CINXE.COM

Search results for: broiler

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: broiler</title> <meta name="description" content="Search results for: broiler"> <meta name="keywords" content="broiler"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="broiler" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="broiler"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 148</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: broiler</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> The Probability of Smallholder Broiler Chicken Farmers&#039; Participation in the Mainstream Market within Maseru District in Lesotho</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20E.%20Mphahama">L. E. Mphahama</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mushunje"> A. Mushunje</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Taruvinga"> A. Taruvinga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although broiler production does not generate any large incomes among the smallholder community, it represents the main source of livelihood and part of nutritional requirement. As a result, market for broiler meat is growing faster than that of any other meat products and is projected to continue growing in the coming decades. However, the implication is that a multitude of factors manipulates transformation of smallholder broiler farmers participating in the mainstream markets. From 217 smallholder broiler farmers, socio-economic and institutional factors in broiler farming were incorporated into Binary model to estimate the probability of broiler farmers’ participation in the mainstream markets within the Maseru district in Lesotho. Of the thirteen (13) predictor variables fitted into the model, six (6) variables (household size, number of years in broiler business, stock size, access to transport, access to extension services and access to market information) had significant coefficients while seven (7) variables (level of education, marital status, price of broilers, poultry association, access to contract, access to credit and access to storage) did not have a significant impact. It is recommended that smallholder broiler farmers organize themselves into cooperatives which will act as a vehicle through which they can access contracts and formal markets. These cooperatives will also enable easy training and workshops for broiler rearing and marketing/markets through extension visits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler%20chicken" title="broiler chicken">broiler chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=mainstream%20market" title=" mainstream market"> mainstream market</a>, <a href="https://publications.waset.org/abstracts/search?q=Maseru%20district" title=" Maseru district"> Maseru district</a>, <a href="https://publications.waset.org/abstracts/search?q=participation" title=" participation"> participation</a>, <a href="https://publications.waset.org/abstracts/search?q=smallholder%20farmers" title=" smallholder farmers"> smallholder farmers</a> </p> <a href="https://publications.waset.org/abstracts/99454/the-probability-of-smallholder-broiler-chicken-farmers-participation-in-the-mainstream-market-within-maseru-district-in-lesotho" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> The Expression of Lipoprotein Lipase Gene with Fat Accumulations and Serum Biochemical Levels in Betong (KU Line) and Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Loongyai">W. Loongyai</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Saengsawang"> N. Saengsawang</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Danvilai"> W. Danvilai</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kridtayopas"> C. Kridtayopas</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sopannarath"> P. Sopannarath</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Bunchasak"> C. Bunchasak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Betong chicken is a slow growing and a lean strain of chicken, while the rapid growth of broiler is accompanied by increased fat. We investigated the growth performance, fat accumulations, lipid serum biochemical levels and lipoprotein lipase (LPL) gene expression of female Betong (KU line) at the age of 4 and 6 weeks. A total of 80 female Betong chickens (KU line) and 80 female broiler chickens were reared under open system (each group had 4 replicates of 20 chicks per pen). The results showed that feed intake and average daily gain (ADG) of broiler chicken were significantly higher than Betong (KU line) (P &lt; 0.01), while feed conversion ratio (FCR) of Betong (KU line) at week 6 were significantly lower than broiler chicken (P &lt; 0.01) at 6 weeks. At 4 and 6 weeks, two birds per replicate were randomly selected and slaughtered. Carcass weight did not significantly differ between treatments; the percentage of abdominal fat and subcutaneous fat yield was higher in the broiler (P &lt; 0.01) at 4 and 6 week. Total cholesterol and LDL level of broiler were higher than Betong (KU line) at 4 and 6 weeks (P &lt; 0.05). Abdominal fat samples were collected for total RNA extraction. The cDNA was amplified using primers specific for LPL gene expression and analysed using real-time PCR. The results showed that the expression of LPL gene was not different when compared between Betong (KU line) and broiler chickens at the age of 4 and 6 weeks (P &gt; 0.05). Our results indicated that broiler chickens had high growth rate and fat accumulation when compared with Betong (KU line) chickens, whereas LPL gene expression did not differ between breeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipoprotein%20lipase%20gene" title="lipoprotein lipase gene">lipoprotein lipase gene</a>, <a href="https://publications.waset.org/abstracts/search?q=Betong%20%28KU%20line%29" title=" Betong (KU line)"> Betong (KU line)</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler" title=" broiler"> broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=abdominal%20fat" title=" abdominal fat"> abdominal fat</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a> </p> <a href="https://publications.waset.org/abstracts/96914/the-expression-of-lipoprotein-lipase-gene-with-fat-accumulations-and-serum-biochemical-levels-in-betong-ku-line-and-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Coping Heat Stress By Crushed Fennel (Foeniculum Vulgare) Seeds in Broilers: Growth, Redox Balance, and Humoral Immune Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adia%20Fatima">Adia Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Naila%20Chand"> Naila Chand</a>, <a href="https://publications.waset.org/abstracts/search?q=Rifat%20Ullah%20Khan"> Rifat Ullah Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study was to determine how fennel seed supplementation affected broiler growth, carcass quality, antioxidant status, and antibody titer in heat-stressed broilers. A total of 720 one-day-old broiler chickens were weighed and assigned to 28-floor pens (25 broiler chickens per pen). The broiler chickens were housed in a thermoneutral (TN) environment and were exposed to heat stress (HS). For 23 hours, the broiler chickens were kept under fluorescent lighting. For 35d, HS broiler chickens were fed a control diet and three levels of fennel seeds powder at rates of 15g/kg (Fen-15), 20 g/kg (Fen-20), and 25 g/kg (Fen-25). Overall feed intake, weight gain, and dressing % were considerably greater (P < 0.05) in Fen-25 and TN, but FCR was significantly reduced (P<0.01) in the same groups. When TN, Fen-20, and Fen-25 were compared to the control, malondialdehyde (MDA), paraoxonase (PON1), and antibody titer against New Castle disease (ND) were considerably (P < 0.05) greater. Further, the linear and quadratic response was for feed intake, weight gain, FCR, MDA, PON1, and ND titer. It was concluded that Fen-20 and Fen-25 increased broiler growth, carcass quality, antioxidant status, and immunological response under HS conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title="heat stress">heat stress</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a> </p> <a href="https://publications.waset.org/abstracts/157064/coping-heat-stress-by-crushed-fennel-foeniculum-vulgare-seeds-in-broilers-growth-redox-balance-and-humoral-immune-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Impact of Dietary L-Threonine Supplementation on Performance and Health of Broiler Chickens, a Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Hoseini">Mandana Hoseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During last decades, intensive selection for higher growth rate in broiler chickens has accelerated daily body weight gain, which this has changed/increased the trends and amounts of nutrient requirements in the diet. As a result, considerable studies have been focused on the better determination of protein/amino acids requirements in modern broiler diets. One approach to minimize dietary crude protein inclusion levels is substitution of some of the dietary crude protein with synthetic amino acids. In addition, using synthetic forms of limiting essential amino acids in the diet could help better coincidence of dietary protein with ideal protein concept, which this in turn, minimizes nitrogen dissipation and environmental pollution. Threonine is usually considered as the third limiting amino acid in broiler diets. Recent studies have been demonstrated that dietary supplemental threonine would optimize growth performance, immune system, intestinal morphology, as well as oxidative defense in broiler chickens. In this review, threonine metabolism and its effects in relation with different aspects of broiler performance have been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immune%20system" title="immune system">immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=intestine" title=" intestine"> intestine</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=requirement" title=" requirement"> requirement</a>, <a href="https://publications.waset.org/abstracts/search?q=threonine" title=" threonine"> threonine</a> </p> <a href="https://publications.waset.org/abstracts/130380/impact-of-dietary-l-threonine-supplementation-on-performance-and-health-of-broiler-chickens-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Histomorphological Comparisons of Liver of Broiler Chickens and Wild Boar in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khenenou%20Tarek">Khenenou Tarek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The objective of present study was to compare the normal macro and microscopic appearance of the liver in two very different species, one is an omnivorous mammal; the wild boar and the other belongs to the family of poultry; broiler chicken from the region of Bouhmama (Khenchela). Materials and methods: Eight broilers (58 days of age) and eight wild boars were included in the experiment to obtain information about the morpho-histological appearances of liver in two species. Results: There is a big difference in the liver appearance between the two species, in the wild boar it is of firm consistency with a tiger aspect and divided into four lobes, whereas in the broiler, the liver is brown and sometimes pale during the first 10-14 days, so it was divided into two lobes. Concerning the liver parenchyma, we used the Russian LOMBO MBS-10 stereo microscope, our results showed that the liver parenchyma was well developed in wild boar than in broiler chickens whereas, in broiler chickens; an excessive development of the sinus; the latter were less developed in the wild boar. Conclusion: The macroscopic observation showed a marked difference in liver between the two species. The microscopic examination of liver showed that the parenchyma is less pronounced in broilers whereas the sinuses were highly developed in the wild boar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler%20chicken" title="broiler chicken">broiler chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20and%20microscopic%20appearances" title=" macro and microscopic appearances"> macro and microscopic appearances</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20boar" title=" wild boar"> wild boar</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/190129/histomorphological-comparisons-of-liver-of-broiler-chickens-and-wild-boar-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> The Effect of Rosella Flower Flour (Hibiscus sabdariffa L.) Utilization in Ration on Performance of Broiler Chicken</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurlisa%20Uke%20Dessy">Nurlisa Uke Dessy</a>, <a href="https://publications.waset.org/abstracts/search?q=Dwi%20Septian%20Erwinsyah"> Dwi Septian Erwinsyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuprizal"> Zuprizal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment was aimed to investigate the effect of rosella flower flour in diet on broiler chicken Performace. The materials used in this experiment were 72 broiler chickens and were divided into six treatments, those were R0 = without rosella flower flour addition, R1 = 0.5% rosella flower flour addition, R2 = 1.0% rosella flower flour addition, R3 = 1.5% rosella flower flour addition, R4 = 2.0% rosella flower flour addition, and R5 = 2.5% rosella flower flour addition. Each treatment consisted of three replications and each replication consisted of four broiler chickens. This research took 35 days to collect the data. Parameters measured were feed intake, rosella flower flour consumption, body weight gain, feed conversion and mortality. The collected data were analyzed using Completely Randomized Design (CRD) and the differences of mean were tested by Duncan’s New Multiple Range Test (DMRT). The result showed the average of feed consumption were 2154; 2154; 2034; 2154; 2034 and 2154 g/bird on broiler chicken that were feed respectively by 0.0; 0.5; 1.0; 1.5; 2.0; and 2.5% rosella flower flour level. The average consumptions of rosella flower flour respectively were 0; 10.77; 20.34; 32.31; 40.68; and 53.85 g/bird. The body weight gains were 1263.33±70.40; 1422.42±36.33; 1443.75±30.00; 1387.42± 35.30; 1411.17±29.58 and 1457.08±40.75 g/bird. Feed conversion results were 1.71±0.94; 1.51±0.37; 1.47±0.62; 1.55±0.40; 1.53±0.30 and 1.48±0.40. The conclusion of the experiment was known that using rosella flower flour until 2.5% level in diet was able to increase broiler chicken performance, and also to decrease broiler chicken feed conversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feed%20intake" title="feed intake">feed intake</a>, <a href="https://publications.waset.org/abstracts/search?q=consumptions%20rosella%20flower%20flour" title=" consumptions rosella flower flour"> consumptions rosella flower flour</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20chickens" title=" broiler chickens"> broiler chickens</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20weight%20gain" title=" body weight gain"> body weight gain</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20conversion" title=" feed conversion"> feed conversion</a> </p> <a href="https://publications.waset.org/abstracts/22171/the-effect-of-rosella-flower-flour-hibiscus-sabdariffa-l-utilization-in-ration-on-performance-of-broiler-chicken" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> The Application of to Optimize Pellet Quality in Broiler Feeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Vakili">Reza Vakili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this experiment was to optimize the effect of moisture, the production rate, grain particle size and steam conditioning temperature on pellet quality in broiler feed using Taguchi method and a 43 fractional factorial arrangement was conducted. Production rate, steam conditioning temperatures, particle sizes and moisture content were performed. During the production process, sampling was done, and then pellet durability index (PDI) and hardness evaluated in broiler feed grower and finisher. There was a significant effect of processing parameters on PDI and hardness. Based on the results of this experiment Taguchi method can be used to find the best combination of factors for optimal pellet quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler" title="broiler">broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20physical%20quality" title=" feed physical quality"> feed physical quality</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20parameters" title=" processing parameters"> processing parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=PDI" title=" PDI"> PDI</a> </p> <a href="https://publications.waset.org/abstracts/90201/the-application-of-to-optimize-pellet-quality-in-broiler-feeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Income and Factor Analysis of Small Scale Broiler Production in Imo State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ubon%20Asuquo%20Essien">Ubon Asuquo Essien</a>, <a href="https://publications.waset.org/abstracts/search?q=Okwudili%20Bismark%20Ibeagwa"> Okwudili Bismark Ibeagwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Daberechi%20Peace%20Ubabuko"> Daberechi Peace Ubabuko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Broiler Poultry subsector is dominated by small scale production with low aggregate output. The high cost of inputs currently experienced in Nigeria tends to aggravate the situation; hence many broiler farmers struggle to break-even. This study was designed to examine income and input factors in small scale deep liter broiler production in Imo state, Nigeria. Specifically, the study examined; socio-economic characteristics of small scale deep liter broiler producing Poultry farmers; estimate cost and returns of broiler production in the area; analyze input factors in broiler production in the area and examined marketability, age and profitability of the enterprise. A multi-stage sampling technique was adopted in selecting 60 small scale broiler farmers who use deep liter system from 6 communities through the use of structured questionnaire. The socioeconomic characteristics of the broiler farmers and the profitability/ marketability age of the birds were described using descriptive statistical tools such as frequencies, means and percentages. Gross margin analysis was used to analyze the cost and returns to broiler production, while Cobb Douglas production function was employed to analyze input factors in broiler production. The result of the study revealed that the cost of feed (P<0.1), deep liter material (P<0.05) and medication (P<0.05) had a significant positive relationship with the gross return of broiler farmers in the study area, while cost of labour, fuel and day old chicks were not significant. Furthermore, Gross profit margin of the farmers who market their broiler at the 8th week of rearing was 80.7%; and 78.7% and 60.8% for farmers who market at the 10th week and 12th week of rearing, respectively. The business is, therefore, profitable but at varying degree. Government and Development partners should make deliberate efforts to curb the current rise in the prices of poultry feeds, drugs and timber materials used as bedding so as to widen the profit margin and encourage more farmers to go into the business. The farmers equally need more technical assistance from extension agents with regards to timely and profitable marketing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broilers" title="broilers">broilers</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title=" factor analysis"> factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=income" title=" income"> income</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20scale" title=" small scale"> small scale</a> </p> <a href="https://publications.waset.org/abstracts/166124/income-and-factor-analysis-of-small-scale-broiler-production-in-imo-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> A Study of Growth Performance, Carcass Characteristic, Meat Quality and Association of Polymorphism in the ApoVLDL-II Gene with Fat Accumulation in the Female Broiler, Thai Native and Betong Chickens (KU Line)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Kridtayopas">C. Kridtayopas</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Danvilai"> W. Danvilai</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sopannarath"> P. Sopannarath</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kayan"> A. Kayan</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Loongyai"> W. Loongyai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both Betong chicken (KU Line) and Thai Native chickens were the high quality of the meat and low carcass fat compared to broiler chickens. The objective of this study was to determine the growth performance, carcass characteristic, meat quality and association of polymorphism in the <em>ApoVLDL-II</em> gene with fat accumulation in the female broiler, Thai Native and Betong (KU line) chickens at 4-14 weeks. The chickens were used and reared under the same environment and management (100 chicks per breed). The results showed that body weight (BW) of broiler chickens was significantly higher than Thai Native and Betong (KU line) chickens (P &lt; 0.01) through all the experiment. At 4-8 weeks of age, feed conversion ratio (FCR) of broiler chickens was significantly better than Thai Native and Betong (KU line) chickens (P &lt; 0.01), then increased at week 8-14. The percentage of breast, abdominal fat and subcutaneous fat of broiler chickens was significantly greater than Thai Native and Betong (KU line) chickens (P &lt; 0.01). However, Thai Native chickens showed the highest percentage of liver (P &lt; 0.01) when compared to other breeds. In addition, the percentage of wing of Thai Native and Betong (KU line) chickens were significantly (P &lt; 0.01) higher than broiler chickens. Meat quality was also determined and found that, pH of breast meat left from slaughter 45 minutes (pH45) and 24 hours (pH24) of broiler was significantly higher than Thai Native and Betong (KU line) (P &lt; 0.01) whereas the percentage of drip loss, thawing loss, cooking loss and shear force was not significantly different between breeds. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was used to genotype the polymorphism in the <em>ApoVLDL-II</em> gene in the broiler, Thai Native and Betong (KU line) chickens. The results found that, the polymorphism in the <em>ApoVLDL-II</em> gene at VLDL6 loci was not associated with fat accumulation in those studied population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ApoVLDL-II%20gene" title="ApoVLDL-II gene">ApoVLDL-II gene</a>, <a href="https://publications.waset.org/abstracts/search?q=Betong%20%28KU%20line%29%20chickens" title=" Betong (KU line) chickens"> Betong (KU line) chickens</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20chickens" title=" broiler chickens"> broiler chickens</a>, <a href="https://publications.waset.org/abstracts/search?q=carcass%20characteristic" title=" carcass characteristic"> carcass characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=meat%20quality" title=" meat quality"> meat quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20native%20chickens" title=" Thai native chickens"> Thai native chickens</a> </p> <a href="https://publications.waset.org/abstracts/96912/a-study-of-growth-performance-carcass-characteristic-meat-quality-and-association-of-polymorphism-in-the-apovldl-ii-gene-with-fat-accumulation-in-the-female-broiler-thai-native-and-betong-chickens-ku-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Influence of Salbutamol (Beta Adrenergic Agonist) on Carcass Characteristics and Same Blood Parameters in Male Broiler Chicken</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Naeim%20Saber">Seyyed Naeim Saber</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Usefi"> Javad Usefi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to determine the effect of salbutamol (beta-adrenergic agonist) on carcass characteristics and some blood parameters in male broiler chicks. Four hundred and twenty day-old (Coob-500) male broiler were used in this experiment for six weeks. All birds were randomly divided into 7 treatment groups with 4 replicates of 15 birds per pen. Treatment groups included: control, 5, 10, and 15 mg salbutamol per liter water and 10, 20 and 30 mg salbutamol per kg diet. The data obtained from this study indicated that supplementation of salbutamol in water and diets have significant effect on live body weight, abdominal fat, and gizzard weight (p<0.05). Also adding salbutamol in broiler water and feed did not have significant effect on thigh and breast dry matter, thigh and breast crude protein, and thigh and breast crude fat (p>0.05). The results from this study demonstrated that salbutamol has significant (p<0.05) effect on hemoglobin content and RV/TV but it does not have significant effect (p>0.05) on hematocrit amount. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salbutamol" title="salbutamol">salbutamol</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-adrenergic%20agonist" title=" beta-adrenergic agonist"> beta-adrenergic agonist</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20chicks" title=" broiler chicks"> broiler chicks</a>, <a href="https://publications.waset.org/abstracts/search?q=carcass%20characteristic" title=" carcass characteristic"> carcass characteristic</a> </p> <a href="https://publications.waset.org/abstracts/58992/influence-of-salbutamol-beta-adrenergic-agonist-on-carcass-characteristics-and-same-blood-parameters-in-male-broiler-chicken" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Analysis of Farm Management Skills in Broiler Poultry Producers in Botswana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Som%20Pal%20Baliyan">Som Pal Baliyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this quantitative study was to analyze farm management skills in broiler poultryproducers in Botswana. The study adopted a descriptive and correlation research design. The population of the study was the poultry farm operators who had been in broiler poultry farming at least for two years. Based on the information from literature, a questionnaire was constructed for data collection on seven areas of farm management skills namely; planning skills, accounting and financial management skills, production management skills, product procurement and marketing skills, decision making skills, risk management skills, and specific technical skills. The validity and reliability of the questionnaire were accomplished by a panel of experts and by calculating the Cronbach’s alpha coefficient, respectively. Data were collected through a survey of 60 randomly sampled poultry farm operators in Botswana. Data were analyzed through descriptive statistical tools whereby the level of farm management skills were determined by calculating means and standard deviations of the management skills among the broiler producers. The level of farm management skills in broilers producers was discussed. All the seven farm management skills were ranked based on their calculated means. The specific technical skills and risk management skills were the highest and the lowest ranked farm management skills, respectively.Findings revealed that the broiler producers had skills above the average level only in specific technical skills whereas the skill levels in the remaining six farm management skills under study were found below the average level. This prevailing low level of farm management skills can be justified asthe cause of failure or poor performance of the broiler poultry farms in Botswana. Therefore, in order to improve the efficiency and productivityin broiler production in the country, it was recommended that the broiler poultry producers should be adequately trained in areas of planning skills, financial management skills, production management skills, product procurement and marketing skills, decision making skills and risk management skills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poultry%20production" title="poultry production">poultry production</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20production" title=" broiler production"> broiler production</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20skills" title=" management skills"> management skills</a>, <a href="https://publications.waset.org/abstracts/search?q=levels%20of%20skills" title=" levels of skills"> levels of skills</a> </p> <a href="https://publications.waset.org/abstracts/36860/analysis-of-farm-management-skills-in-broiler-poultry-producers-in-botswana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> The Effect of Blue Lighting on Feeding Behaviour, Growth, and Corticosterone of Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sri%20Harimurti">Sri Harimurti</a>, <a href="https://publications.waset.org/abstracts/search?q=Diah%20Reni%20Asih"> Diah Reni Asih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designated to investigate the effect of intermittent and continuous blue lighting on the feeding behaviour, growth and corticosterone hormone concentration of broiler. Two thousands and seven hundreds unsexed day-old broiler were divided into three groups of lighting treatment. Each treatment consisted of three replicates of 300 birds. The treatments were ordinary lighting (C), intermittent blue lighting (IBL) and continuous blue lighting (CBL). The data were collected in the study were feeding behaviour such as feeding duration and frequency of feeding, growth rate of birds and corticosterone hormone concentration. Results showed that the CBL have significant effect (P<0,05) on duration and frequency of feeding and growth rate of birds. The CBL have the highest feeding duration, the lowest frequency of feeding that those 290.33±1.52 minutes/day, 35.58±0.50 times/day at 15 to 28 days of age.The concentration of corticosterone hormone of IBL and CBL were a significant (P<0.05) decrease. The conclusion of this study indicated that continuous blue lighting may be a good tool for improving welfare management of broiler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20light" title="blue light">blue light</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20chickens" title=" broiler chickens"> broiler chickens</a>, <a href="https://publications.waset.org/abstracts/search?q=corticosterone%20hormone" title=" corticosterone hormone"> corticosterone hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=feeding%20behaviour" title=" feeding behaviour"> feeding behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20rate" title=" growth rate"> growth rate</a> </p> <a href="https://publications.waset.org/abstracts/71273/the-effect-of-blue-lighting-on-feeding-behaviour-growth-and-corticosterone-of-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Apparent Ileal and Excreta Digestibility of Protein Poultry By-Product Meal in 21 to 28 Days of Age Broiler Chicken</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Mahmoudnia">N. Mahmoudnia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khormali"> M. Khormali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment was conducted to determine the apparent protein digestibility of poultry byproduct meal (PBPM) from two industrial poultry slaughter-houses on Ross 308 male broiler chickens in independent comparisons. The experiment consisted of seven dietary treatments and three replicates per treatment with three broiler chickens per replicate in a completely randomized design. Dietary treatments consisted of a control corn- soybean diet, and levels 3, 6, and 9% PBPM produced by slaughter-house 1 and levels 3, 6, and 9% PBPM produced by slaughter house 2. Chromic oxide was added to the experimental diets as an indigestible marker. The apparent protein digestibility of each diet were determined with two methods of sample collection of ileum and excreta in 21-28 d of age. The results this experiment showed that use of PBPM had no significant effect on the performance of broiler chicks during period of experiments. The apparent protein digestibility of PBPM groups was significantly higher than control group by excreta sampling procedure (P<0.05). Using of PBPM 2 significantly (P<0.05) decreased the apparent protein digestibility values based on ileum sampling procedure vs control (85.21 vs. 90.14).Based results of this experiment,it is possible to use of PBPM 1 in broiler chicken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poultry%20by-product%20meal" title="poultry by-product meal">poultry by-product meal</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20protein%20digestibility" title=" apparent protein digestibility"> apparent protein digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=independed%20comparison" title=" independed comparison"> independed comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20chicken" title=" broiler chicken "> broiler chicken </a> </p> <a href="https://publications.waset.org/abstracts/18677/apparent-ileal-and-excreta-digestibility-of-protein-poultry-by-product-meal-in-21-to-28-days-of-age-broiler-chicken" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Dietary Effect of Selenium-Enriched Radish Sprouts, Vitamin E and Rhodobacter capsulatus on Hypocholesterolemia and Immunity of Broiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20G.%20Miah">Abdul G. Miah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirotada%20Tsujii"> Hirotada Tsujii</a>, <a href="https://publications.waset.org/abstracts/search?q=Ummay%20Salma"> Ummay Salma</a>, <a href="https://publications.waset.org/abstracts/search?q=Iwao%20Takeda"> Iwao Takeda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was designed to investigate the effects of dietary Selenium-enriched radish sprouts (Se-RS), Vitamin E (Vit E) and Rhodobacter capsulatus (RC) on broiler's immunity, cholesterol concentration and fatty acid composition in broiler meat. A total of 100 two-week-old male broiler chicks were randomly assigned into 5 dietary groups, such as i) Control; ii) Se-RS (5 μg/kg Se-RS); iii) Se-RS+RC (5 μg/kg Se-RS + 0.2 g/kg RC); iv) Se-RS+Vit E (5 μg/kg Se-RS + 50 mg/kg Vit E) and v) Se-RS+RC+Vit E (5 μg/kg Se-RS + 0.2 g/kg RC + 50 mg/kg Vit E). The broilers were offered ad libitum specific diets and clean drinking water. After the end of 3-wk of feeding period, serum cholesterol and triglycerides concentrations were decreased (p<0.05) specially, in the broilers fed Se-RS+RC+Vit E supplemented diet compared to the broilers fed control diet. At the end of the 6-wk feeding period, Se-RS+RC+Vit E supplemented diet significantly (p<0.05) reduced cholesterol and triglycerides concentrations, and improved the ratio of unsaturated fatty acids (UFA) to saturated fatty acids (SFA) in broiler meat. The highest (p<0.05) number of leukocytes was observed in the broilers fed Se-RS+RC+Vit E supplemented diet than that of the broilers fed control diet. Spleen, bursa and thymus weight were significantly (p<0.05) increased by Se-RS+RC+Vit E supplemented diet than the control diet. Compared to the control diet, Se-RS+RC+Vit E supplemented diet significantly (p<0.05) increased foot web index. Moreover, there was no mortality in all groups of broilers during the experimental period. Therefore, the study may conclude that there are dual benefits of Se-RS+RC+Vit E supplementation in broiler diet improved immunity and meat quality for health conscious consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypocholesterolemia" title="hypocholesterolemia">hypocholesterolemia</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity%20of%20broiler" title=" immunity of broiler"> immunity of broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodobacter%20capsulatus" title=" rhodobacter capsulatus"> rhodobacter capsulatus</a>, <a href="https://publications.waset.org/abstracts/search?q=selenium-enriched%20radish%20sprouts" title=" selenium-enriched radish sprouts"> selenium-enriched radish sprouts</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20E" title=" vitamin E"> vitamin E</a> </p> <a href="https://publications.waset.org/abstracts/53193/dietary-effect-of-selenium-enriched-radish-sprouts-vitamin-e-and-rhodobacter-capsulatus-on-hypocholesterolemia-and-immunity-of-broiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Comparison Ileal and Excreta Digestibility of Protein Poultry by-Product Meal in 21 to 28 Days of Age Broiler Chicken</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Mahmoudnia">N. Mahmoudnia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khormali"> M. Khormali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment was conducted to determine the apparent protein digestibility of poultry by- product meal (PBPM) from two industrial poultry slaughter houses on Ross 308 male broiler chickens in independed comparisons. The experiment consisted of seven dietary treatments and three replicates per treatment with three broiler chickens per replicate in a completely randomized design. Dietary treatments consisted of a control corn- soybean diet, and levels 3, 6 and 9% PBPM produced by slaughter house 1 and levels 3, 6 and 9% PBPM produced by slaughter house 2. Chromic oxide was added to the experimental diets as indigestible marker. The apparent protein digestibility of each diet were determined with two methods of sample collection of ileum and excreta in 21-28 d of age. The results this experiment showed that use of PBPM had no significantly effect on performance of broiler chicks during period of experiments. The apparent protein digestibility of PBPM groups was significantly higher than control group by excreta sampling procedure (P<0.05). Using of PBPM 2 significantly (P<0.05) decreased the apparent protein digestibility values based on ileum sampling procedure vs control ( 85.21 vs 90.14).Based results of this experiment,it is possible to use of PBPM 1 in broiler chicken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poultry%20by-product%20meal" title="poultry by-product meal">poultry by-product meal</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20protein%20digestibility" title=" apparent protein digestibility"> apparent protein digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=independed%20comparison" title=" independed comparison"> independed comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20chicken" title=" broiler chicken"> broiler chicken</a> </p> <a href="https://publications.waset.org/abstracts/18653/comparison-ileal-and-excreta-digestibility-of-protein-poultry-by-product-meal-in-21-to-28-days-of-age-broiler-chicken" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">601</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Papaya Leaf in Broiler Chicken Feed Reducing Lipid Peroxidation of Meat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ebrahimi">M. Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Maroufyan"> E. Maroufyan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shakeri"> M. Shakeri</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Oskoueian"> E. Oskoueian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F%20Soleimani"> A. F Soleimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Goh"> Y. M. Goh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipid peroxidation is a main reason of low quality in meat and meat products. The free radical chain reaction is the major process of lipid peroxidation and reactive oxygen species (ROS) such as hydroxyl radical and hydroperoxyl radical are the main starter of the chain reaction. Papaya leaf contains several secondary metabolites which can be used as a potential antioxidant in broiler feed. Hence, this research was carried out to evaluate the potential of papaya leaf to prevent lipid peroxidation and enhance the antioxidant activity of breast meat of broiler chicken. The results showed that supplementation of papaya leaf at 5%, significantly (p < 0.05) reduced the lipid peroxidation compared to control group. The supplementation of papaya leaf prevented from lipid peroxidation and enhanced the antioxidant activity of the broiler breast meat significantly (p < 0.05) after different storage periods. Papaya leaf reduced the lipid oxidation of meat during storage with strong free radical-scavenging ability. In conclusion, supplementation of papaya leaf in broiler diet to have high quality meat is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=papaya%20leaf" title=" papaya leaf"> papaya leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20meat" title=" breast meat"> breast meat</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a> </p> <a href="https://publications.waset.org/abstracts/17709/papaya-leaf-in-broiler-chicken-feed-reducing-lipid-peroxidation-of-meat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> The Effect of Some Microorganisms from Gastrointestinal Tracts on the Nutritive Value of Broiler Diets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sangsoponjit">S. Sangsoponjit</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Suphalucksana"> W. Suphalucksana</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Soytong"> K. Soytong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 2x2 factorial experiment was carried out to determine the effects of two levels of diet supplemented with and without microorganisms in combination with and without feed sterilisation on the nutritive value of broiler diets with four replications in each treatment. Some microorganisms from the gastrointestinal tracts of chickens were supplemented in commercial broiler diets. They were bacterial (BC-NA-01), actinomycetes (BI-NA-03, BC-NA-02 and BL-NA-02), Aspergillus niger sp.(BD-PDA-01), Mucor sp.(BL-PDA-02), Rhizopus stolonifer sp.(BI-PDA-02) and Trichoderma sp.(BL-PDA-02). The results of the proximate analysis revealed that the diet supplemented with microorganisms had a higher percentage of DM and CF in the starter diet(0-3 wks), grower diet(4-5wks) and finisher diet (last period) than the diet without microorganisms (p<0.05). Also, they were higher in the percentage of CP in the starter diet and EE in both the starter diet and grower diet than the diet without microorganisms (p<0.05). The sterilised diet had a higher percentage of moisture than the non-sterilized diet (p<0.01). Also, they were higher in the percentage of CP in the starter diet and CF in both the grower diet and finisher diet than the non-sterilized diet (p<0.05). The sterilized diet supplemented with microorganisms was higher in ME than the non-sterilize diet without microorganisms in the starter diet, grower diet and finisher diet (P<0.01). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title="microorganisms">microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20tract" title=" gastrointestinal tract"> gastrointestinal tract</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritive%20value" title=" nutritive value"> nutritive value</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20diets" title=" broiler diets"> broiler diets</a> </p> <a href="https://publications.waset.org/abstracts/15538/the-effect-of-some-microorganisms-from-gastrointestinal-tracts-on-the-nutritive-value-of-broiler-diets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Dietary Supplementation of Betaine and Response to Warm Weather in Broiler Chicken: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Nabipour%20Afrouzi">Hassan Nabipour Afrouzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Naser%20Mahmoudnia"> Naser Mahmoudnia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Broiler production has increased rapidly in tropical and subtropical regions in the past and sustained growth is forecast for the future. One of the greatest challenges to efficient production in these regions is reduced performance from warm and hot weather conditions. There are many ways to decrease these detrimental effects of heat on broiler chickens. One way is to supplement broiler diet with betaine added to feed or drinking water. A review of the results of this study suggest that betaine supplement was effective to significantly improve body weight and feed conversion ratio at the initial stages of growth but not in the finisher stages (P<0/05). It was also demonstrated that the use of betaine significantly reduced the percentage of abdominal meat and the percentage of breast meat (P<0/05), but had no effect on other carcass compositions. Betaine may improve the digestibility of specific nutrients. Betaine, as a methyl donor provides labile methyl groups for the synthesis of several metabolically active substances such as creatine and carnitine. Oil in a broiler diet is known to promote a response to dietary betaine supplements, that is, chicks have a higher demand for betaine with a high fat diet. This study implies that betaine supplement may stimulate protection of intestinal epithelium against osmotic disturbance, improve digestion and absorption conditions of the gastrointestinal tract and promote amended use of nutrients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title="heat stress">heat stress</a>, <a href="https://publications.waset.org/abstracts/search?q=betaine" title=" betaine"> betaine</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%E2%80%9A%20growth" title=" broiler‚ growth"> broiler‚ growth</a> </p> <a href="https://publications.waset.org/abstracts/23388/dietary-supplementation-of-betaine-and-response-to-warm-weather-in-broiler-chicken-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Essential Oil Blend Containing Capsaicin, Carvacrol, and Cinnamaldehyde in Broiler Production Performance and Intestinal Morphometrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marianne%20D.%20M.%20Rendon">Marianne D. M. Rendon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20P.%20Acda"> Sonia P. Acda</a>, <a href="https://publications.waset.org/abstracts/search?q=Veneranda%20A.%20Magpantay"> Veneranda A. Magpantay</a>, <a href="https://publications.waset.org/abstracts/search?q=Norma%20N.%20Fajardo"> Norma N. Fajardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Amado%20A.%20Angeles"> Amado A. Angeles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to evaluate the effect of supplementing broiler starter diet with different levels of an essential oil blend (EOB) containing capsaicin, carvacrol and cinnamaldehyde on the performance of broilers. A total of 300 day-old straight-run Cobb broiler chicks were randomly assigned to three treatments after 7-day group brooding following a completely randomized design (CRD). Birds assigned in treatment 1 were given starter basal diet while those in treatments 2 and 3 were given starter basal diet with 400 mg/kg antibiotic growth promoter (AGP) and 150 mg/kg EOB, respectively, until the 28th day. Basal finisher feed were given for all the treatments until harvest. Following 37 d feeding, body weight gain, feed consumption, feed efficiency, dressing percentage, livability and jejunal villi height were determined. Results showed no significant differences (P>0.05) in growth performance. However, villi height and crypt depth was significantly lower for birds fed EOB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler" title="broiler">broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=capsaicin" title=" capsaicin"> capsaicin</a>, <a href="https://publications.waset.org/abstracts/search?q=carvacrol" title=" carvacrol"> carvacrol</a>, <a href="https://publications.waset.org/abstracts/search?q=cinnamaldehyde" title=" cinnamaldehyde"> cinnamaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a> </p> <a href="https://publications.waset.org/abstracts/32336/essential-oil-blend-containing-capsaicin-carvacrol-and-cinnamaldehyde-in-broiler-production-performance-and-intestinal-morphometrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> The Effect of Different Levels of Seed and Extract of Harmal (Peganum harmala L.) on Immune Responses of Broiler Chicks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Toghyani">M. Toghyani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghasemi"> A. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Tabeidian"> S. A. Tabeidian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out to evaluate the effect of different levels of dietary seed and extract of Harmal (Peganum harmala L.) on immunity of broiler chicks. A total of 350 one-day old broiler chicks (Ross 308) were randomly allocated to five dietary treatments with four replicates pen of 14 birds each. Dietary treatments consisted of control, 1 and 2 g/kg Harmal seed in diet, 100 and 200 mg/L Harmal seed extract in water. Broilers received dietary treatments from 1 to 42 d. Two birds from each pen were randomly weighed and sacrificed at 42 d of age, the relative weight of lymphoid organs (bursa of Fabercius and spleen) to live weight were calculated. Antibody titers against Newcastle and influenza viruses and sheep red blood cell were measured at 30 d of age. Results showed that the relative weights of lymphoid organs were not affected by dietary treatments. Furthermore, antibody titer against Newcastle and influenza viruses as well as sheep red blood cell antigen were significantly (P<0.05) enhanced by feeding Harmal seed and extract. In conclusion, the results indicated that dietary inclusion of Harmal seed and extract enhanced immunological responses in broiler chicks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler%20chicks" title="broiler chicks">broiler chicks</a>, <a href="https://publications.waset.org/abstracts/search?q=Harmal" title=" Harmal"> Harmal</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=Peganum%20harmala" title=" Peganum harmala"> Peganum harmala</a> </p> <a href="https://publications.waset.org/abstracts/20970/the-effect-of-different-levels-of-seed-and-extract-of-harmal-peganum-harmala-l-on-immune-responses-of-broiler-chicks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Broiler Chickens Meat Qualities and Death on Arrival (DOA) In-Transit in Brazilian Tropical Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arlan%20S.%20Freitas">Arlan S. Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20M.%20Carvalho"> Leila M. Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20L.%20Soares"> Adriana L. Soares</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnoud%20Neto"> Arnoud Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20S.%20Madruga"> Marta S. Madruga</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20H.%20Carvalho"> Rafael H. Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Elza%20I.%20Ida"> Elza I. Ida</a>, <a href="https://publications.waset.org/abstracts/search?q=Massami%20Shimokomaki"> Massami Shimokomaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work was to evaluate the influence of microclimatic profile of broiler transport trucks and holding time (340) min under commercial conditions over the breast meat quality and DOA (Dead On Arrival) in a tropical Brazilian regions as the NorthEast. In this particular region routinely the season is divided into dry and wet seasons. Three loads of 4,100 forty seven days old broiler were monitored from farm to slaughterhouse in a distance of 273 km (320 min), morning periods of August, September and October 2015 rainy days. Meat qualities were evaluated by determining the occurrence of PSE (pale, soft, exudative) meat and DFD (dark, firm, dry) meat. The percentage of DOA per loaded truck was determined by counting the dead broiler during the hanging step at the slaughtering plant. Results showed the occurrence of 26.30% of PSE and 2.49% of DFD and 0.45% of DOA. By having PSE- and DFD- meat means that the birds were under thermal and cold stress leading as consequence to a relative high DOA index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20welfare" title="animal welfare">animal welfare</a>, <a href="https://publications.waset.org/abstracts/search?q=DFD" title=" DFD"> DFD</a>, <a href="https://publications.waset.org/abstracts/search?q=microclimatic%20profile" title=" microclimatic profile"> microclimatic profile</a>, <a href="https://publications.waset.org/abstracts/search?q=PSE" title=" PSE"> PSE</a> </p> <a href="https://publications.waset.org/abstracts/46722/broiler-chickens-meat-qualities-and-death-on-arrival-doa-in-transit-in-brazilian-tropical-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Microbial Load of Fecal Material of Broiler Birds Administered with Lagenaria Breviflora Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeleye%20O.%20O.">Adeleye O. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Obuotor"> T. M. Obuotor</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Kolawole"> A. O. Kolawole</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20O.%20Opowoye"> I. O. Opowoye</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Olasoju"> M. I. Olasoju</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20T.%20Egbeyale"> L. T. Egbeyale</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Ajadi"> R. A. Ajadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the effect of Lagenaria breviflora on broiler poultry birds, including its effect on the microbial count of the poultry droppings. A total of 240-day-old broiler chicks were randomly assigned to six groups, with four replicates per group. The first group was the control, while the other four groups were fed water containing 300g/L and 500g/L concentrations of Lagenaria breviflora twice and thrice daily. The microbial load was determined using the plate count method. The results showed that the administration of Lagenaria breviflora in the water of broiler birds significantly improved their growth performance with an average weight gain range of 1.845g - 2.241g. Mortality rate was at 0%. The study also found that Lagenaria breviflora had a significant effect on the microbial count of the poultry droppings with colony count values from 3.5 x 10-7 - 9.9 x10-7CFU/ml, The total coliforms (Escherichia coli, and Salmonella sp.) was obtained as 1 x 10 -5CFU/ml. The reduction in microbial counts of the poultry droppings could be attributed to the antimicrobial properties of Lagenaria breviflora, which contain phytochemicals reported to possess antimicrobial activity. Therefore, the inclusion of Lagenaria breviflora in the diets of broiler poultry could be an effective strategy for improving growth performance and immune function and reducing the microbial load of poultry droppings, which can help to mitigate the risk of disease transmission to humans and other animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gut%20microbes" title="gut microbes">gut microbes</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20count" title=" bacterial count"> bacterial count</a>, <a href="https://publications.waset.org/abstracts/search?q=lagenaria%20breviflora" title=" lagenaria breviflora"> lagenaria breviflora</a>, <a href="https://publications.waset.org/abstracts/search?q=coliforms" title=" coliforms"> coliforms</a> </p> <a href="https://publications.waset.org/abstracts/174699/microbial-load-of-fecal-material-of-broiler-birds-administered-with-lagenaria-breviflora-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Mesquite (Prosopis juliflora) Pods as a Local Alternative to Feed Poultry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Al-Soqeer">Abdulrahman Al-Soqeer</a>, <a href="https://publications.waset.org/abstracts/search?q=Osamah%20Fahmy"> Osamah Fahmy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was aimed to investigate the possibility of using Prosopis juliflora pods as a fodder source for poultry. The study have shown that the inclusion of ground Prosopis pods in a broiler diet added some positive effects on broiler performance such as improving carcasses weight and reducing the weights of the inedible parts. The obtained results encourage repeating the experiment with an increased percentage of Prosopis supplementation in the broiler diets, using some treatments on the Prosopis pods to reduce the undesirable effects of the antinutritional factors in the pods and to increase the percentage of the essential amino acids present in the pods (lysine, methionine, arginine, histidine, isoleucine, leucine and phenylealanine) up to the limits recommended for broilers by NRC 1990. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=arginine" title=" arginine"> arginine</a>, <a href="https://publications.waset.org/abstracts/search?q=broilers" title=" broilers"> broilers</a>, <a href="https://publications.waset.org/abstracts/search?q=lysine" title=" lysine"> lysine</a>, <a href="https://publications.waset.org/abstracts/search?q=methionine" title=" methionine"> methionine</a> </p> <a href="https://publications.waset.org/abstracts/30561/mesquite-prosopis-juliflora-pods-as-a-local-alternative-to-feed-poultry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Effects of Palm Kernel Expeller Processing on the Ileal Populations of Lactobacilli and Escherichia Coli in Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Navidshad">B. Navidshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study was to examine the effects of enzymatic treatment and shell content of palm kernel expeller (PKE) on the ileal Lactobacilli and Escherichia coli populations in broiler chickens. At the finisher phase, one hundred male broiler chickens (Cobb-500) were fed a control diet or the diets containing 200 g/kg of normal PKE (70 g/kg shell), low shell PKE (30 g/kg shell), enzymatic treated PKE or low shell-enzymatic treated PKE. The quantitative real-time PCR were used to determine the ileal bacteria populations. The lowest ileal Lactobacilli population was found in the chickens fed the low shell PKE diet. Dietary normal PKE or low shell-enzymatic treated PKE decreased the Escherichia coli population compared to the control diet. The results suggested that PKE could be included up to 200 g/kg in the finisher diet, however, any screening practice to reduce the shell content of PKE without enzymatic degradation of β-mannan, decrease ileal Lactobacilli population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20kernel%20expeller" title="palm kernel expeller">palm kernel expeller</a>, <a href="https://publications.waset.org/abstracts/search?q=exogenous%20enzyme" title=" exogenous enzyme"> exogenous enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20content" title=" shell content"> shell content</a>, <a href="https://publications.waset.org/abstracts/search?q=ileum%20bacteria" title=" ileum bacteria"> ileum bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20chickens" title=" broiler chickens"> broiler chickens</a> </p> <a href="https://publications.waset.org/abstracts/33444/effects-of-palm-kernel-expeller-processing-on-the-ileal-populations-of-lactobacilli-and-escherichia-coli-in-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> A Review: Role of Chromium in Broiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Zahra">Naveed Zahra</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Kamran"> Zahid Kamran</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakeel%20Ahmad"> Shakeel Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat stress is one of the most important environmental stressors challenging poultry production worldwide. The detrimental effect of heat stress results in reduction in the productive performance of poultry with high incidences of mortality. Researchers have made efforts to prevent such damage to poultry production through dietary manipulation. Supplementation with Chromium (Cr) might have some positive effects on some aspect of blood parameters and broilers performance. Chromium (Cr) the element whose trivalent Cr (III) organic state is present in trace amounts in animal feed and water is found to be a key element in evading heat stress and thus cutting down the heavy expenditure on air conditioning in broiler sheds. Chromium, along with other essential minerals is lost due to increased excretion during heat stress and thus its inclusion in broiler diet is kind of mandatory in areas of hot climate. Chromium picolinate in broiler diet has shown a hike in growth rate including muscle gain with body fat reduction under environmental stress. Fat reduction is probably linked to the ability of chromium to increase the sensitivity of the insulin receptors on tissues and thus the uptake of sugar from blood increases which decreases the amount of glucose to be converted to amino acids and stored in adipose tissue as triglycerides. Organic chromium has also shown to increase lymphocyte proliferation rate and antioxidant levels. So, the immune competency, muscle gain and fat reduction along with evasion of heat stress are good enough signs that indicate the fruitful inclusion of dietary chromium for broiler. This promising element may bring the much needed break in the local poultry industry. The task is now to set the exact dose of the element in the diet that would be useful enough and still not toxic to broiler. In conclusion there is a growing body of evidence which suggest that chromium may be an essential trace element for livestock and poultry. The nutritional requirement for chromium may vary with different species and physiological state within a species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler" title="broiler">broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title=" heat stress"> heat stress</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/37299/a-review-role-of-chromium-in-broiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Influence of Canola Oil and Lysine Supplementation Diets on Growth Performance and Fatty Acid Composition of Meat in Broiler Chicks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kiani">Ali Kiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Davod.%20Sharifi"> Seyed Davod. Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shokoufeh%20Ghazanfari"> Shokoufeh Ghazanfari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted to evaluate the effects of diets containing different levels of lysine and canola oil on growth performance and fatty acid composition of meat of broilers chicks. 240-day old Ross broiler chicks were used in a 3&times;2 factorial arrangement with canola oil (1, 3, and 5%) and lysine (recommended, and 25% more than recommended by Ross broiler manual) in completely randomized design with four replicates and 10 birds per each. The experimental diets were iso-caloric and iso-nitrogenous. Feed intake and body weight gain were recorded at the end of starter (10 d), grower (24 d) and finisher (42 d) periods, and feed conversion ratio was calculated. The results showed that the weight gain of chickens fed diets containing 5% canola oil were greater than those of birds fed on other diets (P&lt;0.05). The dietary lysine had significant effect on feed intake and diets with 25% more than recommended, increased feed intake significantly (P&lt;0.05). The canola oil&times;lysine interaction effects on performance were not significant. Among all treatment birds, those fed diets containing 5% canola oil had the highest meristic acid and oleic acid content in their meat. Broilers fed diets containing 3 or 5% canola oil possessed the higher content of linolenic acid and lower content of arachidonic acid in their meat (P&lt;0.05). The results of the present experiment indicated that the diets containing canola oil (5%) and lysine at 25% higher than requirement, improve the growth performance, carcass and breast yield of broiler, and increase the accumulation of Omega-3 fatty acids in breast meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler" title="broiler">broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=canola%20oil.%20lysine" title=" canola oil. lysine"> canola oil. lysine</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a> </p> <a href="https://publications.waset.org/abstracts/57810/influence-of-canola-oil-and-lysine-supplementation-diets-on-growth-performance-and-fatty-acid-composition-of-meat-in-broiler-chicks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Full Fat Soybean Meal as a Substitute for Soybean Meal in Broiler Rations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20K.%20S.%20Chandana">R. M. K. S. Chandana</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20D.%20G.%20Pathirana"> A. P. D. G. Pathirana</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Priyankarage"> N. Priyankarage</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20D.%20Nayananjalie"> W. A. D. Nayananjalie</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20P.%20Silva"> S. S. P. Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Full fat soybean meal (FFSBM) has been used in many parts of the world together with solvent-extracted soybean meal (SBM) in livestock feeds. Although some local FFSBM is available, their use has not been assessed experimentally. This study was carried out to evaluate the use of local extruded FFSBM in broiler rations. Four treatment diets were formulated by incorporating locally produced FFSBM (0, 10, 20, and 30%) as a replacement for soybean meal (SBM) in a two-phase (starter and finisher) feeding program. Two hundred Hubbard F 15 day old broiler chicks were randomly assigned into four treatments with five replicates per each. Bodyweight gain (BWG), feed intakes (FI), and feed conversion ratio (FCR) were calculated for a period of 42 days. Nutrient utilization in the form of dry matter (DM), energy, nitrogen, and fat retention were estimated by the total collection method in three weeks old broilers. At the end of the experiment, carcass weight was measured, and the dressing percentage was calculated. Data were analyzed using one way analysis of variance (ANOVA) in SAS. There was no significant effect of FFSBM on feed intakes of chicks fed different diets (p > 0.05). Birds fed the control diet, and FF10 (10% FFSBM diet) gained significantly more than that of birds fed FF20 or FF30 diets (p > 0.05). In the finisher period, control birds gained more than all the other treatment birds. FCR was poorer in bird fed higher levels of FFSBM compared to the control or FF10 birds during their early life, but that was not evident in the latter part of the experiment. Treatments did not alter (p > 0.05) the retention of DM and nitrogen, but energy utilization was lowest (p < 0.05) in birds fed with 0% FFSBM, and the highest fat digestibility was observed in birds fed with 30% FFSBM diets. Thus, it can be concluded that FFSBM can be used as a substitute for SBM in broiler rations and could be incorporated up to 10% of the diet safely with no adverse effects on broiler performances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20weight" title="body weight">body weight</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler" title=" broiler"> broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=digestibility" title=" digestibility"> digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20fat%20soybean%20meal" title=" full fat soybean meal"> full fat soybean meal</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20meal" title=" soybean meal"> soybean meal</a> </p> <a href="https://publications.waset.org/abstracts/123140/full-fat-soybean-meal-as-a-substitute-for-soybean-meal-in-broiler-rations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Effects of Raw Bee Propolis and Water or Ethanol Extract of Propolis on Performance, Immune System and Some Blood Parameters on Broiler Bredeers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Alp%20Sahin">Hasan Alp Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ergin%20Ozturk"> Ergin Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of raw bee propolis (RP) and water (WEP) or ethanol (EEP) extract of propolis on growth performance, selected immune parameters (IgA, IgY and IgM) and some blood parameters such as aspartate aminotransferase, alanine aminotransferase, trygliceride, total protein, albumin, calcium, phosphorus, total antioxidant status and total oxidant status were determined. The study was conducted between 15th and 20th weeks (6 weeks) and used a total of 48 broiler breeder pullets (Ross-308). The broiler breeder in control group was fed diet without propolis whereas the birds in RP, WEP and EEP groups were fed diets with RP, WEP and EEP at the level of 1200, 400 and 400 ppm, respectively. All pullets were fed mash form diet with 15% crude protein and 2800 ME kcal/kg. All propolis forms had not a beneficial effect on any studied parameters compared to control group (P > 0.05). The results of the study indicated that both the level of the active matters supplied from the bee propolis has no enough beneficial effect on performance, some immune and blood parameters on broiler breeders or they did not have such a level that would cause a beneficial effect on these variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=bee%20product" title=" bee product "> bee product </a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20breeders" title=" poultry breeders"> poultry breeders</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20parameters" title=" immune parameters"> immune parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20chemistry" title=" blood chemistry"> blood chemistry</a> </p> <a href="https://publications.waset.org/abstracts/51521/effects-of-raw-bee-propolis-and-water-or-ethanol-extract-of-propolis-on-performance-immune-system-and-some-blood-parameters-on-broiler-bredeers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Effect of Garlic Extract on Growth Performance and Immune System of Broiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merry%20Muspita%20Dyah%20Utami">Merry Muspita Dyah Utami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The positive effect of garlic extract have been reported by many studies. It has antibiotical potential, antibacterial, antiviral, antiparasitic, antifungal, and growth promoting. Supplementary garlic for broilers could mediate in getting the bioactive compounds in garlic. The avian bursa must be essential for antibody-mediated immunity. The size of bursa of fabricius must be some sort of endocrine or lymphoid gland associated with growth and sexual development. The research was conducted to evaluate the effects of garlic extract on growth performance and immune system of broiler. Seventy-two day old chick were equally divided into four group, three replication and six chicks each. Group I was control without garlic extract, then garlic extraxt was administrated to the experimental group II, III and IV (2, 4, 6% in ration). The experiment was conducted for three weeks period from day old chick to 21 days. Body weight of broiler were determined at day 1 and 21, feed intake was determined at the same period, feed conversion ratio was calculated accordingly. At 21 day age, four birds per replicate were slaughtered , bursa was collected, weight and calculated as a percentage of live body weight. Mortality was recorded as it occurred and was used to ajust the total number of broiler to determine the total feed intake and feed conversion rasio. Data were expressed as the mean was compare by one way analysis of variance (Anova) follow by Duncan Test, which used to identify differences between groups. A value of P<0.05 was accepted as significance. The body weight, feed conversion rasio, and the weight of bursa of fabricius showed a significant differences, but feed consumption and the percentage of bursa of live body weight were not significantly different (P > 0.05) influenced by dietary treatments. The results of this research, garlic extract has a potential role as natural growth promoter and immunomodulatory system in broiler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=garlic%20extract" title="garlic extract">garlic extract</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler" title=" broiler"> broiler</a> </p> <a href="https://publications.waset.org/abstracts/29863/effect-of-garlic-extract-on-growth-performance-and-immune-system-of-broiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Nutritional Evaluation of Seseame Seed Husk as a Source of Fibre in the Diets of Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maidala%20A.">Maidala A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bizi%20A.%20G."> Bizi A. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Olaoyo%20T.%20G."> Olaoyo T. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Amaza%20B.%20I."> Lawan Amaza B. I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Makinde%20O.%20J."> Makinde O. J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudik%20S.%20D."> Sudik S. D.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed at evaluating the effects of full or partial replacement of wheat offal by dry Sesame Seed Husk (SSH) on the performance of broiler chickens. One-day-old chicks (n = 120) were randomly allotted to five treatments, each replicated four times. A replicate comprised of eight chicks each in a Completely Randomized Design (CRD). SSH was included at 0, 25, 50, 75, and 100%, respectively. Results showed that there were no significant differences in the Daily feed intake (76.03-88.74), Daily weight gain (35.53-37.66), Feed conversion ratio (2.31-3.21) and Carcass characteristics. The feed cost is reduced as you increase the levels of SSH, and the feed cost N/kg gain was highest in the wheat offal diet and lowest at 100% SSH. It can be concluded that higher levels of up to 100% SSH can be incorporated into broiler rations without deleterious effects on the performance of broilers and concomitant reduction in feed cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SSH" title="SSH">SSH</a>, <a href="https://publications.waset.org/abstracts/search?q=broilers" title=" broilers"> broilers</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=economics%20of%20production" title=" economics of production"> economics of production</a>, <a href="https://publications.waset.org/abstracts/search?q=hematology" title=" hematology"> hematology</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20biochemistry" title=" serum biochemistry"> serum biochemistry</a> </p> <a href="https://publications.waset.org/abstracts/193669/nutritional-evaluation-of-seseame-seed-husk-as-a-source-of-fibre-in-the-diets-of-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=broiler&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=broiler&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=broiler&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=broiler&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=broiler&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10