CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 95 results for author: <span class="mathjax">Takhistov, V</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-ph" aria-role="search"> Searching in archive <strong>hep-ph</strong>. <a href="/search/?searchtype=author&amp;query=Takhistov%2C+V">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Takhistov, V"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Takhistov%2C+V&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Takhistov, V"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Takhistov%2C+V&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Takhistov%2C+V&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Takhistov%2C+V&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08716">arXiv:2502.08716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.08716">pdf</a>, <a href="https://arxiv.org/format/2502.08716">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Multimessenger Astronomy Beyond the Standard Model: New Window from Quantum Sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Arakawa%2C+J">Jason Arakawa</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zaheer%2C+M+H">Muhammad H. Zaheer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Safronova%2C+M+S">Marianna S. Safronova</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Eby%2C+J">Joshua Eby</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08716v1-abstract-short" style="display: inline;"> Ultralight bosonic (ULB) fields with mass $m_蠁 \ll 1$ eV often arise in theories beyond the Standard Model (SM). If such fields exist, violent astrophysical events that result in emission of gravitational wave, photon, or neutrino signals could also produce bursts of high-density relativistic ULB fields. Detection of such ULB fields in terrestrial or space-based laboratories correlated with other&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08716v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08716v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08716v1-abstract-full" style="display: none;"> Ultralight bosonic (ULB) fields with mass $m_蠁 \ll 1$ eV often arise in theories beyond the Standard Model (SM). If such fields exist, violent astrophysical events that result in emission of gravitational wave, photon, or neutrino signals could also produce bursts of high-density relativistic ULB fields. Detection of such ULB fields in terrestrial or space-based laboratories correlated with other signals from transient astrophysical events opens a novel avenue for multimessenger astronomy. We show that quantum sensors are particularly well-suited to observe emitted scalar and pseudoscalar axion-like ULB fields coupled to SM. We demonstrate that multimessenger astronomy with ULB fields is possible even when accounting for matter screening effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08716v1-abstract-full').style.display = 'none'; document.getElementById('2502.08716v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 20 pages, 10 figures, 1 table. Including appendix: 40 pages, 28 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2025-0001, KEK-TH-2688, KEK-Cosmo-0371 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00295">arXiv:2501.00295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.00295">pdf</a>, <a href="https://arxiv.org/format/2501.00295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Primordial Black Hole Formation from Power Spectrum with Finite-width </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Pi%2C+S">Shi Pi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sasaki%2C+M">Misao Sasaki</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+J">Jianing Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00295v2-abstract-short" style="display: inline;"> Primordial Black Holes (PBHs) can form from gravitational collapse of large overdensities in the early Universe, giving rise to rich phenomena in astrophysics and cosmology. We develop a novel, general, and accurate method based on theory of density contrast peaks to calculate the abundance of PBHs for a broad power spectrum of curvature perturbations with Gaussian statistics. By introducing a win&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00295v2-abstract-full').style.display = 'inline'; document.getElementById('2501.00295v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00295v2-abstract-full" style="display: none;"> Primordial Black Holes (PBHs) can form from gravitational collapse of large overdensities in the early Universe, giving rise to rich phenomena in astrophysics and cosmology. We develop a novel, general, and accurate method based on theory of density contrast peaks to calculate the abundance of PBHs for a broad power spectrum of curvature perturbations with Gaussian statistics. By introducing a window function to account for relevant perturbation scales for PBHs of different masses, as well as a filter function circumventing overproduction of small PBHs, we find that previous studies might have dramatically overestimated the abundance of PBHs by up to $\mathcal{O}(10)$ orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00295v2-abstract-full').style.display = 'none'; document.getElementById('2501.00295v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">61 pages, 30 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> YITP-24-184, KEK-QUP-2024-0028, KEK-TH-2676, KEK-Cosmo-0369 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18654">arXiv:2412.18654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18654">pdf</a>, <a href="https://arxiv.org/format/2412.18654">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Neutrino Whispers from Dark Stars Seeding Supermassive Black Holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Schwemberger%2C+T">Thomas Schwemberger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18654v1-abstract-short" style="display: inline;"> First stars powered by dark matter (DM) heating instead of fusion can appear in the early Universe from theories of new physics. These dark stars (DSs) can be significantly larger and cooler than early Population III stars, and could seed supermassive black holes (SMBHs). We show that neutrino emission from supermassive DSs provides a novel window into probing SMBH progenitors. We estimate first D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18654v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18654v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18654v1-abstract-full" style="display: none;"> First stars powered by dark matter (DM) heating instead of fusion can appear in the early Universe from theories of new physics. These dark stars (DSs) can be significantly larger and cooler than early Population III stars, and could seed supermassive black holes (SMBHs). We show that neutrino emission from supermassive DSs provides a novel window into probing SMBH progenitors. We estimate first DS constraints using data from Super-Kamiokande and IceCube neutrino experiments, and consistent with James Webb Space Telescope observations. Upcoming neutrino telescopes offer distinct opportunities to further explore DS properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18654v1-abstract-full').style.display = 'none'; document.getElementById('2412.18654v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2024-0027, KEK-TH-2675, KEK-Cosmo-0368 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15132">arXiv:2412.15132</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.15132">pdf</a>, <a href="https://arxiv.org/format/2412.15132">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Cosmology-Independent Constraints on Irreducible Magnetic Monopole Background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Iguro%2C+S">Syuhei Iguro</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mathur%2C+V">Varun Mathur</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shoemaker%2C+I+M">Ian M. Shoemaker</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15132v1-abstract-short" style="display: inline;"> We present a novel mechanism for the irreducible production of magnetic monopoles from interactions of cosmic rays and interstellar medium (ISM). Resulting monopoles drain energy from galactic magnetic fields, disrupting their formation and sustainability. We generalize conventional Parker bounds to monopoles with extended energy spectrum and, considering cosmic ray ISM monopole production, set no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15132v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15132v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15132v1-abstract-full" style="display: none;"> We present a novel mechanism for the irreducible production of magnetic monopoles from interactions of cosmic rays and interstellar medium (ISM). Resulting monopoles drain energy from galactic magnetic fields, disrupting their formation and sustainability. We generalize conventional Parker bounds to monopoles with extended energy spectrum and, considering cosmic ray ISM monopole production, set novel constraints from disruption of Milky Way Galactic magnetic fields and their seeds. Further, we set first constraints on disruption of galactic magnetic fields and their seeds of Andromeda galaxy, with results being competitive with distinct existing bounds. Unlike Parker limits of previous works that relied on cosmological monopoles, our constraints are independent of cosmological monopole production or their primordial abundance. Besides, we estimate new constraints on dipole magnetic moments generated from cosmic ray ISM interactions. We discuss implications for monopoles with generalized magnetic charges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15132v1-abstract-full').style.display = 'none'; document.getElementById('2412.15132v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2024-0026, KEK-TH-2671, KEK-Cosmo-0365 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02591">arXiv:2410.02591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02591">pdf</a>, <a href="https://arxiv.org/format/2410.02591">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Primordial Black Hole Mergers as Probes of Dark Matter in Galactic Center </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Ding%2C+Q">Qianhang Ding</a>, <a href="/search/hep-ph?searchtype=author&amp;query=He%2C+M">Minxi He</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02591v1-abstract-short" style="display: inline;"> Primordial black holes (PBHs) from the early Universe that can contribute to dark matter (DM) abundance have been linked to gravitational wave observations. Super-massive black holes (SMBHs) at the centers of galaxies are expected to modify distribution of DM in their vicinity, and can result in highly concentrated DM spikes. We revisit PBH merger rates in the presence of DM spikes, tracking their&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02591v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02591v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02591v1-abstract-full" style="display: none;"> Primordial black holes (PBHs) from the early Universe that can contribute to dark matter (DM) abundance have been linked to gravitational wave observations. Super-massive black holes (SMBHs) at the centers of galaxies are expected to modify distribution of DM in their vicinity, and can result in highly concentrated DM spikes. We revisit PBH merger rates in the presence of DM spikes, tracking their history. We find novel peaked structure in the redshift-evolution of PBH merger rates at low redshifts around $z \sim 5$. These effects are generic and are present for distinct PBH mass functions and spike profiles, and also can be linked to peaked structure in redshift evolution of star formation rate. Redshift evolution characteristics of PBH merger rates can be distinguished from astrophysical black hole contributions and observable with gravitational waves, enabling them to serve as probes of DM in galactic centers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02591v1-abstract-full').style.display = 'none'; document.getElementById('2410.02591v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2024-0023, KEK-TH-2658, KEK-Cosmo-0360, CTPU-PTC-24-23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12228">arXiv:2409.12228</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12228">pdf</a>, <a href="https://arxiv.org/format/2409.12228">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Phase Separation Baryogenesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Arakawa%2C+J">Jason Arakawa</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lu%2C+P">Philip Lu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12228v1-abstract-short" style="display: inline;"> Distinct behavior of decaying particles in true and false vacua of the theory can lead to enhanced generation of baryon asymmetry, a scenario we call \textit{phase separation baryogenesis}. We demonstrate that for leptogenesis this naturally allows for right handed neutrinos to generate resonantly-enhanced lepton asymmetry without fine-tuning of their masses as in typical theories. Our mechanism a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12228v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12228v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12228v1-abstract-full" style="display: none;"> Distinct behavior of decaying particles in true and false vacua of the theory can lead to enhanced generation of baryon asymmetry, a scenario we call \textit{phase separation baryogenesis}. We demonstrate that for leptogenesis this naturally allows for right handed neutrinos to generate resonantly-enhanced lepton asymmetry without fine-tuning of their masses as in typical theories. Our mechanism allows for a variety of neutrino mass hierarchies and hence possible novel connections with observations. We present a concrete realization in a minimal model with a scalar field undergoing a phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12228v1-abstract-full').style.display = 'none'; document.getElementById('2409.12228v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages + supplemental materials, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2024-0022, KEK-TH-2655, KEK-Cosmo-0359 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06483">arXiv:2409.06483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06483">pdf</a>, <a href="https://arxiv.org/format/2409.06483">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Dual Gravitational Wave Signatures of Instant Preheating </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Hu%2C+W">Wei-Yu Hu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nakayama%2C+K">Kazunori Nakayama</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Tang%2C+Y">Yong Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06483v1-abstract-short" style="display: inline;"> In the instant preheating scenario efficient particle production occurs immediately following the period of inflationary expansion in the early Universe. We demonstrate that instant preheating predicts unique gravitational wave (GW) signals arising from two distinct origins. One source is the bremsstrahlung GWs produced through the decay of superheavy particles, an inevitable consequence of instan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06483v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06483v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06483v1-abstract-full" style="display: none;"> In the instant preheating scenario efficient particle production occurs immediately following the period of inflationary expansion in the early Universe. We demonstrate that instant preheating predicts unique gravitational wave (GW) signals arising from two distinct origins. One source is the bremsstrahlung GWs produced through the decay of superheavy particles, an inevitable consequence of instant preheating. The other is GWs generated from the nonlinear dynamics of the inflaton and coupled scalar fields. Using numerical simulations, we show that the peak of the GW spectrum shifts depending on the coupling constants of the theory. The detection of these dual GW signatures, characteristic of instant preheating, provides novel opportunities for probing the dynamics of the early Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06483v1-abstract-full').style.display = 'none'; document.getElementById('2409.06483v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TU-1240, KEK-QUP-2024-0020, KEK-TH-2650, KEK-Cosmo-0356 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18189">arXiv:2407.18189</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18189">pdf</a>, <a href="https://arxiv.org/format/2407.18189">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad83cf">10.3847/1538-4357/ad83cf <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unlocking Discovery Potential for Decaying Dark Matter and Faint X-ray Sources with XRISM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zhou%2C+Y">Yu Zhou</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mitsuda%2C+K">Kazuhisa Mitsuda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18189v2-abstract-short" style="display: inline;"> Astrophysical emission lines arising from particle decays can offer unique insights into the nature of dark matter (DM). Using dedicated simulations with background and foreground modeling, we comprehensively demonstrate that the recently launched XRISM space telescope with powerful X-ray spectroscopy capabilities is particularly well-suited to probe decaying DM, such as sterile neutrinos and axio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18189v2-abstract-full').style.display = 'inline'; document.getElementById('2407.18189v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18189v2-abstract-full" style="display: none;"> Astrophysical emission lines arising from particle decays can offer unique insights into the nature of dark matter (DM). Using dedicated simulations with background and foreground modeling, we comprehensively demonstrate that the recently launched XRISM space telescope with powerful X-ray spectroscopy capabilities is particularly well-suited to probe decaying DM, such as sterile neutrinos and axion-like particles, in the mass range of few to tens of keV. We analyze and map XRISM&#39;s DM discovery potential parameter space by considering Milky Way Galactic DM halo, including establishing an optimal line-of-sight search, as well as dwarf galaxies where we identify Segue 1 as a remarkably promising target. We demonstrate that with only 100 ks exposure XRISM/Resolve instrument is capable of probing the underexplored DM parameter window around few keV and testing DM couplings with sensitivity that exceeds by two orders existing Segue 1 limits. Further, we demonstrate that XRISM/Xtend instrument sensitivity enables discovery of the nature of faint astrophysical X-ray sources, especially in Segue 1, which could shed light on star-formation history. We discuss implications for decaying DM searches with improved detector energy resolution in future experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18189v2-abstract-full').style.display = 'none'; document.getElementById('2407.18189v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15367">arXiv:2403.15367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15367">pdf</a>, <a href="https://arxiv.org/format/2403.15367">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/07/045">10.1088/1475-7516/2024/07/045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy-dependent Boosted Dark Matter from Diffuse Supernova Neutrino Background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Anirban Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Herbermann%2C+T">Tim Herbermann</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sen%2C+M">Manibrata Sen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15367v1-abstract-short" style="display: inline;"> Diffuse neutrinos from past supernovae in the Universe present us with a unique opportunity to test dark matter (DM) interactions. These neutrinos can scatter and boost the DM particles in the Milky Way halo to relativistic energies allowing us to detect them in terrestrial laboratories. Focusing on generic models of DM-neutrino and electron interactions, mediated by a vector or a scalar boson, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15367v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15367v1-abstract-full" style="display: none;"> Diffuse neutrinos from past supernovae in the Universe present us with a unique opportunity to test dark matter (DM) interactions. These neutrinos can scatter and boost the DM particles in the Milky Way halo to relativistic energies allowing us to detect them in terrestrial laboratories. Focusing on generic models of DM-neutrino and electron interactions, mediated by a vector or a scalar boson, we implement energy-dependent scattering cross-sections and perform detailed numerical analysis of DM attenuation due to electron scattering in-medium while propagating towards terrestrial experiments. We set new limits on DM-neutrino and electron interactions for DM with masses in the range $\sim (0.1, 10^4)~$MeV, using recent data from XENONnT, LUX-ZEPLIN, and PandaX-4T direct detection experiments. We demonstrate that consideration of energy-dependent cross-sections for DM interactions can significantly affect constraints previously derived under the assumption of constant cross-sections, modifying them by multiple orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15367v1-abstract-full').style.display = 'none'; document.getElementById('2403.15367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 7 figures, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13882">arXiv:2403.13882</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.13882">pdf</a>, <a href="https://arxiv.org/format/2403.13882">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Gravitational Wave Probe of Planck-scale Physics After Inflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Hu%2C+W">Weiyu Hu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nakayama%2C+K">Kazunori Nakayama</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Tang%2C+Y">Yong Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13882v1-abstract-short" style="display: inline;"> Particle decays are always accompanied by the emission of graviton quanta of gravity through bremsstrahlung processes. However, the corresponding branching ratio is suppressed by the square of the ratio of particle&#39;s mass to the Planck scale. The resulting present abundance of gravitational waves (GWs), composed of gravitons, is analogously suppressed. We show that superheavy particles, as heavy a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13882v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13882v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13882v1-abstract-full" style="display: none;"> Particle decays are always accompanied by the emission of graviton quanta of gravity through bremsstrahlung processes. However, the corresponding branching ratio is suppressed by the square of the ratio of particle&#39;s mass to the Planck scale. The resulting present abundance of gravitational waves (GWs), composed of gravitons, is analogously suppressed. We show that superheavy particles, as heavy as the Planck scale, can be naturally produced during the post-inflationary reheating stage in the early Universe and their decays yield dramatic amounts of GWs over broad frequency range. GW observations could hence directly probe Planck-scale physics, notoriously challenging to explore. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13882v1-abstract-full').style.display = 'none'; document.getElementById('2403.13882v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2024-0006, TU-1226, KEK-TH-2607, KEK-Cosmo-0341, IPMU24-0007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06736">arXiv:2402.06736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.06736">pdf</a>, <a href="https://arxiv.org/format/2402.06736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2024)222">10.1007/JHEP08(2024)222 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bosenovae with Quadratically-Coupled Scalars in Quantum Sensing Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Arakawa%2C+J">Jason Arakawa</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zaheer%2C+M+H">Muhammad H. Zaheer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Eby%2C+J">Joshua Eby</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Safronova%2C+M+S">Marianna S. Safronova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06736v2-abstract-short" style="display: inline;"> Ultralight dark matter (ULDM) particles of mass $m_蠁\lesssim 1~{\rm eV}$ can form boson stars in DM halos. Collapse of boson stars leads to explosive bosenova emission of copious relativistic ULDM particles. In this work, we analyze sensitivity of terrestrial and space-based experiments to detect such relativistic scalar ULDM particles interacting through quadratic couplings with Standard Model co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06736v2-abstract-full').style.display = 'inline'; document.getElementById('2402.06736v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06736v2-abstract-full" style="display: none;"> Ultralight dark matter (ULDM) particles of mass $m_蠁\lesssim 1~{\rm eV}$ can form boson stars in DM halos. Collapse of boson stars leads to explosive bosenova emission of copious relativistic ULDM particles. In this work, we analyze sensitivity of terrestrial and space-based experiments to detect such relativistic scalar ULDM particles interacting through quadratic couplings with Standard Model constituents, including electrons, photons and gluons. We highlight key differences with searches for linear ULDM couplings. Screening of ULDM with quadratic couplings near the surface of the Earth can significantly impact observations in terrestrial experiments, motivating future space-based experiments. We demonstrate excellent ULDM discovery prospects, especially for quantum sensors, which can probe quadratic couplings orders below existing constraints by detecting bosenova events in the ULDM mass range $10^{-23}\,{\rm eV} \lesssim m_蠁\lesssim 10^{-5}\,{\rm eV}$. We also report updated constraints on quadratic couplings of ULDM in case it comprises cold DM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06736v2-abstract-full').style.display = 'none'; document.getElementById('2402.06736v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2024-0002, KEK-TH-2599, KEK-Cosmo-0338, IPMU24-0004 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. High Energ. Phys. 2024, 222 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00100">arXiv:2402.00100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.00100">pdf</a>, <a href="https://arxiv.org/format/2402.00100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Diffuse Axion Background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Eby%2C+J">Joshua Eby</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00100v2-abstract-short" style="display: inline;"> Relativistic axions can be readily produced in a broad variety of transient sources, such as axion star bosenova explosions, supernovae or even evaporating primordial black holes. We develop a general framework describing the resulting persistent diffuse axion background (D$a$B) due to accumulated axions from historic transient events. We derive strong constraints on the D$a$B flux from light axio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00100v2-abstract-full').style.display = 'inline'; document.getElementById('2402.00100v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00100v2-abstract-full" style="display: none;"> Relativistic axions can be readily produced in a broad variety of transient sources, such as axion star bosenova explosions, supernovae or even evaporating primordial black holes. We develop a general framework describing the resulting persistent diffuse axion background (D$a$B) due to accumulated axions from historic transient events. We derive strong constraints on the D$a$B flux from light axions $m\lesssim 10^{-3}\,{\rm eV}$ emitted from sources with energies $蠅\gtrsim{\rm MeV}$ considering the non-observation of excess photons associated with axion-photon coupling from experiments, including COMPTEL, NuSTAR, XMM-Newton, INTEGRAL, EGRET and Fermi. Future searches in experiments such as SKA, JWST, XRISM, Vera C. Rubin Observatory, AMEGO/e-ASTROGAM will allow probing D$a$B and associated axion-photon couplings with unprecedented sensitivity covering a wide range of possible source energies as low as $0.1\,渭$eV and multiple decades in axion masses. We highlight the differences between astrophysical and dark sector sources of D$a$B. Further, we discuss complementarity with direct detection as well as prospects for other D$a$B searches. Our analysis demonstrates that D$a$B can act as a promising probe of populations of axion emission sources as well as emission mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00100v2-abstract-full').style.display = 'none'; document.getElementById('2402.00100v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">56 pages, 19 figures. Updated with additional references and new sources of relativistic axion emission</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2024-0001, KEK-TH-2596, KEK-Cosmo-0337, IPMU24-0003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14782">arXiv:2312.14782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14782">pdf</a>, <a href="https://arxiv.org/format/2312.14782">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad3644">10.3847/2041-8213/ad3644 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New Light on Dark Extended Lenses with the Roman Space Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=DeRocco%2C+W">William DeRocco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Smyth%2C+N">Nolan Smyth</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14782v2-abstract-short" style="display: inline;"> The Roman Space Telescope&#39;s Galactic Bulge Time Domain Survey will constitute the most sensitive microlensing survey of the Galactic Bulge to date, opening up new opportunities to search for dark matter (DM). Many extensions of the Standard Model predict the formation of extended DM substructures, such as DM subhalos, boson/axion stars, and halo-dressed primordial black holes. We demonstrate that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14782v2-abstract-full').style.display = 'inline'; document.getElementById('2312.14782v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14782v2-abstract-full" style="display: none;"> The Roman Space Telescope&#39;s Galactic Bulge Time Domain Survey will constitute the most sensitive microlensing survey of the Galactic Bulge to date, opening up new opportunities to search for dark matter (DM). Many extensions of the Standard Model predict the formation of extended DM substructures, such as DM subhalos, boson/axion stars, and halo-dressed primordial black holes. We demonstrate that for such targets, Roman will be sensitive to a broad parameter space up to four orders of magnitude below existing constraints. Our analysis can be readily applied to other extended DM configurations as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14782v2-abstract-full').style.display = 'none'; document.getElementById('2312.14782v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures; v2 updated to match accepted ApJL version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys. J. Lett. 965 (2024) 1, L3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13740">arXiv:2312.13740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.13740">pdf</a>, <a href="https://arxiv.org/format/2312.13740">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Non-Canonical Nucleon Decays as Window into Light New Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Fridell%2C+K">K氓re Fridell</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hati%2C+C">Chandan Hati</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13740v2-abstract-short" style="display: inline;"> Nucleon decays are generic predictions of motivated theories, including those based on the unification of forces and supersymmetry. We demonstrate that non-canonical nucleon decays offer a unique opportunity to broadly probe light new particles beyond the Standard Model with masses below $\sim$few GeV over decades in mass range, including axion-like particles, dark photons, sterile neutrinos, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13740v2-abstract-full').style.display = 'inline'; document.getElementById('2312.13740v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13740v2-abstract-full" style="display: none;"> Nucleon decays are generic predictions of motivated theories, including those based on the unification of forces and supersymmetry. We demonstrate that non-canonical nucleon decays offer a unique opportunity to broadly probe light new particles beyond the Standard Model with masses below $\sim$few GeV over decades in mass range, including axion-like particles, dark photons, sterile neutrinos, and scalar dark matter. Conventional searches can misinterpret and even completely miss such new physics. We propose a general strategy based on momenta of visible decay final states to probe these processes, offering a rich physics program for existing and upcoming experiments such as Super-Kamiokande, Hyper-Kamiokande, DUNE, and JUNO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13740v2-abstract-full').style.display = 'none'; document.getElementById('2312.13740v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures, version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-TH-2588, KEK-Cosmo-0336, KEK-QUP-2023-0038, IPMU23-0051, IFIC/23-54, ULB-TH/23-18 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12136">arXiv:2312.12136</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.12136">pdf</a>, <a href="https://arxiv.org/format/2312.12136">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Primordial Black Hole Sterile Neutrinogenesis: Sterile Neutrino Dark Matter Production Independent of Couplings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+M">Muping Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gelmini%2C+G+B">Graciela B. Gelmini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lu%2C+P">Philip Lu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12136v2-abstract-short" style="display: inline;"> Sterile neutrinos ($谓_s$s) are well-motivated and actively searched for hypothetical neutral particles that would mix with the Standard Model active neutrinos. They are considered prime warm dark matter (DM) candidates, typically when their mass is in the keV range, although they can also be hot or cold DM components. We discuss in detail the characteristics and phenomenology of $谓_s$s that minima&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12136v2-abstract-full').style.display = 'inline'; document.getElementById('2312.12136v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12136v2-abstract-full" style="display: none;"> Sterile neutrinos ($谓_s$s) are well-motivated and actively searched for hypothetical neutral particles that would mix with the Standard Model active neutrinos. They are considered prime warm dark matter (DM) candidates, typically when their mass is in the keV range, although they can also be hot or cold DM components. We discuss in detail the characteristics and phenomenology of $谓_s$s that minimally couple only to active neutrinos and are produced in the evaporation of early Universe primordial black holes (PBHs), a process we called &#34;PBH sterile neutrinogenesis&#34;. Contrary to the previously studied $谓_s$ production mechanisms, this novel mechanism does not depend on the active-sterile mixing. The resulting $谓_s$s have a distinctive spectrum and are produced with larger energies than in typical scenarios. This characteristic enables $谓_s$s to be WDM in the unusual $0.3$ MeV to $0.3$ TeV mass range, if PBHs do not matter-dominate the Universe before evaporating. When PBHs matter-dominate before evaporating, the possible coincidence of induced gravitational waves associated with PBH evaporation and astrophysical X-ray observations from $谓_s$ decays constitutes a distinct signature of our scenario. constitutes a distinct signature of our scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12136v2-abstract-full').style.display = 'none'; document.getElementById('2312.12136v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2023-0035, KEK-TH-2584, KEK-Cosmo-0334, IPMU23-0049 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17829">arXiv:2311.17829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17829">pdf</a>, <a href="https://arxiv.org/format/2311.17829">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.101002">10.1103/PhysRevLett.133.101002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence Test of Primordial Black Holes and Particle Dark Matter from Diffractive Lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Choi%2C+H+G">Han Gil Choi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jung%2C+S">Sunghoon Jung</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lu%2C+P">Philip Lu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17829v3-abstract-short" style="display: inline;"> If dark matter (DM) consists of primordial black holes (PBHs) and particles simultaneously, PBHs are generically embedded within particle DM halos. Such ``dressed PBHs&#39;&#39; (dPBHs) are subject to modified constraints compared to PBHs and can contribute to significant DM abundance in the mass range $10^{-1} - 10^2 M_\odot$. We show that diffractive lensing of chirping gravitational waves (GWs) from bi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17829v3-abstract-full').style.display = 'inline'; document.getElementById('2311.17829v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17829v3-abstract-full" style="display: none;"> If dark matter (DM) consists of primordial black holes (PBHs) and particles simultaneously, PBHs are generically embedded within particle DM halos. Such ``dressed PBHs&#39;&#39; (dPBHs) are subject to modified constraints compared to PBHs and can contribute to significant DM abundance in the mass range $10^{-1} - 10^2 M_\odot$. We show that diffractive lensing of chirping gravitational waves (GWs) from binary mergers can not only discover, but can also identify dPBH lenses and discriminate them from bare PBHs on the event-by-event basis, with potential to definitively establish the coexistence of subdominant PBHs and particle DM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17829v3-abstract-full').style.display = 'none'; document.getElementById('2311.17829v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures; minor modifications, version accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2023-0032, KEK-TH-2579, KEK-Cosmo-0333, IPMU23-0045 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 101002 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17704">arXiv:2310.17704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17704">pdf</a>, <a href="https://arxiv.org/format/2310.17704">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP01(2024)185">10.1007/JHEP01(2024)185 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of Finite Material Size On Axion-magnon Conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Chigusa%2C+S">So Chigusa</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ito%2C+A">Asuka Ito</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nakayama%2C+K">Kazunori Nakayama</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17704v2-abstract-short" style="display: inline;"> Magnetic materials are particularly favorable targets for detecting axions interacting with electrons because the collective excitation of electron spins, the magnon, can be excited through the axion-magnon conversion process. It is often assumed that only the zero-momentum uniformly precessing magnetostatic (Kittel) mode of the magnon is excited. This is justified if the de Broglie wavelength of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17704v2-abstract-full').style.display = 'inline'; document.getElementById('2310.17704v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17704v2-abstract-full" style="display: none;"> Magnetic materials are particularly favorable targets for detecting axions interacting with electrons because the collective excitation of electron spins, the magnon, can be excited through the axion-magnon conversion process. It is often assumed that only the zero-momentum uniformly precessing magnetostatic (Kittel) mode of the magnon is excited. This is justified if the de Broglie wavelength of the axion is much longer than the size of the target magnetic material. However, if the de Broglie wavelength is shorter, finite-momentum magnon modes can also be excited. We systematically analyze the target material size dependence of the axion-magnon conversion rate. We discuss the importance of these effects in the detection of relativistic axions as well as in the detection of axion dark matter of relatively heavy mass with large material size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17704v2-abstract-full').style.display = 'none'; document.getElementById('2310.17704v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TU-1206, KEK-QUP-2023-0026, KEK-TH-2561, KEK-Cosmo-0329, IPMU23-0037 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. High Energ. Phys. 2024, 185 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03594">arXiv:2310.03594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.03594">pdf</a>, <a href="https://arxiv.org/format/2310.03594">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Axion-like Universal Gravitational Wave Interpretation of Pulsar Timing Array Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Lozanov%2C+K+D">Kaloian D. Lozanov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Pi%2C+S">Shi Pi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sasaki%2C+M">Misao Sasaki</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+A">Ao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03594v2-abstract-short" style="display: inline;"> Formation of cosmological solitons is generically accompanied by production of gravitational waves (GWs), with a universal GW background expected at frequency scales below that of non-linear dynamics. Beginning with a general phenomenological description of GWs associated with soliton formation, we demonstrate that universal GW background from axion-like particle (ALP) solitonic oscillons provides&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03594v2-abstract-full').style.display = 'inline'; document.getElementById('2310.03594v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03594v2-abstract-full" style="display: none;"> Formation of cosmological solitons is generically accompanied by production of gravitational waves (GWs), with a universal GW background expected at frequency scales below that of non-linear dynamics. Beginning with a general phenomenological description of GWs associated with soliton formation, we demonstrate that universal GW background from axion-like particle (ALP) solitonic oscillons provides a viable interpretation to the recent NANOGrav 15 year pulsar timing array data, which does not suffer from the overproduction of primordial black holes. We show that pulsar timing array data displays preference for models where formed solitons do not strongly interact or cluster. Coincidence observations with Nancy Roman telescope will allow to discriminate between distinct scenarios of cosmological solitons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03594v2-abstract-full').style.display = 'none'; document.getElementById('2310.03594v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures; v2: figure updated, expanded discussion on observations, conclusion unchanged. Matches publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IPMU23-0036, YITP-23-124, KEK-QUP-2023-0025, KEK-TH-2560, KEK-Cosmo-0328 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Class. Quant. Grav. 42 (2025) 3, 035007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14193">arXiv:2309.14193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.14193">pdf</a>, <a href="https://arxiv.org/format/2309.14193">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2023.138392">10.1016/j.physletb.2023.138392 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal Gravitational Waves from Interacting and Clustered Solitons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Lozanov%2C+K+D">Kaloian D. Lozanov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sasaki%2C+M">Misao Sasaki</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14193v2-abstract-short" style="display: inline;"> Causal soliton formation (e.g. oscillons, Q-balls) in the primordial Universe is expected to give rise to a universal gravitational wave (GW) background, at frequencies smaller than scales of nonlinearity. We show that modifications of the soliton density field, driven by soliton interactions or initial conditions, can significantly enhance universal GWs. Gravitational clustering of solitons natur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14193v2-abstract-full').style.display = 'inline'; document.getElementById('2309.14193v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14193v2-abstract-full" style="display: none;"> Causal soliton formation (e.g. oscillons, Q-balls) in the primordial Universe is expected to give rise to a universal gravitational wave (GW) background, at frequencies smaller than scales of nonlinearity. We show that modifications of the soliton density field, driven by soliton interactions or initial conditions, can significantly enhance universal GWs. Gravitational clustering of solitons naturally leads to generation of correlations in the large-scale soliton density field. As we demonstrate for axion-like particle (ALP) oscillons, the growing power spectrum amplifies universal GW signals, opening new avenues for probing the physics of the early Universe with upcoming GW experiments. Our results are applicable to variety of scenarios, such as solitons interacting through a long range Yukawa-like fifth force. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14193v2-abstract-full').style.display = 'none'; document.getElementById('2309.14193v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IPMU23-0033, YITP-23-115, KEK-QUP-2023-0022, KEK-TH-2555, KEK-Cosmo-0325 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 848 (2024) 138392 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.12258">arXiv:2309.12258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.12258">pdf</a>, <a href="https://arxiv.org/format/2309.12258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2024.138609">10.1016/j.physletb.2024.138609 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Primordial Black Hole Neutrinogenesis of Sterile Neutrino Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+M">Muping Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gelmini%2C+G+B">Graciela B. Gelmini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lu%2C+P">Philip Lu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.12258v2-abstract-short" style="display: inline;"> Sterile neutrinos are well-motivated and actively searched for new particles that would mix with the active neutrinos. We study their phenomenology when they are produced in the evaporation of early Universe black holes, a novel production mechanism that differs from all others and does not depend on the active-sterile mixing. The resulting hotter sterile neutrinos have a distinct spectrum and cou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12258v2-abstract-full').style.display = 'inline'; document.getElementById('2309.12258v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.12258v2-abstract-full" style="display: none;"> Sterile neutrinos are well-motivated and actively searched for new particles that would mix with the active neutrinos. We study their phenomenology when they are produced in the evaporation of early Universe black holes, a novel production mechanism that differs from all others and does not depend on the active-sterile mixing. The resulting hotter sterile neutrinos have a distinct spectrum and could be warm dark matter in the 0.3 MeV to 0.3 TeV mass range, distinct from the typical keV range. The possible coincidence of X-rays and gravitational waves is a unique novel signature of our scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12258v2-abstract-full').style.display = 'none'; document.getElementById('2309.12258v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures; v2: additional discussions and clarifications, matches version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2023-0021, KEK-TH-2553, KEK-Cosmo-0323, IPMU23-0031 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett. B 852 (2024) 138609 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05703">arXiv:2309.05703</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05703">pdf</a>, <a href="https://arxiv.org/format/2309.05703">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.L051702">10.1103/PhysRevD.110.L051702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Regurgitated Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+T">TaeHun Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lu%2C+P">Philip Lu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Marfatia%2C+D">Danny Marfatia</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05703v3-abstract-short" style="display: inline;"> We present a new paradigm for the production of the dark matter (DM) relic abundance based on the evaporation of early Universe primordial black holes (PBHs) themselves formed from DM particles. As a concrete realization, we consider a minimal model of the dark sector in which a first-order phase transition results in the formation of Fermiball remnants that collapse to PBHs, which then emit DM pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05703v3-abstract-full').style.display = 'inline'; document.getElementById('2309.05703v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05703v3-abstract-full" style="display: none;"> We present a new paradigm for the production of the dark matter (DM) relic abundance based on the evaporation of early Universe primordial black holes (PBHs) themselves formed from DM particles. As a concrete realization, we consider a minimal model of the dark sector in which a first-order phase transition results in the formation of Fermiball remnants that collapse to PBHs, which then emit DM particles. We show that the regurgitated DM scenario allows for DM in the mass range $\sim1$ GeV $- \,10^{16}$ GeV, thereby unlocking parameter space considered excluded. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05703v3-abstract-full').style.display = 'none'; document.getElementById('2309.05703v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 2 figures; matches publication as Letter in Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2023-0019, KEK-TH-2550, KEK-Cosmo-0321, IPMU23-0029 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, L051702 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15736">arXiv:2307.15736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15736">pdf</a>, <a href="https://arxiv.org/format/2307.15736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/11/068">10.1088/1475-7516/2024/11/068 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hunting Nonstandard Neutrino Interactions and Leptoquarks in Dark Matter Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Schwemberger%2C+T">Thomas Schwemberger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yu%2C+T">Tien-Tien Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15736v3-abstract-short" style="display: inline;"> Next generation direct dark matter (DM) detection experiments will have unprecedented capabilities to explore coherent neutrino-nucleus scattering (CE$谓$NS) complementary to dedicated neutrino experiments. We demonstrate that future DM experiments can effectively probe nonstandard neutrino interactions (NSI) mediated by scalar fields in the scattering of solar and atmospheric neutrinos. We set fir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15736v3-abstract-full').style.display = 'inline'; document.getElementById('2307.15736v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15736v3-abstract-full" style="display: none;"> Next generation direct dark matter (DM) detection experiments will have unprecedented capabilities to explore coherent neutrino-nucleus scattering (CE$谓$NS) complementary to dedicated neutrino experiments. We demonstrate that future DM experiments can effectively probe nonstandard neutrino interactions (NSI) mediated by scalar fields in the scattering of solar and atmospheric neutrinos. We set first limits on $S_1$ leptoquark models that result in sizable $渭-d$ and $蟿-d$ sector neutrino NSI CE$谓$NS contributions using LUX-ZEPLIN (LZ) data. As we show, near future DM experiments reaching $\sim \mathcal{O}(100)$ton-year exposure, such as argon-based ARGO and xenon-based DARWIN, can probe parameter space of leptoquarks beyond the reach of current and planned collider facilities. We also analyze for the first time prospects for testing NSI in lead-based detectors. We discuss the ability of leptoquarks in the parameter space of interest to also explain the neutrino masses and $(g-2)_渭$ observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15736v3-abstract-full').style.display = 'none'; document.getElementById('2307.15736v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Discussion of scalar/vector NSI revised, improved oscillation analysis, accepted for publication in JCAP 33 pages, 12 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2023-0007, KEK-TH-2516, KEK-Cosmo-0309, IPMU23-0009 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 11 (2024) 068 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16468">arXiv:2306.16468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16468">pdf</a>, <a href="https://arxiv.org/format/2306.16468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Detection of Bosenovae with Quantum Sensors on Earth and in Space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Arakawa%2C+J">Jason Arakawa</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Eby%2C+J">Joshua Eby</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Safronova%2C+M+S">Marianna S. Safronova</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zaheer%2C+M+H">Muhammad H. Zaheer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16468v1-abstract-short" style="display: inline;"> In a broad class of theories, the accumulation of ultralight dark matter (ULDM) with particles of mass $10^{-22}~\textrm{eV} &lt; m_蠁 &lt; 1~\textrm{eV}$ leads the to formation of long-lived bound states known as boson stars. When the ULDM exhibits self-interactions, prodigious bursts of energy carried by relativistic bosons are released from collapsing boson stars in bosenova explosions. We extensively&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16468v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16468v1-abstract-full" style="display: none;"> In a broad class of theories, the accumulation of ultralight dark matter (ULDM) with particles of mass $10^{-22}~\textrm{eV} &lt; m_蠁 &lt; 1~\textrm{eV}$ leads the to formation of long-lived bound states known as boson stars. When the ULDM exhibits self-interactions, prodigious bursts of energy carried by relativistic bosons are released from collapsing boson stars in bosenova explosions. We extensively explore the potential reach of terrestrial and space-based experiments for detecting transient signatures of emitted relativistic bursts of scalar particles, including ULDM coupled to photons, electrons, and gluons, capturing a wide range of motivated theories. For the scenario of relaxion ULDM, we demonstrate that upcoming experiments and technology such as nuclear clocks as well as space-based interferometers will be able to sensitively probe orders of magnitude in the ULDM coupling-mass parameter space, challenging to study otherwise, by detecting signatures of transient bosenova events. Our analysis can be readily extended to different scenarios of relativistic scalar particle emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16468v1-abstract-full').style.display = 'none'; document.getElementById('2306.16468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IPMU23-0024, KEK-QUP-2023-0014, KEK-TH-2534, KEK-Cosmo-0316 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06709">arXiv:2304.06709</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06709">pdf</a>, <a href="https://arxiv.org/format/2304.06709">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Universal Gravitational Wave Signatures of Cosmological Solitons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Lozanov%2C+K+D">Kaloian D. Lozanov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sasaki%2C+M">Misao Sasaki</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06709v2-abstract-short" style="display: inline;"> Cosmological solitonic objects such as monopoles, cosmic strings, domain walls, oscillons and Q-balls often appear in theories of the early Universe. We demonstrate that such scenarios are generically accompanied by a novel production source of gravitational waves stemming from soliton isocurvature perturbations. The resulting induced universal gravitational waves (UGWs) reside at lower frequencie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06709v2-abstract-full').style.display = 'inline'; document.getElementById('2304.06709v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06709v2-abstract-full" style="display: none;"> Cosmological solitonic objects such as monopoles, cosmic strings, domain walls, oscillons and Q-balls often appear in theories of the early Universe. We demonstrate that such scenarios are generically accompanied by a novel production source of gravitational waves stemming from soliton isocurvature perturbations. The resulting induced universal gravitational waves (UGWs) reside at lower frequencies compared to gravitational waves typically associated with soliton formation. We show that UGWs from axion-like particle (ALP) oscillons, originating from ALP misalignment, extend the frequency range of produced gravitational waves by more than two orders of magnitude regardless of the ALP mass and decay constant and can be observable in upcoming gravitational wave experiments. UGWs open a new route for gravitational wave signatures in broad classes of cosmological theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06709v2-abstract-full').style.display = 'none'; document.getElementById('2304.06709v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures; minor modifications, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IPMU23-0008, KEK-QUP-2023-0006, KEK-TH-2514, KEK-Cosmo-0308, YITP-23-44 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 01 (2025) 094 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02436">arXiv:2212.02436</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02436">pdf</a>, <a href="https://arxiv.org/format/2212.02436">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.123023">10.1103/PhysRevD.108.123023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revisiting Tests of Lorentz Invariance with Gamma-ray Bursts: Effects of Intrinsic Lags </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Vardanyan%2C+V">Valeri Vardanyan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ata%2C+M">Metin Ata</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Murase%2C+K">Kohta Murase</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02436v2-abstract-short" style="display: inline;"> Due to their cosmological distances high-energy astrophysical sources allow for unprecedented tests of fundamental physics. Gamma-ray bursts (GRBs) comprise among the most sensitive laboratories for exploring the violation of the central physics principle of Lorentz invariance (LIV), by exploiting spectral time lag of arriving photons. It has been believed that GRB spectral lags are inherently rel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02436v2-abstract-full').style.display = 'inline'; document.getElementById('2212.02436v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02436v2-abstract-full" style="display: none;"> Due to their cosmological distances high-energy astrophysical sources allow for unprecedented tests of fundamental physics. Gamma-ray bursts (GRBs) comprise among the most sensitive laboratories for exploring the violation of the central physics principle of Lorentz invariance (LIV), by exploiting spectral time lag of arriving photons. It has been believed that GRB spectral lags are inherently related with their luminosities, and intrinsic source contributions, which remain poorly understood, could significantly impact the LIV results. Using a combined sample of 49 long and short GRBs observed by the Swift telescope, we perform a stacked spectral lag search for LIV effects. We set novel limits on LIV, including limits on quadratic effects, and systematically explore for the first time the impacts of the intrinsic GRB lag-luminosity relation. We find that source contributions can strongly impact resulting LIV tests, modifying their limits by up to a factor of few. We discuss constraints coming from GRB 221009A. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02436v2-abstract-full').style.display = 'none'; document.getElementById('2212.02436v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IPMU22-0065, KEK-QUP-2022-0012, KEK-TH-2473, KEK-Cosmo-0302 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108, 123023 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.00156">arXiv:2212.00156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.00156">pdf</a>, <a href="https://arxiv.org/format/2212.00156">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.221002">10.1103/PhysRevLett.130.221002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signatures of a High Temperature QCD Transition in the Early Universe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Lu%2C+P">Philip Lu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fuller%2C+G+M">George M. Fuller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.00156v2-abstract-short" style="display: inline;"> Beyond Standard Model extensions of QCD could result in quark and gluon confinement occurring well above a temperature of $\sim$GeV. These models can also alter the order of the QCD phase transition. The enhanced production of primordial black holes (PBHs) that can accompany the change in relativistic degrees of freedom at the QCD transition therefore could favor the production of PBHs with mass s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00156v2-abstract-full').style.display = 'inline'; document.getElementById('2212.00156v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.00156v2-abstract-full" style="display: none;"> Beyond Standard Model extensions of QCD could result in quark and gluon confinement occurring well above a temperature of $\sim$GeV. These models can also alter the order of the QCD phase transition. The enhanced production of primordial black holes (PBHs) that can accompany the change in relativistic degrees of freedom at the QCD transition therefore could favor the production of PBHs with mass scales smaller than the Standard Model QCD horizon scale. Consequently, and unlike PBHs associated with a standard GeV-scale QCD transition, such PBHs can account for all the dark matter abundance in the unconstrained asteroid-mass window. This links beyond Standard Model modifications of QCD physics over a broad range of unexplored temperature regimes ($\sim 10-10^3$ TeV) with microlensing surveys searching for PBHs. Additionally, we discuss implications of these models for gravitational wave experiments. We show that a first order QCD phase transition at $\sim7$ TeV is consistent with the Subaru Hyper-Suprime Cam candidate event, while a $\sim 70$ GeV transition is consistent with OGLE candidate events, and also could account for the claimed NANOGrav gravitational wave signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00156v2-abstract-full').style.display = 'none'; document.getElementById('2212.00156v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures; version published in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IPMU22-0064, KEK-QUP-2022-0017, KEK-TH-2476, KEK-Cosmo-0303 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130 (2023) 22, 221002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10902">arXiv:2209.10902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10902">pdf</a>, <a href="https://arxiv.org/format/2209.10902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2023.137922">10.1016/j.physletb.2023.137922 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Halo-Independent Dark Matter Electron Scattering Analysis with In-Medium Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+M">Muping Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gelmini%2C+G+B">Graciela B. Gelmini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10902v1-abstract-short" style="display: inline;"> Dark matter (DM)-electron scattering is a prime target of a number of direct DM detection experiments and constitutes a promising avenue for exploring interactions of DM in the sub-GeV mass-range, challenging to probe with nuclear recoils. We extend the recently proposed halo-independent analysis method for DM-electron scattering, which allows to infer the local DM halo properties without any addi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10902v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10902v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10902v1-abstract-full" style="display: none;"> Dark matter (DM)-electron scattering is a prime target of a number of direct DM detection experiments and constitutes a promising avenue for exploring interactions of DM in the sub-GeV mass-range, challenging to probe with nuclear recoils. We extend the recently proposed halo-independent analysis method for DM-electron scattering, which allows to infer the local DM halo properties without any additional assumptions about them, to include in-medium effects through dielectric functions of the target material. We show that in-medium effects could significantly affect halo-independent analysis response functions for germanium and silicon and thus are essential for proper inference of local DM halo characteristics from direct DM detection data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10902v1-abstract-full').style.display = 'none'; document.getElementById('2209.10902v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-QUP-2022-0002, KEK-TH-2450, KEK-Cosmo-0296, IPMU22-0048 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.07426">arXiv:2209.07426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.07426">pdf</a>, <a href="https://arxiv.org/format/2209.07426">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Report of the Topical Group on Particle Dark Matter for Snowmass 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Cooley%2C+J">Jodi Cooley</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lin%2C+T">Tongyan Lin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lippincott%2C+W+H">W. Hugh Lippincott</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Slatyer%2C+T+R">Tracy R. Slatyer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yu%2C+T">Tien-Tien Yu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Akerib%2C+D+S">Daniel S. Akerib</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aramaki%2C+T">Tsuguo Aramaki</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baxter%2C+D">Daniel Baxter</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bringmann%2C+T">Torsten Bringmann</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bunker%2C+R">Ray Bunker</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Carney%2C+D">Daniel Carney</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cebri%C3%A1n%2C+S">Susana Cebri谩n</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+T+Y">Thomas Y. Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cushman%2C+P">Priscilla Cushman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dahl%2C+C+E">C. E. Dahl</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Essig%2C+R">Rouven Essig</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fan%2C+A">Alden Fan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gaitskell%2C+R">Richard Gaitskell</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Galbiati%2C+C">Cristano Galbiati</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gelmini%2C+G+B">Graciela B. Gelmini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Giovanetti%2C+G+K">Graham K. Giovanetti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Giroux%2C+G">Guillaume Giroux</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Grandi%2C+L">Luca Grandi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Harding%2C+J+P">J. Patrick Harding</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Haselschwardt%2C+S">Scott Haselschwardt</a> , et al. (49 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.07426v1-abstract-short" style="display: inline;"> This report summarizes the findings of the CF1 Topical Subgroup to Snowmass 2021, which was focused on particle dark matter. One of the most important scientific goals of the next decade is to reveal the nature of dark matter (DM). To accomplish this goal, we must delve deep, to cover high priority targets including weakly-interacting massive particles (WIMPs), and search wide, to explore as much&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07426v1-abstract-full').style.display = 'inline'; document.getElementById('2209.07426v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.07426v1-abstract-full" style="display: none;"> This report summarizes the findings of the CF1 Topical Subgroup to Snowmass 2021, which was focused on particle dark matter. One of the most important scientific goals of the next decade is to reveal the nature of dark matter (DM). To accomplish this goal, we must delve deep, to cover high priority targets including weakly-interacting massive particles (WIMPs), and search wide, to explore as much motivated DM parameter space as possible. A diverse, continuous portfolio of experiments at large, medium, and small scales that includes both direct and indirect detection techniques maximizes the probability of discovering particle DM. Detailed calibrations and modeling of signal and background processes are required to make a convincing discovery. In the event that a candidate particle is found through different means, for example at a particle collider, the program described in this report is also essential to show that it is consistent with the actual cosmological DM. The US has a leading role in both direct and indirect detection dark matter experiments -- to maintain this leading role, it is imperative to continue funding major experiments and support a robust R\&amp;D program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07426v1-abstract-full').style.display = 'none'; document.getElementById('2209.07426v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted 30 pages, 11 figures, many references, Report of the CF1 Topical Group for Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.06854">arXiv:2209.06854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.06854">pdf</a>, <a href="https://arxiv.org/format/2209.06854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Snowmass Theory Frontier: Astrophysics and Cosmology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Green%2C+D">Daniel Green</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ruderman%2C+J+T">Joshua T. Ruderman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Safdi%2C+B+R">Benjamin R. Safdi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shelton%2C+J">Jessie Shelton</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ach%C3%BAcarro%2C+A">Ana Ach煤carro</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adshead%2C+P">Peter Adshead</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Akrami%2C+Y">Yashar Akrami</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baryakhtar%2C+M">Masha Baryakhtar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baumann%2C+D">Daniel Baumann</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlin%2C+A">Asher Berlin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Blinov%2C+N">Nikita Blinov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boddy%2C+K+K">Kimberly K. Boddy</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Buschmann%2C+M">Malte Buschmann</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cabass%2C+G">Giovanni Cabass</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Caldwell%2C+R">Robert Caldwell</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Castorina%2C+E">Emanuele Castorina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+T+Y">Thomas Y. Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+X">Xingang Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Coulton%2C+W">William Coulton</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Croon%2C+D">Djuna Croon</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cui%2C+Y">Yanou Cui</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Curtin%2C+D">David Curtin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cyr-Racine%2C+F">Francis-Yan Cyr-Racine</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dessert%2C+C">Christopher Dessert</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dienes%2C+K+R">Keith R. Dienes</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.06854v1-abstract-short" style="display: inline;"> We summarize progress made in theoretical astrophysics and cosmology over the past decade and areas of interest for the coming decade. This Report is prepared as the TF09 &#34;Astrophysics and Cosmology&#34; topical group summary for the Theory Frontier as part of the Snowmass 2021 process. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.06854v1-abstract-full" style="display: none;"> We summarize progress made in theoretical astrophysics and cosmology over the past decade and areas of interest for the coming decade. This Report is prepared as the TF09 &#34;Astrophysics and Cosmology&#34; topical group summary for the Theory Frontier as part of the Snowmass 2021 process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06854v1-abstract-full').style.display = 'none'; document.getElementById('2209.06854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05957">arXiv:2208.05957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05957">pdf</a>, <a href="https://arxiv.org/format/2208.05957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2023.138276">10.1016/j.physletb.2023.138276 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing Dark Matter Dress of Primordial Black Holes by Cosmological Lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Oguri%2C+M">Masamune Oguri</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kohri%2C+K">Kazunori Kohri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05957v2-abstract-short" style="display: inline;"> Stellar-mass primordial black holes (PBHs) from the early Universe can directly contribute to the gravitational wave (GW) events observed by LIGO, but can only comprise a subdominant component of the dark matter (DM). The primary DM constituent will generically form massive halos around seeding stellar-mass PBHs. We demonstrate that gravitational lensing of sources at cosmological ($\gtrsim$Gpc) d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05957v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05957v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05957v2-abstract-full" style="display: none;"> Stellar-mass primordial black holes (PBHs) from the early Universe can directly contribute to the gravitational wave (GW) events observed by LIGO, but can only comprise a subdominant component of the dark matter (DM). The primary DM constituent will generically form massive halos around seeding stellar-mass PBHs. We demonstrate that gravitational lensing of sources at cosmological ($\gtrsim$Gpc) distances can directly explore DM halo dresses engulfing PBHs, challenging for lensing of local sources in the vicinity of Milky Way. Strong lensing analysis of fast radio bursts detected by CHIME survey already starts to probe parameter space of dressed stellar-mass PBHs, and upcoming searches can efficiently explore dressed PBHs over $\sim 10-10^5 M_{\odot}$ mass-range and provide a stringent test of the PBH scenario for the GW events. Our findings establish a general test for a broad class of DM models with stellar-mass PBHs, including those where QCD axions or WIMP-like particles comprise predominant DM. The results open a new route for exploring dressed PBHs with various types of lensing events at cosmological distances, such as supernovae and caustic crossings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05957v2-abstract-full').style.display = 'none'; document.getElementById('2208.05957v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures; matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IPMU22-0040, KEK-TH-2444, KEK-Cosmo-0293, KEK-QUP-2023-0031 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.B 847 (2023) 138276 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02882">arXiv:2207.02882</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02882">pdf</a>, <a href="https://arxiv.org/format/2207.02882">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2021 White Paper: Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+J">J. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brailsford%2C+D">D. Brailsford</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Choi%2C+K">K. Choi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Crespo-Anad%C3%B3n%2C+J+I">J. I. Crespo-Anad贸n</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cui%2C+Y">Y. Cui</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">A. Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dror%2C+J+A">J. A. Dror</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Habig%2C+A">A. Habig</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Itow%2C+Y">Y. Itow</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kearns%2C+E">E. Kearns</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">D. Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Park%2C+J+-">J. -C. Park</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Petrillo%2C+G">G. Petrillo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Rott%2C+C">C. Rott</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sen%2C+M">M. Sen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">V. Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Tsai%2C+Y+-">Y. -T. Tsai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yu%2C+J">J. Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02882v2-abstract-short" style="display: inline;"> The signals from outer space and their detection have been playing an important role in particle physics, especially in discoveries of and searches for physics beyond the Standard Model (BSM); beyond the evidence of dark matter (DM), for example, the neutrinos produced from the dark matter annihilation is important for the indirect DM searches. Moreover, a wide range of new, well-motivated physics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02882v2-abstract-full').style.display = 'inline'; document.getElementById('2207.02882v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02882v2-abstract-full" style="display: none;"> The signals from outer space and their detection have been playing an important role in particle physics, especially in discoveries of and searches for physics beyond the Standard Model (BSM); beyond the evidence of dark matter (DM), for example, the neutrinos produced from the dark matter annihilation is important for the indirect DM searches. Moreover, a wide range of new, well-motivated physics models and dark-sector scenarios have been proposed in the last decade, predicting cosmogenic signals complementary to those in the conventional direct detection of particle-like dark matter. Most notably, various mechanisms to produce (semi-)relativistic DM particles in the present universe (e.g. boosted dark matter) have been put forward, while being consistent with current observational and experimental constraints on DM. The resulting signals often have less intense and more energetic fluxes, to which underground, kiloton-scale neutrino detectors can be readily sensitive. In addition, the scattering of slow-moving DM can give rise to a sizable energy deposit if the underlying dark-sector model allows for a large mass difference between the initial and final state particles, and the neutrino experiments with large volume detectors are well suited for exploring these opportunities. This White Paper is devoted to discussing the scientific importance of the cosmogenic dark matter and exotic particle searches, not only overviewing the recent efforts in both the theory and the experiment communities but also providing future perspectives and directions on this research branch. A landscape of technologies used in neutrino detectors and their complementarity is discussed, and the current and developing analysis strategies are outlined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02882v2-abstract-full').style.display = 'none'; document.getElementById('2207.02882v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Add a reference to the snowmass white paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.07152">arXiv:2204.07152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.07152">pdf</a>, <a href="https://arxiv.org/format/2204.07152">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.181002">10.1103/PhysRevLett.130.181002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced Gravitational Waves from Inflaton Oscillons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Lozanov%2C+K+D">Kaloian D. Lozanov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.07152v2-abstract-short" style="display: inline;"> In broad classes of inflationary models the period of accelerated expansion is followed by fragmentation of the inflaton scalar field into localized, long-lived and massive oscillon excitations. We demonstrate that matter-dominance of oscillons, followed by their rapid decay, significantly enhances the primordial gravitational wave (GW) spectrum. These oscillon-induced GWs, sourced by second-order&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07152v2-abstract-full').style.display = 'inline'; document.getElementById('2204.07152v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.07152v2-abstract-full" style="display: none;"> In broad classes of inflationary models the period of accelerated expansion is followed by fragmentation of the inflaton scalar field into localized, long-lived and massive oscillon excitations. We demonstrate that matter-dominance of oscillons, followed by their rapid decay, significantly enhances the primordial gravitational wave (GW) spectrum. These oscillon-induced GWs, sourced by second-order perturbations, are distinct and could be orders of magnitude lower in frequency than the previously considered GWs associated with oscillon formation. We show that detectable oscillon-induced GW signatures establish direct tests independent from cosmic microwave background radiation (CMB) for regions of parameter space of monodromy, logarithmic and pure natural (plateau) potential classes of inflationary models, among others. We demonstrate that oscillon-induced GWs in a model based on pure natural inflation could be directly observable with the Einstein Telescope, Cosmic Explorer and DECIGO. These signatures offer a new route for probing the underlying inflationary physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07152v2-abstract-full').style.display = 'none'; document.getElementById('2204.07152v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures; v2: matches version published in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IPMU22-0016, KEK-QUP-2023-0008, KEK-TH-2518, KEK-Cosmo-0311 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 181002 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14923">arXiv:2203.14923</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14923">pdf</a>, <a href="https://arxiv.org/format/2203.14923">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Axion Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Adams%2C+C+B">C. B. Adams</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agrawal%2C+A">A. Agrawal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balafendiev%2C+R">R. Balafendiev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bartram%2C+C">C. Bartram</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baryakhtar%2C+M">M. Baryakhtar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bekker%2C+H">H. Bekker</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Belov%2C+P">P. Belov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berggren%2C+K+K">K. K. Berggren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlin%2C+A">A. Berlin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boutan%2C+C">C. Boutan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Budker%2C+D">D. Budker</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Carenza%2C+P">P. Carenza</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Carosi%2C+G">G. Carosi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cervantes%2C+R">R. Cervantes</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chakrabarty%2C+S+S">S. S. Chakrabarty</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chaudhuri%2C+S">S. Chaudhuri</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+T+Y">T. Y. Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cheong%2C+S">S. Cheong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chou%2C+A">A. Chou</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Co%2C+R+T">R. T. Co</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Croon%2C+D">D. Croon</a> , et al. (130 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14923v3-abstract-short" style="display: inline;"> Axions are well-motivated dark matter candidates with simple cosmological production mechanisms. They were originally introduced to solve the strong CP problem, but also arise in a wide range of extensions to the Standard Model. This Snowmass white paper summarizes axion phenomenology and outlines next-generation laboratory experiments proposed to detect axion dark matter. There are vibrant synerg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14923v3-abstract-full').style.display = 'inline'; document.getElementById('2203.14923v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14923v3-abstract-full" style="display: none;"> Axions are well-motivated dark matter candidates with simple cosmological production mechanisms. They were originally introduced to solve the strong CP problem, but also arise in a wide range of extensions to the Standard Model. This Snowmass white paper summarizes axion phenomenology and outlines next-generation laboratory experiments proposed to detect axion dark matter. There are vibrant synergies with astrophysical searches and advances in instrumentation including quantum-enabled readout, high-Q resonators and cavities and large high-field magnets. This white paper outlines a clear roadmap to discovery, and shows that the US is well-positioned to be at the forefront of the search for axion dark matter in the coming decade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14923v3-abstract-full').style.display = 'none'; document.getElementById('2203.14923v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">restore and expand author list</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14915">arXiv:2203.14915</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14915">pdf</a>, <a href="https://arxiv.org/format/2203.14915">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> New Horizons: Scalar and Vector Ultralight Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antypas%2C+D">D. Antypas</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Banerjee%2C+A">A. Banerjee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bartram%2C+C">C. Bartram</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baryakhtar%2C+M">M. Baryakhtar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Betz%2C+J">J. Betz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bollinger%2C+J+J">J. J. Bollinger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boutan%2C+C">C. Boutan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Budker%2C+D">D. Budker</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Carney%2C+D">D. Carney</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Carosi%2C+G">G. Carosi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chaudhuri%2C+S">S. Chaudhuri</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cheong%2C+S">S. Cheong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chou%2C+A">A. Chou</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chowdhury%2C+M+D">M. D. Chowdhury</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Co%2C+R+T">R. T. Co</a>, <a href="/search/hep-ph?searchtype=author&amp;query=L%C3%B3pez-Urrutia%2C+J+R+C">J. R. Crespo L贸pez-Urrutia</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Demarteau%2C+M">M. Demarteau</a>, <a href="/search/hep-ph?searchtype=author&amp;query=DePorzio%2C+N">N. DePorzio</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Derbin%2C+A+V">A. V. Derbin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Deshpande%2C+T">T. Deshpande</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chowdhury%2C+M+D">M. D. Chowdhury</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Di+Luzio%2C+L">L. Di Luzio</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Diaz-Morcillo%2C+A">A. Diaz-Morcillo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Doyle%2C+J+M">J. M. Doyle</a> , et al. (104 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14915v1-abstract-short" style="display: inline;"> The last decade has seen unprecedented effort in dark matter model building at all mass scales coupled with the design of numerous new detection strategies. Transformative advances in quantum technologies have led to a plethora of new high-precision quantum sensors and dark matter detection strategies for ultralight ($&lt;10\,$eV) bosonic dark matter that can be described by an oscillating classical,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14915v1-abstract-full').style.display = 'inline'; document.getElementById('2203.14915v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14915v1-abstract-full" style="display: none;"> The last decade has seen unprecedented effort in dark matter model building at all mass scales coupled with the design of numerous new detection strategies. Transformative advances in quantum technologies have led to a plethora of new high-precision quantum sensors and dark matter detection strategies for ultralight ($&lt;10\,$eV) bosonic dark matter that can be described by an oscillating classical, largely coherent field. This white paper focuses on searches for wavelike scalar and vector dark matter candidates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14915v1-abstract-full').style.display = 'none'; document.getElementById('2203.14915v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Snowmass 2021 White Paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12630">arXiv:2203.12630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.12630">pdf</a>, <a href="https://arxiv.org/format/2203.12630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.137363">10.1016/j.physletb.2022.137363 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadrophilic Light Dark Matter from the Atmosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Arg%C3%BCelles%2C+C+A">Carlos A. Arg眉elles</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mu%C3%B1oz%2C+V">V铆ctor Mu帽oz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shoemaker%2C+I+M">Ian M. Shoemaker</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12630v2-abstract-short" style="display: inline;"> Light sub-GeV dark matter (DM) constitutes an underexplored target, beyond the optimized sensitivity of typical direct DM detection experiments. We comprehensively investigate hadrophilic light DM produced from cosmic-ray collisions with the atmosphere. The resulting relativistic DM, originating from meson decays, can be efficiently observed in variety of experiments, such as XENON1T. We include f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12630v2-abstract-full').style.display = 'inline'; document.getElementById('2203.12630v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12630v2-abstract-full" style="display: none;"> Light sub-GeV dark matter (DM) constitutes an underexplored target, beyond the optimized sensitivity of typical direct DM detection experiments. We comprehensively investigate hadrophilic light DM produced from cosmic-ray collisions with the atmosphere. The resulting relativistic DM, originating from meson decays, can be efficiently observed in variety of experiments, such as XENON1T. We include for the first time decays of $畏$, $畏^{\prime}$ and $K^+$ mesons, leading to improved limits for DM masses above few hundred MeV. We incorporate an exact treatment of the DM attenuation in Earth and demonstrate that nuclear form factor effects can significantly impact the resulting testable DM parameter space. Further, we establish projections for upcoming experiments, such as DARWIN, over a wide range of DM masses below the GeV scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12630v2-abstract-full').style.display = 'none'; document.getElementById('2203.12630v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures; matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IPMU22-0010 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.B 833 (2022) 137363 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08967">arXiv:2203.08967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.08967">pdf</a>, <a href="https://arxiv.org/format/2203.08967">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.dark.2023.101231">10.1016/j.dark.2023.101231 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Snowmass2021 Cosmic Frontier White Paper:Primordial Black Hole Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Bird%2C+S">Simeon Bird</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Albert%2C+A">Andrea Albert</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dawson%2C+W">Will Dawson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ali-Haimoud%2C+Y">Yacine Ali-Haimoud</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Coogan%2C+A">Adam Coogan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Drlica-Wagner%2C+A">Alex Drlica-Wagner</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Feng%2C+Q">Qi Feng</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Inman%2C+D">Derek Inman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Inomata%2C+K">Keisuke Inomata</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kovetz%2C+E">Ely Kovetz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kusenko%2C+A">Alexander Kusenko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lehmann%2C+B+V">Benjamin V. Lehmann</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Munoz%2C+J+B">Julian B. Munoz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Singh%2C+R">Rajeev Singh</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Tsai%2C+Y">Yu-Dai Tsai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08967v2-abstract-short" style="display: inline;"> Primordial Black Holes (PBHs) are a viable candidate to comprise some or all of the dark matter and provide a unique window into the high-energy physics of the early universe. This white paper discusses the scientific motivation, current status, and future reach of observational searches for PBHs. Future observational facilities supported by DOE, NSF, and NASA will provide unprecedented sensitivit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08967v2-abstract-full').style.display = 'inline'; document.getElementById('2203.08967v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08967v2-abstract-full" style="display: none;"> Primordial Black Holes (PBHs) are a viable candidate to comprise some or all of the dark matter and provide a unique window into the high-energy physics of the early universe. This white paper discusses the scientific motivation, current status, and future reach of observational searches for PBHs. Future observational facilities supported by DOE, NSF, and NASA will provide unprecedented sensitivity to PBHs. However, devoted analysis pipelines and theoretical modeling are required to fully leverage these novel data. The search for PBHs constitutes a low-cost, high-reward science case with significant impact on the high energy physics community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08967v2-abstract-full').style.display = 'none'; document.getElementById('2203.08967v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures, submission to the Snowmass 2021 process. Update to add references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08771">arXiv:2203.08771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.08771">pdf</a>, <a href="https://arxiv.org/format/2203.08771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Searches for Baryon Number Violation in Neutrino Experiments: A White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Dev%2C+P+S+B">P. S. B. Dev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Koerner%2C+L+W">L. W. Koerner</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Saad%2C+S">S. Saad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Askins%2C+M">M. Askins</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Babu%2C+K+S">K. S. Babu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Barrow%2C+J+L">J. L. Barrow</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chakrabortty%2C+J">J. Chakrabortty</a>, <a href="/search/hep-ph?searchtype=author&amp;query=de+Gouv%C3%AAa%2C+A">A. de Gouv锚a</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Djurcic%2C+Z">Z. Djurcic</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Girmohanta%2C+S">S. Girmohanta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gogoladze%2C+I">I. Gogoladze</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Goodman%2C+M+C">M. C. Goodman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Higuera%2C+A">A. Higuera</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kalra%2C+D">D. Kalra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Karagiorgi%2C+G">G. Karagiorgi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kearns%2C+E">E. Kearns</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kudryavtsev%2C+V+A">V. A. Kudryavtsev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kutter%2C+T">T. Kutter</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ochoa-Ricoux%2C+J+P">J. P. Ochoa-Ricoux</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Malinsk%C3%BD%2C+M">M. Malinsk媒</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Caicedo%2C+D+A+M">D. A. Martinez Caicedo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohapatra%2C+R+N">R. N. Mohapatra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nath%2C+P">P. Nath</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nussinov%2C+S">S. Nussinov</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08771v3-abstract-short" style="display: inline;"> Baryon number conservation is not guaranteed by any fundamental symmetry within the Standard Model, and therefore has been a subject of experimental and theoretical scrutiny for decades. So far, no evidence for baryon number violation has been observed. Large underground detectors have long been used for both neutrino detection and searches for baryon number violating processes. The next generatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08771v3-abstract-full').style.display = 'inline'; document.getElementById('2203.08771v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08771v3-abstract-full" style="display: none;"> Baryon number conservation is not guaranteed by any fundamental symmetry within the Standard Model, and therefore has been a subject of experimental and theoretical scrutiny for decades. So far, no evidence for baryon number violation has been observed. Large underground detectors have long been used for both neutrino detection and searches for baryon number violating processes. The next generation of large neutrino detectors will seek to improve upon the limits set by past and current experiments and will cover a range of lifetimes predicted by several Grand Unified Theories. In this White Paper, we summarize theoretical motivations and experimental aspects of searches for baryon number violation in neutrino experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08771v3-abstract-full').style.display = 'none'; document.getElementById('2203.08771v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">73 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08039">arXiv:2203.08039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.08039">pdf</a>, <a href="https://arxiv.org/format/2203.08039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ac98f9">10.1088/1361-6471/ac98f9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Present and Future Status of Heavy Neutral Leptons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Abdullahi%2C+A+M">Asli M. Abdullahi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alzas%2C+P+B">Pablo Barham Alzas</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batell%2C+B">Brian Batell</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyarsky%2C+A">Alexey Boyarsky</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Carbajal%2C+S">Saneli Carbajal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chatterjee%2C+A">Animesh Chatterjee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Crespo-Anadon%2C+J+I">Jose I. Crespo-Anadon</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Deppisch%2C+F+F">Frank F. Deppisch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=De+Roeck%2C+A">Albert De Roeck</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Drewes%2C+M">Marco Drewes</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gago%2C+A+M">Alberto Martin Gago</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Suarez%2C+R+G">Rebeca Gonzalez Suarez</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Goudzovski%2C+E">Evgueni Goudzovski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hatzikoutelis%2C+A">Athanasios Hatzikoutelis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hufnagel%2C+M">Marco Hufnagel</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ilten%2C+P">Philip Ilten</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Izmaylov%2C+A">Alexander Izmaylov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kelly%2C+K+J">Kevin J. Kelly</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Klaric%2C+J">Juraj Klaric</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kopp%2C+J">Joachim Kopp</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kulkarni%2C+S">Suchita Kulkarni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lamoureux%2C+M">Mathieu Lamoureux</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lanfranchi%2C+G">Gaia Lanfranchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lopez-Pavon%2C+J">Jacobo Lopez-Pavon</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mikulenko%2C+O">Oleksii Mikulenko</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08039v1-abstract-short" style="display: inline;"> The existence of non-zero neutrino masses points to the likely existence of multiple SM neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as Heavy Neutral Leptons (HNLs). In this white paper we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08039v1-abstract-full').style.display = 'inline'; document.getElementById('2203.08039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08039v1-abstract-full" style="display: none;"> The existence of non-zero neutrino masses points to the likely existence of multiple SM neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as Heavy Neutral Leptons (HNLs). In this white paper we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding on key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08039v1-abstract-full').style.display = 'none'; document.getElementById('2203.08039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">82 pages, 34 figures. Contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07984">arXiv:2203.07984</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07984">pdf</a>, <a href="https://arxiv.org/format/2203.07984">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Dark Matter In Extreme Astrophysical Environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Baryakhtar%2C+M">Masha Baryakhtar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Caputo%2C+R">Regina Caputo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Croon%2C+D">Djuna Croon</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Perez%2C+K">Kerstin Perez</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berti%2C+E">Emanuele Berti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bramante%2C+J">Joseph Bramante</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Buschmann%2C+M">Malte Buschmann</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brito%2C+R">Richard Brito</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+T+Y">Thomas Y. Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cole%2C+P+S">Philippa S. Cole</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Coogan%2C+A">Adam Coogan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=East%2C+W+E">William E. East</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Foster%2C+J+W">Joshua W. Foster</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Galanis%2C+M">Marios Galanis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Giannotti%2C+M">Maurizio Giannotti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kavanagh%2C+B+J">Bradley J. Kavanagh</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Laha%2C+R">Ranjan Laha</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leane%2C+R+K">Rebecca K. Leane</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lehmann%2C+B+V">Benjamin V. Lehmann</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Marques-Tavares%2C+G">Gustavo Marques-Tavares</a>, <a href="/search/hep-ph?searchtype=author&amp;query=McDonald%2C+J">Jamie McDonald</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ng%2C+K+K+Y">Ken K. Y. Ng</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Raj%2C+N">Nirmal Raj</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sagunski%2C+L">Laura Sagunski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sakstein%2C+J">Jeremy Sakstein</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07984v3-abstract-short" style="display: inline;"> Exploring dark matter via observations of extreme astrophysical environments -- defined here as heavy compact objects such as white dwarfs, neutron stars, and black holes, as well as supernovae and compact object merger events -- has been a major field of growth since the last Snowmass process. Theoretical work has highlighted the utility of current and near-future observatories to constrain novel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07984v3-abstract-full').style.display = 'inline'; document.getElementById('2203.07984v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07984v3-abstract-full" style="display: none;"> Exploring dark matter via observations of extreme astrophysical environments -- defined here as heavy compact objects such as white dwarfs, neutron stars, and black holes, as well as supernovae and compact object merger events -- has been a major field of growth since the last Snowmass process. Theoretical work has highlighted the utility of current and near-future observatories to constrain novel dark matter parameter space across the full mass range. This includes gravitational wave instruments and observatories spanning the electromagnetic spectrum, from radio to gamma-rays. While recent searches already provide leading sensitivity to various dark matter models, this work also highlights the need for theoretical astrophysics research to better constrain the properties of these extreme astrophysical systems. The unique potential of these search signatures to probe dark matter adds motivation to proposed next-generation astronomical and gravitational wave instruments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07984v3-abstract-full').style.display = 'none'; document.getElementById('2203.07984v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021 -- CF3. Dark Matter: Cosmic Probes</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07377">arXiv:2203.07377</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07377">pdf</a>, <a href="https://arxiv.org/format/2203.07377">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Synergy between cosmological and laboratory searches in neutrino physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Gerbino%2C+M">Martina Gerbino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Grohs%2C+E">Evan Grohs</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lattanzi%2C+M">Massimiliano Lattanzi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abazajian%2C+K+N">Kevork N. Abazajian</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Blinov%2C+N">Nikita Blinov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brinckmann%2C+T">Thejs Brinckmann</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+M">Mu-Chun Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Djurcic%2C+Z">Zelimir Djurcic</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hagstotz%2C+S">Steffen Hagstotz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kelly%2C+K+J">Kevin J. Kelly</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lorenz%2C+C+S">Christiane S. Lorenz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Loverde%2C+M">Marilena Loverde</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mart%C3%ADnez-Mirav%C3%A9%2C+P">Pablo Mart铆nez-Mirav茅</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mena%2C+O">Olga Mena</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Meyers%2C+J">Joel Meyers</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Pettus%2C+W">Walter Pettus</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Saviano%2C+N">Ninetta Saviano</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Suliga%2C+A+M">Anna M. Suliga</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=T%C3%B3rtola%2C+M">Mariam T贸rtola</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Valle%2C+J+W+F">Jos茅 W. F. Valle</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wallisch%2C+B">Benjamin Wallisch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07377v3-abstract-short" style="display: inline;"> The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Up&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07377v3-abstract-full').style.display = 'inline'; document.getElementById('2203.07377v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07377v3-abstract-full" style="display: none;"> The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Upcoming cosmological probes will measure the energy density of relativistic particles with higher precision, but could also start probing other properties of the neutrino spectra. When convolved with results from terrestrial experiments, cosmology can become even more acute at probing new physics related to neutrinos or even Beyond the Standard Model (BSM). Any discordance between laboratory and cosmological data sets may reveal new BSM physics and/or suggest alternative models of cosmology. We give examples of the intersection between terrestrial and cosmological probes in the neutrino sector, and briefly discuss the possibilities of what different laboratory experiments may see in conjunction with cosmological observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07377v3-abstract-full').style.display = 'none'; document.getElementById('2203.07377v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Originally prepared for submission to the Snowmass Community Planning Exercise, 2021; Current version accepted by Physics of the Dark Universe; 136 pages; 9 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07361">arXiv:2203.07361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07361">pdf</a>, <a href="https://arxiv.org/format/2203.07361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Abdullah%2C+M">M. Abdullah</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abele%2C+H">H. Abele</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Angloher%2C+G">G. Angloher</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aristizabal-Sierra%2C+D">D. Aristizabal-Sierra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balogh%2C+L">L. Balogh</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Beaufort%2C+C">C. Beaufort</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Beaulieu%2C+G">G. Beaulieu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bento%2C+A">A. Bento</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berge%2C+L">L. Berge</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bernardi%2C+I+A">I. A. Bernardi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bonhomme%2C+A">A. Bonhomme</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bres%2C+G">G. Bres</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bret%2C+J+L">J-. L. Bret</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Broniatowski%2C+A">A. Broniatowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brossard%2C+A">A. Brossard</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Buck%2C+C">C. Buck</a> , et al. (250 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07361v1-abstract-short" style="display: inline;"> Coherent elastic neutrino-nucleus scattering (CE$谓$NS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CE$谓$NS has long proven difficult to detect, since the deposited energy into the nucleus is $\sim$ keV. In 2017, the COHERENT collaboration announced the detection of CE$谓$NS using a stopped-pion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07361v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07361v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07361v1-abstract-full" style="display: none;"> Coherent elastic neutrino-nucleus scattering (CE$谓$NS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CE$谓$NS has long proven difficult to detect, since the deposited energy into the nucleus is $\sim$ keV. In 2017, the COHERENT collaboration announced the detection of CE$谓$NS using a stopped-pion source with CsI detectors, followed up the detection of CE$谓$NS using an Ar target. The detection of CE$谓$NS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CE$谓$NS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CE$谓$NS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07361v1-abstract-full').style.display = 'none'; document.getElementById('2203.07361v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmasss 2021. Contact authors: P. S. Barbeau, R. Strauss, L. E. Strigari</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07323">arXiv:2203.07323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07323">pdf</a>, <a href="https://arxiv.org/format/2203.07323">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ad307f">10.1088/1361-6471/ad307f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> White Paper on Light Sterile Neutrino Searches and Related Phenomenology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Arg%C3%BCelles%2C+C+A">C. A. Arg眉elles</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hostert%2C+M">M. Hostert</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kalra%2C+D">D. Kalra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Karagiorgi%2C+G">G. Karagiorgi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kelly%2C+K+J">K. J. Kelly</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Littlejohn%2C+B">B. Littlejohn</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Machado%2C+P">P. Machado</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Pettus%2C+W">W. Pettus</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Toups%2C+M">M. Toups</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ross-Lonergan%2C+M">M. Ross-Lonergan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sousa%2C+A">A. Sousa</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Surukuchi%2C+P+T">P. T. Surukuchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wong%2C+Y+Y+Y">Y. Y. Y. Wong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abdallah%2C+W">W. Abdallah</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abdullahi%2C+A+M">A. M. Abdullahi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Akutsu%2C+R">R. Akutsu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alvarez-Ruso%2C+L">L. Alvarez-Ruso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alves%2C+D+S+M">D. S. M. Alves</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aurisano%2C+A">A. Aurisano</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berryman%2C+J+M">J. M. Berryman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bert%C3%B3lez-Mart%C3%ADnez%2C+T">T. Bert贸lez-Mart铆nez</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brunner%2C+J">J. Brunner</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Blennow%2C+M">M. Blennow</a> , et al. (147 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07323v3-abstract-short" style="display: inline;"> This white paper provides a comprehensive review of our present understanding of experimental neutrino anomalies that remain unresolved, charting the progress achieved over the last decade at the experimental and phenomenological level, and sets the stage for future programmatic prospects in addressing those anomalies. It is purposed to serve as a guiding and motivational &#34;encyclopedic&#34; reference,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07323v3-abstract-full').style.display = 'inline'; document.getElementById('2203.07323v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07323v3-abstract-full" style="display: none;"> This white paper provides a comprehensive review of our present understanding of experimental neutrino anomalies that remain unresolved, charting the progress achieved over the last decade at the experimental and phenomenological level, and sets the stage for future programmatic prospects in addressing those anomalies. It is purposed to serve as a guiding and motivational &#34;encyclopedic&#34; reference, with emphasis on needs and options for future exploration that may lead to the ultimate resolution of the anomalies. We see the main experimental, analysis, and theory-driven thrusts that will be essential to achieving this goal being: 1) Cover all anomaly sectors -- given the unresolved nature of all four canonical anomalies, it is imperative to support all pillars of a diverse experimental portfolio, source, reactor, decay-at-rest, decay-in-flight, and other methods/sources, to provide complementary probes of and increased precision for new physics explanations; 2) Pursue diverse signatures -- it is imperative that experiments make design and analysis choices that maximize sensitivity to as broad an array of these potential new physics signatures as possible; 3) Deepen theoretical engagement -- priority in the theory community should be placed on development of standard and beyond standard models relevant to all four short-baseline anomalies and the development of tools for efficient tests of these models with existing and future experimental datasets; 4) Openly share data -- Fluid communication between the experimental and theory communities will be required, which implies that both experimental data releases and theoretical calculations should be publicly available; and 5) Apply robust analysis techniques -- Appropriate statistical treatment is crucial to assess the compatibility of data sets within the context of any given model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07323v3-abstract-full').style.display = 'none'; document.getElementById('2203.07323v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021 by the NF02 Topical Group (Understanding Experimental Neutrino Anomalies). Published in J. Phys. G as a Major Report</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G: Nucl. Part. Phys. 51 120501 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06859">arXiv:2203.06859</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.06859">pdf</a>, <a href="https://arxiv.org/format/2203.06859">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Snowmass2021 Cosmic Frontier White Paper: Puzzling Excesses in Dark Matter Searches and How to Resolve Them </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Leane%2C+R+K">Rebecca K. Leane</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shin%2C+S">Seodong Shin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+L">Liang Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adhikari%2C+G">Govinda Adhikari</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alhazmi%2C+H">Haider Alhazmi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aramaki%2C+T">Tsuguo Aramaki</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baxter%2C+D">Daniel Baxter</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Calore%2C+F">Francesca Calore</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Caputo%2C+R">Regina Caputo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cholis%2C+I">Ilias Cholis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Daylan%2C+T">Tansu Daylan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Di+Mauro%2C+M">Mattia Di Mauro</a>, <a href="/search/hep-ph?searchtype=author&amp;query=von+Doetinchem%2C+P">Philip von Doetinchem</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Han%2C+K">Ke Han</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hooper%2C+D">Dan Hooper</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Horiuchi%2C+S">Shunsaku Horiuchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kong%2C+K">Kyoungchul Kong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lang%2C+R+F">Rafael F. Lang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lin%2C+Q">Qing Lin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Linden%2C+T">Tim Linden</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+J">Jianglai Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Macias%2C+O">Oscar Macias</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mishra-Sharma%2C+S">Siddharth Mishra-Sharma</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Murphy%2C+A">Alexander Murphy</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06859v1-abstract-short" style="display: inline;"> Intriguing signals with excesses over expected backgrounds have been observed in many astrophysical and terrestrial settings, which could potentially have a dark matter origin. Astrophysical excesses include the Galactic Center GeV gamma-ray excess detected by the Fermi Gamma-Ray Space Telescope, the AMS antiproton and positron excesses, and the 511 and 3.5 keV X-ray lines. Direct detection excess&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06859v1-abstract-full').style.display = 'inline'; document.getElementById('2203.06859v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06859v1-abstract-full" style="display: none;"> Intriguing signals with excesses over expected backgrounds have been observed in many astrophysical and terrestrial settings, which could potentially have a dark matter origin. Astrophysical excesses include the Galactic Center GeV gamma-ray excess detected by the Fermi Gamma-Ray Space Telescope, the AMS antiproton and positron excesses, and the 511 and 3.5 keV X-ray lines. Direct detection excesses include the DAMA/LIBRA annual modulation signal, the XENON1T excess, and low-threshold excesses in solid state detectors. We discuss avenues to resolve these excesses, with actions the field can take over the next several years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06859v1-abstract-full').style.display = 'none'; document.getElementById('2203.06859v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">57 pages, solicited white paper submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06781">arXiv:2203.06781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.06781">pdf</a>, <a href="https://arxiv.org/format/2203.06781">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Snowmass2021 Cosmic Frontier: Synergies between dark matter searches and multiwavelength/multimessenger astrophysics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Ando%2C+S">Shin&#39;ichiro Ando</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baum%2C+S">Sebastian Baum</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boylan-Kolchin%2C+M">Michael Boylan-Kolchin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bulbul%2C+E">Esra Bulbul</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Burgess%2C+M">Michael Burgess</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cholis%2C+I">Ilias Cholis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=von+Doetinchem%2C+P">Philip von Doetinchem</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fan%2C+J">JiJi Fan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Harding%2C+P+J">Patrick J. Harding</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Horiuchi%2C+S">Shunsaku Horiuchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leane%2C+R+K">Rebecca K. Leane</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Macias%2C+O">Oscar Macias</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mack%2C+K">Katie Mack</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Murase%2C+K">Kohta Murase</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Necib%2C+L">Lina Necib</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Olcina%2C+I">Ibles Olcina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Olivera-Nieto%2C+L">Laura Olivera-Nieto</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Park%2C+J">Jong-Chul Park</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Perez%2C+K">Kerstin Perez</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Regis%2C+M">Marco Regis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Rodd%2C+N+L">Nicholas L. Rodd</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Rott%2C+C">Carsten Rott</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sinha%2C+K">Kuver Sinha</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Tsai%2C+Y">Yun-Tse Tsai</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06781v1-abstract-short" style="display: inline;"> This whitepaper focuses on the astrophysical systematics which are encountered in dark matter searches. Oftentimes in indirect and also in direct dark matter searches, astrophysical systematics are a major limiting factor to sensitivity to dark matter. Just as there are many forms of dark matter searches, there are many forms of backgrounds. We attempt to cover the major systematics arising in dar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06781v1-abstract-full').style.display = 'inline'; document.getElementById('2203.06781v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06781v1-abstract-full" style="display: none;"> This whitepaper focuses on the astrophysical systematics which are encountered in dark matter searches. Oftentimes in indirect and also in direct dark matter searches, astrophysical systematics are a major limiting factor to sensitivity to dark matter. Just as there are many forms of dark matter searches, there are many forms of backgrounds. We attempt to cover the major systematics arising in dark matter searches using photons -- radio and gamma rays -- to cosmic rays, neutrinos and gravitational waves. Examples include astrophysical sources of cosmic messengers and their interactions which can mimic dark matter signatures. In turn, these depend on commensurate studies in understanding the cosmic environment -- gas distributions, magnetic field configurations -- as well as relevant nuclear astrophysics. We also cover the astrophysics governing celestial bodies and galaxies used to probe dark matter, from black holes to dwarf galaxies. Finally, we cover astrophysical backgrounds related to probing the dark matter distribution and kinematics, which impact a wide range of dark matter studies. In the future, the rise of multi-messenger astronomy, and novel analysis methods to exploit it for dark matter, will offer various strategic ways to continue to enhance our understanding of astrophysical backgrounds to deliver improved sensitivity to dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06781v1-abstract-full').style.display = 'none'; document.getElementById('2203.06781v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12091">arXiv:2111.12091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.12091">pdf</a>, <a href="https://arxiv.org/format/2111.12091">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.201101">10.1103/PhysRevLett.128.201101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monopoles From an Atmospheric Fixed Target Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Iguro%2C+S">Syuhei Iguro</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Plestid%2C+R">Ryan Plestid</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12091v2-abstract-short" style="display: inline;"> Magnetic monopoles have a long history of theoretical predictions and experimental searches, carrying direct implications for fundamental concepts such as electric charge quantization. We analyze in detail for the first time magnetic monopole production from collisions of cosmic rays bombarding the atmosphere. This source of monopoles is independent of cosmology, has been active throughout Earth&#39;s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12091v2-abstract-full').style.display = 'inline'; document.getElementById('2111.12091v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12091v2-abstract-full" style="display: none;"> Magnetic monopoles have a long history of theoretical predictions and experimental searches, carrying direct implications for fundamental concepts such as electric charge quantization. We analyze in detail for the first time magnetic monopole production from collisions of cosmic rays bombarding the atmosphere. This source of monopoles is independent of cosmology, has been active throughout Earth&#39;s history, and supplies an irreducible monopole flux for all terrestrial experiments. Using results for robust atmospheric fixed target experiment flux of monopoles, we systematically establish direct comparisons of previous ambient monopole searches with monopole searches at particle colliders and set leading limits on magnetic monopole production in the $\sim 5-100$ TeV mass-range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12091v2-abstract-full').style.display = 'none'; document.getElementById('2111.12091v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures; v2: matches version accepted to PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-617-T, IPMU21-0081, TTP21-051 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 201101 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.08699">arXiv:2111.08699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.08699">pdf</a>, <a href="https://arxiv.org/format/2111.08699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnrasl/slac097">10.1093/mnrasl/slac097 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impacts of Jets and Winds From Primordial Black Holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lu%2C+P">Philip Lu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Murase%2C+K">Kohta Murase</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Inoue%2C+Y">Yoshiyuki Inoue</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gelmini%2C+G+B">Graciela B. Gelmini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.08699v1-abstract-short" style="display: inline;"> Primordial black holes (PBHs) formed in the early Universe constitute an attractive candidate for dark matter. Within the gaseous environment of the interstellar medium, PBHs with accretion disks naturally launch outflows such as winds and jets. PBHs with significant spin can sustain powerful relativistic jets and generate associated cocoons. Jets and winds can efficiently deposit their kinetic en&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08699v1-abstract-full').style.display = 'inline'; document.getElementById('2111.08699v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.08699v1-abstract-full" style="display: none;"> Primordial black holes (PBHs) formed in the early Universe constitute an attractive candidate for dark matter. Within the gaseous environment of the interstellar medium, PBHs with accretion disks naturally launch outflows such as winds and jets. PBHs with significant spin can sustain powerful relativistic jets and generate associated cocoons. Jets and winds can efficiently deposit their kinetic energies and heat the surrounding gas through shocks. Focusing on the Leo T dwarf galaxy, we demonstrate that these considerations can provide novel tests of PBHs over a significant $\sim 10^{-2} M_{\odot} - 10^6 M_{\odot}$ mass range, including the parameter space associated with gravitational wave observations by the LIGO and VIRGO Collaborations. Observing the morphology of emission could allow to distinguish between jet and wind contributions, and hence indirectly detect spinning PBHs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08699v1-abstract-full').style.display = 'none'; document.getElementById('2111.08699v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IPMU21-0080, RIKEN-iTHEMS-Report-21 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mon.Not.Roy.Astron.Soc. 517 (2022) L1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.04088">arXiv:2111.04088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.04088">pdf</a>, <a href="https://arxiv.org/format/2111.04088">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/2156/1/012049">10.1088/1742-6596/2156/1/012049 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino and Axion Astronomy with Dark Matter Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.04088v1-abstract-short" style="display: inline;"> Sensitive dark matter (DM) experiments can be well exploited beyond their designated targets, allowing to explore a breadth of physics topics. As we discuss, future large direct DM detection experiments constitute impressive telescopes, complementary to conventional neutrino detectors. This opens a new window into neutrino astronomy, including puzzles such as the origin of supermassive black holes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04088v1-abstract-full').style.display = 'inline'; document.getElementById('2111.04088v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.04088v1-abstract-full" style="display: none;"> Sensitive dark matter (DM) experiments can be well exploited beyond their designated targets, allowing to explore a breadth of physics topics. As we discuss, future large direct DM detection experiments constitute impressive telescopes, complementary to conventional neutrino detectors. This opens a new window into neutrino astronomy, including puzzles such as the origin of supermassive black holes and topics like supernova forecast. Furthermore, DM experiments can act as effective instruments for multimessenger astronomy. This is well illustrated by exploration of relativistic axions from transient astrophysical sources (e.g. axion star explosions), providing novel signatures as well as possible insights into the axion potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04088v1-abstract-full').style.display = 'none'; document.getElementById('2111.04088v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, Proceedings of the 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2021), 30 August - 3 September 2021, Valencia, Spain - Online</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IPMU21-0077 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.04087">arXiv:2111.04087</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.04087">pdf</a>, <a href="https://arxiv.org/format/2111.04087">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2022/09/036">10.1088/1475-7516/2022/09/036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmological Dependence of Sterile Neutrino Dark Matter With Self-Interacting Neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Chichiri%2C+C">Carlos Chichiri</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gelmini%2C+G+B">Graciela B. Gelmini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lu%2C+P">Philip Lu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.04087v1-abstract-short" style="display: inline;"> Unexplored interactions of neutrinos could be the key to understanding the nature of the dark matter (DM). In particular, active neutrinos with new self-interactions can produce keV-mass sterile neutrinos that account for the whole of the DM through the Dodelson-Widrow mechanism for a large range of active-sterile mixing values. This production typically occurs before Big-Bang Nucleosynthesis (BBN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04087v1-abstract-full').style.display = 'inline'; document.getElementById('2111.04087v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.04087v1-abstract-full" style="display: none;"> Unexplored interactions of neutrinos could be the key to understanding the nature of the dark matter (DM). In particular, active neutrinos with new self-interactions can produce keV-mass sterile neutrinos that account for the whole of the DM through the Dodelson-Widrow mechanism for a large range of active-sterile mixing values. This production typically occurs before Big-Bang Nucleosynthesis (BBN) in a yet uncharted era of the Universe. We assess how the mixing range for keV-mass sterile neutrino DM is affected by the uncertainty in the early Universe pre-BBN cosmology. This is particularly relevant for identifying the viable parameter space of sterile neutrino searches allowed by all astrophysical limits, as well as for cosmology, since the detection of a sterile neutrino could constitute the first observation of a particle providing information about the pre-BBN epoch. We find that the combined uncertainties in the early Universe cosmology and neutrino interactions significantly expand the allowed parameter space for sterile neutrinos that can constitute the whole of the DM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.04087v1-abstract-full').style.display = 'none'; document.getElementById('2111.04087v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IPMU21-0076 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.09509">arXiv:2110.09509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.09509">pdf</a>, <a href="https://arxiv.org/format/2110.09509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac66da">10.3847/1538-4357/ac66da <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Establishing the Non-Primordial Origin of Black Hole-Neutron Star Mergers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Sasaki%2C+M">Misao Sasaki</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Vardanyan%2C+V">Valeri Vardanyan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+Y">Ying-li Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.09509v2-abstract-short" style="display: inline;"> Primordial black holes (PBHs) from the early Universe constitute an attractive dark matter candidate. First detections of black hole-neutron star (BH-NS) candidate gravitational wave events by the LIGO/Virgo collaboration, GW200105 and GW200115, already prompted speculations about non-astrophysical origin. We analyze, for the first time, the total volumetric merger rates of PBH-NS binaries formed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09509v2-abstract-full').style.display = 'inline'; document.getElementById('2110.09509v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.09509v2-abstract-full" style="display: none;"> Primordial black holes (PBHs) from the early Universe constitute an attractive dark matter candidate. First detections of black hole-neutron star (BH-NS) candidate gravitational wave events by the LIGO/Virgo collaboration, GW200105 and GW200115, already prompted speculations about non-astrophysical origin. We analyze, for the first time, the total volumetric merger rates of PBH-NS binaries formed via two-body gravitational scattering, finding them to be subdominant to the astrophysical BH-NS rates. In contrast to binary black holes, a significant fraction of which can be of primordial origin, either formed in dark matter halos or in the early Universe, PBH-NS rates cannot be significantly enhanced by contributions preceding star formation. Our findings imply that the identified BH-NS events are of astrophysical origin, even when PBH-PBH events significantly contribute to the GW observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09509v2-abstract-full').style.display = 'none'; document.getElementById('2110.09509v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, published in APJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> YITP-21-109, IPMU21-0064 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys.J. 931 (2022) 1, 2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14893">arXiv:2106.14893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.14893">pdf</a>, <a href="https://arxiv.org/format/2106.14893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2021.136858">10.1016/j.physletb.2021.136858 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Relativistic Axions from Transient Astrophysical Sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Eby%2C+J">Joshua Eby</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shirai%2C+S">Satoshi Shirai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Stadnik%2C+Y+V">Yevgeny V. Stadnik</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14893v2-abstract-short" style="display: inline;"> Emission of relativistic axions from transient sources, such as axion star explosions, can lead to observable signatures. We show that axion bursts from collapsing axion stars can be detectable over the wide range of axion masses $10^{-15} \, \textrm{eV} \lesssim m \lesssim 10^{-7} \, \textrm{eV}$ in laboratory experiments, such as ABRACADABRA, DMRadio and SHAFT. The detection of axion bursts coul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14893v2-abstract-full').style.display = 'inline'; document.getElementById('2106.14893v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14893v2-abstract-full" style="display: none;"> Emission of relativistic axions from transient sources, such as axion star explosions, can lead to observable signatures. We show that axion bursts from collapsing axion stars can be detectable over the wide range of axion masses $10^{-15} \, \textrm{eV} \lesssim m \lesssim 10^{-7} \, \textrm{eV}$ in laboratory experiments, such as ABRACADABRA, DMRadio and SHAFT. The detection of axion bursts could provide new insights into the fundamental axion potential, which is challenging to probe otherwise. An ensemble of bursts in the distant past would give rise to a diffuse axion background distinct from the usual cold axion DM. Coincidence with other signatures would provide a new window into multi-messenger astronomy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14893v2-abstract-full').style.display = 'none'; document.getElementById('2106.14893v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures; matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IPMU21-0042 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.B 825 (2022) 136858 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Takhistov%2C+V&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Takhistov%2C+V&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Takhistov%2C+V&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10