.843ex;" alt="{\displaystyle (v,w)}"></span> is the local Hermitian inner product on the value space of the wavefunction.</li></ul> <dl><dd>This formulation allows for stochastic theories such as the creation and annihilation of particles.</dd></dl> <ul><li>A further derivation has been given by Peter R. Holland, on which he bases his quantum-physics textbook <i>The Quantum Theory of Motion</i>.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> It is based on three basic postulates and an additional fourth postulate that links the wavefunction to measurement probabilities: <ol><li>A physical system consists in a spatiotemporally propagating wave and a point particle guided by it.</li> <li>The wave is described mathematically by a solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> to Schrödinger's wave equation.</li> <li>The particle motion is described by a solution to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\dot {x}} (t)=[\nabla S(\mathbf {x} (t),t))]/m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">x</mi> <mo mathvariant="bold">˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\dot {x}} (t)=[\nabla S(\mathbf {x} (t),t))]/m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11edf93808e16578b12ee0236405b6b464153e71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.737ex; height:2.843ex;" alt="{\displaystyle \mathbf {\dot {x}} (t)=[\nabla S(\mathbf {x} (t),t))]/m}"></span> in dependence on initial condition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} (t=0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} (t=0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5083bba6954eed4b98c03e7a78280f2779fd38ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.321ex; height:2.843ex;" alt="{\displaystyle \mathbf {x} (t=0)}"></span>, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> the phase of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span>.<div class="paragraphbreak" style="margin-top:0.5em"></div>The fourth postulate is subsidiary yet consistent with the first three:</li> <li>The probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho (\mathbf {x} (t))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho (\mathbf {x} (t))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c47a5db22900a501f2438f33ca1e69fb2e1e1546" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.071ex; height:2.843ex;" alt="{\displaystyle \rho (\mathbf {x} (t))}"></span> to find the particle in the differential volume <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d^{3}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d^{3}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc9c17db5d994411d2f06ba6818f2fc930e7c4ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.602ex; height:2.676ex;" alt="{\displaystyle d^{3}x}"></span> at time <i>t</i> equals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi (\mathbf {x} (t))|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi (\mathbf {x} (t))|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d6c58cb0923ba34344041e07693170ce2e1706f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.73ex; height:3.343ex;" alt="{\displaystyle |\psi (\mathbf {x} (t))|^{2}}"></span>.</li></ol></li></ul> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=30" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div><p> The theory was historically developed in the 1920s by de Broglie, who, in 1927, was persuaded to abandon it in favour of the then-mainstream Copenhagen interpretation. David Bohm, dissatisfied with the prevailing orthodoxy, rediscovered de Broglie's pilot-wave theory in 1952. Bohm's suggestions were not then widely received, partly due to reasons unrelated to their content, such as Bohm's youthful <a href="/wiki/Communist" class="mw-redirect" title="Communist">communist</a> affiliations.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup> The de Broglie–Bohm theory was widely deemed unacceptable by mainstream theorists, mostly because of its explicit non-locality. On the theory, <a href="/wiki/John_Stewart_Bell" title="John Stewart Bell">John Stewart Bell</a>, author of the 1964 <a href="/wiki/Bell%27s_theorem" title="Bell's theorem">Bell's theorem</a> wrote in 1982: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"></p><blockquote class="templatequote"><p>Bohm showed explicitly how parameters could indeed be introduced, into nonrelativistic wave mechanics, with the help of which the indeterministic description could be transformed into a deterministic one. More importantly, in my opinion, the subjectivity of the orthodox version, the necessary reference to the "observer", could be eliminated. ...</p><div class="paragraphbreak" style="margin-top:0.5em"></div><p>But why then had Born not told me of this "pilot wave"? If only to point out what was wrong with it? Why did von Neumann not consider it? More extraordinarily, why did people go on producing "impossibility" proofs, after 1952, and as recently as 1978?... Why is the pilot wave picture ignored in text books? Should it not be taught, not as the only way, but as an antidote to the prevailing complacency? To show us that vagueness, subjectivity, and indeterminism, are not forced on us by experimental facts, but by deliberate theoretical choice?<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup></p></blockquote> <p>Since the 1990s, there has been renewed interest in formulating extensions to de Broglie–Bohm theory, attempting to reconcile it with <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a> and <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>, besides other features such as <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a> or curved spatial geometries.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup> </p><p>De Broglie–Bohm theory has a history of different formulations and names. In this section, each stage is given a name and a main reference. </p> <div class="mw-heading mw-heading3"><h3 id="Pilot-wave_theory">Pilot-wave theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=31" title="Edit section: Pilot-wave theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">Louis de Broglie</a> presented his <a href="/wiki/Pilot_wave_theory" title="Pilot wave theory">pilot wave theory</a> at the 1927 Solvay Conference,<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> after close collaboration with Schrödinger,<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2024)">citation needed</span></a></i>]</sup> who developed his wave equation for de Broglie's theory.<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (August 2024)">clarification needed</span></a></i>]</sup> At the end of the presentation, <a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Wolfgang Pauli</a> pointed out that it was not compatible with a semi-classical technique Fermi had previously adopted in the case of inelastic scattering. Contrary to a popular legend, de Broglie actually gave the correct rebuttal that the particular technique could not be generalized for Pauli's purpose, although the audience might have been lost in the technical details and de Broglie's mild manner left the impression that Pauli's objection was valid. He was eventually persuaded to abandon this theory nonetheless because he was "discouraged by criticisms which [it] roused".<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> De Broglie's theory already applies to multiple spin-less particles, but lacks an adequate theory of measurement as no one understood <a href="/wiki/Quantum_decoherence" title="Quantum decoherence">quantum decoherence</a> at the time. An analysis of de Broglie's presentation is given in Bacciagaluppi et al.<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (August 2024)">clarification needed</span></a></i>]</sup><sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> Also, in 1932 <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a> published a paper,<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> that was widely (and erroneously, as shown by <a href="/wiki/Jeffrey_Bub" title="Jeffrey Bub">Jeffrey Bub</a><sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup>) believed to prove that all hidden-variable theories are impossible. This sealed the fate of de Broglie's theory for the next two decades. </p><p>In 1926, <a href="/wiki/Erwin_Madelung" title="Erwin Madelung">Erwin Madelung</a> had developed a hydrodynamic version of <a href="/wiki/Schr%C3%B6dinger%27s_equation" class="mw-redirect" title="Schrödinger's equation">Schrödinger's equation</a>, which is incorrectly<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2024)">citation needed</span></a></i>]</sup> considered as a basis for the density current derivation of the de Broglie–Bohm theory.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Madelung_equations" title="Madelung equations">Madelung equations</a>, being quantum <a href="/wiki/Euler_equations_(fluid_dynamics)" title="Euler equations (fluid dynamics)">Euler equations (fluid dynamics)</a>, differ philosophically from the de Broglie–Bohm mechanics<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> and are the basis of the <a href="/wiki/Stochastic_interpretation" class="mw-redirect" title="Stochastic interpretation">stochastic interpretation</a> of quantum mechanics. </p><p><a href="/wiki/Peter_R._Holland" title="Peter R. Holland">Peter R. Holland</a> has pointed out that, earlier in 1927, <a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a> had actually submitted a preprint with a similar proposal but, not convinced, had withdrawn it before publication.<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> According to Holland, failure to appreciate key points of the de Broglie–Bohm theory has led to confusion, the key point being "that the trajectories of a many-body quantum system are correlated not because the particles exert a direct force on one another (<i>à la</i> Coulomb) but because all are acted upon by an entity – mathematically described by the wavefunction or functions of it – that lies beyond them".<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup> This entity is the <a href="/wiki/Quantum_potential" title="Quantum potential">quantum potential</a>. </p><p>After publishing a popular textbook on Quantum Mechanics that adhered entirely to the Copenhagen orthodoxy, Bohm was persuaded by Einstein to take a critical look at von Neumann's theorem. The result was 'A Suggested Interpretation of the Quantum Theory in Terms of "Hidden Variables" I and II' [Bohm 1952]. It was an independent origination of the pilot wave theory, and extended it to incorporate a consistent theory of measurement, and to address a criticism of Pauli that de Broglie did not properly respond to; it is taken to be deterministic (though Bohm hinted in the original papers that there should be disturbances to this, in the way <a href="/wiki/Brownian_motion" title="Brownian motion">Brownian motion</a> disturbs Newtonian mechanics). This stage is known as the <i>de Broglie–Bohm Theory</i> in Bell's work [Bell 1987] and is the basis for 'The Quantum Theory of Motion' [Holland 1993]. </p><p>This stage applies to multiple particles, and is deterministic. </p><p>The de Broglie–Bohm theory is an example of a <a href="/wiki/Hidden-variables_theory" class="mw-redirect" title="Hidden-variables theory">hidden-variables theory</a>. Bohm originally hoped that hidden variables could provide a <a href="/wiki/Principle_of_locality" title="Principle of locality">local</a>, <a href="/wiki/Causal" class="mw-redirect" title="Causal">causal</a>, <a href="/wiki/Objectivity_(philosophy)" class="mw-redirect" title="Objectivity (philosophy)">objective</a> description that would resolve or eliminate many of the paradoxes of quantum mechanics, such as <a href="/wiki/Schr%C3%B6dinger%27s_cat" title="Schrödinger's cat">Schrödinger's cat</a>, the <a href="/wiki/Measurement_problem" title="Measurement problem">measurement problem</a> and the collapse of the wavefunction. However, <a href="/wiki/Bell%27s_theorem" title="Bell's theorem">Bell's theorem</a> complicates this hope, as it demonstrates that there can be no local hidden-variable theory that is compatible with the predictions of quantum mechanics. The Bohmian interpretation is <a href="/wiki/Causal" class="mw-redirect" title="Causal">causal</a> but not <a href="/wiki/Principle_of_locality" title="Principle of locality">local</a>. </p><p>Bohm's paper was largely ignored or panned by other physicists. <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a>, who had suggested that Bohm search for a realist alternative to the prevailing <a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen approach</a>, did not consider Bohm's interpretation to be a satisfactory answer to the quantum nonlocality question, calling it "too cheap",<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup> while <a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Werner Heisenberg</a> considered it a "superfluous 'ideological superstructure' ".<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Wolfgang Pauli</a>, who had been unconvinced by de Broglie in 1927, conceded to Bohm as follows: </p> <blockquote><p>I just received your long letter of 20th November, and I also have studied more thoroughly the details of your paper. I do not see any longer the possibility of any logical contradiction as long as your results agree completely with those of the usual wave mechanics and as long as no means is given to measure the values of your hidden parameters both in the measuring apparatus and in the observe [sic] system. As far as the whole matter stands now, your 'extra wave-mechanical predictions' are still a check, which cannot be cashed.<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup></p></blockquote> <p>He subsequently described Bohm's theory as "artificial metaphysics".<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> </p><p>According to physicist <a href="/wiki/Max_Dresden" title="Max Dresden">Max Dresden</a>, when Bohm's theory was presented at the <a href="/wiki/Institute_for_Advanced_Study" title="Institute for Advanced Study">Institute for Advanced Study</a> in Princeton, many of the objections were <a href="/wiki/Ad_hominem" title="Ad hominem">ad hominem</a>, focusing on Bohm's sympathy with communists as exemplified by his refusal to give testimony to the <a href="/wiki/House_Un-American_Activities_Committee" title="House Un-American Activities Committee">House Un-American Activities Committee</a>.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup> </p><p>In 1979, Chris Philippidis, Chris Dewdney and <a href="/wiki/Basil_Hiley" title="Basil Hiley">Basil Hiley</a> were the first to perform numeric computations on the basis of the quantum potential to deduce ensembles of particle trajectories.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup> Their work renewed the interests of physicists in the Bohm interpretation of quantum physics.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup> </p><p>Eventually <a href="/wiki/John_Stewart_Bell" title="John Stewart Bell">John Bell</a> began to defend the theory. In "Speakable and Unspeakable in Quantum Mechanics" [Bell 1987], several of the papers refer to hidden-variables theories (which include Bohm's). </p><p>The trajectories of the Bohm model that would result for particular experimental arrangements were termed "surreal" by some.<sup id="cite_ref-ESSW_1992_104-0" class="reference"><a href="#cite_note-ESSW_1992-104"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> Still in 2016, mathematical physicist <a href="/wiki/Sheldon_Goldstein" title="Sheldon Goldstein">Sheldon Goldstein</a> said of Bohm's theory: "There was a time when you couldn't even talk about it because it was heretical. It probably still is the kiss of death for a physics career to be actually working on Bohm, but maybe that's changing."<sup id="cite_ref-newscientist.com_61-1" class="reference"><a href="#cite_note-newscientist.com-61"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Bohmian_mechanics">Bohmian mechanics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=32" title="Edit section: Bohmian mechanics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Bohmian mechanics is the same theory, but with an emphasis on the notion of current flow, which is determined on the basis of the <a href="/wiki/Quantum_equilibrium_hypothesis" class="mw-redirect" title="Quantum equilibrium hypothesis">quantum equilibrium hypothesis</a> that the probability follows the Born rule.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2024)">citation needed</span></a></i>]</sup> The term "Bohmian mechanics" is also often used to include most of the further extensions past the spin-less version of Bohm.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2024)">citation needed</span></a></i>]</sup> While de Broglie–Bohm theory has <a href="/wiki/Lagrangian_mechanics" title="Lagrangian mechanics">Lagrangians</a> and <a href="/wiki/Hamilton-Jacobi_equations" class="mw-redirect" title="Hamilton-Jacobi equations">Hamilton-Jacobi equations</a> as a primary focus and backdrop, with the icon of the <a href="/wiki/Quantum_potential" title="Quantum potential">quantum potential</a>, Bohmian mechanics considers the <a href="/wiki/Continuity_equation" title="Continuity equation">continuity equation</a> as primary and has the guiding equation as its icon. They are mathematically equivalent in so far as the Hamilton-Jacobi formulation applies, i.e., spin-less particles. </p><p>All of non-relativistic quantum mechanics can be fully accounted for in this theory. Recent studies have used this formalism to compute the evolution of many-body quantum systems, with a considerable increase in speed as compared to other quantum-based methods.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Causal_interpretation_and_ontological_interpretation">Causal interpretation and ontological interpretation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=33" title="Edit section: Causal interpretation and ontological interpretation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Bohm developed his original ideas, calling them the <i>Causal Interpretation</i>. Later he felt that <i>causal</i> sounded too much like <i>deterministic</i> and preferred to call his theory the <i>Ontological Interpretation</i>. The main reference is "The Undivided Universe" (Bohm, Hiley 1993). </p><p>This stage covers work by Bohm and in collaboration with <a href="/wiki/Jean-Pierre_Vigier" title="Jean-Pierre Vigier">Jean-Pierre Vigier</a> and Basil Hiley. Bohm is clear that this theory is non-deterministic (the work with Hiley includes a stochastic theory). As such, this theory is not strictly speaking a formulation of de Broglie–Bohm theory, but it deserves mention here because the term "Bohm Interpretation" is ambiguous between this theory and de Broglie–Bohm theory. </p><p>In 1996 <a href="/wiki/Philosopher_of_science" class="mw-redirect" title="Philosopher of science">philosopher of science</a> <a href="/wiki/Arthur_Fine" title="Arthur Fine">Arthur Fine</a> gave an in-depth analysis of possible interpretations of Bohm's model of 1952.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup> </p><p>William Simpson has suggested a <a href="/wiki/Hylomorphism" title="Hylomorphism">hylomorphic</a> interpretation of Bohmian mechanics, in which the cosmos is an Aristotelian substance composed of material particles and a substantial form. The wave function is assigned a dispositional role in choreographing the trajectories of the particles.<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Hydrodynamic_quantum_analogs">Hydrodynamic quantum analogs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=34" title="Edit section: Hydrodynamic quantum analogs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Hydrodynamic_quantum_analogs" title="Hydrodynamic quantum analogs">Hydrodynamic quantum analogs</a></div> <p>Experiments on hydrodynamical analogs of quantum mechanics beginning with the work of Couder and Fort (2006)<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup> have purported to show that macroscopic classical pilot-waves can exhibit characteristics previously thought to be restricted to the quantum realm. Hydrodynamic pilot-wave analogs have been claimed to duplicate the double slit experiment, tunneling, quantized orbits, and numerous other quantum phenomena which have led to a resurgence in interest in pilot wave theories.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">[</span>112<span class="cite-bracket">]</span></a></sup> The analogs have been compared to the <i><a href="/wiki/Faraday_wave" title="Faraday wave">Faraday wave</a></i>.<sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup> These results have been disputed: experiments fail to reproduce aspects of the double-slit experiments.<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup> High precision measurements in the tunneling case point to a different origin of the unpredictable crossing: rather than initial position uncertainty or environmental noise, interactions at the barrier seem to be involved.<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup> </p><p>Another classical analog has been reported in surface gravity waves.<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">[</span>117<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable" style="text-align: center;"> <caption>A comparison by Bush (2015)<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup> among the walking droplet system, de Broglie's double-solution pilot-wave theory<sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">[</span>119<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup> and its extension to SED<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup> </caption> <tbody><tr> <th> </th> <th>Hydrodynamic walkers </th> <th>de Broglie </th> <th>SED pilot wave </th></tr> <tr> <th>Driving </th> <td>bath vibration</td> <td>internal clock</td> <td>vacuum fluctuations </td></tr> <tr> <th>Spectrum </th> <td>monochromatic</td> <td>monochromatic</td> <td>broad </td></tr> <tr> <th>Trigger </th> <td>bouncing</td> <td><a href="/wiki/Zitterbewegung" title="Zitterbewegung">zitterbewegung</a></td> <td>zitterbewegung </td></tr> <tr> <th>Trigger frequency </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{F}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{F}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8413a2d5ea20f5c563fffbb0d2d639ace881842" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.909ex; height:2.009ex;" alt="{\displaystyle \omega _{F}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{c}=mc^{2}/\hbar }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{c}=mc^{2}/\hbar }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9036180576a16090f4d11e07f56f37a40a9a867f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.059ex; height:3.176ex;" alt="{\displaystyle \omega _{c}=mc^{2}/\hbar }"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{c}=mc^{2}/\hbar }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{c}=mc^{2}/\hbar }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9036180576a16090f4d11e07f56f37a40a9a867f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.059ex; height:3.176ex;" alt="{\displaystyle \omega _{c}=mc^{2}/\hbar }"></span> </td></tr> <tr> <th>Energetics </th> <td>GPE <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">↔<!-- ↔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/046b918c43e05caf6624fe9b676c69ec9cd6b892" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \leftrightarrow }"></span> wave</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mc^{2}\leftrightarrow \hbar \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">↔<!-- ↔ --></mo> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mc^{2}\leftrightarrow \hbar \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a27bdb3c872b01975bac5cd5ce06b85b7651d59e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.468ex; height:2.676ex;" alt="{\displaystyle mc^{2}\leftrightarrow \hbar \omega }"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mc^{2}\leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">↔<!-- ↔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mc^{2}\leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52c414b30fe35407ea0d7ede80ca3f52d3b1012a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.07ex; height:2.676ex;" alt="{\displaystyle mc^{2}\leftrightarrow }"></span> EM </td></tr> <tr> <th>Resonance </th> <td>droplet-wave</td> <td>harmony of phases</td> <td>unspecified </td></tr> <tr> <th>Dispersion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega (k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega (k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fb1537a1f4d4185fe800d4682abd78bdab60402" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.466ex; height:2.843ex;" alt="{\displaystyle \omega (k)}"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{F}^{2}\approx \sigma k^{3}/\rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>≈<!-- ≈ --></mo> <mi>σ<!-- σ --></mi> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>ρ<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{F}^{2}\approx \sigma k^{3}/\rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5299dfb19bf69450dddee0fbc77a68fb75334e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.967ex; height:3.343ex;" alt="{\displaystyle \omega _{F}^{2}\approx \sigma k^{3}/\rho }"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ^{2}\approx \omega _{c}^{2}+c^{2}k^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≈<!-- ≈ --></mo> <msubsup> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega ^{2}\approx \omega _{c}^{2}+c^{2}k^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ed42604d9d7ea33715594ae5d7f1eae248d85bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.266ex; height:3.009ex;" alt="{\displaystyle \omega ^{2}\approx \omega _{c}^{2}+c^{2}k^{2}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =ck}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> <mo>=</mo> <mi>c</mi> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =ck}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a121709f0c11324e6983899f0606e33ce4e7072" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.762ex; height:2.176ex;" alt="{\displaystyle \omega =ck}"></span> </td></tr> <tr> <th>Carrier <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{F}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{F}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c7f7401356632e7b37f1622bdde1d5a33801f9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.818ex; height:2.509ex;" alt="{\displaystyle \lambda _{F}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{dB}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{dB}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cadc88dd1b0e862ae47ccee950a8e72159061db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.695ex; height:2.509ex;" alt="{\displaystyle \lambda _{dB}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d89ec57820b5836734173272deaf187341a85917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.299ex; height:2.509ex;" alt="{\displaystyle \lambda _{c}}"></span> </td></tr> <tr> <th>Statistical <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{F}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{F}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c7f7401356632e7b37f1622bdde1d5a33801f9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.818ex; height:2.509ex;" alt="{\displaystyle \lambda _{F}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{dB}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{dB}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cadc88dd1b0e862ae47ccee950a8e72159061db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.695ex; height:2.509ex;" alt="{\displaystyle \lambda _{dB}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{dB}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{dB}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cadc88dd1b0e862ae47ccee950a8e72159061db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.695ex; height:2.509ex;" alt="{\displaystyle \lambda _{dB}}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Surrealistic_trajectories">Surrealistic trajectories</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=35" title="Edit section: Surrealistic trajectories"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1992, Englert, Scully, Sussman, and Walther proposed experiments that would show particles taking paths that differ from the Bohm trajectories. <sup id="cite_ref-ESSW_1992_104-1" class="reference"><a href="#cite_note-ESSW_1992-104"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup> They described the Bohm trajectories as "surrealistic"; their proposal was later referred to as ESSW after the last names of the authors.<sup id="cite_ref-MahlerRozema_124-0" class="reference"><a href="#cite_note-MahlerRozema-124"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup> In 2016, Mahler et al. verified the ESSW predictions. However they propose the surealistic effect is a consequence the nonlocality inherent in Bohm's theory.<sup id="cite_ref-MahlerRozema_124-1" class="reference"><a href="#cite_note-MahlerRozema-124"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">[</span>124<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=36" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Madelung_equations" title="Madelung equations">Madelung equations</a></li> <li><a href="/wiki/Local_hidden-variable_theory" title="Local hidden-variable theory">Local hidden-variable theory</a></li> <li><a href="/wiki/Superfluid_vacuum_theory" title="Superfluid vacuum theory">Superfluid vacuum theory</a></li> <li><a href="/wiki/Fluid_analogs_in_quantum_mechanics" class="mw-redirect" title="Fluid analogs in quantum mechanics">Fluid analogs in quantum mechanics</a></li> <li><a href="/wiki/Probability_current" title="Probability current">Probability current</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=37" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Also known as the <i><b><a href="/wiki/Pilot_wave_theory" title="Pilot wave theory">pilot wave theory</a></b></i>, <b>Bohmian mechanics</b>, <b>Bohm's interpretation</b>, and the <b>causal interpretation</b>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=38" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBohm1952" class="citation journal cs1">Bohm, David (1952). "A Suggested Interpretation of the Quantum Theory in Terms of 'Hidden Variables' I". <i>Physical Review</i>. <b>85</b> (2): 166–179. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1952PhRv...85..166B">1952PhRv...85..166B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.85.166">10.1103/PhysRev.85.166</a>. <q>In contrast to the usual interpretation, this alternative interpretation permits us to conceive of each individual system as being in a precisely definable state, whose changes with time are determined by definite laws, analogous to (but not identical with) the classical equations of motion. Quantum-mechanical probabilities are regarded (like their counterparts in classical statistical mechanics) as only a practical necessity and not as an inherent lack of complete determination in the properties of matter at the quantum level.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=A+Suggested+Interpretation+of+the+Quantum+Theory+in+Terms+of+%27Hidden+Variables%27+I&rft.volume=85&rft.issue=2&rft.pages=166-179&rft.date=1952&rft_id=info%3Adoi%2F10.1103%2FPhysRev.85.166&rft_id=info%3Abibcode%2F1952PhRv...85..166B&rft.aulast=Bohm&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Publications of D. Bohm in 1952 and 1953 and of J.-P. Vigier in 1954 as cited in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAntony_ValentiniHans_Westman2005" class="citation journal cs1">Antony Valentini; Hans Westman (2005). "Dynamical origin of quantum probabilities". <i>Proc. R. Soc. A</i>. <b>461</b> (2053): 253–272. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0403034">quant-ph/0403034</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005RSPSA.461..253V">2005RSPSA.461..253V</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.252.849">10.1.1.252.849</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.2004.1394">10.1098/rspa.2004.1394</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6589887">6589887</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proc.+R.+Soc.+A&rft.atitle=Dynamical+origin+of+quantum+probabilities&rft.volume=461&rft.issue=2053&rft.pages=253-272&rft.date=2005&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6589887%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2005RSPSA.461..253V&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.252.849%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1098%2Frspa.2004.1394&rft_id=info%3Aarxiv%2Fquant-ph%2F0403034&rft.au=Antony+Valentini&rft.au=Hans+Westman&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span> <a rel="nofollow" class="external text" href="http://rspa.royalsocietypublishing.org/content/461/2053/253.full.pdf#page=3">p. 254</a>.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKocsisBravermanRavetsStevens2011" class="citation journal cs1">Kocsis, Sacha; Braverman, Boris; Ravets, Sylvain; Stevens, Martin J.; Mirin, Richard P.; Shalm, L. Krister; Steinberg, Aephraim M. (3 June 2011). <a rel="nofollow" class="external text" href="https://www.science.org/doi/10.1126/science.1202218">"Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer"</a>. <i>Science</i>. <b>332</b> (6034): 1170–1173. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011Sci...332.1170K">2011Sci...332.1170K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1202218">10.1126/science.1202218</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21636767">21636767</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:27351467">27351467</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Observing+the+Average+Trajectories+of+Single+Photons+in+a+Two-Slit+Interferometer&rft.volume=332&rft.issue=6034&rft.pages=1170-1173&rft.date=2011-06-03&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A27351467%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2011Sci...332.1170K&rft.issn=0036-8075&rft_id=info%3Adoi%2F10.1126%2Fscience.1202218&rft_id=info%3Apmid%2F21636767&rft.aulast=Kocsis&rft.aufirst=Sacha&rft.au=Braverman%2C+Boris&rft.au=Ravets%2C+Sylvain&rft.au=Stevens%2C+Martin+J.&rft.au=Mirin%2C+Richard+P.&rft.au=Shalm%2C+L.+Krister&rft.au=Steinberg%2C+Aephraim+M.&rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2F10.1126%2Fscience.1202218&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZeilinger1999" class="citation journal cs1">Zeilinger, Anton (1 March 1999). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/RevModPhys.71.S288">"Experiment and the foundations of quantum physics"</a>. <i>Reviews of Modern Physics</i>. <b>71</b> (2): S288–S297. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FRevModPhys.71.S288">10.1103/RevModPhys.71.S288</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0034-6861">0034-6861</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Reviews+of+Modern+Physics&rft.atitle=Experiment+and+the+foundations+of+quantum+physics&rft.volume=71&rft.issue=2&rft.pages=S288-S297&rft.date=1999-03-01&rft_id=info%3Adoi%2F10.1103%2FRevModPhys.71.S288&rft.issn=0034-6861&rft.aulast=Zeilinger&rft.aufirst=Anton&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FRevModPhys.71.S288&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPasson2004" class="citation journal cs1">Passon, Oliver (1 November 2004). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1088/0143-0807/25/6/008">"How to teach quantum mechanics"</a>. <i>European Journal of Physics</i>. <b>25</b> (6): 765–769. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0404128">quant-ph/0404128</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0143-0807%2F25%2F6%2F008">10.1088/0143-0807/25/6/008</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0143-0807">0143-0807</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=European+Journal+of+Physics&rft.atitle=How+to+teach+quantum+mechanics&rft.volume=25&rft.issue=6&rft.pages=765-769&rft.date=2004-11-01&rft_id=info%3Aarxiv%2Fquant-ph%2F0404128&rft.issn=0143-0807&rft_id=info%3Adoi%2F10.1088%2F0143-0807%2F25%2F6%2F008&rft.aulast=Passon&rft.aufirst=Oliver&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F0143-0807%2F25%2F6%2F008&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBohm1957" class="citation book cs1">Bohm, David (1957). <i>Causality and Chance in Modern Physics</i>. Routledge & Kegan Paul and D. Van Nostrand. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8122-1002-6" title="Special:BookSources/978-0-8122-1002-6"><bdi>978-0-8122-1002-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Causality+and+Chance+in+Modern+Physics&rft.pub=Routledge+%26+Kegan+Paul+and+D.+Van+Nostrand&rft.date=1957&rft.isbn=978-0-8122-1002-6&rft.aulast=Bohm&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">D. Bohm and B. Hiley: <i>The undivided universe: An ontological interpretation of quantum theory</i>, p. 37.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">H. R. Brown, C. Dewdney and G. Horton: "Bohm particles and their detection in the light of neutron interferometry", <i>Foundations of Physics</i>, 1995, Volume 25, Number 2, pp. 329–347.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">J. Anandan, "The Quantum Measurement Problem and the Possible Role of the Gravitational Field", <i>Foundations of Physics</i>, March 1999, Volume 29, Issue 3, pp. 333–348.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBohmHiley1995" class="citation book cs1">Bohm, David; Hiley, Basil J. (1995). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=vt9XKjc4WAQC&pg=PA24"><i>The undivided universe: an ontological interpretation of quantum theory</i></a>. Routledge. p. 24. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-415-12185-9" title="Special:BookSources/978-0-415-12185-9"><bdi>978-0-415-12185-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+undivided+universe%3A+an+ontological+interpretation+of+quantum+theory&rft.pages=24&rft.pub=Routledge&rft.date=1995&rft.isbn=978-0-415-12185-9&rft.aulast=Bohm&rft.aufirst=David&rft.au=Hiley%2C+Basil+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dvt9XKjc4WAQC%26pg%3DPA24&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolland1995" class="citation book cs1">Holland, Peter R. (26 January 1995). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=BsEfVBzToRMC&pg=PA26"><i>The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics</i></a>. Cambridge University Press. p. 26. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-48543-2" title="Special:BookSources/978-0-521-48543-2"><bdi>978-0-521-48543-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Quantum+Theory+of+Motion%3A+An+Account+of+the+de+Broglie-Bohm+Causal+Interpretation+of+Quantum+Mechanics&rft.pages=26&rft.pub=Cambridge+University+Press&rft.date=1995-01-26&rft.isbn=978-0-521-48543-2&rft.aulast=Holland&rft.aufirst=Peter+R.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DBsEfVBzToRMC%26pg%3DPA26&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolland2001" class="citation journal cs1">Holland, P. (2001). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20111110140052/http://users.ox.ac.uk/~gree0579/index_files/NuovoCimento2.pdf#page=31">"Hamiltonian theory of wave and particle in quantum mechanics II: Hamilton-Jacobi theory and particle back-reaction"</a> <span class="cs1-format">(PDF)</span>. <i>Nuovo Cimento B</i>. <b>116</b> (10): 1143–1172. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001NCimB.116.1143H">2001NCimB.116.1143H</a>. Archived from <a rel="nofollow" class="external text" href="http://users.ox.ac.uk/~gree0579/index_files/NuovoCimento2.pdf#page=31">the original</a> <span class="cs1-format">(PDF)</span> on 10 November 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">1 August</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nuovo+Cimento+B&rft.atitle=Hamiltonian+theory+of+wave+and+particle+in+quantum+mechanics+II%3A+Hamilton-Jacobi+theory+and+particle+back-reaction&rft.volume=116&rft.issue=10&rft.pages=1143-1172&rft.date=2001&rft_id=info%3Abibcode%2F2001NCimB.116.1143H&rft.aulast=Holland&rft.aufirst=P.&rft_id=http%3A%2F%2Fusers.ox.ac.uk%2F~gree0579%2Findex_files%2FNuovoCimento2.pdf%23page%3D31&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-:0-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBohm1952" class="citation journal cs1">Bohm, David (15 January 1952). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRev.85.166">"A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. I"</a>. <i>Physical Review</i>. <b>85</b> (2): 166–179. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.85.166">10.1103/PhysRev.85.166</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-899X">0031-899X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=A+Suggested+Interpretation+of+the+Quantum+Theory+in+Terms+of+%22Hidden%22+Variables.+I&rft.volume=85&rft.issue=2&rft.pages=166-179&rft.date=1952-01-15&rft_id=info%3Adoi%2F10.1103%2FPhysRev.85.166&rft.issn=0031-899X&rft.aulast=Bohm&rft.aufirst=David&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRev.85.166&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-dgz92-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-dgz92_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-dgz92_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-dgz92_15-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-dgz92_15-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDürrGoldsteinZanghì1992" class="citation journal cs1">Dürr, D.; Goldstein, S.; Zanghì, N. (1992). "Quantum Equilibrium and the Origin of Absolute Uncertainty". <i>Journal of Statistical Physics</i>. <b>67</b> (5–6): 843–907. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0308039">quant-ph/0308039</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992JSP....67..843D">1992JSP....67..843D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01049004">10.1007/BF01049004</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15749334">15749334</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Statistical+Physics&rft.atitle=Quantum+Equilibrium+and+the+Origin+of+Absolute+Uncertainty&rft.volume=67&rft.issue=5%E2%80%936&rft.pages=843-907&rft.date=1992&rft_id=info%3Aarxiv%2Fquant-ph%2F0308039&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15749334%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF01049004&rft_id=info%3Abibcode%2F1992JSP....67..843D&rft.aulast=D%C3%BCrr&rft.aufirst=D.&rft.au=Goldstein%2C+S.&rft.au=Zangh%C3%AC%2C+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTowlerRussellValentini2012" class="citation journal cs1">Towler, M. D.; Russell, N. J.; Valentini, A. (2012). "Timescales for dynamical relaxation to the Born rule". <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i>. <b>468</b> (2140): 990. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1103.1589">1103.1589</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012RSPSA.468..990T">2012RSPSA.468..990T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.2011.0598">10.1098/rspa.2011.0598</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119178440">119178440</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+A%3A+Mathematical%2C+Physical+and+Engineering+Sciences&rft.atitle=Timescales+for+dynamical+relaxation+to+the+Born+rule&rft.volume=468&rft.issue=2140&rft.pages=990&rft.date=2012&rft_id=info%3Aarxiv%2F1103.1589&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119178440%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1098%2Frspa.2011.0598&rft_id=info%3Abibcode%2F2012RSPSA.468..990T&rft.aulast=Towler&rft.aufirst=M.+D.&rft.au=Russell%2C+N.+J.&rft.au=Valentini%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span>. A video of the electron density in a 2D box evolving under this process is available <a rel="nofollow" class="external text" href="http://www.tcm.phy.cam.ac.uk/~mdt26/raw_movie.gif">here</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160303230023/http://www.tcm.phy.cam.ac.uk/~mdt26/raw_movie.gif">Archived</a> 3 March 2016 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDürrGoldsteinZanghí2003" class="citation journal cs1">Dürr, Detlef; Goldstein, Sheldon; Zanghí, Nino (2003). "Quantum Equilibrium and the Origin of Absolute Uncertainty". <i>Journal of Statistical Physics</i>. <b>67</b> (5–6): 843–907. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0308039">quant-ph/0308039</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992JSP....67..843D">1992JSP....67..843D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01049004">10.1007/BF01049004</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15749334">15749334</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Statistical+Physics&rft.atitle=Quantum+Equilibrium+and+the+Origin+of+Absolute+Uncertainty&rft.volume=67&rft.issue=5%E2%80%936&rft.pages=843-907&rft.date=2003&rft_id=info%3Aarxiv%2Fquant-ph%2F0308039&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15749334%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF01049004&rft_id=info%3Abibcode%2F1992JSP....67..843D&rft.aulast=D%C3%BCrr&rft.aufirst=Detlef&rft.au=Goldstein%2C+Sheldon&rft.au=Zangh%C3%AD%2C+Nino&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPasson2006" class="citation journal cs1">Passon, Oliver (2006). "What you always wanted to know about Bohmian mechanics but were afraid to ask". <i>Physics and Philosophy</i>. <b>3</b> (2006). <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0611032">quant-ph/0611032</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006quant.ph.11032P">2006quant.ph.11032P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.17877%2FDE290R-14213">10.17877/DE290R-14213</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/2003%2F23108">2003/23108</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:45526627">45526627</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+and+Philosophy&rft.atitle=What+you+always+wanted+to+know+about+Bohmian+mechanics+but+were+afraid+to+ask&rft.volume=3&rft.issue=2006&rft.date=2006&rft_id=info%3Ahdl%2F2003%2F23108&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A45526627%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2006quant.ph.11032P&rft_id=info%3Aarxiv%2Fquant-ph%2F0611032&rft_id=info%3Adoi%2F10.17877%2FDE290R-14213&rft.aulast=Passon&rft.aufirst=Oliver&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNikolic2004" class="citation journal cs1">Nikolic, H. (2004). "Bohmian particle trajectories in relativistic bosonic quantum field theory". <i>Foundations of Physics Letters</i>. <b>17</b> (4): 363–380. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0208185">quant-ph/0208185</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004FoPhL..17..363N">2004FoPhL..17..363N</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.253.838">10.1.1.253.838</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FB%3AFOPL.0000035670.31755.0a">10.1023/B:FOPL.0000035670.31755.0a</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1927035">1927035</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics+Letters&rft.atitle=Bohmian+particle+trajectories+in+relativistic+bosonic+quantum+field+theory&rft.volume=17&rft.issue=4&rft.pages=363-380&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1927035%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2004FoPhL..17..363N&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.253.838%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1023%2FB%3AFOPL.0000035670.31755.0a&rft_id=info%3Aarxiv%2Fquant-ph%2F0208185&rft.aulast=Nikolic&rft.aufirst=H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNikolic2005" class="citation journal cs1">Nikolic, H. (2005). "Bohmian particle trajectories in relativistic fermionic quantum field theory". <i>Foundations of Physics Letters</i>. <b>18</b> (2): 123–138. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0302152">quant-ph/0302152</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005FoPhL..18..123N">2005FoPhL..18..123N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10702-005-3957-3">10.1007/s10702-005-3957-3</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15304186">15304186</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics+Letters&rft.atitle=Bohmian+particle+trajectories+in+relativistic+fermionic+quantum+field+theory&rft.volume=18&rft.issue=2&rft.pages=123-138&rft.date=2005&rft_id=info%3Aarxiv%2Fquant-ph%2F0302152&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15304186%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs10702-005-3957-3&rft_id=info%3Abibcode%2F2005FoPhL..18..123N&rft.aulast=Nikolic&rft.aufirst=H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDürrGoldsteinMünch-BerndlZanghì1999" class="citation journal cs1">Dürr, D.; Goldstein, S.; Münch-Berndl, K.; Zanghì, N. (1999). "Hypersurface Bohm–Dirac Models". <i>Physical Review A</i>. <b>60</b> (4): 2729–2736. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9801070">quant-ph/9801070</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999PhRvA..60.2729D">1999PhRvA..60.2729D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysreva.60.2729">10.1103/physreva.60.2729</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:52562586">52562586</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+A&rft.atitle=Hypersurface+Bohm%E2%80%93Dirac+Models&rft.volume=60&rft.issue=4&rft.pages=2729-2736&rft.date=1999&rft_id=info%3Aarxiv%2Fquant-ph%2F9801070&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A52562586%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2Fphysreva.60.2729&rft_id=info%3Abibcode%2F1999PhRvA..60.2729D&rft.aulast=D%C3%BCrr&rft.aufirst=D.&rft.au=Goldstein%2C+S.&rft.au=M%C3%BCnch-Berndl%2C+K.&rft.au=Zangh%C3%AC%2C+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDürrGoldsteinNorsenStruyve2014" class="citation journal cs1">Dürr, Detlef; Goldstein, Sheldon; Norsen, Travis; Struyve, Ward; Zanghì, Nino (2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896068">"Can Bohmian mechanics be made relativistic?"</a>. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i>. <b>470</b> (2162): 20130699. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1307.1714">1307.1714</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013RSPSA.47030699D">2013RSPSA.47030699D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.2013.0699">10.1098/rspa.2013.0699</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896068">3896068</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24511259">24511259</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+A%3A+Mathematical%2C+Physical+and+Engineering+Sciences&rft.atitle=Can+Bohmian+mechanics+be+made+relativistic%3F&rft.volume=470&rft.issue=2162&rft.pages=20130699&rft.date=2014&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3896068%23id-name%3DPMC&rft_id=info%3Abibcode%2F2013RSPSA.47030699D&rft_id=info%3Aarxiv%2F1307.1714&rft_id=info%3Apmid%2F24511259&rft_id=info%3Adoi%2F10.1098%2Frspa.2013.0699&rft.aulast=D%C3%BCrr&rft.aufirst=Detlef&rft.au=Goldstein%2C+Sheldon&rft.au=Norsen%2C+Travis&rft.au=Struyve%2C+Ward&rft.au=Zangh%C3%AC%2C+Nino&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3896068&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-ghose-1996-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-ghose-1996_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ghose-1996_23-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGhose1996" class="citation journal cs1">Ghose, Partha (1996). "Relativistic quantum mechanics of spin-0 and spin-1 bosons". <i>Foundations of Physics</i>. <b>26</b> (11): 1441–1455. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996FoPh...26.1441G">1996FoPh...26.1441G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02272366">10.1007/BF02272366</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121129680">121129680</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=Relativistic+quantum+mechanics+of+spin-0+and+spin-1+bosons&rft.volume=26&rft.issue=11&rft.pages=1441-1455&rft.date=1996&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121129680%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF02272366&rft_id=info%3Abibcode%2F1996FoPh...26.1441G&rft.aulast=Ghose&rft.aufirst=Partha&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCufaro_PetroniVigier2001" class="citation journal cs1">Cufaro Petroni, Nicola; Vigier, Jean-Pierre (2001). "Remarks on Observed Superluminal Light Propagation". <i>Foundations of Physics Letters</i>. <b>14</b> (4): 395–400. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1012321402475">10.1023/A:1012321402475</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120131595">120131595</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics+Letters&rft.atitle=Remarks+on+Observed+Superluminal+Light+Propagation&rft.volume=14&rft.issue=4&rft.pages=395-400&rft.date=2001&rft_id=info%3Adoi%2F10.1023%2FA%3A1012321402475&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120131595%23id-name%3DS2CID&rft.aulast=Cufaro+Petroni&rft.aufirst=Nicola&rft.au=Vigier%2C+Jean-Pierre&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span>, therein: section <i>3. Conclusions</i>, page 399.</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGhoseMajumdarGuhabSau2001" class="citation journal cs1">Ghose, Partha; Majumdar, A. S.; Guhab, S.; Sau, J. (2001). <a rel="nofollow" class="external text" href="http://web.mit.edu/saikat/www/research/files/Bohmian-traj_PLA2001.pdf">"Bohmian trajectories for photons"</a> <span class="cs1-format">(PDF)</span>. <i>Physics Letters A</i>. <b>290</b> (5–6): 205–213. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0102071">quant-ph/0102071</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001PhLA..290..205G">2001PhLA..290..205G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0375-9601%2801%2900677-6">10.1016/s0375-9601(01)00677-6</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54650214">54650214</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+A&rft.atitle=Bohmian+trajectories+for+photons&rft.volume=290&rft.issue=5%E2%80%936&rft.pages=205-213&rft.date=2001&rft_id=info%3Aarxiv%2Fquant-ph%2F0102071&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54650214%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fs0375-9601%2801%2900677-6&rft_id=info%3Abibcode%2F2001PhLA..290..205G&rft.aulast=Ghose&rft.aufirst=Partha&rft.au=Majumdar%2C+A.+S.&rft.au=Guhab%2C+S.&rft.au=Sau%2C+J.&rft_id=http%3A%2F%2Fweb.mit.edu%2Fsaikat%2Fwww%2Fresearch%2Ffiles%2FBohmian-traj_PLA2001.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text">Sacha Kocsis, Sylvain Ravets, Boris Braverman, Krister Shalm, Aephraim M. Steinberg: <a rel="nofollow" class="external text" href="http://www.aip.org.au/Congress2010/Abstracts/Monday%206%20Dec%20-%20Orals/Session_3E/Kocsis_Observing_the_Trajectories.pdf">"Observing the trajectories of a single photon using weak measurement"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110626194505/http://www.aip.org.au/Congress2010/Abstracts/Monday%206%20Dec%20-%20Orals/Session_3E/Kocsis_Observing_the_Trajectories.pdf">Archived</a> 26 June 2011 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> 19th Australian Institute of Physics (AIP) Congress, 2010.</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKocsisBravermanRavetsStevens2011" class="citation journal cs1">Kocsis, Sacha; Braverman, Boris; Ravets, Sylvain; Stevens, Martin J.; Mirin, Richard P.; Shalm, L. Krister; Steinberg, Aephraim M. (2011). "Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer". <i>Science</i>. <b>332</b> (6034): 1170–1173. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011Sci...332.1170K">2011Sci...332.1170K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1202218">10.1126/science.1202218</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21636767">21636767</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:27351467">27351467</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Observing+the+Average+Trajectories+of+Single+Photons+in+a+Two-Slit+Interferometer&rft.volume=332&rft.issue=6034&rft.pages=1170-1173&rft.date=2011&rft_id=info%3Adoi%2F10.1126%2Fscience.1202218&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A27351467%23id-name%3DS2CID&rft_id=info%3Apmid%2F21636767&rft_id=info%3Abibcode%2F2011Sci...332.1170K&rft.aulast=Kocsis&rft.aufirst=Sacha&rft.au=Braverman%2C+Boris&rft.au=Ravets%2C+Sylvain&rft.au=Stevens%2C+Martin+J.&rft.au=Mirin%2C+Richard+P.&rft.au=Shalm%2C+L.+Krister&rft.au=Steinberg%2C+Aephraim+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFankhauser_Johannes,_Dürr_Patrick2021" class="citation journal cs1">Fankhauser Johannes, Dürr Patrick (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.shpsa.2020.12.002">"How (not) to understand weak measurements of velocity"</a>. <i>Studies in History and Philosophy of Science Part A</i>. <b>85</b>: 16–29. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2309.10395">2309.10395</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021SHPSA..85...16F">2021SHPSA..85...16F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.shpsa.2020.12.002">10.1016/j.shpsa.2020.12.002</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0039-3681">0039-3681</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33966771">33966771</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Studies+in+History+and+Philosophy+of+Science+Part+A&rft.atitle=How+%28not%29+to+understand+weak+measurements+of+velocity&rft.volume=85&rft.pages=16-29&rft.date=2021&rft_id=info%3Abibcode%2F2021SHPSA..85...16F&rft_id=info%3Aarxiv%2F2309.10395&rft_id=info%3Apmid%2F33966771&rft_id=info%3Adoi%2F10.1016%2Fj.shpsa.2020.12.002&rft.issn=0039-3681&rft.au=Fankhauser+Johannes%2C+D%C3%BCrr+Patrick&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.shpsa.2020.12.002&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDewdneyHorton2002" class="citation journal cs1">Dewdney, Chris; Horton, George (2002). "Relativistically invariant extension of the de Broglie Bohm theory of quantum mechanics". <i>Journal of Physics A: Mathematical and General</i>. <b>35</b> (47): 10117–10127. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0202104">quant-ph/0202104</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002JPhA...3510117D">2002JPhA...3510117D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0305-4470%2F35%2F47%2F311">10.1088/0305-4470/35/47/311</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:37082933">37082933</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+A%3A+Mathematical+and+General&rft.atitle=Relativistically+invariant+extension+of+the+de+Broglie+Bohm+theory+of+quantum+mechanics&rft.volume=35&rft.issue=47&rft.pages=10117-10127&rft.date=2002&rft_id=info%3Aarxiv%2Fquant-ph%2F0202104&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A37082933%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0305-4470%2F35%2F47%2F311&rft_id=info%3Abibcode%2F2002JPhA...3510117D&rft.aulast=Dewdney&rft.aufirst=Chris&rft.au=Horton%2C+George&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDewdneyHorton2004" class="citation journal cs1">Dewdney, Chris; Horton, George (2004). "A relativistically covariant version of Bohm's quantum field theory for the scalar field". <i>Journal of Physics A: Mathematical and General</i>. <b>37</b> (49): 11935–11943. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0407089">quant-ph/0407089</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004JPhA...3711935H">2004JPhA...3711935H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0305-4470%2F37%2F49%2F011">10.1088/0305-4470/37/49/011</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119468313">119468313</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+A%3A+Mathematical+and+General&rft.atitle=A+relativistically+covariant+version+of+Bohm%27s+quantum+field+theory+for+the+scalar+field&rft.volume=37&rft.issue=49&rft.pages=11935-11943&rft.date=2004&rft_id=info%3Aarxiv%2Fquant-ph%2F0407089&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119468313%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0305-4470%2F37%2F49%2F011&rft_id=info%3Abibcode%2F2004JPhA...3711935H&rft.aulast=Dewdney&rft.aufirst=Chris&rft.au=Horton%2C+George&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDewdneyHorton2010" class="citation journal cs1">Dewdney, Chris; Horton, George (2010). "A relativistic hidden-variable interpretation for the massive vector field based on energy-momentum flows". <i>Foundations of Physics</i>. <b>40</b> (6): 658–678. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010FoPh...40..658H">2010FoPh...40..658H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10701-010-9456-9">10.1007/s10701-010-9456-9</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123511987">123511987</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=A+relativistic+hidden-variable+interpretation+for+the+massive+vector+field+based+on+energy-momentum+flows&rft.volume=40&rft.issue=6&rft.pages=658-678&rft.date=2010&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123511987%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs10701-010-9456-9&rft_id=info%3Abibcode%2F2010FoPh...40..658H&rft.aulast=Dewdney&rft.aufirst=Chris&rft.au=Horton%2C+George&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNikolić2005" class="citation journal cs1">Nikolić, Hrvoje (2005). "Relativistic Quantum Mechanics and the Bohmian Interpretation". <i>Foundations of Physics Letters</i>. <b>18</b> (6): 549–561. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0406173">quant-ph/0406173</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005FoPhL..18..549N">2005FoPhL..18..549N</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.252.6803">10.1.1.252.6803</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10702-005-1128-1">10.1007/s10702-005-1128-1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14006204">14006204</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics+Letters&rft.atitle=Relativistic+Quantum+Mechanics+and+the+Bohmian+Interpretation&rft.volume=18&rft.issue=6&rft.pages=549-561&rft.date=2005&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14006204%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2005FoPhL..18..549N&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.252.6803%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1007%2Fs10702-005-1128-1&rft_id=info%3Aarxiv%2Fquant-ph%2F0406173&rft.aulast=Nikoli%C4%87&rft.aufirst=Hrvoje&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-nikolicqft-33"><span class="mw-cite-backlink">^ <a href="#cite_ref-nikolicqft_33-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-nikolicqft_33-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNikolic2010" class="citation journal cs1">Nikolic, H (2010). "QFT as pilot-wave theory of particle creation and destruction". <i>International Journal of Modern Physics</i>. <b>25</b> (7): 1477–1505. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0904.2287">0904.2287</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010IJMPA..25.1477N">2010IJMPA..25.1477N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2Fs0217751x10047889">10.1142/s0217751x10047889</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18468330">18468330</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Modern+Physics&rft.atitle=QFT+as+pilot-wave+theory+of+particle+creation+and+destruction&rft.volume=25&rft.issue=7&rft.pages=1477-1505&rft.date=2010&rft_id=info%3Aarxiv%2F0904.2287&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18468330%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2Fs0217751x10047889&rft_id=info%3Abibcode%2F2010IJMPA..25.1477N&rft.aulast=Nikolic&rft.aufirst=H&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNikolic2009" class="citation journal cs1">Nikolic, H. (2009). "Time in relativistic and nonrelativistic quantum mechanics". <i>International Journal of Quantum Information</i>. <b>7</b> (3): 595–602. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0811.1905">0811.1905</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008arXiv0811.1905N">2008arXiv0811.1905N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2Fs021974990900516x">10.1142/s021974990900516x</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17294178">17294178</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Quantum+Information&rft.atitle=Time+in+relativistic+and+nonrelativistic+quantum+mechanics&rft.volume=7&rft.issue=3&rft.pages=595-602&rft.date=2009&rft_id=info%3Aarxiv%2F0811.1905&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17294178%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2Fs021974990900516x&rft_id=info%3Abibcode%2F2008arXiv0811.1905N&rft.aulast=Nikolic&rft.aufirst=H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNikolic2011" class="citation journal cs1">Nikolic, H. (2011). "Making nonlocal reality compatible with relativity". <i>Int. J. Quantum Inf</i>. <b>9</b> (2011): 367–377. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1002.3226">1002.3226</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010arXiv1002.3226N">2010arXiv1002.3226N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0219749911007344">10.1142/S0219749911007344</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:56513936">56513936</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Int.+J.+Quantum+Inf.&rft.atitle=Making+nonlocal+reality+compatible+with+relativity&rft.volume=9&rft.issue=2011&rft.pages=367-377&rft.date=2011&rft_id=info%3Aarxiv%2F1002.3226&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A56513936%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1142%2FS0219749911007344&rft_id=info%3Abibcode%2F2010arXiv1002.3226N&rft.aulast=Nikolic&rft.aufirst=H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">Hrvoje Nikolić: <a rel="nofollow" class="external text" href="http://iopscience.iop.org/1742-6596/67/1/012035/pdf/jpconf7_67_012035.pdf">"Bohmian mechanics in relativistic quantum mechanics, quantum field theory and string theory"</a>, <i>2007 Journal of Physics</i>: Conf. Ser. 67 012035.</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSutherland2015" class="citation journal cs1">Sutherland, Roderick (2015). "Lagrangian Description for Particle Interpretations of Quantum Mechanics -- Entangled Many-Particle Case". <i>Foundations of Physics</i>. <b>47</b> (2): 174–207. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1509.02442">1509.02442</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017FoPh...47..174S">2017FoPh...47..174S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10701-016-0043-6">10.1007/s10701-016-0043-6</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118366293">118366293</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=Lagrangian+Description+for+Particle+Interpretations+of+Quantum+Mechanics+--+Entangled+Many-Particle+Case&rft.volume=47&rft.issue=2&rft.pages=174-207&rft.date=2015&rft_id=info%3Aarxiv%2F1509.02442&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118366293%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs10701-016-0043-6&rft_id=info%3Abibcode%2F2017FoPh...47..174S&rft.aulast=Sutherland&rft.aufirst=Roderick&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPenaCettoValdes-Hernandez2014" class="citation book cs1">Pena, Luis de la; Cetto, Ana Maria; Valdes-Hernandez, Andrea (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=v0MqBAAAQBAJ"><i>The Emerging Quantum: The Physics Behind Quantum Mechanics</i></a>. p. 95. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-07893-9">10.1007/978-3-319-07893-9</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-07893-9" title="Special:BookSources/978-3-319-07893-9"><bdi>978-3-319-07893-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Emerging+Quantum%3A+The+Physics+Behind+Quantum+Mechanics&rft.pages=95&rft.date=2014&rft_id=info%3Adoi%2F10.1007%2F978-3-319-07893-9&rft.isbn=978-3-319-07893-9&rft.aulast=Pena&rft.aufirst=Luis+de+la&rft.au=Cetto%2C+Ana+Maria&rft.au=Valdes-Hernandez%2C+Andrea&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dv0MqBAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrössingFussyMesa_PascasioSchwabl2012" class="citation journal cs1">Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H. (2012). "An explanation of interference effects in the double slit experiment: Classical trajectories plus ballistic diffusion caused by zero-point fluctuations". <i>Annals of Physics</i>. <b>327</b> (2): 421–437. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1106.5994">1106.5994</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012AnPhy.327..421G">2012AnPhy.327..421G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.aop.2011.11.010">10.1016/j.aop.2011.11.010</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117642446">117642446</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Physics&rft.atitle=An+explanation+of+interference+effects+in+the+double+slit+experiment%3A+Classical+trajectories+plus+ballistic+diffusion+caused+by+zero-point+fluctuations&rft.volume=327&rft.issue=2&rft.pages=421-437&rft.date=2012&rft_id=info%3Aarxiv%2F1106.5994&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117642446%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.aop.2011.11.010&rft_id=info%3Abibcode%2F2012AnPhy.327..421G&rft.aulast=Gr%C3%B6ssing&rft.aufirst=G.&rft.au=Fussy%2C+S.&rft.au=Mesa+Pascasio%2C+J.&rft.au=Schwabl%2C+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrössingFussyMesa_PascasioSchwabl2012" class="citation journal cs1">Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H. (2012). "The Quantum as an Emergent System". <i>Journal of Physics: Conference Series</i>. <b>361</b> (1): 012008. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1205.3393">1205.3393</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012JPhCS.361a2008G">2012JPhCS.361a2008G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1742-6596%2F361%2F1%2F012008">10.1088/1742-6596/361/1/012008</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119307454">119307454</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics%3A+Conference+Series&rft.atitle=The+Quantum+as+an+Emergent+System&rft.volume=361&rft.issue=1&rft.pages=012008&rft.date=2012&rft_id=info%3Aarxiv%2F1205.3393&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119307454%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1742-6596%2F361%2F1%2F012008&rft_id=info%3Abibcode%2F2012JPhCS.361a2008G&rft.aulast=Gr%C3%B6ssing&rft.aufirst=G.&rft.au=Fussy%2C+S.&rft.au=Mesa+Pascasio%2C+J.&rft.au=Schwabl%2C+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-dgtz04-41"><span class="mw-cite-backlink">^ <a href="#cite_ref-dgtz04_41-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-dgtz04_41-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuerrGoldsteinTumulkaZanghi2004" class="citation journal cs1">Duerr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghi, Nino (2004). "Bohmian Mechanics and Quantum Field Theory". <i>Physical Review Letters</i>. <b>93</b> (9): 090402. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0303156">quant-ph/0303156</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004PhRvL..93i0402D">2004PhRvL..93i0402D</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.8444">10.1.1.8.8444</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.93.090402">10.1103/PhysRevLett.93.090402</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15447078">15447078</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8720296">8720296</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Bohmian+Mechanics+and+Quantum+Field+Theory&rft.volume=93&rft.issue=9&rft.pages=090402&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8720296%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2004PhRvL..93i0402D&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.8.8444%23id-name%3DCiteSeerX&rft_id=info%3Apmid%2F15447078&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.93.090402&rft_id=info%3Aarxiv%2Fquant-ph%2F0303156&rft.aulast=Duerr&rft.aufirst=Detlef&rft.au=Goldstein%2C+Sheldon&rft.au=Tumulka%2C+Roderich&rft.au=Zanghi%2C+Nino&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuerrGoldsteinTumulkaZanghi2005" class="citation journal cs1">Duerr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghi, Nino (2005). "Bell-Type Quantum Field Theories". <i>Journal of Physics A: Mathematical and General</i>. <b>38</b> (4): R1. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0407116">quant-ph/0407116</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005JPhA...38R...1D">2005JPhA...38R...1D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0305-4470%2F38%2F4%2FR01">10.1088/0305-4470/38/4/R01</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15547226">15547226</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+A%3A+Mathematical+and+General&rft.atitle=Bell-Type+Quantum+Field+Theories&rft.volume=38&rft.issue=4&rft.pages=R1&rft.date=2005&rft_id=info%3Aarxiv%2Fquant-ph%2F0407116&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15547226%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0305-4470%2F38%2F4%2FR01&rft_id=info%3Abibcode%2F2005JPhA...38R...1D&rft.aulast=Duerr&rft.aufirst=Detlef&rft.au=Goldstein%2C+Sheldon&rft.au=Tumulka%2C+Roderich&rft.au=Zanghi%2C+Nino&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDürrGoldsteinTaylorTumulka2007" class="citation journal cs1">Dürr, D.; Goldstein, S.; Taylor, J.; Tumulka, R.; Zanghì, N. (2007). "Quantum Mechanics in Multiply-Connected Spaces". <i>J. Phys. A</i>. <b>40</b> (12): 2997–3031. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0506173">quant-ph/0506173</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007JPhA...40.2997D">2007JPhA...40.2997D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1751-8113%2F40%2F12%2Fs08">10.1088/1751-8113/40/12/s08</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119410880">119410880</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J.+Phys.+A&rft.atitle=Quantum+Mechanics+in+Multiply-Connected+Spaces&rft.volume=40&rft.issue=12&rft.pages=2997-3031&rft.date=2007&rft_id=info%3Aarxiv%2Fquant-ph%2F0506173&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119410880%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1751-8113%2F40%2F12%2Fs08&rft_id=info%3Abibcode%2F2007JPhA...40.2997D&rft.aulast=D%C3%BCrr&rft.aufirst=D.&rft.au=Goldstein%2C+S.&rft.au=Taylor%2C+J.&rft.au=Tumulka%2C+R.&rft.au=Zangh%C3%AC%2C+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFabbri2022" class="citation journal cs1">Fabbri, Luca (2022). "de Broglie-Bohm formulation of Dirac fields". <i>Foundations of Physics</i>. <b>52</b> (6): 116. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2207.05755">2207.05755</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022FoPh...52..116F">2022FoPh...52..116F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10701-022-00641-2">10.1007/s10701-022-00641-2</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250491612">250491612</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=de+Broglie-Bohm+formulation+of+Dirac+fields&rft.volume=52&rft.issue=6&rft.pages=116&rft.date=2022&rft_id=info%3Aarxiv%2F2207.05755&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250491612%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs10701-022-00641-2&rft_id=info%3Abibcode%2F2022FoPh...52..116F&rft.aulast=Fabbri&rft.aufirst=Luca&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFabbri2023" class="citation journal cs1">Fabbri, Luca (2023). "Dirac Theory in Hydrodynamic Form". <i>Foundations of Physics</i>. <b>53</b> (3): 54. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2303.17461">2303.17461</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023FoPh...53...54F">2023FoPh...53...54F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10701-023-00695-w">10.1007/s10701-023-00695-w</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:257833858">257833858</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=Dirac+Theory+in+Hydrodynamic+Form&rft.volume=53&rft.issue=3&rft.pages=54&rft.date=2023&rft_id=info%3Aarxiv%2F2303.17461&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A257833858%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs10701-023-00695-w&rft_id=info%3Abibcode%2F2023FoPh...53...54F&rft.aulast=Fabbri&rft.aufirst=Luca&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-FG-46"><span class="mw-cite-backlink">^ <a href="#cite_ref-FG_46-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FG_46-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFF._R._Benard_Guedes,_N._J._Popławski2024" class="citation journal cs1">F. R. Benard Guedes, N. J. Popławski (2024). "General-relativistic wave-particle duality with torsion". <i>Classical and Quantum Gravity</i>. <b>41</b> (6): 065011. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2211.03234">2211.03234</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1361-6382%2Fad1fcb">10.1088/1361-6382/ad1fcb</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Classical+and+Quantum+Gravity&rft.atitle=General-relativistic+wave-particle+duality+with+torsion&rft.volume=41&rft.issue=6&rft.pages=065011&rft.date=2024&rft_id=info%3Aarxiv%2F2211.03234&rft_id=info%3Adoi%2F10.1088%2F1361-6382%2Fad1fcb&rft.au=F.+R.+Benard+Guedes%2C+N.+J.+Pop%C5%82awski&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFS._K._Wong1972" class="citation journal cs1">S. K. Wong (1972). "Heisenberg equations of motion for spin-1/2 wave equation in general relativity". <i>International Journal of Theoretical Physics</i>. <b>5</b> (4): 221–230. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00670477">10.1007/BF00670477</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Theoretical+Physics&rft.atitle=Heisenberg+equations+of+motion+for+spin-1%2F2+wave+equation+in+general+relativity&rft.volume=5&rft.issue=4&rft.pages=221-230&rft.date=1972&rft_id=info%3Adoi%2F10.1007%2FBF00670477&rft.au=S.+K.+Wong&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValentini2013" class="citation web cs1">Valentini, Antony (2013). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=XYZV9crCZM8">"Hidden Variables in Modern Cosmology"</a>. Philosophy of Cosmology. <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211211/XYZV9crCZM8">Archived</a> from the original on 11 December 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">23 December</span> 2016</span> – via YouTube.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Hidden+Variables+in+Modern+Cosmology&rft.pub=Philosophy+of+Cosmology&rft.date=2013&rft.aulast=Valentini&rft.aufirst=Antony&rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXYZV9crCZM8&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text">See for ex. Detlef Dürr, Sheldon Goldstein, Nino Zanghí: <i>Bohmian mechanics and quantum equilibrium</i>, Stochastic Processes, Physics and Geometry II. World Scientific, 1995 <a rel="nofollow" class="external text" href="http://www.ge.infn.it/~zanghi/BMQE.pdf#page=5">page 5</a></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValentini1991" class="citation journal cs1">Valentini, A (1991). "Signal-Locality, Uncertainty and the Subquantum H-Theorem. II". <i>Physics Letters A</i>. <b>158</b> (1–2): 1–8. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1991PhLA..158....1V">1991PhLA..158....1V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0375-9601%2891%2990330-b">10.1016/0375-9601(91)90330-b</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+A&rft.atitle=Signal-Locality%2C+Uncertainty+and+the+Subquantum+H-Theorem.+II&rft.volume=158&rft.issue=1%E2%80%932&rft.pages=1-8&rft.date=1991&rft_id=info%3Adoi%2F10.1016%2F0375-9601%2891%2990330-b&rft_id=info%3Abibcode%2F1991PhLA..158....1V&rft.aulast=Valentini&rft.aufirst=A&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-Valentini2009-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-Valentini2009_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValentini2009" class="citation journal cs1">Valentini, Antony (2009). "Beyond the quantum". <i>Physics World</i>. <b>22</b> (11): 32–37. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1001.2758">1001.2758</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhyW...22k..32V">2009PhyW...22k..32V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2058-7058%2F22%2F11%2F36">10.1088/2058-7058/22/11/36</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0953-8585">0953-8585</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:86861670">86861670</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+World&rft.atitle=Beyond+the+quantum&rft.volume=22&rft.issue=11&rft.pages=32-37&rft.date=2009&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A86861670%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2009PhyW...22k..32V&rft_id=info%3Aarxiv%2F1001.2758&rft.issn=0953-8585&rft_id=info%3Adoi%2F10.1088%2F2058-7058%2F22%2F11%2F36&rft.aulast=Valentini&rft.aufirst=Antony&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMusser2013" class="citation web cs1">Musser, George (18 November 2013). <a rel="nofollow" class="external text" href="https://blogs.scientificamerican.com/critical-opalescence/cosmological-data-hint-at-a-level-of-physics-underlying-quantum-mechanics-guest-post/">"Cosmological Data Hint at a Level of Physics Underlying Quantum Mechanics"</a>. <i>blogs.scientificamerican.com</i>. Scientific American<span class="reference-accessdate">. Retrieved <span class="nowrap">5 December</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=blogs.scientificamerican.com&rft.atitle=Cosmological+Data+Hint+at+a+Level+of+Physics+Underlying+Quantum+Mechanics&rft.date=2013-11-18&rft.aulast=Musser&rft.aufirst=George&rft_id=https%3A%2F%2Fblogs.scientificamerican.com%2Fcritical-opalescence%2Fcosmological-data-hint-at-a-level-of-physics-underlying-quantum-mechanics-guest-post%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-bell-53"><span class="mw-cite-backlink">^ <a href="#cite_ref-bell_53-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-bell_53-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBell1987" class="citation book cs1">Bell, John S. (1987). <i>Speakable and Unspeakable in Quantum Mechanics</i>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-33495-2" title="Special:BookSources/978-0-521-33495-2"><bdi>978-0-521-33495-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Speakable+and+Unspeakable+in+Quantum+Mechanics&rft.pub=Cambridge+University+Press&rft.date=1987&rft.isbn=978-0-521-33495-2&rft.aulast=Bell&rft.aufirst=John+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text">Albert, D. Z., 1992, Quantum Mechanics and Experience, Cambridge, MA: Harvard University Press.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaumerDürrGoldsteinZanghì1997" class="citation journal cs1">Daumer, M.; Dürr, D.; Goldstein, S.; Zanghì, N. (1997). "Naive Realism About Operators". <i>Erkenntnis</i>. <b>45</b> (2–3): 379–397. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9601013">quant-ph/9601013</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996quant.ph..1013D">1996quant.ph..1013D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00276801">10.1007/BF00276801</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Erkenntnis&rft.atitle=Naive+Realism+About+Operators&rft.volume=45&rft.issue=2%E2%80%933&rft.pages=379-397&rft.date=1997&rft_id=info%3Aarxiv%2Fquant-ph%2F9601013&rft_id=info%3Adoi%2F10.1007%2FBF00276801&rft_id=info%3Abibcode%2F1996quant.ph..1013D&rft.aulast=Daumer&rft.aufirst=M.&rft.au=D%C3%BCrr%2C+D.&rft.au=Goldstein%2C+S.&rft.au=Zangh%C3%AC%2C+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDürrGoldsteinZanghì2003" class="citation journal cs1">Dürr, Detlef; Goldstein, Sheldon; Zanghì, Nino (2003). "Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory". <i>Journal of Statistical Physics</i>. <b>116</b> (1–4): 959. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0308038">quant-ph/0308038</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004JSP...116..959D">2004JSP...116..959D</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.252.1653">10.1.1.252.1653</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FB%3AJOSS.0000037234.80916.d0">10.1023/B:JOSS.0000037234.80916.d0</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123303">123303</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Statistical+Physics&rft.atitle=Quantum+Equilibrium+and+the+Role+of+Operators+as+Observables+in+Quantum+Theory&rft.volume=116&rft.issue=1%E2%80%934&rft.pages=959&rft.date=2003&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123303%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2004JSP...116..959D&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.252.1653%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1023%2FB%3AJOSS.0000037234.80916.d0&rft_id=info%3Aarxiv%2Fquant-ph%2F0308038&rft.aulast=D%C3%BCrr&rft.aufirst=Detlef&rft.au=Goldstein%2C+Sheldon&rft.au=Zangh%C3%AC%2C+Nino&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHymanCaldwellDalton2004" class="citation journal cs1">Hyman, Ross; Caldwell, Shane A; Dalton, Edward (2004). "Bohmian mechanics with discrete operators". <i>Journal of Physics A: Mathematical and General</i>. <b>37</b> (44): L547. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0401008">quant-ph/0401008</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004JPhA...37L.547H">2004JPhA...37L.547H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0305-4470%2F37%2F44%2FL02">10.1088/0305-4470/37/44/L02</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6073288">6073288</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+A%3A+Mathematical+and+General&rft.atitle=Bohmian+mechanics+with+discrete+operators&rft.volume=37&rft.issue=44&rft.pages=L547&rft.date=2004&rft_id=info%3Aarxiv%2Fquant-ph%2F0401008&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6073288%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0305-4470%2F37%2F44%2FL02&rft_id=info%3Abibcode%2F2004JPhA...37L.547H&rft.aulast=Hyman&rft.aufirst=Ross&rft.au=Caldwell%2C+Shane+A&rft.au=Dalton%2C+Edward&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text">David Bohm, Basil Hiley: <i>The Undivided Universe: An Ontological Interpretation of Quantum Theory</i>, edition published in the Taylor & Francis e-library 2009 (first edition Routledge, 1993), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-203-98038-7" title="Special:BookSources/0-203-98038-7">0-203-98038-7</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=vt9XKjc4WAQC&pg=PA2">p. 2</a>.</span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text">"While the testable predictions of Bohmian mechanics are isomorphic to standard Copenhagen quantum mechanics, its underlying hidden variables have to be, in principle, unobservable. If one could observe them, one would be able to take advantage of that and signal faster than light, which – according to the special theory of relativity – leads to physical temporal paradoxes." J. Kofler and A. Zeiliinger, "Quantum Information and Randomness", <i>European Review</i> (2010), Vol. 18, No. 4, 469–480.</span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMahlerRozemaFisherVermeyden2016" class="citation journal cs1">Mahler, DH; Rozema, L; Fisher, K; Vermeyden, L; Resch, KJ; Wiseman, HM; Steinberg, A (2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788483">"Experimental nonlocal and surreal Bohmian trajectories"</a>. <i>Sci Adv</i>. <b>2</b> (2): e1501466. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1501466">10.1126/science.1501466</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788483">4788483</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26989784">26989784</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Sci+Adv&rft.atitle=Experimental+nonlocal+and+surreal+Bohmian+trajectories&rft.volume=2&rft.issue=2&rft.pages=e1501466&rft.date=2016&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4788483%23id-name%3DPMC&rft_id=info%3Apmid%2F26989784&rft_id=info%3Adoi%2F10.1126%2Fscience.1501466&rft.aulast=Mahler&rft.aufirst=DH&rft.au=Rozema%2C+L&rft.au=Fisher%2C+K&rft.au=Vermeyden%2C+L&rft.au=Resch%2C+KJ&rft.au=Wiseman%2C+HM&rft.au=Steinberg%2C+A&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4788483&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-newscientist.com-61"><span class="mw-cite-backlink">^ <a href="#cite_ref-newscientist.com_61-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-newscientist.com_61-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Anil Ananthaswamy: <a rel="nofollow" class="external text" href="https://www.newscientist.com/article/2078251-quantum-weirdness-may-hide-an-orderly-reality-after-all/">Quantum weirdness may hide an orderly reality after all</a>, newscientist.com, 19 February 2016.</span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text">Golshani, M., and O. Akhavan. "Bohmian prediction about a two double-slit experiment and its disagreement with standard quantum mechanics." Journal of Physics A: Mathematical and General 34.25 (2001): 5259.</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBridaCaglieroFalzettaGenovese2002" class="citation journal cs1">Brida, G.; Cagliero, E.; Falzetta, G.; Genovese, M.; Gramegna, M.; Novero, C. (2002). "A first experimental test of de Broglie-Bohm theory against standard quantum mechanics". <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i>. <b>35</b> (22): 4751. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0206196">quant-ph/0206196</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002JPhB...35.4751B">2002JPhB...35.4751B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0953-4075%2F35%2F22%2F316">10.1088/0953-4075/35/22/316</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250773374">250773374</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+B%3A+Atomic%2C+Molecular+and+Optical+Physics&rft.atitle=A+first+experimental+test+of+de+Broglie-Bohm+theory+against+standard+quantum+mechanics&rft.volume=35&rft.issue=22&rft.pages=4751&rft.date=2002&rft_id=info%3Aarxiv%2Fquant-ph%2F0206196&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250773374%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0953-4075%2F35%2F22%2F316&rft_id=info%3Abibcode%2F2002JPhB...35.4751B&rft.aulast=Brida&rft.aufirst=G.&rft.au=Cagliero%2C+E.&rft.au=Falzetta%2C+G.&rft.au=Genovese%2C+M.&rft.au=Gramegna%2C+M.&rft.au=Novero%2C+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStruyveDe_Baere2001" class="citation book cs1">Struyve, W.; De Baere, W. (2001). "Comments on some recently proposed experiments that should distinguish Bohmian mechanics from quantum mechanics". <i>Quantum Theory: Reconsideration of Foundations</i>. Vaxjo: Vaxjo University Press. p. 355. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0108038">quant-ph/0108038</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001quant.ph..8038S">2001quant.ph..8038S</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Comments+on+some+recently+proposed+experiments+that+should+distinguish+Bohmian+mechanics+from+quantum+mechanics&rft.btitle=Quantum+Theory%3A+Reconsideration+of+Foundations&rft.place=Vaxjo&rft.pages=355&rft.pub=Vaxjo+University+Press&rft.date=2001&rft_id=info%3Aarxiv%2Fquant-ph%2F0108038&rft_id=info%3Abibcode%2F2001quant.ph..8038S&rft.aulast=Struyve&rft.aufirst=W.&rft.au=De+Baere%2C+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBridaCaglieroGenoveseGramegna2004" class="citation journal cs1">Brida, G; Cagliero, E; Genovese, M; Gramegna, M (28 September 2004). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1088/0953-4075/37/18/N02">"Reply to Comment on Experimental realization of a first test of de Broglie–Bohm theory"</a>. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i>. <b>37</b> (18): 3781–3783. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0953-4075%2F37%2F18%2FN02">10.1088/0953-4075/37/18/N02</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0953-4075">0953-4075</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+B%3A+Atomic%2C+Molecular+and+Optical+Physics&rft.atitle=Reply+to+Comment+on+Experimental+realization+of+a+first+test+of+de+Broglie%E2%80%93Bohm+theory&rft.volume=37&rft.issue=18&rft.pages=3781-3783&rft.date=2004-09-28&rft_id=info%3Adoi%2F10.1088%2F0953-4075%2F37%2F18%2FN02&rft.issn=0953-4075&rft.aulast=Brida&rft.aufirst=G&rft.au=Cagliero%2C+E&rft.au=Genovese%2C+M&rft.au=Gramegna%2C+M&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F0953-4075%2F37%2F18%2FN02&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBell_J._S.1964" class="citation journal cs1">Bell J. S. (1964). <a rel="nofollow" class="external text" href="http://www.drchinese.com/David/Bell_Compact.pdf">"On the Einstein Podolsky Rosen Paradox"</a> <span class="cs1-format">(PDF)</span>. <i>Physics Physique Fizika</i>. <b>1</b> (3): 195. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysicsPhysiqueFizika.1.195">10.1103/PhysicsPhysiqueFizika.1.195</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Physique+Fizika&rft.atitle=On+the+Einstein+Podolsky+Rosen+Paradox&rft.volume=1&rft.issue=3&rft.pages=195&rft.date=1964&rft_id=info%3Adoi%2F10.1103%2FPhysicsPhysiqueFizika.1.195&rft.au=Bell+J.+S.&rft_id=http%3A%2F%2Fwww.drchinese.com%2FDavid%2FBell_Compact.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEinsteinPodolskyRosen1935" class="citation journal cs1">Einstein; Podolsky; Rosen (1935). <a rel="nofollow" class="external text" href="https://cds.cern.ch/record/405662">"Can Quantum Mechanical Description of Physical Reality Be Considered Complete?"</a>. <i><a href="/wiki/Physical_Review" title="Physical Review">Phys. Rev.</a></i> <b>47</b> (10): 777–780. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1935PhRv...47..777E">1935PhRv...47..777E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.47.777">10.1103/PhysRev.47.777</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Phys.+Rev.&rft.atitle=Can+Quantum+Mechanical+Description+of+Physical+Reality+Be+Considered+Complete%3F&rft.volume=47&rft.issue=10&rft.pages=777-780&rft.date=1935&rft_id=info%3Adoi%2F10.1103%2FPhysRev.47.777&rft_id=info%3Abibcode%2F1935PhRv...47..777E&rft.au=Einstein&rft.au=Podolsky&rft.au=Rosen&rft_id=https%3A%2F%2Fcds.cern.ch%2Frecord%2F405662&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text">Bell, page 115.</span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaudlin1994" class="citation book cs1">Maudlin, T. (1994). <i>Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics</i>. Cambridge, Mass.: Blackwell. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-631-18609-0" title="Special:BookSources/978-0-631-18609-0"><bdi>978-0-631-18609-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantum+Non-Locality+and+Relativity%3A+Metaphysical+Intimations+of+Modern+Physics&rft.place=Cambridge%2C+Mass.&rft.pub=Blackwell&rft.date=1994&rft.isbn=978-0-631-18609-0&rft.aulast=Maudlin&rft.aufirst=T.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlloriDürrGoldsteinZanghì2002" class="citation journal cs1">Allori, V.; Dürr, D.; Goldstein, S.; Zanghì, N. (2002). "Seven Steps Towards the Classical World". <i>Journal of Optics B</i>. <b>4</b> (4): 482–488. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0112005">quant-ph/0112005</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002JOptB...4S.482A">2002JOptB...4S.482A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1464-4266%2F4%2F4%2F344">10.1088/1464-4266/4/4/344</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:45059773">45059773</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Optics+B&rft.atitle=Seven+Steps+Towards+the+Classical+World&rft.volume=4&rft.issue=4&rft.pages=482-488&rft.date=2002&rft_id=info%3Aarxiv%2Fquant-ph%2F0112005&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A45059773%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F1464-4266%2F4%2F4%2F344&rft_id=info%3Abibcode%2F2002JOptB...4S.482A&rft.aulast=Allori&rft.aufirst=V.&rft.au=D%C3%BCrr%2C+D.&rft.au=Goldstein%2C+S.&rft.au=Zangh%C3%AC%2C+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWyatt2007" class="citation journal cs1">Wyatt, Robert (11 October 2007). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/full/10.1021/jp079540%2B">"The Short Story of My Life and My Career in Quantum Propagation"</a>. <i>The Journal of Physical Chemistry A</i>. <b>111</b> (41): 10171–10185. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007JPCA..11110171.">2007JPCA..11110171.</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fjp079540%2B">10.1021/jp079540+</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17927265">17927265</a><span class="reference-accessdate">. Retrieved <span class="nowrap">18 March</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Journal+of+Physical+Chemistry+A&rft.atitle=The+Short+Story+of+My+Life+and+My+Career+in+Quantum+Propagation&rft.volume=111&rft.issue=41&rft.pages=10171-10185&rft.date=2007-10-11&rft_id=info%3Apmid%2F17927265&rft_id=info%3Adoi%2F10.1021%2Fjp079540%2B&rft_id=info%3Abibcode%2F2007JPCA..11110171.&rft.aulast=Wyatt&rft.aufirst=Robert&rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Ffull%2F10.1021%2Fjp079540%252B&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-h523-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-h523_72-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://web.archive.org/web/20210805161220/http://k2.chem.uh.edu/">"Bittner Group Webpage"</a>. <i>k2.chem.uh.edu</i>. 10 March 2021. Archived from <a rel="nofollow" class="external text" href="http://k2.chem.uh.edu/">the original</a> on 5 August 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">10 July</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=k2.chem.uh.edu&rft.atitle=Bittner+Group+Webpage&rft.date=2021-03-10&rft_id=http%3A%2F%2Fk2.chem.uh.edu%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValentiniWestman2012" class="citation arxiv cs1">Valentini, Antony; Westman, Hans (2012). "Combining Bohm and Everett: Axiomatics for a Standalone Quantum Mechanics". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1208.5632">1208.5632</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Combining+Bohm+and+Everett%3A+Axiomatics+for+a+Standalone+Quantum+Mechanics&rft.date=2012&rft_id=info%3Aarxiv%2F1208.5632&rft.aulast=Valentini&rft.aufirst=Antony&rft.au=Westman%2C+Hans&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-BrownWallace-74"><span class="mw-cite-backlink">^ <a href="#cite_ref-BrownWallace_74-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BrownWallace_74-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-BrownWallace_74-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-BrownWallace_74-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-BrownWallace_74-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-BrownWallace_74-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-BrownWallace_74-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrownWallace2005" class="citation journal cs1"><a href="/wiki/Harvey_Brown_(philosopher)" class="mw-redirect" title="Harvey Brown (philosopher)">Brown, Harvey R.</a>; Wallace, David (2005). <a rel="nofollow" class="external text" href="http://philsci-archive.pitt.edu/archive/00001659/01/Cushing.pdf">"Solving the measurement problem: de Broglie–Bohm loses out to Everett"</a> <span class="cs1-format">(PDF)</span>. <i>Foundations of Physics</i>. <b>35</b> (4): 517–540. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0403094">quant-ph/0403094</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005FoPh...35..517B">2005FoPh...35..517B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10701-004-2009-3">10.1007/s10701-004-2009-3</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:412240">412240</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=Solving+the+measurement+problem%3A+de+Broglie%E2%80%93Bohm+loses+out+to+Everett&rft.volume=35&rft.issue=4&rft.pages=517-540&rft.date=2005&rft_id=info%3Aarxiv%2Fquant-ph%2F0403094&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A412240%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs10701-004-2009-3&rft_id=info%3Abibcode%2F2005FoPh...35..517B&rft.aulast=Brown&rft.aufirst=Harvey+R.&rft.au=Wallace%2C+David&rft_id=http%3A%2F%2Fphilsci-archive.pitt.edu%2Farchive%2F00001659%2F01%2FCushing.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span> Abstract: "The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation."</span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><a href="/wiki/Daniel_Dennett" title="Daniel Dennett">Daniel Dennett</a> (2000). <i>With a little help from my friends.</i> In D. Ross, A. Brook, and D. Thompson (Eds.), <i>Dennett's Philosophy: a comprehensive assessment.</i> MIT Press/Bradford, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-262-68117-X" title="Special:BookSources/0-262-68117-X">0-262-68117-X</a>.</span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeutsch1996" class="citation journal cs1"><a href="/wiki/David_Deutsch" title="David Deutsch">Deutsch, David</a> (1996). "Comment on Lockwood". <i>British Journal for the Philosophy of Science</i>. <b>47</b> (2): 222–228. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbjps%2F47.2.222">10.1093/bjps/47.2.222</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=British+Journal+for+the+Philosophy+of+Science&rft.atitle=Comment+on+Lockwood&rft.volume=47&rft.issue=2&rft.pages=222-228&rft.date=1996&rft_id=info%3Adoi%2F10.1093%2Fbjps%2F47.2.222&rft.aulast=Deutsch&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDürrLazarovici2022" class="citation book cs1"><a href="/w/index.php?title=Detlef_D%C3%BCrr_and_Justin_Lazarovici&action=edit&redlink=1" class="new" title="Detlef Dürr and Justin Lazarovici (page does not exist)">Dürr, Detlef</a>; Lazarovici, Justin (2022). <i>Understanding Quantum Mechanics: The World According to Modern Quantum Foundations</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-030-40067-5" title="Special:BookSources/978-3-030-40067-5"><bdi>978-3-030-40067-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Understanding+Quantum+Mechanics%3A+The+World+According+to+Modern+Quantum+Foundations&rft.pub=Springer&rft.date=2022&rft.isbn=978-3-030-40067-5&rft.aulast=D%C3%BCrr&rft.aufirst=Detlef&rft.au=Lazarovici%2C+Justin&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text">See section VI of Everett's dissertation <a rel="nofollow" class="external text" href="https://www.pbs.org/wgbh/nova/manyworlds/pdf/dissertation.pdf"><i>Theory of the Universal Wavefunction</i></a>, pp. 3–140 of <a href="/wiki/Bryce_Seligman_DeWitt" class="mw-redirect" title="Bryce Seligman DeWitt">Bryce Seligman DeWitt</a>, <a href="/w/index.php?title=R._Neill_Graham&action=edit&redlink=1" class="new" title="R. Neill Graham (page does not exist)">R. Neill Graham</a>, eds, <i>The Many-Worlds Interpretation of Quantum Mechanics</i>, Princeton Series in Physics, <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a> (1973), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-691-08131-X" title="Special:BookSources/0-691-08131-X">0-691-08131-X</a>.</span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCallender" class="citation report cs1"><a href="/wiki/Craig_Callender" title="Craig Callender">Callender, Craig</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100612191323/http://philosophy.ucsd.edu/faculty/ccallender/The%20Redundancy%20Argument%20Against%20Bohmian%20Mechanics.doc">The Redundancy Argument Against Bohmian Mechanics</a> (Report). Archived from <a rel="nofollow" class="external text" href="http://philosophy.ucsd.edu/faculty/ccallender/The%20Redundancy%20Argument%20Against%20Bohmian%20Mechanics.doc">the original</a> on 12 June 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">23 November</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=report&rft.btitle=The+Redundancy+Argument+Against+Bohmian+Mechanics&rft.aulast=Callender&rft.aufirst=Craig&rft_id=http%3A%2F%2Fphilosophy.ucsd.edu%2Ffaculty%2Fccallender%2FThe%2520Redundancy%2520Argument%2520Against%2520Bohmian%2520Mechanics.doc&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValentini2010" class="citation book cs1">Valentini, Antony (2010). "De Broglie-Bohm Pilot-Wave Theory: Many Worlds in Denial?". In Saunders, Simon; Barrett, Jon; Kent, Adrian (eds.). <i>Many Worlds? Everett, Quantum Theory, and Reality</i>. Vol. 2010. Oxford University Press. pp. 476–509. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0811.0810">0811.0810</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008arXiv0811.0810V">2008arXiv0811.0810V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Facprof%3Aoso%2F9780199560561.003.0019">10.1093/acprof:oso/9780199560561.003.0019</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-956056-1" title="Special:BookSources/978-0-19-956056-1"><bdi>978-0-19-956056-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=De+Broglie-Bohm+Pilot-Wave+Theory%3A+Many+Worlds+in+Denial%3F&rft.btitle=Many+Worlds%3F+Everett%2C+Quantum+Theory%2C+and+Reality&rft.pages=476-509&rft.pub=Oxford+University+Press&rft.date=2010&rft_id=info%3Aarxiv%2F0811.0810&rft_id=info%3Adoi%2F10.1093%2Facprof%3Aoso%2F9780199560561.003.0019&rft_id=info%3Abibcode%2F2008arXiv0811.0810V&rft.isbn=978-0-19-956056-1&rft.aulast=Valentini&rft.aufirst=Antony&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolland2001" class="citation journal cs1">Holland, Peter (2001). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20111110140052/http://users.ox.ac.uk/~gree0579/index_files/NuovoCimento2.pdf">"Hamiltonian Theory of Wave and Particle in Quantum Mechanics I, II"</a> <span class="cs1-format">(PDF)</span>. <i>Nuovo Cimento B</i>. <b>116</b>: 1043, 1143. Archived from <a rel="nofollow" class="external text" href="http://users.ox.ac.uk/~gree0579/index_files/NuovoCimento2.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 10 November 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">17 July</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nuovo+Cimento+B&rft.atitle=Hamiltonian+Theory+of+Wave+and+Particle+in+Quantum+Mechanics+I%2C+II&rft.volume=116&rft.pages=1043%2C+1143&rft.date=2001&rft.aulast=Holland&rft.aufirst=Peter&rft_id=http%3A%2F%2Fusers.ox.ac.uk%2F~gree0579%2Findex_files%2FNuovoCimento2.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text">Peter R. Holland: <i>The quantum theory of motion</i>, Cambridge University Press, 1993 (re-printed 2000, transferred to digital printing 2004), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-48543-6" title="Special:BookSources/0-521-48543-6">0-521-48543-6</a>, p. 66 ff.</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text">F. David Peat, <i>Infinite Potential: The Life and Times of David Bohm</i> (1997), p. 133. James T. Cushing, <i>Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony</i> (1994) discusses "the hegemony of the Copenhagen interpretation of quantum mechanics" over theories like Bohmian mechanics as an example of how the acceptance of scientific theories may be guided by social aspects.</span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBell1982" class="citation journal cs1">Bell, J. S. (1 October 1982). <a rel="nofollow" class="external text" href="https://link.springer.com/article/10.1007/BF01889272">"On the impossible pilot wave"</a>. <i>Foundations of Physics</i>. <b>12</b> (10): 989–999. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982FoPh...12..989B">1982FoPh...12..989B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01889272">10.1007/BF01889272</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1572-9516">1572-9516</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120592799">120592799</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=On+the+impossible+pilot+wave&rft.volume=12&rft.issue=10&rft.pages=989-999&rft.date=1982-10-01&rft_id=info%3Adoi%2F10.1007%2FBF01889272&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120592799%23id-name%3DS2CID&rft.issn=1572-9516&rft_id=info%3Abibcode%2F1982FoPh...12..989B&rft.aulast=Bell&rft.aufirst=J.+S.&rft_id=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2FBF01889272&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text">David Bohm and Basil J. Hiley, <i>The Undivided Universe – An Ontological Interpretation of Quantum Theory</i> appeared after Bohm's death, in 1993; <a rel="nofollow" class="external text" href="http://www.mathematik.uni-muenchen.de/~bohmmech/BohmHome/files/bhr.pdf">reviewed</a> by Sheldon Goldstein in <i>Physics Today</i> (1994). J. Cushing, A. Fine, S. Goldstein (eds.), <i>Bohmian Mechanics and Quantum Theory – An Appraisal</i> (1996).</span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text">Solvay Conference, 1928, Electrons et Photons: Rapports et Descussions du Cinquieme Conseil de Physique tenu a Bruxelles du 24 au 29 October 1927 sous les auspices de l'Institut International Physique Solvay</span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text">Louis be Broglie, in the foreword to David Bohm's <i>Causality and Chance in Modern Physics</i> (1957). p. x.</span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text">Bacciagaluppi, G., and Valentini, A., <a rel="nofollow" class="external text" href="https://arxiv.org/pdf/quant-ph/0609184.pdf">"Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference"</a></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text">See the brief summary by Towler, M., <a rel="nofollow" class="external text" href="http://www.tcm.phy.cam.ac.uk/~mdt26/PWT/lectures/bohm7.pdf">"Pilot wave theory, Bohmian metaphysics, and the foundations of quantum mechanics"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160322141228/http://www.tcm.phy.cam.ac.uk/%7Emdt26/PWT/lectures/bohm7.pdf">Archived</a> 22 March 2016 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text">von Neumann, J. 1932 <i>Mathematische Grundlagen der Quantenmechanik</i></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBub2010" class="citation journal cs1"><a href="/wiki/Jeffrey_Bub" title="Jeffrey Bub">Bub, Jeffrey</a> (2010). "Von Neumann's 'No Hidden Variables' Proof: A Re-Appraisal". <i>Foundations of Physics</i>. <b>40</b> (9–10): 1333–1340. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1006.0499">1006.0499</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010FoPh...40.1333B">2010FoPh...40.1333B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10701-010-9480-9">10.1007/s10701-010-9480-9</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118595119">118595119</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=Von+Neumann%27s+%27No+Hidden+Variables%27+Proof%3A+A+Re-Appraisal&rft.volume=40&rft.issue=9%E2%80%9310&rft.pages=1333-1340&rft.date=2010&rft_id=info%3Aarxiv%2F1006.0499&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118595119%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs10701-010-9480-9&rft_id=info%3Abibcode%2F2010FoPh...40.1333B&rft.aulast=Bub&rft.aufirst=Jeffrey&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMadelung1927" class="citation journal cs1">Madelung, E. (1927). "Quantentheorie in hydrodynamischer Form". <i><a href="/wiki/Zeitschrift_f%C3%BCr_Physik" title="Zeitschrift für Physik">Z. Phys.</a></i> <b>40</b> (3–4): 322–326. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1927ZPhy...40..322M">1927ZPhy...40..322M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01400372">10.1007/BF01400372</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121537534">121537534</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Z.+Phys.&rft.atitle=Quantentheorie+in+hydrodynamischer+Form&rft.volume=40&rft.issue=3%E2%80%934&rft.pages=322-326&rft.date=1927&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121537534%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF01400372&rft_id=info%3Abibcode%2F1927ZPhy...40..322M&rft.aulast=Madelung&rft.aufirst=E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTsekov2012" class="citation journal cs1">Tsekov, Roumen (2012). "Bohmian Mechanics versus Madelung Quantum Hydrodynamics". <i>Annuaire de l'Université de Sofia</i>: 112–119. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0904.0723">0904.0723</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012AUSFP..SE..112T">2012AUSFP..SE..112T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.13140%2FRG.2.1.3663.8245">10.13140/RG.2.1.3663.8245</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:59399059">59399059</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annuaire+de+l%27Universit%C3%A9+de+Sofia&rft.atitle=Bohmian+Mechanics+versus+Madelung+Quantum+Hydrodynamics&rft.pages=112-119&rft.date=2012&rft_id=info%3Aarxiv%2F0904.0723&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A59399059%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.13140%2FRG.2.1.3663.8245&rft_id=info%3Abibcode%2F2012AUSFP..SE..112T&rft.aulast=Tsekov&rft.aufirst=Roumen&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolland2005" class="citation journal cs1">Holland, Peter (2005). "What's wrong with Einstein's 1927 hidden-variable interpretation of quantum mechanics?". <i>Foundations of Physics</i>. <b>35</b> (2): 177–196. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0401017">quant-ph/0401017</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005FoPh...35..177H">2005FoPh...35..177H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10701-004-1940-7">10.1007/s10701-004-1940-7</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119426936">119426936</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=What%27s+wrong+with+Einstein%27s+1927+hidden-variable+interpretation+of+quantum+mechanics%3F&rft.volume=35&rft.issue=2&rft.pages=177-196&rft.date=2005&rft_id=info%3Aarxiv%2Fquant-ph%2F0401017&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119426936%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs10701-004-1940-7&rft_id=info%3Abibcode%2F2005FoPh...35..177H&rft.aulast=Holland&rft.aufirst=Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolland2005" class="citation journal cs1">Holland, Peter (2005). "What's wrong with Einstein's 1927 hidden-variable interpretation of quantum mechanics?". <i>Foundations of Physics</i>. <b>35</b> (2): 177–196. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0401017">quant-ph/0401017</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005FoPh...35..177H">2005FoPh...35..177H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10701-004-1940-7">10.1007/s10701-004-1940-7</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119426936">119426936</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=What%27s+wrong+with+Einstein%27s+1927+hidden-variable+interpretation+of+quantum+mechanics%3F&rft.volume=35&rft.issue=2&rft.pages=177-196&rft.date=2005&rft_id=info%3Aarxiv%2Fquant-ph%2F0401017&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119426936%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs10701-004-1940-7&rft_id=info%3Abibcode%2F2005FoPh...35..177H&rft.aulast=Holland&rft.aufirst=Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text">(Letter of 12 May 1952 from Einstein to Max Born, in <i>The Born–Einstein Letters</i>, Macmillan, 1971, p. 192.</span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text">Werner Heisenberg, <i>Physics and Philosophy</i> (1958), p. 133.</span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text">Pauli to Bohm, 3 December 1951, in Wolfgang Pauli, <i>Scientific Correspondence</i>, Vol IV – Part I, [ed. by Karl von Meyenn], (Berlin, 1996), pp. 436–441.</span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text">Pauli, W. (1953). "Remarques sur le probleme des parametres caches dans la mecanique quantique et sur la theorie de l'onde pilote". In A. George (Ed.), <i>Louis de Broglie—physicien et penseur</i> (pp. 33–42). Paris: Editions Albin Michel.</span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text">F. David Peat, <i>Infinite Potential: The Life and Times of David Bohm</i> (1997), p. 133.</span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text">Statement on that they were in fact the first in: B. J. Hiley: <i>Nonlocality in microsystems</i>, in: Joseph S. King, Karl H. Pribram (eds.): <i>Scale in Conscious Experience: Is the Brain Too Important to be Left to Specialists to Study?</i>, Psychology Press, 1995, pp. 318 ff., <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jXRub48gzuIC&pg=PA">p. 319</a>, which takes reference to: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPhilippidisDewdneyHiley2007" class="citation journal cs1">Philippidis, C.; Dewdney, C.; Hiley, B. J. (2007). "Quantum interference and the quantum potential". <i>Il Nuovo Cimento B</i>. <b>52</b> (1): 15. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1979NCimB..52...15P">1979NCimB..52...15P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02743566">10.1007/BF02743566</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53575967">53575967</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Il+Nuovo+Cimento+B&rft.atitle=Quantum+interference+and+the+quantum+potential&rft.volume=52&rft.issue=1&rft.pages=15&rft.date=2007&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53575967%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF02743566&rft_id=info%3Abibcode%2F1979NCimB..52...15P&rft.aulast=Philippidis&rft.aufirst=C.&rft.au=Dewdney%2C+C.&rft.au=Hiley%2C+B.+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><a href="/wiki/Olival_Freire_Jr." title="Olival Freire Jr.">Olival Freire Jr.</a>: <i>Continuity and change: charting David Bohm's evolving ideas on quantum mechanics</i>, In: Décio Krause, Antonio Videira (eds.): <i>Brazilian Studies in the Philosophy and History of Science</i>, Boston Studies in the Philosophy of Science, Springer, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-90-481-9421-6" title="Special:BookSources/978-90-481-9421-6">978-90-481-9421-6</a>, pp.291–300, therein <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EAswiGbShCAC&pg=PA296">p. 296–297</a></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text">Olival Freire jr.: <i>A story without an ending: the quantum physics controversy 1950–1970</i>, Science & Education, vol. 12, pp. 573–586, 2003, <a rel="nofollow" class="external text" href="http://www.controversia.fis.ufba.br/index_arquivos/freire-se.pdf#page=4">p. 576</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140310040550/http://www.controversia.fis.ufba.br/index_arquivos/freire-se.pdf#page=4">Archived</a> 10 March 2014 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-ESSW_1992-104"><span class="mw-cite-backlink">^ <a href="#cite_ref-ESSW_1992_104-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ESSW_1992_104-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEnglertScullySüssmannWalther1992" class="citation journal cs1">Englert, Berthold-Georg; Scully, Marian O.; Süssmann, Georg; Walther, Herbert (1 December 1992). <a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fzna-1992-1201">"Surrealistic Bohm Trajectories"</a>. <i>Zeitschrift für Naturforschung A</i>. <b>47</b> (12): 1175–1186. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fzna-1992-1201">10.1515/zna-1992-1201</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1865-7109">1865-7109</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Zeitschrift+f%C3%BCr+Naturforschung+A&rft.atitle=Surrealistic+Bohm+Trajectories&rft.volume=47&rft.issue=12&rft.pages=1175-1186&rft.date=1992-12-01&rft_id=info%3Adoi%2F10.1515%2Fzna-1992-1201&rft.issn=1865-7109&rft.aulast=Englert&rft.aufirst=Berthold-Georg&rft.au=Scully%2C+Marian+O.&rft.au=S%C3%BCssmann%2C+Georg&rft.au=Walther%2C+Herbert&rft_id=https%3A%2F%2Fdoi.org%2F10.1515%252Fzna-1992-1201&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHileyE_CallaghanMaroney2000" class="citation arxiv cs1">Hiley, B. J.; E Callaghan, R.; Maroney, O. (2000). "Quantum trajectories, real, surreal or an approximation to a deeper process?". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0010020">quant-ph/0010020</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Quantum+trajectories%2C+real%2C+surreal+or+an+approximation+to+a+deeper+process%3F&rft.date=2000&rft_id=info%3Aarxiv%2Fquant-ph%2F0010020&rft.aulast=Hiley&rft.aufirst=B.+J.&rft.au=E+Callaghan%2C+R.&rft.au=Maroney%2C+O.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text">Larder et al. (2019) Fast nonadiabatic dynamics of many-body quantum systems <a rel="nofollow" class="external free" href="https://doi.org/10.1126/sciadv.aaw1634">https://doi.org/10.1126/sciadv.aaw1634</a></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text">A. Fine: "On the interpretation of Bohmian mechanics", in: J. T. Cushing, A. Fine, S. Goldstein (Eds.): <i>Bohmian mechanics and quantum theory: an appraisal</i>, Springer, 1996, pp. 231−250.</span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimpson2021" class="citation journal cs1">Simpson, W.M.R (2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831748">"Cosmic Hylomorphism: a powerist ontology of quantum mechanics"</a>. <i>European Journal for Philosophy of Science</i>. <b>11</b> (28): 28. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs13194-020-00342-5">10.1007/s13194-020-00342-5</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1879-4912">1879-4912</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831748">7831748</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33520035">33520035</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=European+Journal+for+Philosophy+of+Science&rft.atitle=Cosmic+Hylomorphism%3A+a+powerist+ontology+of+quantum+mechanics&rft.volume=11&rft.issue=28&rft.pages=28&rft.date=2021&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7831748%23id-name%3DPMC&rft.issn=1879-4912&rft_id=info%3Apmid%2F33520035&rft_id=info%3Adoi%2F10.1007%2Fs13194-020-00342-5&rft.aulast=Simpson&rft.aufirst=W.M.R&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7831748&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCouderFort2006" class="citation journal cs1">Couder, Yves; Fort, Emmanuel (2006). <a rel="nofollow" class="external text" href="http://users.isy.liu.se/en/jalar/kurser/QF/assignments/Couder2006.pdf">"Single-Particle Diffraction and Interference at a Macroscopic Scale"</a> <span class="cs1-format">(PDF)</span>. <i>Phys. Rev. Lett</i>. <b>97</b> (15): 154101. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006PhRvL..97o4101C">2006PhRvL..97o4101C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.97.154101">10.1103/PhysRevLett.97.154101</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17155330">17155330</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Phys.+Rev.+Lett.&rft.atitle=Single-Particle+Diffraction+and+Interference+at+a+Macroscopic+Scale&rft.volume=97&rft.issue=15&rft.pages=154101&rft.date=2006&rft_id=info%3Apmid%2F17155330&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.97.154101&rft_id=info%3Abibcode%2F2006PhRvL..97o4101C&rft.aulast=Couder&rft.aufirst=Yves&rft.au=Fort%2C+Emmanuel&rft_id=http%3A%2F%2Fusers.isy.liu.se%2Fen%2Fjalar%2Fkurser%2FQF%2Fassignments%2FCouder2006.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardesty2014" class="citation web cs1">Hardesty, Larry (12 September 2014). <a rel="nofollow" class="external text" href="https://news.mit.edu/2014/fluid-systems-quantum-mechanics-0912">"Fluid mechanics suggests alternative to quantum orthodoxy"</a>. <i>news.mit.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">7 December</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=news.mit.edu&rft.atitle=Fluid+mechanics+suggests+alternative+to+quantum+orthodoxy&rft.date=2014-09-12&rft.aulast=Hardesty&rft.aufirst=Larry&rft_id=https%3A%2F%2Fnews.mit.edu%2F2014%2Ffluid-systems-quantum-mechanics-0912&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBush2015" class="citation journal cs1">Bush, John W. M. (2015). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161125110215/http://newfos.arizona.edu/sites/default/files/uploads/documents/Pilot_Waves_Phys_Today_Aug_2015.pdf">"The new wave of pilot-wave theory"</a> <span class="cs1-format">(PDF)</span>. <i>Physics Today</i>. <b>68</b> (8): 47. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015PhT....68h..47B">2015PhT....68h..47B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2FPT.3.2882">10.1063/PT.3.2882</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1721.1%2F110524">1721.1/110524</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17882118">17882118</a>. Archived from <a rel="nofollow" class="external text" href="http://newfos.arizona.edu/sites/default/files/uploads/documents/Pilot_Waves_Phys_Today_Aug_2015.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 25 November 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">7 December</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Today&rft.atitle=The+new+wave+of+pilot-wave+theory&rft.volume=68&rft.issue=8&rft.pages=47&rft.date=2015&rft_id=info%3Ahdl%2F1721.1%2F110524&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17882118%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1063%2FPT.3.2882&rft_id=info%3Abibcode%2F2015PhT....68h..47B&rft.aulast=Bush&rft.aufirst=John+W.+M.&rft_id=http%3A%2F%2Fnewfos.arizona.edu%2Fsites%2Fdefault%2Ffiles%2Fuploads%2Fdocuments%2FPilot_Waves_Phys_Today_Aug_2015.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBush2015" class="citation journal cs1">Bush, John W. M. (2015). "Pilot-Wave Hydrodynamics". <i>Annual Review of Fluid Mechanics</i>. <b>47</b> (1): 269–292. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015AnRFM..47..269B">2015AnRFM..47..269B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev-fluid-010814-014506">10.1146/annurev-fluid-010814-014506</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1721.1%2F89790">1721.1/89790</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annual+Review+of+Fluid+Mechanics&rft.atitle=Pilot-Wave+Hydrodynamics&rft.volume=47&rft.issue=1&rft.pages=269-292&rft.date=2015&rft_id=info%3Ahdl%2F1721.1%2F89790&rft_id=info%3Adoi%2F10.1146%2Fannurev-fluid-010814-014506&rft_id=info%3Abibcode%2F2015AnRFM..47..269B&rft.aulast=Bush&rft.aufirst=John+W.+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolchover2014" class="citation journal cs1">Wolchover, Natalie (24 June 2014). <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/20140624-fluid-tests-hint-at-concrete-quantum-reality/">"Fluid Tests Hint at Concrete Quantum Reality"</a>. <i>Quanta Magazine</i><span class="reference-accessdate">. Retrieved <span class="nowrap">28 November</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Quanta+Magazine&rft.atitle=Fluid+Tests+Hint+at+Concrete+Quantum+Reality&rft.date=2014-06-24&rft.aulast=Wolchover&rft.aufirst=Natalie&rft_id=https%3A%2F%2Fwww.quantamagazine.org%2F20140624-fluid-tests-hint-at-concrete-quantum-reality%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text">John W. M. Bush: <a rel="nofollow" class="external text" href="http://www.tcm.phy.cam.ac.uk/~mdt26/tti_talks/deBB_10/bush_tti2010.pdf">"Quantum mechanics writ large"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171215051636/http://www.tcm.phy.cam.ac.uk/~mdt26/tti_talks/deBB_10/bush_tti2010.pdf">Archived</a> 15 December 2017 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndersenMadsenReicheltRosenlund_Ahl2015" class="citation journal cs1">Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas (6 July 2015). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevE.92.013006">"Double-slit experiment with single wave-driven particles and its relation to quantum mechanics"</a>. <i>Physical Review E</i>. <b>92</b> (1): 013006. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevE.92.013006">10.1103/PhysRevE.92.013006</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1539-3755">1539-3755</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26274269">26274269</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+E&rft.atitle=Double-slit+experiment+with+single+wave-driven+particles+and+its+relation+to+quantum+mechanics&rft.volume=92&rft.issue=1&rft.pages=013006&rft.date=2015-07-06&rft.issn=1539-3755&rft_id=info%3Apmid%2F26274269&rft_id=info%3Adoi%2F10.1103%2FPhysRevE.92.013006&rft.aulast=Andersen&rft.aufirst=Anders&rft.au=Madsen%2C+Jacob&rft.au=Reichelt%2C+Christian&rft.au=Rosenlund+Ahl%2C+Sonja&rft.au=Lautrup%2C+Benny&rft.au=Ellegaard%2C+Clive&rft.au=Levinsen%2C+Mogens+T.&rft.au=Bohr%2C+Tomas&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevE.92.013006&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolchover2018" class="citation web cs1">Wolchover, Natalie (11 October 2018). <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/famous-experiment-dooms-pilot-wave-alternative-to-quantum-weirdness-20181011/">"Famous Experiment Dooms Alternative to Quantum Weirdness"</a>. Quanta Magazine<span class="reference-accessdate">. Retrieved <span class="nowrap">17 October</span> 2018</span>. <q>Oil droplets guided by "pilot waves" have failed to reproduce the results of the quantum double-slit experiment</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Famous+Experiment+Dooms+Alternative+to+Quantum+Weirdness&rft.pub=Quanta+Magazine&rft.date=2018-10-11&rft.aulast=Wolchover&rft.aufirst=Natalie&rft_id=https%3A%2F%2Fwww.quantamagazine.org%2Ffamous-experiment-dooms-pilot-wave-alternative-to-quantum-weirdness-20181011%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTadristGiletSchlagheckBush2020" class="citation journal cs1">Tadrist, Loïc; Gilet, Tristan; Schlagheck, Peter; Bush, John W. M. (9 July 2020). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevE.102.013104">"Predictability in a hydrodynamic pilot-wave system: Resolution of walker tunneling"</a>. <i>Physical Review E</i>. <b>102</b> (1): 013104. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevE.102.013104">10.1103/PhysRevE.102.013104</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2470-0045">2470-0045</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32795022">32795022</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+E&rft.atitle=Predictability+in+a+hydrodynamic+pilot-wave+system%3A+Resolution+of+walker+tunneling&rft.volume=102&rft.issue=1&rft.pages=013104&rft.date=2020-07-09&rft.issn=2470-0045&rft_id=info%3Apmid%2F32795022&rft_id=info%3Adoi%2F10.1103%2FPhysRevE.102.013104&rft.aulast=Tadrist&rft.aufirst=Lo%C3%AFc&rft.au=Gilet%2C+Tristan&rft.au=Schlagheck%2C+Peter&rft.au=Bush%2C+John+W.+M.&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevE.102.013104&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRozenmanBondarSchleichShemer2023" class="citation journal cs1">Rozenman, Georgi Gary; Bondar, Denys I; Schleich, Wolfgang P; Shemer, Lev; Arie, Ady A (10 March 2023). <a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1402-4896%2Facb408">"Observation of Bohm trajectories and quantum potentials of classical waves"</a>. <i>Physica Scripta</i>. <b>98</b> (4). IOP Publishing Ltd: 044004. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1402-4896%2Facb408">10.1088/1402-4896/acb408</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physica+Scripta&rft.atitle=Observation+of+Bohm+trajectories+and+quantum+potentials+of+classical+waves&rft.volume=98&rft.issue=4&rft.pages=044004&rft.date=2023-03-10&rft_id=info%3Adoi%2F10.1088%2F1402-4896%2Facb408&rft.aulast=Rozenman&rft.aufirst=Georgi+Gary&rft.au=Bondar%2C+Denys+I&rft.au=Schleich%2C+Wolfgang+P&rft.au=Shemer%2C+Lev&rft.au=Arie%2C+Ady+A&rft_id=https%3A%2F%2Fdoi.org%2F10.1088%252F1402-4896%252Facb408&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBush2015" class="citation journal cs1">Bush, John W.M. (2015). <a rel="nofollow" class="external text" href="http://math.mit.edu/~bush/wordpress/wp-content/uploads/2015/01/Bush-AnnRev2015.pdf">"Pilot-Wave Hydrodynamics"</a> <span class="cs1-format">(PDF)</span>. <i>Annual Review of Fluid Mechanics</i>. <b>47</b> (1): 269–292. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015AnRFM..47..269B">2015AnRFM..47..269B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev-fluid-010814-014506">10.1146/annurev-fluid-010814-014506</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1721.1%2F89790">1721.1/89790</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annual+Review+of+Fluid+Mechanics&rft.atitle=Pilot-Wave+Hydrodynamics&rft.volume=47&rft.issue=1&rft.pages=269-292&rft.date=2015&rft_id=info%3Ahdl%2F1721.1%2F89790&rft_id=info%3Adoi%2F10.1146%2Fannurev-fluid-010814-014506&rft_id=info%3Abibcode%2F2015AnRFM..47..269B&rft.aulast=Bush&rft.aufirst=John+W.M.&rft_id=http%3A%2F%2Fmath.mit.edu%2F~bush%2Fwordpress%2Fwp-content%2Fuploads%2F2015%2F01%2FBush-AnnRev2015.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDe_Broglie1956" class="citation journal cs1">De Broglie, Louis (1956). "Une tentative d'interprétation causale et non linéaire de la mécanique ondulatoire: (la théorie de la double solution)". <i>Gauthier-Villars</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Gauthier-Villars&rft.atitle=Une+tentative+d%27interpr%C3%A9tation+causale+et+non+lin%C3%A9aire+de+la+m%C3%A9canique+ondulatoire%3A+%28la+th%C3%A9orie+de+la+double+solution%29&rft.date=1956&rft.aulast=De+Broglie&rft.aufirst=Louis&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_Broglie1987" class="citation journal cs1">de Broglie, Louis (1987). <a rel="nofollow" class="external text" href="http://aflb.ensmp.fr/AFLB-classiques/aflb124p001.pdf">"Interpretation of quantum mechanics by the double solution theory"</a> <span class="cs1-format">(PDF)</span>. <i>Annales de la Fondation</i>. <b>12</b> (4): 399–421. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0182-4295">0182-4295</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annales+de+la+Fondation&rft.atitle=Interpretation+of+quantum+mechanics+by+the+double+solution+theory&rft.volume=12&rft.issue=4&rft.pages=399-421&rft.date=1987&rft.issn=0182-4295&rft.aulast=de+Broglie&rft.aufirst=Louis&rft_id=http%3A%2F%2Faflb.ensmp.fr%2FAFLB-classiques%2Faflb124p001.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_la_PeñaCetto1996" class="citation book cs1">de la Peña, Luis; Cetto, A.M. (1996). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XPHqCAAAQBAJ"><i>The Quantum Dice: An Introduction to Stochastic Electrodynamics</i></a>. Springer. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-94-015-8723-5">10.1007/978-94-015-8723-5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-90-481-4646-8" title="Special:BookSources/978-90-481-4646-8"><bdi>978-90-481-4646-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Quantum+Dice%3A+An+Introduction+to+Stochastic+Electrodynamics&rft.pub=Springer&rft.date=1996&rft_id=info%3Adoi%2F10.1007%2F978-94-015-8723-5&rft.isbn=978-90-481-4646-8&rft.aulast=de+la+Pe%C3%B1a&rft.aufirst=Luis&rft.au=Cetto%2C+A.M.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXPHqCAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-123">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaischRueda2000" class="citation journal cs1">Haisch, Bernard; Rueda, Alfonso (2000). "On the relation between a zero-point-field-induced inertial effect and the Einstein-de Broglie formula". <i>Physics Letters A</i>. <b>268</b> (4–6): 224–227. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/9906084">gr-qc/9906084</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000PhLA..268..224H">2000PhLA..268..224H</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.339.2104">10.1.1.339.2104</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0375-9601%2800%2900186-9">10.1016/S0375-9601(00)00186-9</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2030449">2030449</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+A&rft.atitle=On+the+relation+between+a+zero-point-field-induced+inertial+effect+and+the+Einstein-de+Broglie+formula&rft.volume=268&rft.issue=4%E2%80%936&rft.pages=224-227&rft.date=2000&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2030449%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2000PhLA..268..224H&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.339.2104%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1016%2FS0375-9601%2800%2900186-9&rft_id=info%3Aarxiv%2Fgr-qc%2F9906084&rft.aulast=Haisch&rft.aufirst=Bernard&rft.au=Rueda%2C+Alfonso&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-MahlerRozema-124"><span class="mw-cite-backlink">^ <a href="#cite_ref-MahlerRozema_124-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-MahlerRozema_124-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMahlerRozemaFisherVermeyden2016" class="citation journal cs1">Mahler, Dylan H.; Rozema, Lee; Fisher, Kent; Vermeyden, Lydia; Resch, Kevin J.; Wiseman, Howard M.; Steinberg, Aephraim (5 February 2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788483">"Experimental nonlocal and surreal Bohmian trajectories"</a>. <i>Science Advances</i>. <b>2</b> (2): e1501466. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.1501466">10.1126/sciadv.1501466</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10072%2F100637">10072/100637</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2375-2548">2375-2548</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788483">4788483</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26989784">26989784</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+Advances&rft.atitle=Experimental+nonlocal+and+surreal+Bohmian+trajectories&rft.volume=2&rft.issue=2&rft.pages=e1501466&rft.date=2016-02-05&rft_id=info%3Ahdl%2F10072%2F100637&rft_id=info%3Adoi%2F10.1126%2Fsciadv.1501466&rft_id=info%3Apmid%2F26989784&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4788483%23id-name%3DPMC&rft.issn=2375-2548&rft.aulast=Mahler&rft.aufirst=Dylan+H.&rft.au=Rozema%2C+Lee&rft.au=Fisher%2C+Kent&rft.au=Vermeyden%2C+Lydia&rft.au=Resch%2C+Kevin+J.&rft.au=Wiseman%2C+Howard+M.&rft.au=Steinberg%2C+Aephraim&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4788483&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-125">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFalk2016" class="citation web cs1">Falk, Dan (16 May 2016). <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/pilot-wave-theory-gains-experimental-support-20160516/">"New Support for Alternative Quantum View"</a>. <i><a href="/wiki/Quanta_Magazine" title="Quanta Magazine">Quanta Magazine</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Quanta+Magazine&rft.atitle=New+Support+for+Alternative+Quantum+View&rft.date=2016-05-16&rft.aulast=Falk&rft.aufirst=Dan&rft_id=https%3A%2F%2Fwww.quantamagazine.org%2Fpilot-wave-theory-gains-experimental-support-20160516%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Sources">Sources</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=39" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 30em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlbert1994" class="citation journal cs1">Albert, David Z. (May 1994). "Bohm's Alternative to Quantum Mechanics". <i>Scientific American</i>. <b>270</b> (5): 58–67. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994SciAm.270e..58A">1994SciAm.270e..58A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fscientificamerican0594-58">10.1038/scientificamerican0594-58</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+American&rft.atitle=Bohm%27s+Alternative+to+Quantum+Mechanics&rft.volume=270&rft.issue=5&rft.pages=58-67&rft.date=1994-05&rft_id=info%3Adoi%2F10.1038%2Fscientificamerican0594-58&rft_id=info%3Abibcode%2F1994SciAm.270e..58A&rft.aulast=Albert&rft.aufirst=David+Z.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarbosaN._Pinto-Neto2004" class="citation journal cs1">Barbosa, G. D.; N. Pinto-Neto (2004). "A Bohmian Interpretation for Noncommutative Scalar Field Theory and Quantum Mechanics". <i>Physical Review D</i>. <b>69</b> (6): 065014. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/0304105">hep-th/0304105</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004PhRvD..69f5014B">2004PhRvD..69f5014B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.69.065014">10.1103/PhysRevD.69.065014</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119525006">119525006</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=A+Bohmian+Interpretation+for+Noncommutative+Scalar+Field+Theory+and+Quantum+Mechanics&rft.volume=69&rft.issue=6&rft.pages=065014&rft.date=2004&rft_id=info%3Aarxiv%2Fhep-th%2F0304105&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119525006%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.69.065014&rft_id=info%3Abibcode%2F2004PhRvD..69f5014B&rft.aulast=Barbosa&rft.aufirst=G.+D.&rft.au=N.+Pinto-Neto&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBohm1952" class="citation journal cs1">Bohm, David (1952). "A Suggested Interpretation of the Quantum Theory in Terms of "Hidden Variables" I". <i>Physical Review</i>. <b>85</b> (2): 166–179. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1952PhRv...85..166B">1952PhRv...85..166B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.85.166">10.1103/PhysRev.85.166</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=A+Suggested+Interpretation+of+the+Quantum+Theory+in+Terms+of+%22Hidden+Variables%22+I&rft.volume=85&rft.issue=2&rft.pages=166-179&rft.date=1952&rft_id=info%3Adoi%2F10.1103%2FPhysRev.85.166&rft_id=info%3Abibcode%2F1952PhRv...85..166B&rft.aulast=Bohm&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span> (<a rel="nofollow" class="external text" href="https://www.nd.edu/~dhoward1/Bohm%20HV-I%20Phys%20Rev%201952.pdf">full text</a>)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBohm1952" class="citation journal cs1">Bohm, David (1952). "A Suggested Interpretation of the Quantum Theory in Terms of "Hidden Variables", II". <i>Physical Review</i>. <b>85</b> (2): 180–193. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1952PhRv...85..180B">1952PhRv...85..180B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.85.180">10.1103/PhysRev.85.180</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=A+Suggested+Interpretation+of+the+Quantum+Theory+in+Terms+of+%22Hidden+Variables%22%2C+II&rft.volume=85&rft.issue=2&rft.pages=180-193&rft.date=1952&rft_id=info%3Adoi%2F10.1103%2FPhysRev.85.180&rft_id=info%3Abibcode%2F1952PhRv...85..180B&rft.aulast=Bohm&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span> (<a rel="nofollow" class="external text" href="https://www.nd.edu/~dhoward1/Bohm%20HV-II%20Phys%20Rev%201952.pdf">full text</a>)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBohm1990" class="citation journal cs1">Bohm, David (1990). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304053851/http://www.tcm.phy.cam.ac.uk/~mdt26/local_papers/bohm_mind_matter_1990.pdf">"A new theory of the relationship of mind and matter"</a> <span class="cs1-format">(PDF)</span>. <i>Philosophical Psychology</i>. <b>3</b> (2): 271–286. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F09515089008573004">10.1080/09515089008573004</a>. Archived from <a rel="nofollow" class="external text" href="http://www.tcm.phy.cam.ac.uk/~mdt26/local_papers/bohm_mind_matter_1990.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 4 March 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">26 February</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philosophical+Psychology&rft.atitle=A+new+theory+of+the+relationship+of+mind+and+matter&rft.volume=3&rft.issue=2&rft.pages=271-286&rft.date=1990&rft_id=info%3Adoi%2F10.1080%2F09515089008573004&rft.aulast=Bohm&rft.aufirst=David&rft_id=http%3A%2F%2Fwww.tcm.phy.cam.ac.uk%2F~mdt26%2Flocal_papers%2Fbohm_mind_matter_1990.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBohmB.J._Hiley1993" class="citation book cs1">Bohm, David; B.J. Hiley (1993). <i>The Undivided Universe: An ontological interpretation of quantum theory</i>. London: Routledge. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-415-12185-9" title="Special:BookSources/978-0-415-12185-9"><bdi>978-0-415-12185-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Undivided+Universe%3A+An+ontological+interpretation+of+quantum+theory&rft.place=London&rft.pub=Routledge&rft.date=1993&rft.isbn=978-0-415-12185-9&rft.aulast=Bohm&rft.aufirst=David&rft.au=B.J.+Hiley&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDürrSheldon_GoldsteinRoderich_TumulkaNino_Zanghì2004" class="citation journal cs1">Dürr, Detlef; Sheldon Goldstein; Roderich Tumulka; Nino Zanghì (December 2004). <a rel="nofollow" class="external text" href="http://www.math.rutgers.edu/~oldstein/papers/bohmech.pdf">"Bohmian Mechanics"</a> <span class="cs1-format">(PDF)</span>. <i>Physical Review Letters</i>. <b>93</b> (9): 090402. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0303156">quant-ph/0303156</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004PhRvL..93i0402D">2004PhRvL..93i0402D</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.8444">10.1.1.8.8444</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.93.090402">10.1103/PhysRevLett.93.090402</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9007">0031-9007</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15447078">15447078</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8720296">8720296</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Bohmian+Mechanics&rft.volume=93&rft.issue=9&rft.pages=090402&rft.date=2004-12&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8720296%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.93.090402&rft_id=info%3Abibcode%2F2004PhRvL..93i0402D&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.8.8444%23id-name%3DCiteSeerX&rft.issn=0031-9007&rft_id=info%3Apmid%2F15447078&rft_id=info%3Aarxiv%2Fquant-ph%2F0303156&rft.aulast=D%C3%BCrr&rft.aufirst=Detlef&rft.au=Sheldon+Goldstein&rft.au=Roderich+Tumulka&rft.au=Nino+Zangh%C3%AC&rft_id=http%3A%2F%2Fwww.math.rutgers.edu%2F~oldstein%2Fpapers%2Fbohmech.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldstein2001" class="citation journal cs1">Goldstein, Sheldon (2001). <a rel="nofollow" class="external text" href="http://plato.stanford.edu/entries/qm-bohm/">"Bohmian Mechanics"</a>. <i><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Stanford+Encyclopedia+of+Philosophy&rft.atitle=Bohmian+Mechanics&rft.date=2001&rft.aulast=Goldstein&rft.aufirst=Sheldon&rft_id=http%3A%2F%2Fplato.stanford.edu%2Fentries%2Fqm-bohm%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHall2004" class="citation journal cs1">Hall, Michael J. W. (2004). "Incompleteness of trajectory-based interpretations of quantum mechanics". <i>Journal of Physics A: Mathematical and General</i>. <b>37</b> (40): 9549–9556. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0406054">quant-ph/0406054</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004JPhA...37.9549H">2004JPhA...37.9549H</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.252.5757">10.1.1.252.5757</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0305-4470%2F37%2F40%2F015">10.1088/0305-4470/37/40/015</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15196269">15196269</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+A%3A+Mathematical+and+General&rft.atitle=Incompleteness+of+trajectory-based+interpretations+of+quantum+mechanics&rft.volume=37&rft.issue=40&rft.pages=9549-9556&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15196269%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2004JPhA...37.9549H&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.252.5757%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1088%2F0305-4470%2F37%2F40%2F015&rft_id=info%3Aarxiv%2Fquant-ph%2F0406054&rft.aulast=Hall&rft.aufirst=Michael+J.+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span> (Demonstrates incompleteness of the Bohm interpretation in the face of fractal, differentiable-nowhere wavefunctions.)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolland1993" class="citation book cs1">Holland, Peter R. (1993). <i>The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics</i>. Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-48543-2" title="Special:BookSources/978-0-521-48543-2"><bdi>978-0-521-48543-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Quantum+Theory+of+Motion%3A+An+Account+of+the+de+Broglie%E2%80%93Bohm+Causal+Interpretation+of+Quantum+Mechanics&rft.place=Cambridge&rft.pub=Cambridge+University+Press&rft.date=1993&rft.isbn=978-0-521-48543-2&rft.aulast=Holland&rft.aufirst=Peter+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNikolic2005" class="citation journal cs1">Nikolic, H. (2005). "Relativistic quantum mechanics and the Bohmian interpretation". <i>Foundations of Physics Letters</i>. <b>18</b> (6): 549–561. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0406173">quant-ph/0406173</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005FoPhL..18..549N">2005FoPhL..18..549N</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.252.6803">10.1.1.252.6803</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10702-005-1128-1">10.1007/s10702-005-1128-1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14006204">14006204</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics+Letters&rft.atitle=Relativistic+quantum+mechanics+and+the+Bohmian+interpretation&rft.volume=18&rft.issue=6&rft.pages=549-561&rft.date=2005&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14006204%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2005FoPhL..18..549N&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.252.6803%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1007%2Fs10702-005-1128-1&rft_id=info%3Aarxiv%2Fquant-ph%2F0406173&rft.aulast=Nikolic&rft.aufirst=H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPasson2004" class="citation arxiv cs1">Passon, Oliver (2004). "Why isn't every physicist a Bohmian?". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0412119">quant-ph/0412119</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Why+isn%27t+every+physicist+a+Bohmian%3F&rft.date=2004&rft_id=info%3Aarxiv%2Fquant-ph%2F0412119&rft.aulast=Passon&rft.aufirst=Oliver&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSanzF._Borondo2007" class="citation journal cs1">Sanz, A. S.; F. Borondo (2007). "A Bohmian view on quantum decoherence". <i>European Physical Journal D</i>. <b>44</b> (2): 319–326. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0310096">quant-ph/0310096</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007EPJD...44..319S">2007EPJD...44..319S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1140%2Fepjd%2Fe2007-00191-8">10.1140/epjd/e2007-00191-8</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18449109">18449109</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=European+Physical+Journal+D&rft.atitle=A+Bohmian+view+on+quantum+decoherence&rft.volume=44&rft.issue=2&rft.pages=319-326&rft.date=2007&rft_id=info%3Aarxiv%2Fquant-ph%2F0310096&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18449109%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1140%2Fepjd%2Fe2007-00191-8&rft_id=info%3Abibcode%2F2007EPJD...44..319S&rft.aulast=Sanz&rft.aufirst=A.+S.&rft.au=F.+Borondo&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSanz2005" class="citation journal cs1">Sanz, A. S. (2005). "A Bohmian approach to quantum fractals". <i>Journal of Physics A: Mathematical and General</i>. <b>38</b> (26): 6037–6049. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0412050">quant-ph/0412050</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005JPhA...38.6037S">2005JPhA...38.6037S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0305-4470%2F38%2F26%2F013">10.1088/0305-4470/38/26/013</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17633797">17633797</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+A%3A+Mathematical+and+General&rft.atitle=A+Bohmian+approach+to+quantum+fractals&rft.volume=38&rft.issue=26&rft.pages=6037-6049&rft.date=2005&rft_id=info%3Aarxiv%2Fquant-ph%2F0412050&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17633797%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0305-4470%2F38%2F26%2F013&rft_id=info%3Abibcode%2F2005JPhA...38.6037S&rft.aulast=Sanz&rft.aufirst=A.+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span> (Describes a Bohmian resolution to the dilemma posed by non-differentiable wavefunctions.)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSilverman1993" class="citation book cs1">Silverman, Mark P. (1993). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/andyetitmoves00mark"><i>And Yet It Moves: Strange Systems and Subtle Questions in Physics</i></a></span>. Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-44631-0" title="Special:BookSources/978-0-521-44631-0"><bdi>978-0-521-44631-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=And+Yet+It+Moves%3A+Strange+Systems+and+Subtle+Questions+in+Physics&rft.place=Cambridge&rft.pub=Cambridge+University+Press&rft.date=1993&rft.isbn=978-0-521-44631-0&rft.aulast=Silverman&rft.aufirst=Mark+P.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fandyetitmoves00mark&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStreater2003" class="citation web cs1"><a href="/wiki/Ray_Streater" title="Ray Streater">Streater, Ray F.</a> (2003). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060613191814/http://www.mth.kcl.ac.uk/~streater/lostcauses.html#XI">"Bohmian mechanics is a 'lost cause'<span class="cs1-kern-right"></span>"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.mth.kcl.ac.uk/~streater/lostcauses.html#XI">the original</a> on 13 June 2006<span class="reference-accessdate">. Retrieved <span class="nowrap">25 June</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Bohmian+mechanics+is+a+%27lost+cause%27&rft.date=2003&rft.aulast=Streater&rft.aufirst=Ray+F.&rft_id=http%3A%2F%2Fwww.mth.kcl.ac.uk%2F~streater%2Flostcauses.html%23XI&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValentiniHans_Westman2005" class="citation journal cs1"><a href="/wiki/Antony_Valentini" title="Antony Valentini">Valentini, Antony</a>; Hans Westman (2005). "Dynamical Origin of Quantum Probabilities". <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i>. <b>461</b> (2053): 253–272. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0403034">quant-ph/0403034</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005RSPSA.461..253V">2005RSPSA.461..253V</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.252.849">10.1.1.252.849</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.2004.1394">10.1098/rspa.2004.1394</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6589887">6589887</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+A%3A+Mathematical%2C+Physical+and+Engineering+Sciences&rft.atitle=Dynamical+Origin+of+Quantum+Probabilities&rft.volume=461&rft.issue=2053&rft.pages=253-272&rft.date=2005&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6589887%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2005RSPSA.461..253V&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.252.849%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1098%2Frspa.2004.1394&rft_id=info%3Aarxiv%2Fquant-ph%2F0403034&rft.aulast=Valentini&rft.aufirst=Antony&rft.au=Hans+Westman&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://xstructure.inr.ac.ru/x-bin/theme3.py?level=1&index1=-139823">Bohmian mechanics on arxiv.org</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=40" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col div-col-small" style="column-width: 30em;"> <ul><li><a href="/wiki/John_S._Bell" class="mw-redirect" title="John S. Bell">John S. Bell</a>: <i>Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy</i>, Cambridge University Press, 2004, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-81862-1" title="Special:BookSources/0-521-81862-1">0-521-81862-1</a></li> <li><a href="/wiki/David_Bohm" title="David Bohm">David Bohm</a>, <a href="/wiki/Basil_Hiley" title="Basil Hiley">Basil Hiley</a>: <i>The Undivided Universe: An Ontological Interpretation of Quantum Theory</i>, Routledge Chapman & Hall, 1993, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-415-06588-7" title="Special:BookSources/0-415-06588-7">0-415-06588-7</a></li> <li>Detlef Dürr, Sheldon Goldstein, Nino Zanghì: <i>Quantum Physics Without Quantum Philosophy</i>, Springer, 2012, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-30690-7" title="Special:BookSources/978-3-642-30690-7">978-3-642-30690-7</a></li> <li>Detlef Dürr, Stefan Teufel: <i>Bohmian Mechanics: The Physics and Mathematics of Quantum Theory</i>, Springer, 2009, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-89343-1" title="Special:BookSources/978-3-540-89343-1">978-3-540-89343-1</a></li> <li><a href="/wiki/Peter_R._Holland" title="Peter R. Holland">Peter R. Holland</a>: <i>The quantum theory of motion</i>, Cambridge University Press, 1993 (re-printed 2000, transferred to digital printing 2004), <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-48543-6" title="Special:BookSources/0-521-48543-6">0-521-48543-6</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&action=edit&section=41" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/34px-Wikiquote-logo.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/51px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/68px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></div> <div class="side-box-text plainlist">Wikiquote has quotations related to <i><b><a href="https://en.wikiquote.org/wiki/Special:Search/De_Broglie%E2%80%93Bohm_theory" class="extiw" title="q:Special:Search/De Broglie–Bohm theory">De Broglie–Bohm theory</a></b></i>.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/40px-Wikiversity_logo_2017.svg.png" decoding="async" width="40" height="33" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/60px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/80px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Wikiversity has learning resources about <i><b><a href="https://en.wikiversity.org/wiki/Making_sense_of_quantum_mechanics" class="extiw" title="v:Making sense of quantum mechanics"> Making sense of quantum mechanics</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1184024115"><div class="div-col div-col-small" style="column-width: 30em;"> <ul><li><a rel="nofollow" class="external text" href="http://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-010814-014506">"Pilot-Wave Hydrodynamics"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210318163615/https://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-010814-014506">Archived</a> 18 March 2021 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> Bush, J. W. M., <i>Annual Review of Fluid Mechanics</i>, 2015</li> <li><a rel="nofollow" class="external text" href="http://plato.stanford.edu/entries/qm-bohm">"Bohmian Mechanics" (<i>Stanford Encyclopedia of Philosophy</i>)</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'Dowd2016" class="citation web cs1"><a href="/wiki/Matt_O%27Dowd_(astrophysicist)" title="Matt O'Dowd (astrophysicist)">O'Dowd, Matt</a> (30 November 2016). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=RlXdsyctD50">"Pilot Wave Theory and Quantum Realism"</a>. <i><a href="/wiki/PBS_Space_Time" class="mw-redirect" title="PBS Space Time">PBS Space Time</a></i>. <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211211/RlXdsyctD50">Archived</a> from the original on 11 December 2021 – via YouTube.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=PBS+Space+Time&rft.atitle=Pilot+Wave+Theory+and+Quantum+Realism&rft.date=2016-11-30&rft.aulast=O%27Dowd&rft.aufirst=Matt&rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRlXdsyctD50&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.youtube.com/playlist?list=PL7LbfRoKBR5OpRjt8toBOmzqGjH7zaM1m">"Videos answering frequently asked questions about Bohmian Mechanics"</a> – via YouTube.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Videos+answering+frequently+asked+questions+about+Bohmian+Mechanics&rft_id=https%3A%2F%2Fwww.youtube.com%2Fplaylist%3Flist%3DPL7LbfRoKBR5OpRjt8toBOmzqGjH7zaM1m&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADe+Broglie%E2%80%93Bohm+theory" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://www.bohmian-mechanics.net/">"Bohmian-Mechanics.net"</a>, the homepage of the international research network on Bohmian Mechanics that was started by D. Dürr, S. Goldstein and N. Zanghì.</li> <li><a rel="nofollow" class="external text" href="http://www.mathematik.uni-muenchen.de/~bohmmech/">Workgroup Bohmian Mechanics at LMU Munich (D. Dürr)</a></li> <li><a rel="nofollow" class="external text" href="http://bohm-mechanics.uibk.ac.at/">Bohmian Mechanics Group at University of Innsbruck (G. Grübl)</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20141125213942/http://bohm-mechanics.uibk.ac.at/">Archived</a> 25 November 2014 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><a rel="nofollow" class="external text" href="http://www.tcm.phy.cam.ac.uk/~mdt26/pilot_waves.html">"Pilot waves, Bohmian metaphysics, and the foundations of quantum mechanics"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160410173517/http://www.tcm.phy.cam.ac.uk/%7Emdt26/pilot_waves.html">Archived</a> 10 April 2016 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, lecture course on de Broglie-Bohm theory by <a href="/wiki/Mike_Towler" class="mw-redirect" title="Mike Towler">Mike Towler</a>, Cambridge University.</li> <li><a rel="nofollow" class="external text" href="http://www.vallico.net/tti/deBB_10/conference.html">"21st-century directions in de Broglie-Bohm theory and beyond"</a>, August 2010 international conference on de Broglie-Bohm theory. Site contains slides for all the talks – the latest cutting-edge deBB research.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110626194505/http://www.aip.org.au/Congress2010/Abstracts/Monday%206%20Dec%20-%20Orals/Session_3E/Kocsis_Observing_the_Trajectories.pdf">"Observing the Trajectories of a Single Photon Using Weak Measurement"</a></li> <li><a rel="nofollow" class="external text" href="https://www.physicsforums.com/blog.php?b=3077">"Bohmian trajectories are no longer 'hidden variables'"</a></li> <li><a rel="nofollow" class="external text" href="http://dbohm.com/">The David Bohm Society</a></li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=W2Xb2GFK2yc">De Broglie–Bohm theory inspired visualization of atomic orbitals.</a></li></ul> </div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Quantum_mechanics" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_mechanics_topics" title="Template talk:Quantum mechanics topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_mechanics_topics" title="Special:EditPage/Template:Quantum mechanics topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_mechanics" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Background</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">Introduction</a></li> <li><a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">History</a> <ul><li><a href="/wiki/Timeline_of_quantum_mechanics" title="Timeline of quantum mechanics">Timeline</a></li></ul></li> <li><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></li> <li><a href="/wiki/Old_quantum_theory" title="Old quantum theory">Old quantum theory</a></li> <li><a href="/wiki/Glossary_of_elementary_quantum_mechanics" title="Glossary of elementary quantum mechanics">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fundamentals</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Born_rule" title="Born rule">Born rule</a></li> <li><a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">Bra–ket notation</a></li> <li><a href="/wiki/Complementarity_(physics)" title="Complementarity (physics)"> Complementarity</a></li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density matrix</a></li> <li><a href="/wiki/Energy_level" title="Energy level">Energy level</a> <ul><li><a href="/wiki/Ground_state" title="Ground state">Ground state</a></li> <li><a href="/wiki/Excited_state" title="Excited state">Excited state</a></li> <li><a href="/wiki/Degenerate_energy_levels" title="Degenerate energy levels">Degenerate levels</a></li> <li><a href="/wiki/Zero-point_energy" title="Zero-point energy">Zero-point energy</a></li></ul></li> <li><a href="/wiki/Quantum_entanglement" title="Quantum entanglement">Entanglement</a></li> <li><a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a></li> <li><a href="/wiki/Wave_interference" title="Wave interference">Interference</a></li> <li><a href="/wiki/Quantum_decoherence" title="Quantum decoherence">Decoherence</a></li> <li><a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">Measurement</a></li> <li><a href="/wiki/Quantum_nonlocality" title="Quantum nonlocality">Nonlocality</a></li> <li><a href="/wiki/Quantum_state" title="Quantum state">Quantum state</a></li> <li><a href="/wiki/Quantum_superposition" title="Quantum superposition">Superposition</a></li> <li><a href="/wiki/Quantum_tunnelling" title="Quantum tunnelling">Tunnelling</a></li> <li><a href="/wiki/Scattering_theory" class="mw-redirect" title="Scattering theory">Scattering theory</a></li> <li><a href="/wiki/Symmetry_in_quantum_mechanics" title="Symmetry in quantum mechanics">Symmetry in quantum mechanics</a></li> <li><a href="/wiki/Uncertainty_principle" title="Uncertainty principle">Uncertainty</a></li> <li><a href="/wiki/Wave_function" title="Wave function">Wave function</a> <ul><li><a href="/wiki/Wave_function_collapse" title="Wave function collapse">Collapse</a></li> <li><a href="/wiki/Wave%E2%80%93particle_duality" title="Wave–particle duality">Wave–particle duality</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Formulations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">Formulations</a></li> <li><a href="/wiki/Heisenberg_picture" title="Heisenberg picture">Heisenberg</a></li> <li><a href="/wiki/Interaction_picture" title="Interaction picture">Interaction</a></li> <li><a href="/wiki/Matrix_mechanics" title="Matrix mechanics">Matrix mechanics</a></li> <li><a href="/wiki/Schr%C3%B6dinger_picture" title="Schrödinger picture">Schrödinger</a></li> <li><a href="/wiki/Path_integral_formulation" title="Path integral formulation">Path integral formulation</a></li> <li><a href="/wiki/Phase-space_formulation" title="Phase-space formulation">Phase space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Equations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon</a></li> <li><a href="/wiki/Dirac_equation" title="Dirac equation">Dirac</a></li> <li><a href="/wiki/Weyl_equation" title="Weyl equation">Weyl</a></li> <li><a href="/wiki/Majorana_equation" title="Majorana equation">Majorana</a></li> <li><a href="/wiki/Rarita%E2%80%93Schwinger_equation" title="Rarita–Schwinger equation">Rarita–Schwinger</a></li> <li><a href="/wiki/Pauli_equation" title="Pauli equation">Pauli</a></li> <li><a href="/wiki/Rydberg_formula" title="Rydberg formula">Rydberg</a></li> <li><a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">Interpretations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_Bayesianism" title="Quantum Bayesianism">Bayesian</a></li> <li><a href="/wiki/Consistent_histories" title="Consistent histories">Consistent histories</a></li> <li><a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen</a></li> <li><a class="mw-selflink selflink">de Broglie–Bohm</a></li> <li><a href="/wiki/Ensemble_interpretation" title="Ensemble interpretation">Ensemble</a></li> <li><a href="/wiki/Hidden-variable_theory" title="Hidden-variable theory">Hidden-variable</a> <ul><li><a href="/wiki/Local_hidden-variable_theory" title="Local hidden-variable theory">Local</a> <ul><li><a href="/wiki/Superdeterminism" title="Superdeterminism">Superdeterminism</a></li></ul></li></ul></li> <li><a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">Many-worlds</a></li> <li><a href="/wiki/Objective-collapse_theory" title="Objective-collapse theory">Objective collapse</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Relational_quantum_mechanics" title="Relational quantum mechanics">Relational</a></li> <li><a href="/wiki/Transactional_interpretation" title="Transactional interpretation">Transactional</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Wigner_interpretation" title="Von Neumann–Wigner interpretation">Von Neumann–Wigner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Experiments</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell_test" title="Bell test">Bell test</a></li> <li><a href="/wiki/Davisson%E2%80%93Germer_experiment" title="Davisson–Germer experiment">Davisson–Germer</a></li> <li><a href="/wiki/Delayed-choice_quantum_eraser" title="Delayed-choice quantum eraser">Delayed-choice quantum eraser</a></li> <li><a href="/wiki/Double-slit_experiment" title="Double-slit experiment">Double-slit</a></li> <li><a href="/wiki/Franck%E2%80%93Hertz_experiment" title="Franck–Hertz experiment">Franck–Hertz</a></li> <li><a href="/wiki/Mach%E2%80%93Zehnder_interferometer" title="Mach–Zehnder interferometer">Mach–Zehnder interferometer</a></li> <li><a href="/wiki/Elitzur%E2%80%93Vaidman_bomb_tester" title="Elitzur–Vaidman bomb tester">Elitzur–Vaidman</a></li> <li><a href="/wiki/Popper%27s_experiment" title="Popper's experiment">Popper</a></li> <li><a href="/wiki/Quantum_eraser_experiment" title="Quantum eraser experiment">Quantum eraser</a></li> <li><a href="/wiki/Stern%E2%80%93Gerlach_experiment" title="Stern–Gerlach experiment">Stern–Gerlach</a></li> <li><a href="/wiki/Wheeler%27s_delayed-choice_experiment" title="Wheeler's delayed-choice experiment">Wheeler's delayed choice</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_nanoscience" class="mw-redirect" title="Quantum nanoscience">Science</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_biology" title="Quantum biology">Quantum biology</a></li> <li><a href="/wiki/Quantum_chemistry" title="Quantum chemistry">Quantum chemistry</a></li> <li><a href="/wiki/Quantum_chaos" title="Quantum chaos">Quantum chaos</a></li> <li><a href="/wiki/Quantum_cosmology" title="Quantum cosmology">Quantum cosmology</a></li> <li><a href="/wiki/Quantum_differential_calculus" title="Quantum differential calculus">Quantum differential calculus</a></li> <li><a href="/wiki/Quantum_dynamics" title="Quantum dynamics">Quantum dynamics</a></li> <li><a href="/wiki/Quantum_geometry" title="Quantum geometry">Quantum geometry</a></li> <li><a href="/wiki/Measurement_problem" title="Measurement problem">Quantum measurement problem</a></li> <li><a href="/wiki/Quantum_mind" title="Quantum mind">Quantum mind</a></li> <li><a href="/wiki/Quantum_stochastic_calculus" title="Quantum stochastic calculus">Quantum stochastic calculus</a></li> <li><a href="/wiki/Quantum_spacetime" title="Quantum spacetime">Quantum spacetime</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_technology" class="mw-redirect" title="Quantum technology">Technology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a></li> <li><a href="/wiki/Quantum_amplifier" title="Quantum amplifier">Quantum amplifier</a></li> <li><a href="/wiki/Quantum_bus" title="Quantum bus">Quantum bus</a></li> <li><a href="/wiki/Quantum_cellular_automaton" title="Quantum cellular automaton">Quantum cellular automata</a> <ul><li><a href="/wiki/Quantum_finite_automaton" title="Quantum finite automaton">Quantum finite automata</a></li></ul></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a></li> <li><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">Quantum complexity theory</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a> <ul><li><a href="/wiki/Timeline_of_quantum_computing_and_communication" title="Timeline of quantum computing and communication">Timeline</a></li></ul></li> <li><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">Quantum cryptography</a></li> <li><a href="/wiki/Quantum_electronics" class="mw-redirect" title="Quantum electronics">Quantum electronics</a></li> <li><a href="/wiki/Quantum_error_correction" title="Quantum error correction">Quantum error correction</a></li> <li><a href="/wiki/Quantum_imaging" title="Quantum imaging">Quantum imaging</a></li> <li><a href="/wiki/Quantum_image_processing" title="Quantum image processing">Quantum image processing</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">Quantum key distribution</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">Quantum logic gates</a></li> <li><a href="/wiki/Quantum_machine" title="Quantum machine">Quantum machine</a></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a></li> <li><a href="/wiki/Quantum_metamaterial" title="Quantum metamaterial">Quantum metamaterial</a></li> <li><a href="/wiki/Quantum_metrology" title="Quantum metrology">Quantum metrology</a></li> <li><a href="/wiki/Quantum_network" title="Quantum network">Quantum network</a></li> <li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">Quantum neural network</a></li> <li><a href="/wiki/Quantum_optics" title="Quantum optics">Quantum optics</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum programming</a></li> <li><a href="/wiki/Quantum_sensor" title="Quantum sensor">Quantum sensing</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">Quantum simulator</a></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">Quantum teleportation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Extensions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_fluctuation" title="Quantum fluctuation">Quantum fluctuation</a></li> <li><a href="/wiki/Casimir_effect" title="Casimir effect">Casimir effect</a></li> <li><a href="/wiki/Quantum_statistical_mechanics" title="Quantum statistical mechanics">Quantum statistical mechanics</a></li> <li><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theory</a> <ul><li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">History</a></li></ul></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li> <li><a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">Relativistic quantum mechanics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat" title="Schrödinger's cat">Schrödinger's cat</a> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat_in_popular_culture" title="Schrödinger's cat in popular culture">in popular culture</a></li></ul></li> <li><a href="/wiki/Wigner%27s_friend" title="Wigner's friend">Wigner's friend</a></li> <li><a href="/wiki/Einstein%E2%80%93Podolsky%E2%80%93Rosen_paradox" title="Einstein–Podolsky–Rosen paradox">EPR paradox</a></li> <li><a href="/wiki/Quantum_mysticism" title="Quantum mysticism">Quantum mysticism</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Quantum_mechanics" title="Category:Quantum mechanics">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q899444#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4414469-6">Germany</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐zszs6 Cached time: 20241122143656 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.498 seconds Real time usage: 2.366 seconds Preprocessor visited node count: 12785/1000000 Post‐expand include size: 387583/2097152 bytes Template argument size: 13418/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 11/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 533533/5000000 bytes Lua time usage: 0.770/10.000 seconds Lua memory usage: 8262264/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1466.334 1 -total 47.66% 698.784 2 Template:Reflist 33.63% 493.144 85 Template:Cite_journal 7.08% 103.764 1 Template:Quantum_mechanics 6.93% 101.566 1 Template:Sidebar_with_collapsible_lists 6.62% 97.110 1 Template:Short_description 5.08% 74.501 10 Template:ISBN 4.62% 67.699 2 Template:Pagetype 4.07% 59.675 1 Template:Quantum_mechanics_topics 4.05% 59.359 13 Template:Cite_book --> <!-- Saved in parser cache with key enwiki:pcache:54717:|#|:idhash:canonical and timestamp 20241122143656 and revision id 1256040229. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=De_Broglie–Bohm_theory&oldid=1256040229">https://en.wikipedia.org/w/index.php?title=De_Broglie–Bohm_theory&oldid=1256040229</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Interpretations_of_quantum_mechanics" title="Category:Interpretations of quantum mechanics">Interpretations of quantum mechanics</a></li><li><a href="/wiki/Category:Quantum_measurement" title="Category:Quantum measurement">Quantum measurement</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Use_American_English_from_January_2019" title="Category:Use American English from January 2019">Use American English from January 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_January_2022" title="Category:Use dmy dates from January 2022">Use dmy dates from January 2022</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_September_2024" title="Category:Articles needing additional references from September 2024">Articles needing additional references from September 2024</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_March_2018" title="Category:Wikipedia articles needing clarification from March 2018">Wikipedia articles needing clarification from March 2018</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_August_2024" title="Category:Articles with unsourced statements from August 2024">Articles with unsourced statements from August 2024</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_August_2024" title="Category:Wikipedia articles needing clarification from August 2024">Wikipedia articles needing clarification from August 2024</a></li><li><a href="/wiki/Category:Pages_using_div_col_with_small_parameter" title="Category:Pages using div col with small parameter">Pages using div col with small parameter</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 7 November 2024, at 22:38<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=De_Broglie%E2%80%93Bohm_theory&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-bmh6q","wgBackendResponseTime":148,"wgPageParseReport":{"limitreport":{"cputime":"1.498","walltime":"2.366","ppvisitednodes":{"value":12785,"limit":1000000},"postexpandincludesize":{"value":387583,"limit":2097152},"templateargumentsize":{"value":13418,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":11,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":533533,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1466.334 1 -total"," 47.66% 698.784 2 Template:Reflist"," 33.63% 493.144 85 Template:Cite_journal"," 7.08% 103.764 1 Template:Quantum_mechanics"," 6.93% 101.566 1 Template:Sidebar_with_collapsible_lists"," 6.62% 97.110 1 Template:Short_description"," 5.08% 74.501 10 Template:ISBN"," 4.62% 67.699 2 Template:Pagetype"," 4.07% 59.675 1 Template:Quantum_mechanics_topics"," 4.05% 59.359 13 Template:Cite_book"]},"scribunto":{"limitreport-timeusage":{"value":"0.770","limit":"10.000"},"limitreport-memusage":{"value":8262264,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-zszs6","timestamp":"20241122143656","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"De Broglie\u2013Bohm theory","url":"https:\/\/en.wikipedia.org\/wiki\/De_Broglie%E2%80%93Bohm_theory","sameAs":"http:\/\/www.wikidata.org\/entity\/Q899444","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q899444","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-06-02T15:59:13Z","dateModified":"2024-11-07T22:38:03Z","headline":"interpretation of quantum mechanics"}</script> </body> </html>