CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 145 results for author: <span class="mathjax">Metaxas, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Metaxas%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Metaxas, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Metaxas%2C+D&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Metaxas, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Metaxas%2C+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Metaxas%2C+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Metaxas%2C+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Metaxas%2C+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15233">arXiv:2411.15233</a> <span> [<a href="https://arxiv.org/pdf/2411.15233">pdf</a>, <a href="https://arxiv.org/format/2411.15233">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Learning Volumetric Neural Deformable Models to Recover 3D Regional Heart Wall Motion from Multi-Planar Tagged MRI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ye%2C+M">Meng Ye</a>, <a href="/search/cs?searchtype=author&query=Xin%2C+B">Bingyu Xin</a>, <a href="/search/cs?searchtype=author&query=Guo%2C+B">Bangwei Guo</a>, <a href="/search/cs?searchtype=author&query=Axel%2C+L">Leon Axel</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15233v1-abstract-short" style="display: inline;"> Multi-planar tagged MRI is the gold standard for regional heart wall motion evaluation. However, accurate recovery of the 3D true heart wall motion from a set of 2D apparent motion cues is challenging, due to incomplete sampling of the true motion and difficulty in information fusion from apparent motion cues observed on multiple imaging planes. To solve these challenges, we introduce a novel clas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15233v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15233v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15233v1-abstract-full" style="display: none;"> Multi-planar tagged MRI is the gold standard for regional heart wall motion evaluation. However, accurate recovery of the 3D true heart wall motion from a set of 2D apparent motion cues is challenging, due to incomplete sampling of the true motion and difficulty in information fusion from apparent motion cues observed on multiple imaging planes. To solve these challenges, we introduce a novel class of volumetric neural deformable models ($\upsilon$NDMs). Our $\upsilon$NDMs represent heart wall geometry and motion through a set of low-dimensional global deformation parameter functions and a diffeomorphic point flow regularized local deformation field. To learn such global and local deformation for 2D apparent motion mapping to 3D true motion, we design a hybrid point transformer, which incorporates both point cross-attention and self-attention mechanisms. While use of point cross-attention can learn to fuse 2D apparent motion cues into material point true motion hints, point self-attention hierarchically organised as an encoder-decoder structure can further learn to refine these hints and map them into 3D true motion. We have performed experiments on a large cohort of synthetic 3D regional heart wall motion dataset. The results demonstrated the high accuracy of our method for the recovery of dense 3D true motion from sparse 2D apparent motion cues. Project page is at https://github.com/DeepTag/VolumetricNeuralDeformableModels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15233v1-abstract-full').style.display = 'none'; document.getElementById('2411.15233v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04168">arXiv:2411.04168</a> <span> [<a href="https://arxiv.org/pdf/2411.04168">pdf</a>, <a href="https://arxiv.org/format/2411.04168">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> DiMSUM: Diffusion Mamba -- A Scalable and Unified Spatial-Frequency Method for Image Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Phung%2C+H">Hao Phung</a>, <a href="/search/cs?searchtype=author&query=Dao%2C+Q">Quan Dao</a>, <a href="/search/cs?searchtype=author&query=Dao%2C+T">Trung Dao</a>, <a href="/search/cs?searchtype=author&query=Phan%2C+H">Hoang Phan</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a>, <a href="/search/cs?searchtype=author&query=Tran%2C+A">Anh Tran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04168v1-abstract-short" style="display: inline;"> We introduce a novel state-space architecture for diffusion models, effectively harnessing spatial and frequency information to enhance the inductive bias towards local features in input images for image generation tasks. While state-space networks, including Mamba, a revolutionary advancement in recurrent neural networks, typically scan input sequences from left to right, they face difficulties i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04168v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04168v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04168v1-abstract-full" style="display: none;"> We introduce a novel state-space architecture for diffusion models, effectively harnessing spatial and frequency information to enhance the inductive bias towards local features in input images for image generation tasks. While state-space networks, including Mamba, a revolutionary advancement in recurrent neural networks, typically scan input sequences from left to right, they face difficulties in designing effective scanning strategies, especially in the processing of image data. Our method demonstrates that integrating wavelet transformation into Mamba enhances the local structure awareness of visual inputs and better captures long-range relations of frequencies by disentangling them into wavelet subbands, representing both low- and high-frequency components. These wavelet-based outputs are then processed and seamlessly fused with the original Mamba outputs through a cross-attention fusion layer, combining both spatial and frequency information to optimize the order awareness of state-space models which is essential for the details and overall quality of image generation. Besides, we introduce a globally-shared transformer to supercharge the performance of Mamba, harnessing its exceptional power to capture global relationships. Through extensive experiments on standard benchmarks, our method demonstrates superior results compared to DiT and DIFFUSSM, achieving faster training convergence and delivering high-quality outputs. The codes and pretrained models are released at https://github.com/VinAIResearch/DiMSUM.git. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04168v1-abstract-full').style.display = 'none'; document.getElementById('2411.04168v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to NeurIPS 2024. Project page: https://hao-pt.github.io/dimsum/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23191">arXiv:2410.23191</a> <span> [<a href="https://arxiv.org/pdf/2410.23191">pdf</a>, <a href="https://arxiv.org/format/2410.23191">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Continuous Spatio-Temporal Memory Networks for 4D Cardiac Cine MRI Segmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ye%2C+M">Meng Ye</a>, <a href="/search/cs?searchtype=author&query=Xin%2C+B">Bingyu Xin</a>, <a href="/search/cs?searchtype=author&query=Axel%2C+L">Leon Axel</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23191v2-abstract-short" style="display: inline;"> Current cardiac cine magnetic resonance image (cMR) studies focus on the end diastole (ED) and end systole (ES) phases, while ignoring the abundant temporal information in the whole image sequence. This is because whole sequence segmentation is currently a tedious process and inaccurate. Conventional whole sequence segmentation approaches first estimate the motion field between frames, which is th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23191v2-abstract-full').style.display = 'inline'; document.getElementById('2410.23191v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23191v2-abstract-full" style="display: none;"> Current cardiac cine magnetic resonance image (cMR) studies focus on the end diastole (ED) and end systole (ES) phases, while ignoring the abundant temporal information in the whole image sequence. This is because whole sequence segmentation is currently a tedious process and inaccurate. Conventional whole sequence segmentation approaches first estimate the motion field between frames, which is then used to propagate the mask along the temporal axis. However, the mask propagation results could be prone to error, especially for the basal and apex slices, where through-plane motion leads to significant morphology and structural change during the cardiac cycle. Inspired by recent advances in video object segmentation (VOS), based on spatio-temporal memory (STM) networks, we propose a continuous STM (CSTM) network for semi-supervised whole heart and whole sequence cMR segmentation. Our CSTM network takes full advantage of the spatial, scale, temporal and through-plane continuity prior of the underlying heart anatomy structures, to achieve accurate and fast 4D segmentation. Results of extensive experiments across multiple cMR datasets show that our method can improve the 4D cMR segmentation performance, especially for the hard-to-segment regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23191v2-abstract-full').style.display = 'none'; document.getElementById('2410.23191v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to WACV 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08207">arXiv:2410.08207</a> <span> [<a href="https://arxiv.org/pdf/2410.08207">pdf</a>, <a href="https://arxiv.org/format/2410.08207">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> DICE: Discrete Inversion Enabling Controllable Editing for Multinomial Diffusion and Masked Generative Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=He%2C+X">Xiaoxiao He</a>, <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Dao%2C+Q">Quan Dao</a>, <a href="/search/cs?searchtype=author&query=Wen%2C+S">Song Wen</a>, <a href="/search/cs?searchtype=author&query=Bai%2C+M">Minhao Bai</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+D">Di Liu</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+H">Han Zhang</a>, <a href="/search/cs?searchtype=author&query=Min%2C+M+R">Martin Renqiang Min</a>, <a href="/search/cs?searchtype=author&query=Juefei-Xu%2C+F">Felix Juefei-Xu</a>, <a href="/search/cs?searchtype=author&query=Tan%2C+C">Chaowei Tan</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+B">Bo Liu</a>, <a href="/search/cs?searchtype=author&query=Li%2C+K">Kang Li</a>, <a href="/search/cs?searchtype=author&query=Li%2C+H">Hongdong Li</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+J">Junzhou Huang</a>, <a href="/search/cs?searchtype=author&query=Ahmed%2C+F">Faez Ahmed</a>, <a href="/search/cs?searchtype=author&query=Srivastava%2C+A">Akash Srivastava</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08207v1-abstract-short" style="display: inline;"> Discrete diffusion models have achieved success in tasks like image generation and masked language modeling but face limitations in controlled content editing. We introduce DICE (Discrete Inversion for Controllable Editing), the first approach to enable precise inversion for discrete diffusion models, including multinomial diffusion and masked generative models. By recording noise sequences and ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08207v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08207v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08207v1-abstract-full" style="display: none;"> Discrete diffusion models have achieved success in tasks like image generation and masked language modeling but face limitations in controlled content editing. We introduce DICE (Discrete Inversion for Controllable Editing), the first approach to enable precise inversion for discrete diffusion models, including multinomial diffusion and masked generative models. By recording noise sequences and masking patterns during the reverse diffusion process, DICE enables accurate reconstruction and flexible editing of discrete data without the need for predefined masks or attention manipulation. We demonstrate the effectiveness of DICE across both image and text domains, evaluating it on models such as VQ-Diffusion, Paella, and RoBERTa. Our results show that DICE preserves high data fidelity while enhancing editing capabilities, offering new opportunities for fine-grained content manipulation in discrete spaces. For project webpage, see https://hexiaoxiao-cs.github.io/DICE/. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08207v1-abstract-full').style.display = 'none'; document.getElementById('2410.08207v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16145">arXiv:2409.16145</a> <span> [<a href="https://arxiv.org/pdf/2409.16145">pdf</a>, <a href="https://arxiv.org/format/2409.16145">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Learning to Localize Actions in Instructional Videos with LLM-Based Multi-Pathway Text-Video Alignment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Chen%2C+Y">Yuxiao Chen</a>, <a href="/search/cs?searchtype=author&query=Li%2C+K">Kai Li</a>, <a href="/search/cs?searchtype=author&query=Bao%2C+W">Wentao Bao</a>, <a href="/search/cs?searchtype=author&query=Patel%2C+D">Deep Patel</a>, <a href="/search/cs?searchtype=author&query=Kong%2C+Y">Yu Kong</a>, <a href="/search/cs?searchtype=author&query=Min%2C+M+R">Martin Renqiang Min</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16145v1-abstract-short" style="display: inline;"> Learning to localize temporal boundaries of procedure steps in instructional videos is challenging due to the limited availability of annotated large-scale training videos. Recent works focus on learning the cross-modal alignment between video segments and ASR-transcripted narration texts through contrastive learning. However, these methods fail to account for the alignment noise, i.e., irrelevant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16145v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16145v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16145v1-abstract-full" style="display: none;"> Learning to localize temporal boundaries of procedure steps in instructional videos is challenging due to the limited availability of annotated large-scale training videos. Recent works focus on learning the cross-modal alignment between video segments and ASR-transcripted narration texts through contrastive learning. However, these methods fail to account for the alignment noise, i.e., irrelevant narrations to the instructional task in videos and unreliable timestamps in narrations. To address these challenges, this work proposes a novel training framework. Motivated by the strong capabilities of Large Language Models (LLMs) in procedure understanding and text summarization, we first apply an LLM to filter out task-irrelevant information and summarize task-related procedure steps (LLM-steps) from narrations. To further generate reliable pseudo-matching between the LLM-steps and the video for training, we propose the Multi-Pathway Text-Video Alignment (MPTVA) strategy. The key idea is to measure alignment between LLM-steps and videos via multiple pathways, including: (1) step-narration-video alignment using narration timestamps, (2) direct step-to-video alignment based on their long-term semantic similarity, and (3) direct step-to-video alignment focusing on short-term fine-grained semantic similarity learned from general video domains. The results from different pathways are fused to generate reliable pseudo step-video matching. We conducted extensive experiments across various tasks and problem settings to evaluate our proposed method. Our approach surpasses state-of-the-art methods in three downstream tasks: procedure step grounding, step localization, and narration grounding by 5.9\%, 3.1\%, and 2.8\%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16145v1-abstract-full').style.display = 'none'; document.getElementById('2409.16145v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ECCV 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15310">arXiv:2409.15310</a> <span> [<a href="https://arxiv.org/pdf/2409.15310">pdf</a>, <a href="https://arxiv.org/format/2409.15310">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Visual Prompting in Multimodal Large Language Models: A Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wu%2C+J">Junda Wu</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhehao Zhang</a>, <a href="/search/cs?searchtype=author&query=Xia%2C+Y">Yu Xia</a>, <a href="/search/cs?searchtype=author&query=Li%2C+X">Xintong Li</a>, <a href="/search/cs?searchtype=author&query=Xia%2C+Z">Zhaoyang Xia</a>, <a href="/search/cs?searchtype=author&query=Chang%2C+A">Aaron Chang</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+T">Tong Yu</a>, <a href="/search/cs?searchtype=author&query=Kim%2C+S">Sungchul Kim</a>, <a href="/search/cs?searchtype=author&query=Rossi%2C+R+A">Ryan A. Rossi</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+R">Ruiyi Zhang</a>, <a href="/search/cs?searchtype=author&query=Mitra%2C+S">Subrata Mitra</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a>, <a href="/search/cs?searchtype=author&query=Yao%2C+L">Lina Yao</a>, <a href="/search/cs?searchtype=author&query=Shang%2C+J">Jingbo Shang</a>, <a href="/search/cs?searchtype=author&query=McAuley%2C+J">Julian McAuley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15310v1-abstract-short" style="display: inline;"> Multimodal large language models (MLLMs) equip pre-trained large-language models (LLMs) with visual capabilities. While textual prompting in LLMs has been widely studied, visual prompting has emerged for more fine-grained and free-form visual instructions. This paper presents the first comprehensive survey on visual prompting methods in MLLMs, focusing on visual prompting, prompt generation, compo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15310v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15310v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15310v1-abstract-full" style="display: none;"> Multimodal large language models (MLLMs) equip pre-trained large-language models (LLMs) with visual capabilities. While textual prompting in LLMs has been widely studied, visual prompting has emerged for more fine-grained and free-form visual instructions. This paper presents the first comprehensive survey on visual prompting methods in MLLMs, focusing on visual prompting, prompt generation, compositional reasoning, and prompt learning. We categorize existing visual prompts and discuss generative methods for automatic prompt annotations on the images. We also examine visual prompting methods that enable better alignment between visual encoders and backbone LLMs, concerning MLLM's visual grounding, object referring, and compositional reasoning abilities. In addition, we provide a summary of model training and in-context learning methods to improve MLLM's perception and understanding of visual prompts. This paper examines visual prompting methods developed in MLLMs and provides a vision of the future of these methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15310v1-abstract-full').style.display = 'none'; document.getElementById('2409.15310v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09893">arXiv:2409.09893</a> <span> [<a href="https://arxiv.org/pdf/2409.09893">pdf</a>, <a href="https://arxiv.org/format/2409.09893">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Resolving Inconsistent Semantics in Multi-Dataset Image Segmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhangli%2C+Q">Qilong Zhangli</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+D">Di Liu</a>, <a href="/search/cs?searchtype=author&query=Aich%2C+A">Abhishek Aich</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a>, <a href="/search/cs?searchtype=author&query=Schulter%2C+S">Samuel Schulter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09893v1-abstract-short" style="display: inline;"> Leveraging multiple training datasets to scale up image segmentation models is beneficial for increasing robustness and semantic understanding. Individual datasets have well-defined ground truth with non-overlapping mask layouts and mutually exclusive semantics. However, merging them for multi-dataset training disrupts this harmony and leads to semantic inconsistencies; for example, the class "per… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09893v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09893v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09893v1-abstract-full" style="display: none;"> Leveraging multiple training datasets to scale up image segmentation models is beneficial for increasing robustness and semantic understanding. Individual datasets have well-defined ground truth with non-overlapping mask layouts and mutually exclusive semantics. However, merging them for multi-dataset training disrupts this harmony and leads to semantic inconsistencies; for example, the class "person" in one dataset and class "face" in another will require multilabel handling for certain pixels. Existing methods struggle with this setting, particularly when evaluated on label spaces mixed from the individual training sets. To overcome these issues, we introduce a simple yet effective multi-dataset training approach by integrating language-based embeddings of class names and label space-specific query embeddings. Our method maintains high performance regardless of the underlying inconsistencies between training datasets. Notably, on four benchmark datasets with label space inconsistencies during inference, we outperform previous methods by 1.6% mIoU for semantic segmentation, 9.1% PQ for panoptic segmentation, 12.1% AP for instance segmentation, and 3.0% in the newly proposed PIQ metric. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09893v1-abstract-full').style.display = 'none'; document.getElementById('2409.09893v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13571">arXiv:2407.13571</a> <span> [<a href="https://arxiv.org/pdf/2407.13571">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> New Capability to Look Up an ASL Sign from a Video Example </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Neidle%2C+C">Carol Neidle</a>, <a href="/search/cs?searchtype=author&query=Opoku%2C+A">Augustine Opoku</a>, <a href="/search/cs?searchtype=author&query=Ballard%2C+C">Carey Ballard</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+Y">Yang Zhou</a>, <a href="/search/cs?searchtype=author&query=He%2C+X">Xiaoxiao He</a>, <a href="/search/cs?searchtype=author&query=Dimitriadis%2C+G">Gregory Dimitriadis</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13571v1-abstract-short" style="display: inline;"> Looking up an unknown sign in an ASL dictionary can be difficult. Most ASL dictionaries are organized based on English glosses, despite the fact that (1) there is no convention for assigning English-based glosses to ASL signs; and (2) there is no 1-1 correspondence between ASL signs and English words. Furthermore, what if the user does not know either the meaning of the target sign or its possible… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13571v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13571v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13571v1-abstract-full" style="display: none;"> Looking up an unknown sign in an ASL dictionary can be difficult. Most ASL dictionaries are organized based on English glosses, despite the fact that (1) there is no convention for assigning English-based glosses to ASL signs; and (2) there is no 1-1 correspondence between ASL signs and English words. Furthermore, what if the user does not know either the meaning of the target sign or its possible English translation(s)? Some ASL dictionaries enable searching through specification of articulatory properties, such as handshapes, locations, movement properties, etc. However, this is a cumbersome process and does not always result in successful lookup. Here we describe a new system, publicly shared on the Web, to enable lookup of a video of an ASL sign (e.g., a webcam recording or a clip from a continuous signing video). The user submits a video for analysis and is presented with the five most likely sign matches, in decreasing order of likelihood, so that the user can confirm the selection and then be taken to our ASLLRP Sign Bank entry for that sign. Furthermore, this video lookup is also integrated into our newest version of SignStream(R) software to facilitate linguistic annotation of ASL video data, enabling the user to directly look up a sign in the video being annotated, and, upon confirmation of the match, to directly enter into the annotation the gloss and features of that sign, greatly increasing the efficiency and consistency of linguistic annotations of ASL video data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13571v1-abstract-full').style.display = 'none'; document.getElementById('2407.13571v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14449">arXiv:2406.14449</a> <span> [<a href="https://arxiv.org/pdf/2406.14449">pdf</a>, <a href="https://arxiv.org/format/2406.14449">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> APEER: Automatic Prompt Engineering Enhances Large Language Model Reranking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jin%2C+C">Can Jin</a>, <a href="/search/cs?searchtype=author&query=Peng%2C+H">Hongwu Peng</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+S">Shiyu Zhao</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+Z">Zhenting Wang</a>, <a href="/search/cs?searchtype=author&query=Xu%2C+W">Wujiang Xu</a>, <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+J">Jiahui Zhao</a>, <a href="/search/cs?searchtype=author&query=Zhong%2C+K">Kai Zhong</a>, <a href="/search/cs?searchtype=author&query=Rajasekaran%2C+S">Sanguthevar Rajasekaran</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14449v1-abstract-short" style="display: inline;"> Large Language Models (LLMs) have significantly enhanced Information Retrieval (IR) across various modules, such as reranking. Despite impressive performance, current zero-shot relevance ranking with LLMs heavily relies on human prompt engineering. Existing automatic prompt engineering algorithms primarily focus on language modeling and classification tasks, leaving the domain of IR, particularly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14449v1-abstract-full').style.display = 'inline'; document.getElementById('2406.14449v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14449v1-abstract-full" style="display: none;"> Large Language Models (LLMs) have significantly enhanced Information Retrieval (IR) across various modules, such as reranking. Despite impressive performance, current zero-shot relevance ranking with LLMs heavily relies on human prompt engineering. Existing automatic prompt engineering algorithms primarily focus on language modeling and classification tasks, leaving the domain of IR, particularly reranking, underexplored. Directly applying current prompt engineering algorithms to relevance ranking is challenging due to the integration of query and long passage pairs in the input, where the ranking complexity surpasses classification tasks. To reduce human effort and unlock the potential of prompt optimization in reranking, we introduce a novel automatic prompt engineering algorithm named APEER. APEER iteratively generates refined prompts through feedback and preference optimization. Extensive experiments with four LLMs and ten datasets demonstrate the substantial performance improvement of APEER over existing state-of-the-art (SoTA) manual prompts. Furthermore, we find that the prompts generated by APEER exhibit better transferability across diverse tasks and LLMs. Code is available at https://github.com/jincan333/APEER. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14449v1-abstract-full').style.display = 'none'; document.getElementById('2406.14449v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11675">arXiv:2406.11675</a> <span> [<a href="https://arxiv.org/pdf/2406.11675">pdf</a>, <a href="https://arxiv.org/format/2406.11675">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wang%2C+Y">Yibin Wang</a>, <a href="/search/cs?searchtype=author&query=Shi%2C+H">Haizhou Shi</a>, <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+H">Hao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11675v4-abstract-short" style="display: inline;"> Large Language Models (LLMs) often suffer from overconfidence during inference, particularly when adapted to downstream domain-specific tasks with limited data. Previous work addresses this issue by employing approximate Bayesian estimation after the LLMs are trained, enabling them to quantify uncertainty. However, such post-training approaches' performance is severely limited by the parameters le… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11675v4-abstract-full').style.display = 'inline'; document.getElementById('2406.11675v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11675v4-abstract-full" style="display: none;"> Large Language Models (LLMs) often suffer from overconfidence during inference, particularly when adapted to downstream domain-specific tasks with limited data. Previous work addresses this issue by employing approximate Bayesian estimation after the LLMs are trained, enabling them to quantify uncertainty. However, such post-training approaches' performance is severely limited by the parameters learned during training. In this paper, we go beyond post-training Bayesianization and propose Bayesian Low-Rank Adaptation by Backpropagation (BLoB), an algorithm that continuously and jointly adjusts both the mean and covariance of LLM parameters throughout the whole fine-tuning process. Our empirical results verify the effectiveness of BLoB in terms of generalization and uncertainty estimation, when evaluated on both in-distribution and out-of-distribution data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11675v4-abstract-full').style.display = 'none'; document.getElementById('2406.11675v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at NeurIPS 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05596">arXiv:2406.05596</a> <span> [<a href="https://arxiv.org/pdf/2406.05596">pdf</a>, <a href="https://arxiv.org/format/2406.05596">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Aligning Human Knowledge with Visual Concepts Towards Explainable Medical Image Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gao%2C+Y">Yunhe Gao</a>, <a href="/search/cs?searchtype=author&query=Gu%2C+D">Difei Gu</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+M">Mu Zhou</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05596v2-abstract-short" style="display: inline;"> Although explainability is essential in the clinical diagnosis, most deep learning models still function as black boxes without elucidating their decision-making process. In this study, we investigate the explainable model development that can mimic the decision-making process of human experts by fusing the domain knowledge of explicit diagnostic criteria. We introduce a simple yet effective frame… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05596v2-abstract-full').style.display = 'inline'; document.getElementById('2406.05596v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05596v2-abstract-full" style="display: none;"> Although explainability is essential in the clinical diagnosis, most deep learning models still function as black boxes without elucidating their decision-making process. In this study, we investigate the explainable model development that can mimic the decision-making process of human experts by fusing the domain knowledge of explicit diagnostic criteria. We introduce a simple yet effective framework, Explicd, towards Explainable language-informed criteria-based diagnosis. Explicd initiates its process by querying domain knowledge from either large language models (LLMs) or human experts to establish diagnostic criteria across various concept axes (e.g., color, shape, texture, or specific patterns of diseases). By leveraging a pretrained vision-language model, Explicd injects these criteria into the embedding space as knowledge anchors, thereby facilitating the learning of corresponding visual concepts within medical images. The final diagnostic outcome is determined based on the similarity scores between the encoded visual concepts and the textual criteria embeddings. Through extensive evaluation of five medical image classification benchmarks, Explicd has demonstrated its inherent explainability and extends to improve classification performance compared to traditional black-box models. Code is available at \url{https://github.com/yhygao/Explicd}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05596v2-abstract-full').style.display = 'none'; document.getElementById('2406.05596v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MICCAI 2024 Early Accept</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04324">arXiv:2406.04324</a> <span> [<a href="https://arxiv.org/pdf/2406.04324">pdf</a>, <a href="https://arxiv.org/format/2406.04324">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> SF-V: Single Forward Video Generation Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhixing Zhang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+Y">Yanyu Li</a>, <a href="/search/cs?searchtype=author&query=Wu%2C+Y">Yushu Wu</a>, <a href="/search/cs?searchtype=author&query=Xu%2C+Y">Yanwu Xu</a>, <a href="/search/cs?searchtype=author&query=Kag%2C+A">Anil Kag</a>, <a href="/search/cs?searchtype=author&query=Skorokhodov%2C+I">Ivan Skorokhodov</a>, <a href="/search/cs?searchtype=author&query=Menapace%2C+W">Willi Menapace</a>, <a href="/search/cs?searchtype=author&query=Siarohin%2C+A">Aliaksandr Siarohin</a>, <a href="/search/cs?searchtype=author&query=Cao%2C+J">Junli Cao</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a>, <a href="/search/cs?searchtype=author&query=Tulyakov%2C+S">Sergey Tulyakov</a>, <a href="/search/cs?searchtype=author&query=Ren%2C+J">Jian Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04324v2-abstract-short" style="display: inline;"> Diffusion-based video generation models have demonstrated remarkable success in obtaining high-fidelity videos through the iterative denoising process. However, these models require multiple denoising steps during sampling, resulting in high computational costs. In this work, we propose a novel approach to obtain single-step video generation models by leveraging adversarial training to fine-tune p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04324v2-abstract-full').style.display = 'inline'; document.getElementById('2406.04324v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04324v2-abstract-full" style="display: none;"> Diffusion-based video generation models have demonstrated remarkable success in obtaining high-fidelity videos through the iterative denoising process. However, these models require multiple denoising steps during sampling, resulting in high computational costs. In this work, we propose a novel approach to obtain single-step video generation models by leveraging adversarial training to fine-tune pre-trained video diffusion models. We show that, through the adversarial training, the multi-steps video diffusion model, i.e., Stable Video Diffusion (SVD), can be trained to perform single forward pass to synthesize high-quality videos, capturing both temporal and spatial dependencies in the video data. Extensive experiments demonstrate that our method achieves competitive generation quality of synthesized videos with significantly reduced computational overhead for the denoising process (i.e., around $23\times$ speedup compared with SVD and $6\times$ speedup compared with existing works, with even better generation quality), paving the way for real-time video synthesis and editing. More visualization results are made publicly available at https://snap-research.github.io/SF-V. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04324v2-abstract-full').style.display = 'none'; document.getElementById('2406.04324v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project Page: https://snap-research.github.io/SF-V</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01062">arXiv:2406.01062</a> <span> [<a href="https://arxiv.org/pdf/2406.01062">pdf</a>, <a href="https://arxiv.org/format/2406.01062">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Layout Agnostic Scene Text Image Synthesis with Diffusion Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhangli%2C+Q">Qilong Zhangli</a>, <a href="/search/cs?searchtype=author&query=Jiang%2C+J">Jindong Jiang</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+D">Di Liu</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+L">Licheng Yu</a>, <a href="/search/cs?searchtype=author&query=Dai%2C+X">Xiaoliang Dai</a>, <a href="/search/cs?searchtype=author&query=Ramchandani%2C+A">Ankit Ramchandani</a>, <a href="/search/cs?searchtype=author&query=Pang%2C+G">Guan Pang</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a>, <a href="/search/cs?searchtype=author&query=Krishnan%2C+P">Praveen Krishnan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01062v5-abstract-short" style="display: inline;"> While diffusion models have significantly advanced the quality of image generation their capability to accurately and coherently render text within these images remains a substantial challenge. Conventional diffusion-based methods for scene text generation are typically limited by their reliance on an intermediate layout output. This dependency often results in a constrained diversity of text styl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01062v5-abstract-full').style.display = 'inline'; document.getElementById('2406.01062v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01062v5-abstract-full" style="display: none;"> While diffusion models have significantly advanced the quality of image generation their capability to accurately and coherently render text within these images remains a substantial challenge. Conventional diffusion-based methods for scene text generation are typically limited by their reliance on an intermediate layout output. This dependency often results in a constrained diversity of text styles and fonts an inherent limitation stemming from the deterministic nature of the layout generation phase. To address these challenges this paper introduces SceneTextGen a novel diffusion-based model specifically designed to circumvent the need for a predefined layout stage. By doing so SceneTextGen facilitates a more natural and varied representation of text. The novelty of SceneTextGen lies in its integration of three key components: a character-level encoder for capturing detailed typographic properties coupled with a character-level instance segmentation model and a word-level spotting model to address the issues of unwanted text generation and minor character inaccuracies. We validate the performance of our method by demonstrating improved character recognition rates on generated images across different public visual text datasets in comparison to both standard diffusion based methods and text specific methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01062v5-abstract-full').style.display = 'none'; document.getElementById('2406.01062v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 7496-7506</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 7496-7506 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.21050">arXiv:2405.21050</a> <span> [<a href="https://arxiv.org/pdf/2405.21050">pdf</a>, <a href="https://arxiv.org/format/2405.21050">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhang%2C+X">Xinxi Zhang</a>, <a href="/search/cs?searchtype=author&query=Wen%2C+S">Song Wen</a>, <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Juefei-Xu%2C+F">Felix Juefei-Xu</a>, <a href="/search/cs?searchtype=author&query=Srivastava%2C+A">Akash Srivastava</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+J">Junzhou Huang</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+H">Hao Wang</a>, <a href="/search/cs?searchtype=author&query=Tao%2C+M">Molei Tao</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.21050v1-abstract-short" style="display: inline;"> Adapting large-scale pre-trained generative models in a parameter-efficient manner is gaining traction. Traditional methods like low rank adaptation achieve parameter efficiency by imposing constraints but may not be optimal for tasks requiring high representation capacity. We propose a novel spectrum-aware adaptation framework for generative models. Our method adjusts both singular values and the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.21050v1-abstract-full').style.display = 'inline'; document.getElementById('2405.21050v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.21050v1-abstract-full" style="display: none;"> Adapting large-scale pre-trained generative models in a parameter-efficient manner is gaining traction. Traditional methods like low rank adaptation achieve parameter efficiency by imposing constraints but may not be optimal for tasks requiring high representation capacity. We propose a novel spectrum-aware adaptation framework for generative models. Our method adjusts both singular values and their basis vectors of pretrained weights. Using the Kronecker product and efficient Stiefel optimizers, we achieve parameter-efficient adaptation of orthogonal matrices. We introduce Spectral Orthogonal Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity. Extensive evaluations on text-to-image diffusion models demonstrate SODA's effectiveness, offering a spectrum-aware alternative to existing fine-tuning methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.21050v1-abstract-full').style.display = 'none'; document.getElementById('2405.21050v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14660">arXiv:2405.14660</a> <span> [<a href="https://arxiv.org/pdf/2405.14660">pdf</a>, <a href="https://arxiv.org/format/2405.14660">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Implicit In-context Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Li%2C+Z">Zhuowei Li</a>, <a href="/search/cs?searchtype=author&query=Xu%2C+Z">Zihao Xu</a>, <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Gao%2C+Y">Yunhe Gao</a>, <a href="/search/cs?searchtype=author&query=Wen%2C+S">Song Wen</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+D">Di Liu</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+H">Hao Wang</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14660v1-abstract-short" style="display: inline;"> In-context Learning (ICL) empowers large language models (LLMs) to adapt to unseen tasks during inference by prefixing a few demonstration examples prior to test queries. Despite its versatility, ICL incurs substantial computational and memory overheads compared to zero-shot learning and is susceptible to the selection and order of demonstration examples. In this work, we introduce Implicit In-con… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14660v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14660v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14660v1-abstract-full" style="display: none;"> In-context Learning (ICL) empowers large language models (LLMs) to adapt to unseen tasks during inference by prefixing a few demonstration examples prior to test queries. Despite its versatility, ICL incurs substantial computational and memory overheads compared to zero-shot learning and is susceptible to the selection and order of demonstration examples. In this work, we introduce Implicit In-context Learning (I2CL), an innovative paradigm that addresses the challenges associated with traditional ICL by absorbing demonstration examples within the activation space. I2CL first generates a condensed vector representation, namely a context vector, from the demonstration examples. It then integrates the context vector during inference by injecting a linear combination of the context vector and query activations into the model's residual streams. Empirical evaluation on nine real-world tasks across three model architectures demonstrates that I2CL achieves few-shot performance with zero-shot cost and exhibits robustness against the variation of demonstration examples. Furthermore, I2CL facilitates a novel representation of "task-ids", enhancing task similarity detection and enabling effective transfer learning. We provide a comprehensive analysis of I2CL, offering deeper insights into its mechanisms and broader implications for ICL. The source code is available at: https://github.com/LzVv123456/I2CL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14660v1-abstract-full').style.display = 'none'; document.getElementById('2405.14660v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13360">arXiv:2405.13360</a> <span> [<a href="https://arxiv.org/pdf/2405.13360">pdf</a>, <a href="https://arxiv.org/format/2405.13360">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> How to Trace Latent Generative Model Generated Images without Artificial Watermark? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wang%2C+Z">Zhenting Wang</a>, <a href="/search/cs?searchtype=author&query=Sehwag%2C+V">Vikash Sehwag</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+C">Chen Chen</a>, <a href="/search/cs?searchtype=author&query=Lyu%2C+L">Lingjuan Lyu</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a>, <a href="/search/cs?searchtype=author&query=Ma%2C+S">Shiqing Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13360v1-abstract-short" style="display: inline;"> Latent generative models (e.g., Stable Diffusion) have become more and more popular, but concerns have arisen regarding potential misuse related to images generated by these models. It is, therefore, necessary to analyze the origin of images by inferring if a particular image was generated by a specific latent generative model. Most existing methods (e.g., image watermark and model fingerprinting)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13360v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13360v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13360v1-abstract-full" style="display: none;"> Latent generative models (e.g., Stable Diffusion) have become more and more popular, but concerns have arisen regarding potential misuse related to images generated by these models. It is, therefore, necessary to analyze the origin of images by inferring if a particular image was generated by a specific latent generative model. Most existing methods (e.g., image watermark and model fingerprinting) require extra steps during training or generation. These requirements restrict their usage on the generated images without such extra operations, and the extra required operations might compromise the quality of the generated images. In this work, we ask whether it is possible to effectively and efficiently trace the images generated by a specific latent generative model without the aforementioned requirements. To study this problem, we design a latent inversion based method called LatentTracer to trace the generated images of the inspected model by checking if the examined images can be well-reconstructed with an inverted latent input. We leverage gradient based latent inversion and identify a encoder-based initialization critical to the success of our approach. Our experiments on the state-of-the-art latent generative models, such as Stable Diffusion, show that our method can distinguish the images generated by the inspected model and other images with a high accuracy and efficiency. Our findings suggest the intriguing possibility that today's latent generative generated images are naturally watermarked by the decoder used in the source models. Code: https://github.com/ZhentingWang/LatentTracer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13360v1-abstract-full').style.display = 'none'; document.getElementById('2405.13360v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICML 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02781">arXiv:2405.02781</a> <span> [<a href="https://arxiv.org/pdf/2405.02781">pdf</a>, <a href="https://arxiv.org/format/2405.02781">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Instantaneous Perception of Moving Objects in 3D </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Liu%2C+D">Di Liu</a>, <a href="/search/cs?searchtype=author&query=Zhuang%2C+B">Bingbing Zhuang</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a>, <a href="/search/cs?searchtype=author&query=Chandraker%2C+M">Manmohan Chandraker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02781v1-abstract-short" style="display: inline;"> The perception of 3D motion of surrounding traffic participants is crucial for driving safety. While existing works primarily focus on general large motions, we contend that the instantaneous detection and quantification of subtle motions is equally important as they indicate the nuances in driving behavior that may be safety critical, such as behaviors near a stop sign of parking positions. We de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02781v1-abstract-full').style.display = 'inline'; document.getElementById('2405.02781v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02781v1-abstract-full" style="display: none;"> The perception of 3D motion of surrounding traffic participants is crucial for driving safety. While existing works primarily focus on general large motions, we contend that the instantaneous detection and quantification of subtle motions is equally important as they indicate the nuances in driving behavior that may be safety critical, such as behaviors near a stop sign of parking positions. We delve into this under-explored task, examining its unique challenges and developing our solution, accompanied by a carefully designed benchmark. Specifically, due to the lack of correspondences between consecutive frames of sparse Lidar point clouds, static objects might appear to be moving - the so-called swimming effect. This intertwines with the true object motion, thereby posing ambiguity in accurate estimation, especially for subtle motions. To address this, we propose to leverage local occupancy completion of object point clouds to densify the shape cue, and mitigate the impact of swimming artifacts. The occupancy completion is learned in an end-to-end fashion together with the detection of moving objects and the estimation of their motion, instantaneously as soon as objects start to move. Extensive experiments demonstrate superior performance compared to standard 3D motion estimation approaches, particularly highlighting our method's specialized treatment of subtle motions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02781v1-abstract-full').style.display = 'none'; document.getElementById('2405.02781v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">CVPR 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09623">arXiv:2403.09623</a> <span> [<a href="https://arxiv.org/pdf/2403.09623">pdf</a>, <a href="https://arxiv.org/format/2403.09623">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Score-Guided Diffusion for 3D Human Recovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Stathopoulos%2C+A">Anastasis Stathopoulos</a>, <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09623v1-abstract-short" style="display: inline;"> We present Score-Guided Human Mesh Recovery (ScoreHMR), an approach for solving inverse problems for 3D human pose and shape reconstruction. These inverse problems involve fitting a human body model to image observations, traditionally solved through optimization techniques. ScoreHMR mimics model fitting approaches, but alignment with the image observation is achieved through score guidance in the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09623v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09623v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09623v1-abstract-full" style="display: none;"> We present Score-Guided Human Mesh Recovery (ScoreHMR), an approach for solving inverse problems for 3D human pose and shape reconstruction. These inverse problems involve fitting a human body model to image observations, traditionally solved through optimization techniques. ScoreHMR mimics model fitting approaches, but alignment with the image observation is achieved through score guidance in the latent space of a diffusion model. The diffusion model is trained to capture the conditional distribution of the human model parameters given an input image. By guiding its denoising process with a task-specific score, ScoreHMR effectively solves inverse problems for various applications without the need for retraining the task-agnostic diffusion model. We evaluate our approach on three settings/applications. These are: (i) single-frame model fitting; (ii) reconstruction from multiple uncalibrated views; (iii) reconstructing humans in video sequences. ScoreHMR consistently outperforms all optimization baselines on popular benchmarks across all settings. We make our code and models available at the https://statho.github.io/ScoreHMR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09623v1-abstract-full').style.display = 'none'; document.getElementById('2403.09623v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">CVPR 2024 (project page: https://statho.github.io/ScoreHMR)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02769">arXiv:2402.02769</a> <span> [<a href="https://arxiv.org/pdf/2402.02769">pdf</a>, <a href="https://arxiv.org/format/2402.02769">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Learning from Teaching Regularization: Generalizable Correlations Should be Easy to Imitate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jin%2C+C">Can Jin</a>, <a href="/search/cs?searchtype=author&query=Che%2C+T">Tong Che</a>, <a href="/search/cs?searchtype=author&query=Peng%2C+H">Hongwu Peng</a>, <a href="/search/cs?searchtype=author&query=Li%2C+Y">Yiyuan Li</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a>, <a href="/search/cs?searchtype=author&query=Pavone%2C+M">Marco Pavone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02769v3-abstract-short" style="display: inline;"> Generalization remains a central challenge in machine learning. In this work, we propose Learning from Teaching (LoT), a novel regularization technique for deep neural networks to enhance generalization. Inspired by the human ability to capture concise and abstract patterns, we hypothesize that generalizable correlations are expected to be easier to imitate. LoT operationalizes this concept to imp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02769v3-abstract-full').style.display = 'inline'; document.getElementById('2402.02769v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02769v3-abstract-full" style="display: none;"> Generalization remains a central challenge in machine learning. In this work, we propose Learning from Teaching (LoT), a novel regularization technique for deep neural networks to enhance generalization. Inspired by the human ability to capture concise and abstract patterns, we hypothesize that generalizable correlations are expected to be easier to imitate. LoT operationalizes this concept to improve the generalization of the main model with auxiliary student learners. The student learners are trained by the main model and, in turn, provide feedback to help the main model capture more generalizable and imitable correlations. Our experimental results across several domains, including Computer Vision, Natural Language Processing, and methodologies like Reinforcement Learning, demonstrate that the introduction of LoT brings significant benefits compared to training models on the original dataset. The results suggest the effectiveness and efficiency of LoT in identifying generalizable information at the right scales while discarding spurious data correlations, thus making LoT a valuable addition to current machine learning. Code is available at https://github.com/jincan333/LoT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02769v3-abstract-full').style.display = 'none'; document.getElementById('2402.02769v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00094">arXiv:2401.00094</a> <span> [<a href="https://arxiv.org/pdf/2401.00094">pdf</a>, <a href="https://arxiv.org/format/2401.00094">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Generating Enhanced Negatives for Training Language-Based Object Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhao%2C+S">Shiyu Zhao</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+L">Long Zhao</a>, <a href="/search/cs?searchtype=author&query=G%2C+V+K+B">Vijay Kumar B. G</a>, <a href="/search/cs?searchtype=author&query=Suh%2C+Y">Yumin Suh</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a>, <a href="/search/cs?searchtype=author&query=Chandraker%2C+M">Manmohan Chandraker</a>, <a href="/search/cs?searchtype=author&query=Schulter%2C+S">Samuel Schulter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00094v2-abstract-short" style="display: inline;"> The recent progress in language-based open-vocabulary object detection can be largely attributed to finding better ways of leveraging large-scale data with free-form text annotations. Training such models with a discriminative objective function has proven successful, but requires good positive and negative samples. However, the free-form nature and the open vocabulary of object descriptions make… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00094v2-abstract-full').style.display = 'inline'; document.getElementById('2401.00094v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00094v2-abstract-full" style="display: none;"> The recent progress in language-based open-vocabulary object detection can be largely attributed to finding better ways of leveraging large-scale data with free-form text annotations. Training such models with a discriminative objective function has proven successful, but requires good positive and negative samples. However, the free-form nature and the open vocabulary of object descriptions make the space of negatives extremely large. Prior works randomly sample negatives or use rule-based techniques to build them. In contrast, we propose to leverage the vast knowledge built into modern generative models to automatically build negatives that are more relevant to the original data. Specifically, we use large-language-models to generate negative text descriptions, and text-to-image diffusion models to also generate corresponding negative images. Our experimental analysis confirms the relevance of the generated negative data, and its use in language-based detectors improves performance on two complex benchmarks. Code is available at \url{https://github.com/xiaofeng94/Gen-Enhanced-Negs}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00094v2-abstract-full').style.display = 'none'; document.getElementById('2401.00094v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to CVPR 2024. The supplementary document included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.03816">arXiv:2312.03816</a> <span> [<a href="https://arxiv.org/pdf/2312.03816">pdf</a>, <a href="https://arxiv.org/format/2312.03816">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> AVID: Any-Length Video Inpainting with Diffusion Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhixing Zhang</a>, <a href="/search/cs?searchtype=author&query=Wu%2C+B">Bichen Wu</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+X">Xiaoyan Wang</a>, <a href="/search/cs?searchtype=author&query=Luo%2C+Y">Yaqiao Luo</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+L">Luxin Zhang</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+Y">Yinan Zhao</a>, <a href="/search/cs?searchtype=author&query=Vajda%2C+P">Peter Vajda</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+L">Licheng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.03816v3-abstract-short" style="display: inline;"> Recent advances in diffusion models have successfully enabled text-guided image inpainting. While it seems straightforward to extend such editing capability into the video domain, there have been fewer works regarding text-guided video inpainting. Given a video, a masked region at its initial frame, and an editing prompt, it requires a model to do infilling at each frame following the editing guid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03816v3-abstract-full').style.display = 'inline'; document.getElementById('2312.03816v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.03816v3-abstract-full" style="display: none;"> Recent advances in diffusion models have successfully enabled text-guided image inpainting. While it seems straightforward to extend such editing capability into the video domain, there have been fewer works regarding text-guided video inpainting. Given a video, a masked region at its initial frame, and an editing prompt, it requires a model to do infilling at each frame following the editing guidance while keeping the out-of-mask region intact. There are three main challenges in text-guided video inpainting: ($i$) temporal consistency of the edited video, ($ii$) supporting different inpainting types at different structural fidelity levels, and ($iii$) dealing with variable video length. To address these challenges, we introduce Any-Length Video Inpainting with Diffusion Model, dubbed as AVID. At its core, our model is equipped with effective motion modules and adjustable structure guidance, for fixed-length video inpainting. Building on top of that, we propose a novel Temporal MultiDiffusion sampling pipeline with a middle-frame attention guidance mechanism, facilitating the generation of videos with any desired duration. Our comprehensive experiments show our model can robustly deal with various inpainting types at different video duration ranges, with high quality. More visualization results are made publicly available at https://zhang-zx.github.io/AVID/ . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03816v3-abstract-full').style.display = 'none'; document.getElementById('2312.03816v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project website: https://zhang-zx.github.io/AVID/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16060">arXiv:2311.16060</a> <span> [<a href="https://arxiv.org/pdf/2311.16060">pdf</a>, <a href="https://arxiv.org/format/2311.16060">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> DiffSLVA: Harnessing Diffusion Models for Sign Language Video Anonymization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Xia%2C+Z">Zhaoyang Xia</a>, <a href="/search/cs?searchtype=author&query=Neidle%2C+C">Carol Neidle</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16060v1-abstract-short" style="display: inline;"> Since American Sign Language (ASL) has no standard written form, Deaf signers frequently share videos in order to communicate in their native language. However, since both hands and face convey critical linguistic information in signed languages, sign language videos cannot preserve signer privacy. While signers have expressed interest, for a variety of applications, in sign language video anonymi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16060v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16060v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16060v1-abstract-full" style="display: none;"> Since American Sign Language (ASL) has no standard written form, Deaf signers frequently share videos in order to communicate in their native language. However, since both hands and face convey critical linguistic information in signed languages, sign language videos cannot preserve signer privacy. While signers have expressed interest, for a variety of applications, in sign language video anonymization that would effectively preserve linguistic content, attempts to develop such technology have had limited success, given the complexity of hand movements and facial expressions. Existing approaches rely predominantly on precise pose estimations of the signer in video footage and often require sign language video datasets for training. These requirements prevent them from processing videos 'in the wild,' in part because of the limited diversity present in current sign language video datasets. To address these limitations, our research introduces DiffSLVA, a novel methodology that utilizes pre-trained large-scale diffusion models for zero-shot text-guided sign language video anonymization. We incorporate ControlNet, which leverages low-level image features such as HED (Holistically-Nested Edge Detection) edges, to circumvent the need for pose estimation. Additionally, we develop a specialized module dedicated to capturing facial expressions, which are critical for conveying essential linguistic information in signed languages. We then combine the above methods to achieve anonymization that better preserves the essential linguistic content of the original signer. This innovative methodology makes possible, for the first time, sign language video anonymization that could be used for real-world applications, which would offer significant benefits to the Deaf and Hard-of-Hearing communities. We demonstrate the effectiveness of our approach with a series of signer anonymization experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16060v1-abstract-full').style.display = 'none'; document.getElementById('2311.16060v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project webpage: https://github.com/Jeffery9707/DiffSLVA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.06311">arXiv:2310.06311</a> <span> [<a href="https://arxiv.org/pdf/2310.06311">pdf</a>, <a href="https://arxiv.org/format/2310.06311">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> </div> </div> <p class="title is-5 mathjax"> Improving Compositional Text-to-image Generation with Large Vision-Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wen%2C+S">Song Wen</a>, <a href="/search/cs?searchtype=author&query=Fang%2C+G">Guian Fang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+R">Renrui Zhang</a>, <a href="/search/cs?searchtype=author&query=Gao%2C+P">Peng Gao</a>, <a href="/search/cs?searchtype=author&query=Dong%2C+H">Hao Dong</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.06311v1-abstract-short" style="display: inline;"> Recent advancements in text-to-image models, particularly diffusion models, have shown significant promise. However, compositional text-to-image models frequently encounter difficulties in generating high-quality images that accurately align with input texts describing multiple objects, variable attributes, and intricate spatial relationships. To address this limitation, we employ large vision-lan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06311v1-abstract-full').style.display = 'inline'; document.getElementById('2310.06311v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.06311v1-abstract-full" style="display: none;"> Recent advancements in text-to-image models, particularly diffusion models, have shown significant promise. However, compositional text-to-image models frequently encounter difficulties in generating high-quality images that accurately align with input texts describing multiple objects, variable attributes, and intricate spatial relationships. To address this limitation, we employ large vision-language models (LVLMs) for multi-dimensional assessment of the alignment between generated images and their corresponding input texts. Utilizing this assessment, we fine-tune the diffusion model to enhance its alignment capabilities. During the inference phase, an initial image is produced using the fine-tuned diffusion model. The LVLM is then employed to pinpoint areas of misalignment in the initial image, which are subsequently corrected using the image editing algorithm until no further misalignments are detected by the LVLM. The resultant image is consequently more closely aligned with the input text. Our experimental results validate that the proposed methodology significantly improves text-image alignment in compositional image generation, particularly with respect to object number, attribute binding, spatial relationships, and aesthetic quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06311v1-abstract-full').style.display = 'none'; document.getElementById('2310.06311v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.13839">arXiv:2309.13839</a> <span> [<a href="https://arxiv.org/pdf/2309.13839">pdf</a>, <a href="https://arxiv.org/format/2309.13839">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Fill the K-Space and Refine the Image: Prompting for Dynamic and Multi-Contrast MRI Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Xin%2C+B">Bingyu Xin</a>, <a href="/search/cs?searchtype=author&query=Ye%2C+M">Meng Ye</a>, <a href="/search/cs?searchtype=author&query=Axel%2C+L">Leon Axel</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.13839v1-abstract-short" style="display: inline;"> The key to dynamic or multi-contrast magnetic resonance imaging (MRI) reconstruction lies in exploring inter-frame or inter-contrast information. Currently, the unrolled model, an approach combining iterative MRI reconstruction steps with learnable neural network layers, stands as the best-performing method for MRI reconstruction. However, there are two main limitations to overcome: firstly, the u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13839v1-abstract-full').style.display = 'inline'; document.getElementById('2309.13839v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.13839v1-abstract-full" style="display: none;"> The key to dynamic or multi-contrast magnetic resonance imaging (MRI) reconstruction lies in exploring inter-frame or inter-contrast information. Currently, the unrolled model, an approach combining iterative MRI reconstruction steps with learnable neural network layers, stands as the best-performing method for MRI reconstruction. However, there are two main limitations to overcome: firstly, the unrolled model structure and GPU memory constraints restrict the capacity of each denoising block in the network, impeding the effective extraction of detailed features for reconstruction; secondly, the existing model lacks the flexibility to adapt to variations in the input, such as different contrasts, resolutions or views, necessitating the training of separate models for each input type, which is inefficient and may lead to insufficient reconstruction. In this paper, we propose a two-stage MRI reconstruction pipeline to address these limitations. The first stage involves filling the missing k-space data, which we approach as a physics-based reconstruction problem. We first propose a simple yet efficient baseline model, which utilizes adjacent frames/contrasts and channel attention to capture the inherent inter-frame/-contrast correlation. Then, we extend the baseline model to a prompt-based learning approach, PromptMR, for all-in-one MRI reconstruction from different views, contrasts, adjacent types, and acceleration factors. The second stage is to refine the reconstruction from the first stage, which we treat as a general video restoration problem to further fuse features from neighboring frames/contrasts in the image domain. Extensive experiments show that our proposed method significantly outperforms previous state-of-the-art accelerated MRI reconstruction methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13839v1-abstract-full').style.display = 'none'; document.getElementById('2309.13839v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">STACOM 2023; Code is available at https://github.com/hellopipu/PromptMR</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.12594">arXiv:2309.12594</a> <span> [<a href="https://arxiv.org/pdf/2309.12594">pdf</a>, <a href="https://arxiv.org/format/2309.12594">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> DeFormer: Integrating Transformers with Deformable Models for 3D Shape Abstraction from a Single Image </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Liu%2C+D">Di Liu</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+X">Xiang Yu</a>, <a href="/search/cs?searchtype=author&query=Ye%2C+M">Meng Ye</a>, <a href="/search/cs?searchtype=author&query=Zhangli%2C+Q">Qilong Zhangli</a>, <a href="/search/cs?searchtype=author&query=Li%2C+Z">Zhuowei Li</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhixing Zhang</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.12594v2-abstract-short" style="display: inline;"> Accurate 3D shape abstraction from a single 2D image is a long-standing problem in computer vision and graphics. By leveraging a set of primitives to represent the target shape, recent methods have achieved promising results. However, these methods either use a relatively large number of primitives or lack geometric flexibility due to the limited expressibility of the primitives. In this paper, we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12594v2-abstract-full').style.display = 'inline'; document.getElementById('2309.12594v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.12594v2-abstract-full" style="display: none;"> Accurate 3D shape abstraction from a single 2D image is a long-standing problem in computer vision and graphics. By leveraging a set of primitives to represent the target shape, recent methods have achieved promising results. However, these methods either use a relatively large number of primitives or lack geometric flexibility due to the limited expressibility of the primitives. In this paper, we propose a novel bi-channel Transformer architecture, integrated with parameterized deformable models, termed DeFormer, to simultaneously estimate the global and local deformations of primitives. In this way, DeFormer can abstract complex object shapes while using a small number of primitives which offer a broader geometry coverage and finer details. Then, we introduce a force-driven dynamic fitting and a cycle-consistent re-projection loss to optimize the primitive parameters. Extensive experiments on ShapeNet across various settings show that DeFormer achieves better reconstruction accuracy over the state-of-the-art, and visualizes with consistent semantic correspondences for improved interpretability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.12594v2-abstract-full').style.display = 'none'; document.getElementById('2309.12594v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ICCV 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01035">arXiv:2309.01035</a> <span> [<a href="https://arxiv.org/pdf/2309.01035">pdf</a>, <a href="https://arxiv.org/format/2309.01035">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Deep Deformable Models: Learning 3D Shape Abstractions with Part Consistency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Liu%2C+D">Di Liu</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+L">Long Zhao</a>, <a href="/search/cs?searchtype=author&query=Zhangli%2C+Q">Qilong Zhangli</a>, <a href="/search/cs?searchtype=author&query=Gao%2C+Y">Yunhe Gao</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+T">Ting Liu</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01035v1-abstract-short" style="display: inline;"> The task of shape abstraction with semantic part consistency is challenging due to the complex geometries of natural objects. Recent methods learn to represent an object shape using a set of simple primitives to fit the target. \textcolor{black}{However, in these methods, the primitives used do not always correspond to real parts or lack geometric flexibility for semantic interpretation.} In this… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01035v1-abstract-full').style.display = 'inline'; document.getElementById('2309.01035v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01035v1-abstract-full" style="display: none;"> The task of shape abstraction with semantic part consistency is challenging due to the complex geometries of natural objects. Recent methods learn to represent an object shape using a set of simple primitives to fit the target. \textcolor{black}{However, in these methods, the primitives used do not always correspond to real parts or lack geometric flexibility for semantic interpretation.} In this paper, we investigate salient and efficient primitive descriptors for accurate shape abstractions, and propose \textit{Deep Deformable Models (DDMs)}. DDM employs global deformations and diffeomorphic local deformations. These properties enable DDM to abstract complex object shapes with significantly fewer primitives that offer broader geometry coverage and finer details. DDM is also capable of learning part-level semantic correspondences due to the differentiable and invertible properties of our primitive deformation. Moreover, DDM learning formulation is based on dynamic and kinematic modeling, which enables joint regularization of each sub-transformation during primitive fitting. Extensive experiments on \textit{ShapeNet} demonstrate that DDM outperforms the state-of-the-art in terms of reconstruction and part consistency by a notable margin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01035v1-abstract-full').style.display = 'none'; document.getElementById('2309.01035v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.09223">arXiv:2308.09223</a> <span> [<a href="https://arxiv.org/pdf/2308.09223">pdf</a>, <a href="https://arxiv.org/format/2308.09223">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> DMCVR: Morphology-Guided Diffusion Model for 3D Cardiac Volume Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=He%2C+X">Xiaoxiao He</a>, <a href="/search/cs?searchtype=author&query=Tan%2C+C">Chaowei Tan</a>, <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+B">Bo Liu</a>, <a href="/search/cs?searchtype=author&query=Axel%2C+L">Leon Axel</a>, <a href="/search/cs?searchtype=author&query=Li%2C+K">Kang Li</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.09223v1-abstract-short" style="display: inline;"> Accurate 3D cardiac reconstruction from cine magnetic resonance imaging (cMRI) is crucial for improved cardiovascular disease diagnosis and understanding of the heart's motion. However, current cardiac MRI-based reconstruction technology used in clinical settings is 2D with limited through-plane resolution, resulting in low-quality reconstructed cardiac volumes. To better reconstruct 3D cardiac vo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09223v1-abstract-full').style.display = 'inline'; document.getElementById('2308.09223v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.09223v1-abstract-full" style="display: none;"> Accurate 3D cardiac reconstruction from cine magnetic resonance imaging (cMRI) is crucial for improved cardiovascular disease diagnosis and understanding of the heart's motion. However, current cardiac MRI-based reconstruction technology used in clinical settings is 2D with limited through-plane resolution, resulting in low-quality reconstructed cardiac volumes. To better reconstruct 3D cardiac volumes from sparse 2D image stacks, we propose a morphology-guided diffusion model for 3D cardiac volume reconstruction, DMCVR, that synthesizes high-resolution 2D images and corresponding 3D reconstructed volumes. Our method outperforms previous approaches by conditioning the cardiac morphology on the generative model, eliminating the time-consuming iterative optimization process of the latent code, and improving generation quality. The learned latent spaces provide global semantics, local cardiac morphology and details of each 2D cMRI slice with highly interpretable value to reconstruct 3D cardiac shape. Our experiments show that DMCVR is highly effective in several aspects, such as 2D generation and 3D reconstruction performance. With DMCVR, we can produce high-resolution 3D cardiac MRI reconstructions, surpassing current techniques. Our proposed framework has great potential for improving the accuracy of cardiac disease diagnosis and treatment planning. Code can be accessed at https://github.com/hexiaoxiao-cs/DMCVR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09223v1-abstract-full').style.display = 'none'; document.getElementById('2308.09223v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in MICCAI 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06412">arXiv:2308.06412</a> <span> [<a href="https://arxiv.org/pdf/2308.06412">pdf</a>, <a href="https://arxiv.org/format/2308.06412">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Taming Self-Training for Open-Vocabulary Object Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhao%2C+S">Shiyu Zhao</a>, <a href="/search/cs?searchtype=author&query=Schulter%2C+S">Samuel Schulter</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+L">Long Zhao</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhixing Zhang</a>, <a href="/search/cs?searchtype=author&query=G%2C+V+K+B">Vijay Kumar B. G</a>, <a href="/search/cs?searchtype=author&query=Suh%2C+Y">Yumin Suh</a>, <a href="/search/cs?searchtype=author&query=Chandraker%2C+M">Manmohan Chandraker</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06412v3-abstract-short" style="display: inline;"> Recent studies have shown promising performance in open-vocabulary object detection (OVD) by utilizing pseudo labels (PLs) from pretrained vision and language models (VLMs). However, teacher-student self-training, a powerful and widely used paradigm to leverage PLs, is rarely explored for OVD. This work identifies two challenges of using self-training in OVD: noisy PLs from VLMs and frequent distr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06412v3-abstract-full').style.display = 'inline'; document.getElementById('2308.06412v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06412v3-abstract-full" style="display: none;"> Recent studies have shown promising performance in open-vocabulary object detection (OVD) by utilizing pseudo labels (PLs) from pretrained vision and language models (VLMs). However, teacher-student self-training, a powerful and widely used paradigm to leverage PLs, is rarely explored for OVD. This work identifies two challenges of using self-training in OVD: noisy PLs from VLMs and frequent distribution changes of PLs. To address these challenges, we propose SAS-Det that tames self-training for OVD from two key perspectives. First, we present a split-and-fusion (SAF) head that splits a standard detection into an open-branch and a closed-branch. This design can reduce noisy supervision from pseudo boxes. Moreover, the two branches learn complementary knowledge from different training data, significantly enhancing performance when fused together. Second, in our view, unlike in closed-set tasks, the PL distributions in OVD are solely determined by the teacher model. We introduce a periodic update strategy to decrease the number of updates to the teacher, thereby decreasing the frequency of changes in PL distributions, which stabilizes the training process. Extensive experiments demonstrate SAS-Det is both efficient and effective. SAS-Det outperforms recent models of the same scale by a clear margin and achieves 37.4 AP50 and 29.1 APr on novel categories of the COCO and LVIS benchmarks, respectively. Code is available at \url{https://github.com/xiaofeng94/SAS-Det}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06412v3-abstract-full').style.display = 'none'; document.getElementById('2308.06412v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to CVPR 2024. The supplementary document included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.04663">arXiv:2308.04663</a> <span> [<a href="https://arxiv.org/pdf/2308.04663">pdf</a>, <a href="https://arxiv.org/format/2308.04663">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.media.2024.103199">10.1016/j.media.2024.103199 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Classification of lung cancer subtypes on CT images with synthetic pathological priors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhu%2C+W">Wentao Zhu</a>, <a href="/search/cs?searchtype=author&query=Jin%2C+Y">Yuan Jin</a>, <a href="/search/cs?searchtype=author&query=Ma%2C+G">Gege Ma</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+G">Geng Chen</a>, <a href="/search/cs?searchtype=author&query=Egger%2C+J">Jan Egger</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+S">Shaoting Zhang</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.04663v1-abstract-short" style="display: inline;"> The accurate diagnosis on pathological subtypes for lung cancer is of significant importance for the follow-up treatments and prognosis managements. In this paper, we propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on computed tomography (CT) images. Inspired by studies stating that cross-scale associations exist in the image patterns betwe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04663v1-abstract-full').style.display = 'inline'; document.getElementById('2308.04663v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.04663v1-abstract-full" style="display: none;"> The accurate diagnosis on pathological subtypes for lung cancer is of significant importance for the follow-up treatments and prognosis managements. In this paper, we propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on computed tomography (CT) images. Inspired by studies stating that cross-scale associations exist in the image patterns between the same case's CT images and its pathological images, we innovatively developed a pathological feature synthetic module (PFSM), which quantitatively maps cross-modality associations through deep neural networks, to derive the "gold standard" information contained in the corresponding pathological images from CT images. Additionally, we designed a radiological feature extraction module (RFEM) to directly acquire CT image information and integrated it with the pathological priors under an effective feature fusion framework, enabling the entire classification model to generate more indicative and specific pathologically related features and eventually output more accurate predictions. The superiority of the proposed model lies in its ability to self-generate hybrid features that contain multi-modality image information based on a single-modality input. To evaluate the effectiveness, adaptability, and generalization ability of our model, we performed extensive experiments on a large-scale multi-center dataset (i.e., 829 cases from three hospitals) to compare our model and a series of state-of-the-art (SOTA) classification models. The experimental results demonstrated the superiority of our model for lung cancer subtypes classification with significant accuracy improvements in terms of accuracy (ACC), area under the curve (AUC), and F1 score. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04663v1-abstract-full').style.display = 'none'; document.getElementById('2308.04663v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Medical Image Analysis 95, July 2024, 103199 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11952">arXiv:2307.11952</a> <span> [<a href="https://arxiv.org/pdf/2307.11952">pdf</a>, <a href="https://arxiv.org/format/2307.11952">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Pathology-and-genomics Multimodal Transformer for Survival Outcome Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ding%2C+K">Kexin Ding</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+M">Mu Zhou</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+S">Shaoting Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11952v1-abstract-short" style="display: inline;"> Survival outcome assessment is challenging and inherently associated with multiple clinical factors (e.g., imaging and genomics biomarkers) in cancer. Enabling multimodal analytics promises to reveal novel predictive patterns of patient outcomes. In this study, we propose a multimodal transformer (PathOmics) integrating pathology and genomics insights into colon-related cancer survival prediction.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11952v1-abstract-full').style.display = 'inline'; document.getElementById('2307.11952v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11952v1-abstract-full" style="display: none;"> Survival outcome assessment is challenging and inherently associated with multiple clinical factors (e.g., imaging and genomics biomarkers) in cancer. Enabling multimodal analytics promises to reveal novel predictive patterns of patient outcomes. In this study, we propose a multimodal transformer (PathOmics) integrating pathology and genomics insights into colon-related cancer survival prediction. We emphasize the unsupervised pretraining to capture the intrinsic interaction between tissue microenvironments in gigapixel whole slide images (WSIs) and a wide range of genomics data (e.g., mRNA-sequence, copy number variant, and methylation). After the multimodal knowledge aggregation in pretraining, our task-specific model finetuning could expand the scope of data utility applicable to both multi- and single-modal data (e.g., image- or genomics-only). We evaluate our approach on both TCGA colon and rectum cancer cohorts, showing that the proposed approach is competitive and outperforms state-of-the-art studies. Finally, our approach is desirable to utilize the limited number of finetuned samples towards data-efficient analytics for survival outcome prediction. The code is available at https://github.com/Cassie07/PathOmics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11952v1-abstract-full').style.display = 'none'; document.getElementById('2307.11952v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to MICCAI2023 (Top14%)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.07693">arXiv:2307.07693</a> <span> [<a href="https://arxiv.org/pdf/2307.07693">pdf</a>, <a href="https://arxiv.org/format/2307.07693">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Neural Deformable Models for 3D Bi-Ventricular Heart Shape Reconstruction and Modeling from 2D Sparse Cardiac Magnetic Resonance Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ye%2C+M">Meng Ye</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+D">Dong Yang</a>, <a href="/search/cs?searchtype=author&query=Kanski%2C+M">Mikael Kanski</a>, <a href="/search/cs?searchtype=author&query=Axel%2C+L">Leon Axel</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.07693v3-abstract-short" style="display: inline;"> We propose a novel neural deformable model (NDM) targeting at the reconstruction and modeling of 3D bi-ventricular shape of the heart from 2D sparse cardiac magnetic resonance (CMR) imaging data. We model the bi-ventricular shape using blended deformable superquadrics, which are parameterized by a set of geometric parameter functions and are capable of deforming globally and locally. While global… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07693v3-abstract-full').style.display = 'inline'; document.getElementById('2307.07693v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.07693v3-abstract-full" style="display: none;"> We propose a novel neural deformable model (NDM) targeting at the reconstruction and modeling of 3D bi-ventricular shape of the heart from 2D sparse cardiac magnetic resonance (CMR) imaging data. We model the bi-ventricular shape using blended deformable superquadrics, which are parameterized by a set of geometric parameter functions and are capable of deforming globally and locally. While global geometric parameter functions and deformations capture gross shape features from visual data, local deformations, parameterized as neural diffeomorphic point flows, can be learned to recover the detailed heart shape.Different from iterative optimization methods used in conventional deformable model formulations, NDMs can be trained to learn such geometric parameter functions, global and local deformations from a shape distribution manifold. Our NDM can learn to densify a sparse cardiac point cloud with arbitrary scales and generate high-quality triangular meshes automatically. It also enables the implicit learning of dense correspondences among different heart shape instances for accurate cardiac shape registration. Furthermore, the parameters of NDM are intuitive, and can be used by a physician without sophisticated post-processing. Experimental results on a large CMR dataset demonstrate the improved performance of NDM over conventional methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07693v3-abstract-full').style.display = 'none'; document.getElementById('2307.07693v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ICCV 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03108">arXiv:2307.03108</a> <span> [<a href="https://arxiv.org/pdf/2307.03108">pdf</a>, <a href="https://arxiv.org/format/2307.03108">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wang%2C+Z">Zhenting Wang</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+C">Chen Chen</a>, <a href="/search/cs?searchtype=author&query=Lyu%2C+L">Lingjuan Lyu</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a>, <a href="/search/cs?searchtype=author&query=Ma%2C+S">Shiqing Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03108v3-abstract-short" style="display: inline;"> Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of images created by a particular artist and attempts to train a model capable of generating similar images without obtaining perm… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03108v3-abstract-full').style.display = 'inline'; document.getElementById('2307.03108v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03108v3-abstract-full" style="display: none;"> Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of images created by a particular artist and attempts to train a model capable of generating similar images without obtaining permission and giving credit to the artist. To address this issue, we propose a method for detecting such unauthorized data usage by planting the injected memorization into the text-to-image diffusion models trained on the protected dataset. Specifically, we modify the protected images by adding unique contents on these images using stealthy image warping functions that are nearly imperceptible to humans but can be captured and memorized by diffusion models. By analyzing whether the model has memorized the injected content (i.e., whether the generated images are processed by the injected post-processing function), we can detect models that had illegally utilized the unauthorized data. Experiments on Stable Diffusion and VQ Diffusion with different model training or fine-tuning methods (i.e, LoRA, DreamBooth, and standard training) demonstrate the effectiveness of our proposed method in detecting unauthorized data usages. Code: https://github.com/ZhentingWang/DIAGNOSIS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03108v3-abstract-full').style.display = 'none'; document.getElementById('2307.03108v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICLR 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05705">arXiv:2306.05705</a> <span> [<a href="https://arxiv.org/pdf/2306.05705">pdf</a>, <a href="https://arxiv.org/format/2306.05705">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> On the Challenges and Perspectives of Foundation Models for Medical Image Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhang%2C+S">Shaoting Zhang</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05705v2-abstract-short" style="display: inline;"> This article discusses the opportunities, applications and future directions of large-scale pre-trained models, i.e., foundation models, for analyzing medical images. Medical foundation models have immense potential in solving a wide range of downstream tasks, as they can help to accelerate the development of accurate and robust models, reduce the large amounts of required labeled data, preserve t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05705v2-abstract-full').style.display = 'inline'; document.getElementById('2306.05705v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05705v2-abstract-full" style="display: none;"> This article discusses the opportunities, applications and future directions of large-scale pre-trained models, i.e., foundation models, for analyzing medical images. Medical foundation models have immense potential in solving a wide range of downstream tasks, as they can help to accelerate the development of accurate and robust models, reduce the large amounts of required labeled data, preserve the privacy and confidentiality of patient data. Specifically, we illustrate the "spectrum" of medical foundation models, ranging from general vision models, modality-specific models, to organ/task-specific models, highlighting their challenges, opportunities and applications. We also discuss how foundation models can be leveraged in downstream medical tasks to enhance the accuracy and efficiency of medical image analysis, leading to more precise diagnosis and treatment decisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05705v2-abstract-full').style.display = 'none'; document.getElementById('2306.05705v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05414">arXiv:2306.05414</a> <span> [<a href="https://arxiv.org/pdf/2306.05414">pdf</a>, <a href="https://arxiv.org/format/2306.05414">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Improving Tuning-Free Real Image Editing with Proximal Guidance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Wen%2C+S">Song Wen</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+Q">Qi Chen</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhixing Zhang</a>, <a href="/search/cs?searchtype=author&query=Song%2C+K">Kunpeng Song</a>, <a href="/search/cs?searchtype=author&query=Ren%2C+M">Mengwei Ren</a>, <a href="/search/cs?searchtype=author&query=Gao%2C+R">Ruijiang Gao</a>, <a href="/search/cs?searchtype=author&query=Stathopoulos%2C+A">Anastasis Stathopoulos</a>, <a href="/search/cs?searchtype=author&query=He%2C+X">Xiaoxiao He</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+Y">Yuxiao Chen</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+D">Di Liu</a>, <a href="/search/cs?searchtype=author&query=Zhangli%2C+Q">Qilong Zhangli</a>, <a href="/search/cs?searchtype=author&query=Jiang%2C+J">Jindong Jiang</a>, <a href="/search/cs?searchtype=author&query=Xia%2C+Z">Zhaoyang Xia</a>, <a href="/search/cs?searchtype=author&query=Srivastava%2C+A">Akash Srivastava</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05414v3-abstract-short" style="display: inline;"> DDIM inversion has revealed the remarkable potential of real image editing within diffusion-based methods. However, the accuracy of DDIM reconstruction degrades as larger classifier-free guidance (CFG) scales being used for enhanced editing. Null-text inversion (NTI) optimizes null embeddings to align the reconstruction and inversion trajectories with larger CFG scales, enabling real image editing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05414v3-abstract-full').style.display = 'inline'; document.getElementById('2306.05414v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05414v3-abstract-full" style="display: none;"> DDIM inversion has revealed the remarkable potential of real image editing within diffusion-based methods. However, the accuracy of DDIM reconstruction degrades as larger classifier-free guidance (CFG) scales being used for enhanced editing. Null-text inversion (NTI) optimizes null embeddings to align the reconstruction and inversion trajectories with larger CFG scales, enabling real image editing with cross-attention control. Negative-prompt inversion (NPI) further offers a training-free closed-form solution of NTI. However, it may introduce artifacts and is still constrained by DDIM reconstruction quality. To overcome these limitations, we propose proximal guidance and incorporate it to NPI with cross-attention control. We enhance NPI with a regularization term and reconstruction guidance, which reduces artifacts while capitalizing on its training-free nature. Additionally, we extend the concepts to incorporate mutual self-attention control, enabling geometry and layout alterations in the editing process. Our method provides an efficient and straightforward approach, effectively addressing real image editing tasks with minimal computational overhead. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05414v3-abstract-full').style.display = 'none'; document.getElementById('2306.05414v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Added inversion guidance, and fixed typos</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02416">arXiv:2306.02416</a> <span> [<a href="https://arxiv.org/pdf/2306.02416">pdf</a>, <a href="https://arxiv.org/format/2306.02416">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gao%2C+Y">Yunhe Gao</a>, <a href="/search/cs?searchtype=author&query=Li%2C+Z">Zhuowei Li</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+D">Di Liu</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+M">Mu Zhou</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+S">Shaoting Zhang</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02416v3-abstract-short" style="display: inline;"> A major focus of clinical imaging workflow is disease diagnosis and management, leading to medical imaging datasets strongly tied to specific clinical objectives. This scenario has led to the prevailing practice of developing task-specific segmentation models, without gaining insights from widespread imaging cohorts. Inspired by the training program of medical radiology residents, we propose a shi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02416v3-abstract-full').style.display = 'inline'; document.getElementById('2306.02416v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02416v3-abstract-full" style="display: none;"> A major focus of clinical imaging workflow is disease diagnosis and management, leading to medical imaging datasets strongly tied to specific clinical objectives. This scenario has led to the prevailing practice of developing task-specific segmentation models, without gaining insights from widespread imaging cohorts. Inspired by the training program of medical radiology residents, we propose a shift towards universal medical image segmentation, a paradigm aiming to build medical image understanding foundation models by leveraging the diversity and commonality across clinical targets, body regions, and imaging modalities. Towards this goal, we develop Hermes, a novel context-prior learning approach to address the challenges of data heterogeneity and annotation differences in medical image segmentation. In a large collection of eleven diverse datasets (2,438 3D images) across five modalities (CT, PET, T1, T2 and cine MRI) and multiple body regions, we demonstrate the merit of the universal paradigm over the traditional paradigm on addressing multiple tasks within a single model. By exploiting the synergy across tasks, Hermes achieves state-of-the-art performance on all testing datasets and shows superior model scalability. Results on two additional datasets reveals Hermes' strong performance for transfer learning, incremental learning, and generalization to downstream tasks. Hermes's learned priors demonstrate an appealing trait to reflect the intricate relations among tasks and modalities, which aligns with the established anatomical and imaging principles in radiology. The code is available: https://github.com/yhygao/universal-medical-image-segmentation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02416v3-abstract-full').style.display = 'none'; document.getElementById('2306.02416v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by CVPR 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00244">arXiv:2305.00244</a> <span> [<a href="https://arxiv.org/pdf/2305.00244">pdf</a>, <a href="https://arxiv.org/format/2305.00244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Critical Analysis of the Limitation of Deep Learning based 3D Dental Mesh Segmentation Methods in Segmenting Partial Scans </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jana%2C+A">Ananya Jana</a>, <a href="/search/cs?searchtype=author&query=Maiti%2C+A">Aniruddha Maiti</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00244v1-abstract-short" style="display: inline;"> Tooth segmentation from intraoral scans is a crucial part of digital dentistry. Many Deep Learning based tooth segmentation algorithms have been developed for this task. In most of the cases, high accuracy has been achieved, although, most of the available tooth segmentation techniques make an implicit restrictive assumption of full jaw model and they report accuracy based on full jaw models. Medi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00244v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00244v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00244v1-abstract-full" style="display: none;"> Tooth segmentation from intraoral scans is a crucial part of digital dentistry. Many Deep Learning based tooth segmentation algorithms have been developed for this task. In most of the cases, high accuracy has been achieved, although, most of the available tooth segmentation techniques make an implicit restrictive assumption of full jaw model and they report accuracy based on full jaw models. Medically, however, in certain cases, full jaw tooth scan is not required or may not be available. Given this practical issue, it is important to understand the robustness of currently available widely used Deep Learning based tooth segmentation techniques. For this purpose, we applied available segmentation techniques on partial intraoral scans and we discovered that the available deep Learning techniques under-perform drastically. The analysis and comparison presented in this work would help us in understanding the severity of the problem and allow us to develop robust tooth segmentation technique without strong assumption of full jaw model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00244v1-abstract-full').style.display = 'none'; document.getElementById('2305.00244v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted to IEEE EMBC 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14396">arXiv:2304.14396</a> <span> [<a href="https://arxiv.org/pdf/2304.14396">pdf</a>, <a href="https://arxiv.org/format/2304.14396">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Learning Articulated Shape with Keypoint Pseudo-labels from Web Images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Stathopoulos%2C+A">Anastasis Stathopoulos</a>, <a href="/search/cs?searchtype=author&query=Pavlakos%2C+G">Georgios Pavlakos</a>, <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14396v1-abstract-short" style="display: inline;"> This paper shows that it is possible to learn models for monocular 3D reconstruction of articulated objects (e.g., horses, cows, sheep), using as few as 50-150 images labeled with 2D keypoints. Our proposed approach involves training category-specific keypoint estimators, generating 2D keypoint pseudo-labels on unlabeled web images, and using both the labeled and self-labeled sets to train 3D reco… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14396v1-abstract-full').style.display = 'inline'; document.getElementById('2304.14396v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14396v1-abstract-full" style="display: none;"> This paper shows that it is possible to learn models for monocular 3D reconstruction of articulated objects (e.g., horses, cows, sheep), using as few as 50-150 images labeled with 2D keypoints. Our proposed approach involves training category-specific keypoint estimators, generating 2D keypoint pseudo-labels on unlabeled web images, and using both the labeled and self-labeled sets to train 3D reconstruction models. It is based on two key insights: (1) 2D keypoint estimation networks trained on as few as 50-150 images of a given object category generalize well and generate reliable pseudo-labels; (2) a data selection mechanism can automatically create a "curated" subset of the unlabeled web images that can be used for training -- we evaluate four data selection methods. Coupling these two insights enables us to train models that effectively utilize web images, resulting in improved 3D reconstruction performance for several articulated object categories beyond the fully-supervised baseline. Our approach can quickly bootstrap a model and requires only a few images labeled with 2D keypoints. This requirement can be easily satisfied for any new object category. To showcase the practicality of our approach for predicting the 3D shape of arbitrary object categories, we annotate 2D keypoints on giraffe and bear images from COCO -- the annotation process takes less than 1 minute per image. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14396v1-abstract-full').style.display = 'none'; document.getElementById('2304.14396v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">CVPR 2023 (project page: https://statho.github.io/projects/animals3d/index.html)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.11463">arXiv:2304.11463</a> <span> [<a href="https://arxiv.org/pdf/2304.11463">pdf</a>, <a href="https://arxiv.org/format/2304.11463">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> OmniLabel: A Challenging Benchmark for Language-Based Object Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Schulter%2C+S">Samuel Schulter</a>, <a href="/search/cs?searchtype=author&query=G%2C+V+K+B">Vijay Kumar B G</a>, <a href="/search/cs?searchtype=author&query=Suh%2C+Y">Yumin Suh</a>, <a href="/search/cs?searchtype=author&query=Dafnis%2C+K+M">Konstantinos M. Dafnis</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhixing Zhang</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+S">Shiyu Zhao</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.11463v2-abstract-short" style="display: inline;"> Language-based object detection is a promising direction towards building a natural interface to describe objects in images that goes far beyond plain category names. While recent methods show great progress in that direction, proper evaluation is lacking. With OmniLabel, we propose a novel task definition, dataset, and evaluation metric. The task subsumes standard- and open-vocabulary detection a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11463v2-abstract-full').style.display = 'inline'; document.getElementById('2304.11463v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.11463v2-abstract-full" style="display: none;"> Language-based object detection is a promising direction towards building a natural interface to describe objects in images that goes far beyond plain category names. While recent methods show great progress in that direction, proper evaluation is lacking. With OmniLabel, we propose a novel task definition, dataset, and evaluation metric. The task subsumes standard- and open-vocabulary detection as well as referring expressions. With more than 28K unique object descriptions on over 25K images, OmniLabel provides a challenging benchmark with diverse and complex object descriptions in a naturally open-vocabulary setting. Moreover, a key differentiation to existing benchmarks is that our object descriptions can refer to one, multiple or even no object, hence, providing negative examples in free-form text. The proposed evaluation handles the large label space and judges performance via a modified average precision metric, which we validate by evaluating strong language-based baselines. OmniLabel indeed provides a challenging test bed for future research on language-based detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11463v2-abstract-full').style.display = 'none'; document.getElementById('2304.11463v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICCV 2023 Oral - Visit our project website at https://www.omnilabel.org</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00601">arXiv:2304.00601</a> <span> [<a href="https://arxiv.org/pdf/2304.00601">pdf</a>, <a href="https://arxiv.org/format/2304.00601">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Constructive Assimilation: Boosting Contrastive Learning Performance through View Generation Strategies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Han%2C+S">Seungwook Han</a>, <a href="/search/cs?searchtype=author&query=Sudalairaj%2C+S">Shivchander Sudalairaj</a>, <a href="/search/cs?searchtype=author&query=Loh%2C+C">Charlotte Loh</a>, <a href="/search/cs?searchtype=author&query=Dangovski%2C+R">Rumen Dangovski</a>, <a href="/search/cs?searchtype=author&query=Deng%2C+F">Fei Deng</a>, <a href="/search/cs?searchtype=author&query=Agrawal%2C+P">Pulkit Agrawal</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a>, <a href="/search/cs?searchtype=author&query=Karlinsky%2C+L">Leonid Karlinsky</a>, <a href="/search/cs?searchtype=author&query=Weng%2C+T">Tsui-Wei Weng</a>, <a href="/search/cs?searchtype=author&query=Srivastava%2C+A">Akash Srivastava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00601v2-abstract-short" style="display: inline;"> Transformations based on domain expertise (expert transformations), such as random-resized-crop and color-jitter, have proven critical to the success of contrastive learning techniques such as SimCLR. Recently, several attempts have been made to replace such domain-specific, human-designed transformations with generated views that are learned. However for imagery data, so far none of these view-ge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00601v2-abstract-full').style.display = 'inline'; document.getElementById('2304.00601v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00601v2-abstract-full" style="display: none;"> Transformations based on domain expertise (expert transformations), such as random-resized-crop and color-jitter, have proven critical to the success of contrastive learning techniques such as SimCLR. Recently, several attempts have been made to replace such domain-specific, human-designed transformations with generated views that are learned. However for imagery data, so far none of these view-generation methods has been able to outperform expert transformations. In this work, we tackle a different question: instead of replacing expert transformations with generated views, can we constructively assimilate generated views with expert transformations? We answer this question in the affirmative and propose a view generation method and a simple, effective assimilation method that together improve the state-of-the-art by up to ~3.6% on three different datasets. Importantly, we conduct a detailed empirical study that systematically analyzes a range of view generation and assimilation methods and provides a holistic picture of the efficacy of learned views in contrastive representation learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00601v2-abstract-full').style.display = 'none'; document.getElementById('2304.00601v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at Generative Models for Computer Vision Workshop 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14865">arXiv:2303.14865</a> <span> [<a href="https://arxiv.org/pdf/2303.14865">pdf</a>, <a href="https://arxiv.org/format/2303.14865">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Revisiting Multimodal Representation in Contrastive Learning: From Patch and Token Embeddings to Finite Discrete Tokens </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Chen%2C+Y">Yuxiao Chen</a>, <a href="/search/cs?searchtype=author&query=Yuan%2C+J">Jianbo Yuan</a>, <a href="/search/cs?searchtype=author&query=Tian%2C+Y">Yu Tian</a>, <a href="/search/cs?searchtype=author&query=Geng%2C+S">Shijie Geng</a>, <a href="/search/cs?searchtype=author&query=Li%2C+X">Xinyu Li</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+D">Ding Zhou</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+H">Hongxia Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14865v1-abstract-short" style="display: inline;"> Contrastive learning-based vision-language pre-training approaches, such as CLIP, have demonstrated great success in many vision-language tasks. These methods achieve cross-modal alignment by encoding a matched image-text pair with similar feature embeddings, which are generated by aggregating information from visual patches and language tokens. However, direct aligning cross-modal information usi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14865v1-abstract-full').style.display = 'inline'; document.getElementById('2303.14865v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14865v1-abstract-full" style="display: none;"> Contrastive learning-based vision-language pre-training approaches, such as CLIP, have demonstrated great success in many vision-language tasks. These methods achieve cross-modal alignment by encoding a matched image-text pair with similar feature embeddings, which are generated by aggregating information from visual patches and language tokens. However, direct aligning cross-modal information using such representations is challenging, as visual patches and text tokens differ in semantic levels and granularities. To alleviate this issue, we propose a Finite Discrete Tokens (FDT) based multimodal representation. FDT is a set of learnable tokens representing certain visual-semantic concepts. Both images and texts are embedded using shared FDT by first grounding multimodal inputs to FDT space and then aggregating the activated FDT representations. The matched visual and semantic concepts are enforced to be represented by the same set of discrete tokens by a sparse activation constraint. As a result, the granularity gap between the two modalities is reduced. Through both quantitative and qualitative analyses, we demonstrate that using FDT representations in CLIP-style models improves cross-modal alignment and performance in visual recognition and vision-language downstream tasks. Furthermore, we show that our method can learn more comprehensive representations, and the learned FDT capture meaningful cross-modal correspondence, ranging from objects to actions and attributes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14865v1-abstract-full').style.display = 'none'; document.getElementById('2303.14865v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to CVPR 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14357">arXiv:2303.14357</a> <span> [<a href="https://arxiv.org/pdf/2303.14357">pdf</a>, <a href="https://arxiv.org/format/2303.14357">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Dealing With Heterogeneous 3D MR Knee Images: A Federated Few-Shot Learning Method With Dual Knowledge Distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=He%2C+X">Xiaoxiao He</a>, <a href="/search/cs?searchtype=author&query=Tan%2C+C">Chaowei Tan</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+B">Bo Liu</a>, <a href="/search/cs?searchtype=author&query=Si%2C+L">Liping Si</a>, <a href="/search/cs?searchtype=author&query=Yao%2C+W">Weiwu Yao</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+L">Liang Zhao</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+D">Di Liu</a>, <a href="/search/cs?searchtype=author&query=Zhangli%2C+Q">Qilong Zhangli</a>, <a href="/search/cs?searchtype=author&query=Chang%2C+Q">Qi Chang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+K">Kang Li</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14357v2-abstract-short" style="display: inline;"> Federated Learning has gained popularity among medical institutions since it enables collaborative training between clients (e.g., hospitals) without aggregating data. However, due to the high cost associated with creating annotations, especially for large 3D image datasets, clinical institutions do not have enough supervised data for training locally. Thus, the performance of the collaborative mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14357v2-abstract-full').style.display = 'inline'; document.getElementById('2303.14357v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14357v2-abstract-full" style="display: none;"> Federated Learning has gained popularity among medical institutions since it enables collaborative training between clients (e.g., hospitals) without aggregating data. However, due to the high cost associated with creating annotations, especially for large 3D image datasets, clinical institutions do not have enough supervised data for training locally. Thus, the performance of the collaborative model is subpar under limited supervision. On the other hand, large institutions have the resources to compile data repositories with high-resolution images and labels. Therefore, individual clients can utilize the knowledge acquired in the public data repositories to mitigate the shortage of private annotated images. In this paper, we propose a federated few-shot learning method with dual knowledge distillation. This method allows joint training with limited annotations across clients without jeopardizing privacy. The supervised learning of the proposed method extracts features from limited labeled data in each client, while the unsupervised data is used to distill both feature and response-based knowledge from a national data repository to further improve the accuracy of the collaborative model and reduce the communication cost. Extensive evaluations are conducted on 3D magnetic resonance knee images from a private clinical dataset. Our proposed method shows superior performance and less training time than other semi-supervised federated learning methods. Codes and additional visualization results are available at https://github.com/hexiaoxiao-cs/fedml-knee. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14357v2-abstract-full').style.display = 'none'; document.getElementById('2303.14357v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.11305">arXiv:2303.11305</a> <span> [<a href="https://arxiv.org/pdf/2303.11305">pdf</a>, <a href="https://arxiv.org/format/2303.11305">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> SVDiff: Compact Parameter Space for Diffusion Fine-Tuning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Li%2C+Y">Yinxiao Li</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+H">Han Zhang</a>, <a href="/search/cs?searchtype=author&query=Milanfar%2C+P">Peyman Milanfar</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+F">Feng Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.11305v4-abstract-short" style="display: inline;"> Diffusion models have achieved remarkable success in text-to-image generation, enabling the creation of high-quality images from text prompts or other modalities. However, existing methods for customizing these models are limited by handling multiple personalized subjects and the risk of overfitting. Moreover, their large number of parameters is inefficient for model storage. In this paper, we pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11305v4-abstract-full').style.display = 'inline'; document.getElementById('2303.11305v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.11305v4-abstract-full" style="display: none;"> Diffusion models have achieved remarkable success in text-to-image generation, enabling the creation of high-quality images from text prompts or other modalities. However, existing methods for customizing these models are limited by handling multiple personalized subjects and the risk of overfitting. Moreover, their large number of parameters is inefficient for model storage. In this paper, we propose a novel approach to address these limitations in existing text-to-image diffusion models for personalization. Our method involves fine-tuning the singular values of the weight matrices, leading to a compact and efficient parameter space that reduces the risk of overfitting and language drifting. We also propose a Cut-Mix-Unmix data-augmentation technique to enhance the quality of multi-subject image generation and a simple text-based image editing framework. Our proposed SVDiff method has a significantly smaller model size compared to existing methods (approximately 2,200 times fewer parameters compared with vanilla DreamBooth), making it more practical for real-world applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11305v4-abstract-full').style.display = 'none'; document.getElementById('2303.11305v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Added additional analysis and style-mixing results</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.09447">arXiv:2303.09447</a> <span> [<a href="https://arxiv.org/pdf/2303.09447">pdf</a>, <a href="https://arxiv.org/format/2303.09447">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Steering Prototypes with Prompt-tuning for Rehearsal-free Continual Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Li%2C+Z">Zhuowei Li</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+L">Long Zhao</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zizhao Zhang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+H">Han Zhang</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+D">Di Liu</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+T">Ting Liu</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.09447v3-abstract-short" style="display: inline;"> In the context of continual learning, prototypes-as representative class embeddings-offer advantages in memory conservation and the mitigation of catastrophic forgetting. However, challenges related to semantic drift and prototype interference persist. In this study, we introduce the Contrastive Prototypical Prompt (CPP) approach. Through task-specific prompt-tuning, underpinned by a contrastive l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09447v3-abstract-full').style.display = 'inline'; document.getElementById('2303.09447v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.09447v3-abstract-full" style="display: none;"> In the context of continual learning, prototypes-as representative class embeddings-offer advantages in memory conservation and the mitigation of catastrophic forgetting. However, challenges related to semantic drift and prototype interference persist. In this study, we introduce the Contrastive Prototypical Prompt (CPP) approach. Through task-specific prompt-tuning, underpinned by a contrastive learning objective, we effectively address both aforementioned challenges. Our evaluations on four challenging class-incremental benchmarks reveal that CPP achieves a significant 4% to 6% improvement over state-of-the-art methods. Importantly, CPP operates without a rehearsal buffer and narrows the performance divergence between continual and offline joint-learning, suggesting an innovative scheme for Transformer-based continual learning systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09447v3-abstract-full').style.display = 'none'; document.getElementById('2303.09447v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accept to WACV 2024. Code is available at https://github.com/LzVv123456/Contrastive-Prototypical-Prompt</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.10531">arXiv:2301.10531</a> <span> [<a href="https://arxiv.org/pdf/2301.10531">pdf</a>, <a href="https://arxiv.org/format/2301.10531">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> 3D Tooth Mesh Segmentation with Simplified Mesh Cell Representation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jana%2C+A">Ananya Jana</a>, <a href="/search/cs?searchtype=author&query=Subhash%2C+H+M">Hrebesh Molly Subhash</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.10531v1-abstract-short" style="display: inline;"> Manual tooth segmentation of 3D tooth meshes is tedious and there is variations among dentists. %Manual tooth annotation of 3D tooth meshes is a tedious task. Several deep learning based methods have been proposed to perform automatic tooth mesh segmentation. Many of the proposed tooth mesh segmentation algorithms summarize the mesh cell as - the cell center or barycenter, the normal at barycenter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10531v1-abstract-full').style.display = 'inline'; document.getElementById('2301.10531v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.10531v1-abstract-full" style="display: none;"> Manual tooth segmentation of 3D tooth meshes is tedious and there is variations among dentists. %Manual tooth annotation of 3D tooth meshes is a tedious task. Several deep learning based methods have been proposed to perform automatic tooth mesh segmentation. Many of the proposed tooth mesh segmentation algorithms summarize the mesh cell as - the cell center or barycenter, the normal at barycenter, the cell vertices and the normals at the cell vertices. Summarizing of the mesh cell/triangle in this manner imposes an implicit structural constraint and makes it difficult to work with multiple resolutions which is done in many point cloud based deep learning algorithms. We propose a novel segmentation method which utilizes only the barycenter and the normal at the barycenter information of the mesh cell and yet achieves competitive performance. We are the first to demonstrate that it is possible to relax the implicit structural constraint and yet achieve superior segmentation performance <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10531v1-abstract-full').style.display = 'none'; document.getElementById('2301.10531v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted at IEEE ISBI 2023 International Symposium on Biomedical Imaging</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.04489">arXiv:2212.04489</a> <span> [<a href="https://arxiv.org/pdf/2212.04489">pdf</a>, <a href="https://arxiv.org/format/2212.04489">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> SINE: SINgle Image Editing with Text-to-Image Diffusion Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhixing Zhang</a>, <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Ghosh%2C+A">Arnab Ghosh</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a>, <a href="/search/cs?searchtype=author&query=Ren%2C+J">Jian Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.04489v1-abstract-short" style="display: inline;"> Recent works on diffusion models have demonstrated a strong capability for conditioning image generation, e.g., text-guided image synthesis. Such success inspires many efforts trying to use large-scale pre-trained diffusion models for tackling a challenging problem--real image editing. Works conducted in this area learn a unique textual token corresponding to several images containing the same obj… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04489v1-abstract-full').style.display = 'inline'; document.getElementById('2212.04489v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.04489v1-abstract-full" style="display: none;"> Recent works on diffusion models have demonstrated a strong capability for conditioning image generation, e.g., text-guided image synthesis. Such success inspires many efforts trying to use large-scale pre-trained diffusion models for tackling a challenging problem--real image editing. Works conducted in this area learn a unique textual token corresponding to several images containing the same object. However, under many circumstances, only one image is available, such as the painting of the Girl with a Pearl Earring. Using existing works on fine-tuning the pre-trained diffusion models with a single image causes severe overfitting issues. The information leakage from the pre-trained diffusion models makes editing can not keep the same content as the given image while creating new features depicted by the language guidance. This work aims to address the problem of single-image editing. We propose a novel model-based guidance built upon the classifier-free guidance so that the knowledge from the model trained on a single image can be distilled into the pre-trained diffusion model, enabling content creation even with one given image. Additionally, we propose a patch-based fine-tuning that can effectively help the model generate images of arbitrary resolution. We provide extensive experiments to validate the design choices of our approach and show promising editing capabilities, including changing style, content addition, and object manipulation. The code is available for research purposes at https://github.com/zhang-zx/SINE.git . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04489v1-abstract-full').style.display = 'none'; document.getElementById('2212.04489v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project website: https://zhang-zx.github.io/SINE/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.04473">arXiv:2212.04473</a> <span> [<a href="https://arxiv.org/pdf/2212.04473">pdf</a>, <a href="https://arxiv.org/format/2212.04473">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Diffusion Guided Domain Adaptation of Image Generators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Song%2C+K">Kunpeng Song</a>, <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+B">Bingchen Liu</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a>, <a href="/search/cs?searchtype=author&query=Elgammal%2C+A">Ahmed Elgammal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.04473v2-abstract-short" style="display: inline;"> Can a text-to-image diffusion model be used as a training objective for adapting a GAN generator to another domain? In this paper, we show that the classifier-free guidance can be leveraged as a critic and enable generators to distill knowledge from large-scale text-to-image diffusion models. Generators can be efficiently shifted into new domains indicated by text prompts without access to groundt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04473v2-abstract-full').style.display = 'inline'; document.getElementById('2212.04473v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.04473v2-abstract-full" style="display: none;"> Can a text-to-image diffusion model be used as a training objective for adapting a GAN generator to another domain? In this paper, we show that the classifier-free guidance can be leveraged as a critic and enable generators to distill knowledge from large-scale text-to-image diffusion models. Generators can be efficiently shifted into new domains indicated by text prompts without access to groundtruth samples from target domains. We demonstrate the effectiveness and controllability of our method through extensive experiments. Although not trained to minimize CLIP loss, our model achieves equally high CLIP scores and significantly lower FID than prior work on short prompts, and outperforms the baseline qualitatively and quantitatively on long and complicated prompts. To our best knowledge, the proposed method is the first attempt at incorporating large-scale pre-trained diffusion models and distillation sampling for text-driven image generator domain adaptation and gives a quality previously beyond possible. Moreover, we extend our work to 3D-aware style-based generators and DreamBooth guidance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04473v2-abstract-full').style.display = 'none'; document.getElementById('2212.04473v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project website: https://styleganfusion.github.io/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12081">arXiv:2211.12081</a> <span> [<a href="https://arxiv.org/pdf/2211.12081">pdf</a>, <a href="https://arxiv.org/format/2211.12081">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> CDDSA: Contrastive Domain Disentanglement and Style Augmentation for Generalizable Medical Image Segmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gu%2C+R">Ran Gu</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+G">Guotai Wang</a>, <a href="/search/cs?searchtype=author&query=Lu%2C+J">Jiangshan Lu</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+J">Jingyang Zhang</a>, <a href="/search/cs?searchtype=author&query=Lei%2C+W">Wenhui Lei</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+Y">Yinan Chen</a>, <a href="/search/cs?searchtype=author&query=Liao%2C+W">Wenjun Liao</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+S">Shichuan Zhang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+K">Kang Li</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+S">Shaoting Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12081v1-abstract-short" style="display: inline;"> Generalization to previously unseen images with potential domain shifts and different styles is essential for clinically applicable medical image segmentation, and the ability to disentangle domain-specific and domain-invariant features is key for achieving Domain Generalization (DG). However, existing DG methods can hardly achieve effective disentanglement to get high generalizability. To deal wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12081v1-abstract-full').style.display = 'inline'; document.getElementById('2211.12081v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12081v1-abstract-full" style="display: none;"> Generalization to previously unseen images with potential domain shifts and different styles is essential for clinically applicable medical image segmentation, and the ability to disentangle domain-specific and domain-invariant features is key for achieving Domain Generalization (DG). However, existing DG methods can hardly achieve effective disentanglement to get high generalizability. To deal with this problem, we propose an efficient Contrastive Domain Disentanglement and Style Augmentation (CDDSA) framework for generalizable medical image segmentation. First, a disentangle network is proposed to decompose an image into a domain-invariant anatomical representation and a domain-specific style code, where the former is sent to a segmentation model that is not affected by the domain shift, and the disentangle network is regularized by a decoder that combines the anatomical and style codes to reconstruct the input image. Second, to achieve better disentanglement, a contrastive loss is proposed to encourage the style codes from the same domain and different domains to be compact and divergent, respectively. Thirdly, to further improve generalizability, we propose a style augmentation method based on the disentanglement representation to synthesize images in various unseen styles with shared anatomical structures. Our method was validated on a public multi-site fundus image dataset for optic cup and disc segmentation and an in-house multi-site Nasopharyngeal Carcinoma Magnetic Resonance Image (NPC-MRI) dataset for nasopharynx Gross Tumor Volume (GTVnx) segmentation. Experimental results showed that the proposed CDDSA achieved remarkable generalizability across different domains, and it outperformed several state-of-the-art methods in domain-generalizable segmentation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12081v1-abstract-full').style.display = 'none'; document.getElementById('2211.12081v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.04831">arXiv:2210.04831</a> <span> [<a href="https://arxiv.org/pdf/2210.04831">pdf</a>, <a href="https://arxiv.org/format/2210.04831">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Visual Prompt Tuning for Test-time Domain Adaptation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gao%2C+Y">Yunhe Gao</a>, <a href="/search/cs?searchtype=author&query=Shi%2C+X">Xingjian Shi</a>, <a href="/search/cs?searchtype=author&query=Zhu%2C+Y">Yi Zhu</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+H">Hao Wang</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+Z">Zhiqiang Tang</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+X">Xiong Zhou</a>, <a href="/search/cs?searchtype=author&query=Li%2C+M">Mu Li</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.04831v2-abstract-short" style="display: inline;"> Models should be able to adapt to unseen data during test-time to avoid performance drops caused by inevitable distribution shifts in real-world deployment scenarios. In this work, we tackle the practical yet challenging test-time adaptation (TTA) problem, where a model adapts to the target domain without accessing the source data. We propose a simple recipe called \textit{Data-efficient Prompt Tu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04831v2-abstract-full').style.display = 'inline'; document.getElementById('2210.04831v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.04831v2-abstract-full" style="display: none;"> Models should be able to adapt to unseen data during test-time to avoid performance drops caused by inevitable distribution shifts in real-world deployment scenarios. In this work, we tackle the practical yet challenging test-time adaptation (TTA) problem, where a model adapts to the target domain without accessing the source data. We propose a simple recipe called \textit{Data-efficient Prompt Tuning} (DePT) with two key ingredients. First, DePT plugs visual prompts into the vision Transformer and only tunes these source-initialized prompts during adaptation. We find such parameter-efficient finetuning can efficiently adapt the model representation to the target domain without overfitting to the noise in the learning objective. Second, DePT bootstraps the source representation to the target domain by memory bank-based online pseudo-labeling. A hierarchical self-supervised regularization specially designed for prompts is jointly optimized to alleviate error accumulation during self-training. With much fewer tunable parameters, DePT demonstrates not only state-of-the-art performance on major adaptation benchmarks VisDA-C, ImageNet-C, and DomainNet-126, but also superior data efficiency, i.e., adaptation with only 1\% or 10\% data without much performance degradation compared to 100\% data. In addition, DePT is also versatile to be extended to online or multi-source TTA settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04831v2-abstract-full').style.display = 'none'; document.getElementById('2210.04831v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08132">arXiv:2209.08132</a> <span> [<a href="https://arxiv.org/pdf/2209.08132">pdf</a>, <a href="https://arxiv.org/format/2209.08132">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Automatic Tooth Segmentation from 3D Dental Model using Deep Learning: A Quantitative Analysis of what can be learnt from a Single 3D Dental Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jana%2C+A">Ananya Jana</a>, <a href="/search/cs?searchtype=author&query=Subhash%2C+H+M">Hrebesh Molly Subhash</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D">Dimitris Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08132v1-abstract-short" style="display: inline;"> 3D tooth segmentation is an important task for digital orthodontics. Several Deep Learning methods have been proposed for automatic tooth segmentation from 3D dental models or intraoral scans. These methods require annotated 3D intraoral scans. Manually annotating 3D intraoral scans is a laborious task. One approach is to devise self-supervision methods to reduce the manual labeling effort. Compar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08132v1-abstract-full').style.display = 'inline'; document.getElementById('2209.08132v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08132v1-abstract-full" style="display: none;"> 3D tooth segmentation is an important task for digital orthodontics. Several Deep Learning methods have been proposed for automatic tooth segmentation from 3D dental models or intraoral scans. These methods require annotated 3D intraoral scans. Manually annotating 3D intraoral scans is a laborious task. One approach is to devise self-supervision methods to reduce the manual labeling effort. Compared to other types of point cloud data like scene point cloud or shape point cloud data, 3D tooth point cloud data has a very regular structure and a strong shape prior. We look at how much representative information can be learnt from a single 3D intraoral scan. We evaluate this quantitatively with the help of ten different methods of which six are generic point cloud segmentation methods whereas the other four are tooth segmentation specific methods. Surprisingly, we find that with a single 3D intraoral scan training, the Dice score can be as high as 0.86 whereas the full training set gives Dice score of 0.94. We conclude that the segmentation methods can learn a great deal of information from a single 3D tooth point cloud scan under suitable conditions e.g. data augmentation. We are the first to quantitatively evaluate and demonstrate the representation learning capability of Deep Learning methods from a single 3D intraoral scan. This can enable building self-supervision methods for tooth segmentation under extreme data limitation scenario by leveraging the available data to the fullest possible extent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08132v1-abstract-full').style.display = 'none'; document.getElementById('2209.08132v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted to SIPAIM 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.09644">arXiv:2207.09644</a> <span> [<a href="https://arxiv.org/pdf/2207.09644">pdf</a>, <a href="https://arxiv.org/format/2207.09644">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Hierarchically Self-Supervised Transformer for Human Skeleton Representation Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Chen%2C+Y">Yuxiao Chen</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+L">Long Zhao</a>, <a href="/search/cs?searchtype=author&query=Yuan%2C+J">Jianbo Yuan</a>, <a href="/search/cs?searchtype=author&query=Tian%2C+Y">Yu Tian</a>, <a href="/search/cs?searchtype=author&query=Xia%2C+Z">Zhaoyang Xia</a>, <a href="/search/cs?searchtype=author&query=Geng%2C+S">Shijie Geng</a>, <a href="/search/cs?searchtype=author&query=Han%2C+L">Ligong Han</a>, <a href="/search/cs?searchtype=author&query=Metaxas%2C+D+N">Dimitris N. Metaxas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.09644v3-abstract-short" style="display: inline;"> Despite the success of fully-supervised human skeleton sequence modeling, utilizing self-supervised pre-training for skeleton sequence representation learning has been an active field because acquiring task-specific skeleton annotations at large scales is difficult. Recent studies focus on learning video-level temporal and discriminative information using contrastive learning, but overlook the hie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09644v3-abstract-full').style.display = 'inline'; document.getElementById('2207.09644v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.09644v3-abstract-full" style="display: none;"> Despite the success of fully-supervised human skeleton sequence modeling, utilizing self-supervised pre-training for skeleton sequence representation learning has been an active field because acquiring task-specific skeleton annotations at large scales is difficult. Recent studies focus on learning video-level temporal and discriminative information using contrastive learning, but overlook the hierarchical spatial-temporal nature of human skeletons. Different from such superficial supervision at the video level, we propose a self-supervised hierarchical pre-training scheme incorporated into a hierarchical Transformer-based skeleton sequence encoder (Hi-TRS), to explicitly capture spatial, short-term, and long-term temporal dependencies at frame, clip, and video levels, respectively. To evaluate the proposed self-supervised pre-training scheme with Hi-TRS, we conduct extensive experiments covering three skeleton-based downstream tasks including action recognition, action detection, and motion prediction. Under both supervised and semi-supervised evaluation protocols, our method achieves the state-of-the-art performance. Additionally, we demonstrate that the prior knowledge learned by our model in the pre-training stage has strong transfer capability for different downstream tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09644v3-abstract-full').style.display = 'none'; document.getElementById('2207.09644v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ECCV 2022</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Metaxas%2C+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Metaxas%2C+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Metaxas%2C+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Metaxas%2C+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>