CINXE.COM
Search results for: Fisher discriminant
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Fisher discriminant</title> <meta name="description" content="Search results for: Fisher discriminant"> <meta name="keywords" content="Fisher discriminant"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Fisher discriminant" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Fisher discriminant"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 97</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Fisher discriminant</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> On the Multiplicity of Discriminants of Relative Quadratic Extensions of Quintic Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Schehrazad%20Selmane">Schehrazad Selmane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>According to Hermite there exists only a finite number of number fields having a given degree, and a given value of the discriminant, nevertheless this number is not known generally. The determination of a maximum number of number fields of degree 10 having a given discriminant that contain a subfield of degree 5 having a fixed class number, narrow class number and Galois group is the purpose of this work. The constructed lists of the first coincidences of 52 (resp. 50, 40, 48, 22, 6) nonisomorphic number fields with same discriminant of degree 10 of signature (6,2) (resp. (4,3), (8,1), (2,4), (0,5), (10,0)) containing a quintic field. For each field in the lists, we indicate its discriminant, the discriminant of its subfield, a relative polynomial generating the field over its quintic field and its relative discriminant, the corresponding polynomial over Q and its Galois closure are presented with concluding remarks.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Discriminant" title="Discriminant">Discriminant</a>, <a href="https://publications.waset.org/search?q=nonisomorphic%20fields" title=" nonisomorphic fields"> nonisomorphic fields</a>, <a href="https://publications.waset.org/search?q=quintic%20fields" title=" quintic fields"> quintic fields</a>, <a href="https://publications.waset.org/search?q=relative%20quadratic%20extensions." title=" relative quadratic extensions."> relative quadratic extensions.</a> </p> <a href="https://publications.waset.org/16338/on-the-multiplicity-of-discriminants-of-relative-quadratic-extensions-of-quintic-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16338/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16338/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16338/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16338/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16338/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16338/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16338/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16338/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16338/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16338/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1462</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> New Features for Specific JPEG Steganalysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Johann%20Barbier">Johann Barbier</a>, <a href="https://publications.waset.org/search?q=Eric%20Filiol"> Eric Filiol</a>, <a href="https://publications.waset.org/search?q=Kichenakoumar%20Mayoura"> Kichenakoumar Mayoura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We present in this paper a new approach for specific JPEG steganalysis and propose studying statistics of the compressed DCT coefficients. Traditionally, steganographic algorithms try to preserve statistics of the DCT and of the spatial domain, but they cannot preserve both and also control the alteration of the compressed data. We have noticed a deviation of the entropy of the compressed data after a first embedding. This deviation is greater when the image is a cover medium than when the image is a stego image. To observe this deviation, we pointed out new statistic features and combined them with the Multiple Embedding Method. This approach is motivated by the Avalanche Criterion of the JPEG lossless compression step. This criterion makes possible the design of detectors whose detection rates are independent of the payload. Finally, we designed a Fisher discriminant based classifier for well known steganographic algorithms, Outguess, F5 and Hide and Seek. The experiemental results we obtained show the efficiency of our classifier for these algorithms. Moreover, it is also designed to work with low embedding rates (< 10-5) and according to the avalanche criterion of RLE and Huffman compression step, its efficiency is independent of the quantity of hidden information.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Compressed%20frequency%20domain" title="Compressed frequency domain">Compressed frequency domain</a>, <a href="https://publications.waset.org/search?q=Fisher%20discriminant" title=" Fisher discriminant"> Fisher discriminant</a>, <a href="https://publications.waset.org/search?q=specific%20JPEG%20steganalysis." title="specific JPEG steganalysis.">specific JPEG steganalysis.</a> </p> <a href="https://publications.waset.org/5957/new-features-for-specific-jpeg-steganalysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5957/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5957/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5957/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5957/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5957/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5957/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5957/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5957/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5957/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5957/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2162</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Face Recognition using a Kernelization of Graph Embedding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pang%20Ying%20Han">Pang Ying Han</a>, <a href="https://publications.waset.org/search?q=Hiew%20Fu%20San"> Hiew Fu San</a>, <a href="https://publications.waset.org/search?q=Ooi%20Shih%20Yin"> Ooi Shih Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Linearization of graph embedding has been emerged as an effective dimensionality reduction technique in pattern recognition. However, it may not be optimal for nonlinearly distributed real world data, such as face, due to its linear nature. So, a kernelization of graph embedding is proposed as a dimensionality reduction technique in face recognition. In order to further boost the recognition capability of the proposed technique, the Fisher-s criterion is opted in the objective function for better data discrimination. The proposed technique is able to characterize the underlying intra-class structure as well as the inter-class separability. Experimental results on FRGC database validate the effectiveness of the proposed technique as a feature descriptor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20recognition" title="Face recognition">Face recognition</a>, <a href="https://publications.waset.org/search?q=Fisher%20discriminant" title=" Fisher discriminant"> Fisher discriminant</a>, <a href="https://publications.waset.org/search?q=graph%0Aembedding" title=" graph embedding"> graph embedding</a>, <a href="https://publications.waset.org/search?q=kernelization." title=" kernelization."> kernelization.</a> </p> <a href="https://publications.waset.org/13302/face-recognition-using-a-kernelization-of-graph-embedding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13302/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13302/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13302/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13302/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13302/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13302/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13302/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13302/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13302/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13302/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1701</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> An Iterative Algorithm for KLDA Classifier </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D.N.%20Zheng">D.N. Zheng</a>, <a href="https://publications.waset.org/search?q=J.X.%20Wang"> J.X. Wang</a>, <a href="https://publications.waset.org/search?q=Y.N.%20Zhao"> Y.N. Zhao</a>, <a href="https://publications.waset.org/search?q=Z.H.%20Yang"> Z.H. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Linear discriminant analysis (LDA) can be generalized into a nonlinear form - kernel LDA (KLDA) expediently by using the kernel functions. But KLDA is often referred to a general eigenvalue problem in singular case. To avoid this complication, this paper proposes an iterative algorithm for the two-class KLDA. The proposed KLDA is used as a nonlinear discriminant classifier, and the experiments show that it has a comparable performance with SVM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Linear%20discriminant%20analysis%20%28LDA%29" title="Linear discriminant analysis (LDA)">Linear discriminant analysis (LDA)</a>, <a href="https://publications.waset.org/search?q=kernel%20LDA%0D%0A%28KLDA%29" title=" kernel LDA (KLDA)"> kernel LDA (KLDA)</a>, <a href="https://publications.waset.org/search?q=conjugate%20gradient%20algorithm" title=" conjugate gradient algorithm"> conjugate gradient algorithm</a>, <a href="https://publications.waset.org/search?q=nonlinear%20discriminant%20classifier." title=" nonlinear discriminant classifier."> nonlinear discriminant classifier.</a> </p> <a href="https://publications.waset.org/4549/an-iterative-algorithm-for-klda-classifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4549/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4549/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4549/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4549/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4549/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4549/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4549/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4549/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4549/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4549/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1959</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Swarmed Discriminant Analysis for Multifunction Prosthesis Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rami%20N.%20Khushaba">Rami N. Khushaba</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Al-Ani"> Ahmed Al-Ani</a>, <a href="https://publications.waset.org/search?q=Adel%20Al-Jumaily"> Adel Al-Jumaily</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the approaches enabling people with amputated limbs to establish some sort of interface with the real world includes the utilization of the myoelectric signal (MES) from the remaining muscles of those limbs. The MES can be used as a control input to a multifunction prosthetic device. In this control scheme, known as the myoelectric control, a pattern recognition approach is usually utilized to discriminate between the MES signals that belong to different classes of the forearm movements. Since the MES is recorded using multiple channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative yet moderate size feature set. This paper proposes a new fuzzy version of the well known Fisher-s Linear Discriminant Analysis (LDA) feature projection technique. Furthermore, based on the fact that certain muscles might contribute more to the discrimination process, a novel feature weighting scheme is also presented by employing Particle Swarm Optimization (PSO) for estimating the weight of each feature. The new method, called PSOFLDA, is tested on real MES datasets and compared with other techniques to prove its superiority. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Discriminant%20Analysis" title="Discriminant Analysis">Discriminant Analysis</a>, <a href="https://publications.waset.org/search?q=Pattern%20Recognition" title=" Pattern Recognition"> Pattern Recognition</a>, <a href="https://publications.waset.org/search?q=SignalProcessing." title=" SignalProcessing."> SignalProcessing.</a> </p> <a href="https://publications.waset.org/9317/swarmed-discriminant-analysis-for-multifunction-prosthesis-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9317/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9317/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9317/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9317/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9317/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9317/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9317/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9317/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9317/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9317/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1556</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Analysis of Driving Conditions and Preferred Media on Diversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yoon-Hyuk%20Choi">Yoon-Hyuk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies on the distribution of traffic demands have been proceeding by providing traffic information for reducing greenhouse gases and reinforcing the road's competitiveness in the transport section, however, since it is preferentially required the extensive studies on the driver's behavior changing routes and its influence factors, this study has been developed a discriminant model for changing routes considering driving conditions including traffic conditions of roads and driver's preferences for information media. It is divided into three groups depending on driving conditions in group classification with the CART analysis, which is statistically meaningful. And the extent that driving conditions and preferred media affect a route change is examined through a discriminant analysis, and it is developed a discriminant model equation to predict a route change. As a result of building the discriminant model equation, it is shown that driving conditions affect a route change much more, the entire discriminant hit ratio is derived as 64.2%, and this discriminant equation shows high discriminant ability more than a certain degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CART%20analysis" title="CART analysis">CART analysis</a>, <a href="https://publications.waset.org/search?q=Diversion" title=" Diversion"> Diversion</a>, <a href="https://publications.waset.org/search?q=Discriminant%20model" title=" Discriminant model"> Discriminant model</a>, <a href="https://publications.waset.org/search?q=Driving%20conditions" title=" Driving conditions"> Driving conditions</a>, <a href="https://publications.waset.org/search?q=and%20preferred%20media" title=" and preferred media"> and preferred media</a> </p> <a href="https://publications.waset.org/5884/analysis-of-driving-conditions-and-preferred-media-on-diversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5884/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5884/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5884/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5884/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5884/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5884/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5884/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5884/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5884/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5884/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1054</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Base Change for Fisher Metrics: Case of the q−Gaussian Inverse Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Gabriel%20I.%20Loaiza%20O.">Gabriel I. Loaiza O.</a>, <a href="https://publications.waset.org/search?q=Carlos%20A.%20Cadavid%20M."> Carlos A. Cadavid M.</a>, <a href="https://publications.waset.org/search?q=Juan%20C.%20Arango%20P."> Juan C. Arango P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ = −1/2 , as does the family of usual Gaussian distributions. In the present paper, firstly we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ1, θ2; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the Inverse q−Gaussian distribution family (q < 3), as the family obtained by replacing the usual exponential function by the Tsallis q−exponential function in the expression for the Inverse Gaussian distribution, and observe that it supports two possible geometries, the Fisher and the q−Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q−Fisher geometry of the Inverse q−Gaussian distribution family, similar to the ones obtained in the case of the Inverse Gaussian distribution family. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Base%20of%20Changes" title="Base of Changes">Base of Changes</a>, <a href="https://publications.waset.org/search?q=Information%20Geometry" title=" Information Geometry"> Information Geometry</a>, <a href="https://publications.waset.org/search?q=Inverse%0D%0AGaussian%20distribution" title=" Inverse Gaussian distribution"> Inverse Gaussian distribution</a>, <a href="https://publications.waset.org/search?q=Inverse%20q-Gaussian%20distribution" title=" Inverse q-Gaussian distribution"> Inverse q-Gaussian distribution</a>, <a href="https://publications.waset.org/search?q=Statistical%0D%0AManifolds." title=" Statistical Manifolds."> Statistical Manifolds.</a> </p> <a href="https://publications.waset.org/10012676/base-change-for-fisher-metrics-case-of-the-qgaussian-inverse-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012676/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012676/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012676/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012676/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012676/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012676/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012676/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012676/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012676/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012676/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Bidirectional Discriminant Supervised Locality Preserving Projection for Face Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yiqin%20Lin">Yiqin Lin</a>, <a href="https://publications.waset.org/search?q=Wenbo%20Li"> Wenbo Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dimensionality reduction and feature extraction are of crucial importance for achieving high efficiency in manipulating the high dimensional data. Two-dimensional discriminant locality preserving projection (2D-DLPP) and two-dimensional discriminant supervised LPP (2D-DSLPP) are two effective two-dimensional projection methods for dimensionality reduction and feature extraction of face image matrices. Since 2D-DLPP and 2D-DSLPP preserve the local structure information of the original data and exploit the discriminant information, they usually have good recognition performance. However, 2D-DLPP and 2D-DSLPP only employ single-sided projection, and thus the generated low dimensional data matrices have still many features. In this paper, by combining the discriminant supervised LPP with the bidirectional projection, we propose the bidirectional discriminant supervised LPP (BDSLPP). The left and right projection matrices for BDSLPP can be computed iteratively. Experimental results show that the proposed BDSLPP achieves higher recognition accuracy than 2D-DLPP, 2D-DSLPP, and bidirectional discriminant LPP (BDLPP). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20recognition" title="Face recognition">Face recognition</a>, <a href="https://publications.waset.org/search?q=dimension%20reduction" title=" dimension reduction"> dimension reduction</a>, <a href="https://publications.waset.org/search?q=locality%0D%0Apreserving%20projection" title=" locality preserving projection"> locality preserving projection</a>, <a href="https://publications.waset.org/search?q=discriminant%20information" title=" discriminant information"> discriminant information</a>, <a href="https://publications.waset.org/search?q=bidirectional%0D%0Aprojection." title=" bidirectional projection."> bidirectional projection.</a> </p> <a href="https://publications.waset.org/10010925/bidirectional-discriminant-supervised-locality-preserving-projection-for-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010925/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010925/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010925/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010925/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010925/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010925/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010925/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010925/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010925/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010925/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">690</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> A New Weighted LDA Method in Comparison to Some Versions of LDA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Delaram%20Jarchi">Delaram Jarchi</a>, <a href="https://publications.waset.org/search?q=Reza%20Boostani"> Reza Boostani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Linear Discrimination Analysis (LDA) is a linear solution for classification of two classes. In this paper, we propose a variant LDA method for multi-class problem which redefines the between class and within class scatter matrices by incorporating a weight function into each of them. The aim is to separate classes as much as possible in a situation that one class is well separated from other classes, incidentally, that class must have a little influence on classification. It has been suggested to alleviate influence of classes that are well separated by adding a weight into between class scatter matrix and within class scatter matrix. To obtain a simple and effective weight function, ordinary LDA between every two classes has been used in order to find Fisher discrimination value and passed it as an input into two weight functions and redefined between class and within class scatter matrices. Experimental results showed that our new LDA method improved classification rate, on glass, iris and wine datasets, in comparison to different versions of LDA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Discriminant%20vectors" title="Discriminant vectors">Discriminant vectors</a>, <a href="https://publications.waset.org/search?q=weighted%20LDA" title=" weighted LDA"> weighted LDA</a>, <a href="https://publications.waset.org/search?q=uncorrelation" title=" uncorrelation"> uncorrelation</a>, <a href="https://publications.waset.org/search?q=principle%20components" title="principle components">principle components</a>, <a href="https://publications.waset.org/search?q=Fisher-face%20method" title=" Fisher-face method"> Fisher-face method</a>, <a href="https://publications.waset.org/search?q=Bootstarp%20method." title=" Bootstarp method."> Bootstarp method.</a> </p> <a href="https://publications.waset.org/10957/a-new-weighted-lda-method-in-comparison-to-some-versions-of-lda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10957/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10957/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10957/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10957/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10957/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10957/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10957/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10957/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10957/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10957/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1523</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Recursive Algorithms for Image Segmentation Based on a Discriminant Criterion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Bing-Fei%20Wu">Bing-Fei Wu</a>, <a href="https://publications.waset.org/search?q=Yen-Lin%20Chen"> Yen-Lin Chen</a>, <a href="https://publications.waset.org/search?q=Chung-Cheng%20Chiu"> Chung-Cheng Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, a new criterion for determining the number of classes an image should be segmented is proposed. This criterion is based on discriminant analysis for measuring the separability among the segmented classes of pixels. Based on the new discriminant criterion, two algorithms for recursively segmenting the image into determined number of classes are proposed. The proposed methods can automatically and correctly segment objects with various illuminations into separated images for further processing. Experiments on the extraction of text strings from complex document images demonstrate the effectiveness of the proposed methods.1</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=image%20segmentation" title="image segmentation">image segmentation</a>, <a href="https://publications.waset.org/search?q=multilevel%20thresholding" title=" multilevel thresholding"> multilevel thresholding</a>, <a href="https://publications.waset.org/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/search?q=discriminant%20analysis" title=" discriminant analysis"> discriminant analysis</a> </p> <a href="https://publications.waset.org/13494/recursive-algorithms-for-image-segmentation-based-on-a-discriminant-criterion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13494/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13494/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13494/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13494/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13494/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13494/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13494/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13494/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13494/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13494/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2036</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jorge%20A.%20Ruiz-Vanoye">Jorge A. Ruiz-Vanoye</a>, <a href="https://publications.waset.org/search?q=Ocotl%C3%A1n%20D%C3%ADaz-Parra"> Ocotlán Díaz-Parra</a>, <a href="https://publications.waset.org/search?q=Alejandro%20Fuentes-Penna"> Alejandro Fuentes-Penna</a>, <a href="https://publications.waset.org/search?q=Daniel%20V%C3%A9lez-D%C3%ADaz"> Daniel Vélez-Díaz</a>, <a href="https://publications.waset.org/search?q=Edith%20Olaco%20Garc%C3%ADa"> Edith Olaco García</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Intelligent%20transportation%20systems" title="Intelligent transportation systems">Intelligent transportation systems</a>, <a href="https://publications.waset.org/search?q=data-mining%20techniques" title=" data-mining techniques"> data-mining techniques</a>, <a href="https://publications.waset.org/search?q=evolutionary%20algorithms" title=" evolutionary algorithms"> evolutionary algorithms</a>, <a href="https://publications.waset.org/search?q=discriminant%20analysis" title=" discriminant analysis"> discriminant analysis</a>, <a href="https://publications.waset.org/search?q=machine%20learning." title=" machine learning. "> machine learning. </a> </p> <a href="https://publications.waset.org/10004073/discriminant-analysis-as-a-function-of-predictive-learning-to-select-evolutionary-algorithms-in-intelligent-transportation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004073/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004073/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004073/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004073/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004073/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004073/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004073/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004073/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004073/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004073/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1547</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Morphometric Analysis of Tor tambroides by Stepwise Discriminant and Neural Network Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Pollar">M. Pollar</a>, <a href="https://publications.waset.org/search?q=M.%20Jaroensutasinee"> M. Jaroensutasinee</a>, <a href="https://publications.waset.org/search?q=K.%20Jaroensutasinee"> K. Jaroensutasinee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The population structure of the Tor tambroides was investigated with morphometric data (i.e. morphormetric measurement and truss measurement). A morphometric analysis was conducted to compare specimens from three waterfalls: Sunanta, Nan Chong Fa and Wang Muang waterfalls at Khao Nan National Park, Nakhon Si Thammarat, Southern Thailand. The results of stepwise discriminant analysis on seven morphometric variables and 21 truss variables per individual were the same as from a neural network. Fish from three waterfalls were separated into three groups based on their morphometric measurements. The morphometric data shows that the nerual network model performed better than the stepwise discriminant analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Morphometric" title="Morphometric">Morphometric</a>, <a href="https://publications.waset.org/search?q=Tor%20tambroides" title=" Tor tambroides"> Tor tambroides</a>, <a href="https://publications.waset.org/search?q=Stepwise%0ADiscriminant%20Analysis" title=" Stepwise Discriminant Analysis "> Stepwise Discriminant Analysis </a>, <a href="https://publications.waset.org/search?q=Neural%20Network%20Analysis." title=" Neural Network Analysis."> Neural Network Analysis.</a> </p> <a href="https://publications.waset.org/7530/morphometric-analysis-of-tor-tambroides-by-stepwise-discriminant-and-neural-network-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7530/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7530/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7530/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7530/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7530/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7530/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7530/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7530/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7530/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7530/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2150</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Best Starting Pitcher of the Chinese Professional Baseball League in 2009</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chih-Cheng%20Chen">Chih-Cheng Chen</a>, <a href="https://publications.waset.org/search?q=Meng-Lung%20Lin"> Meng-Lung Lin</a>, <a href="https://publications.waset.org/search?q=Yung-Tan%20Lee"> Yung-Tan Lee</a>, <a href="https://publications.waset.org/search?q=Tien-Tze%20Chen"> Tien-Tze Chen</a>, <a href="https://publications.waset.org/search?q=Ching-Yu%20Tseng"> Ching-Yu Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Baseball is unique among other sports in Taiwan. Baseball has become a “symbol of the Taiwanese spirit and Taiwan-s national sport". Taiwan-s first professional sports league, the Chinese Professional Baseball League (CPBL), was established in 1989. Starters pitch many more innings over the course of a season and for a century teams have made all their best pitchers starters. In this study, we attempt to determine the on-field performance these pitchers and which won the most CPBL games in 2009. We utilize the discriminate analysis approach to solve the problem, examining winning pitchers and their statistics, to reliably find the best starting pitcher. The data employed in this paper include innings pitched (IP), earned runs allowed (ERA) and walks plus hits per inning pitched (WPHIP) provided by the official website of the CPBL. The results show that Aaron Rakers was the best starting pitcher of the CPBL. The top 10 CPBL starting pitchers won 14 games to 8 games in the 2009 season. Though Fisher Discriminant Analysis, predicted to top 10 CPBL starting pitchers probably won 20 games to 9 games, more 1 game to 7 games in actually counts in 2009 season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Chinese%20Professional%20Baseball%20League" title="Chinese Professional Baseball League">Chinese Professional Baseball League</a>, <a href="https://publications.waset.org/search?q=startingpitcher" title=" startingpitcher"> startingpitcher</a>, <a href="https://publications.waset.org/search?q=Fisher%27s%20Discriminate%20analysis" title=" Fisher's Discriminate analysis"> Fisher's Discriminate analysis</a> </p> <a href="https://publications.waset.org/2491/best-starting-pitcher-of-the-chinese-professional-baseball-league-in-2009" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2491/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2491/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2491/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2491/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2491/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2491/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2491/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2491/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2491/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2491/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1961</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Solitary Wave Solutions for Burgers-Fisher type Equations with Variable Coefficients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Amit%20Goyal">Amit Goyal</a>, <a href="https://publications.waset.org/search?q=Alka"> Alka</a>, <a href="https://publications.waset.org/search?q=Rama%20Gupta"> Rama Gupta</a>, <a href="https://publications.waset.org/search?q=C.%20Nagaraja%20Kumar"> C. Nagaraja Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have solved the Burgers-Fisher (BF) type equations, with time-dependent coefficients of convection and reaction terms, by using the auxiliary equation method. A class of solitary wave solutions are obtained, and some of which are derived for the first time. We have studied the effect of variable coefficients on physical parameters (amplitude and velocity) of solitary wave solutions. In some cases, the BF equations could be solved for arbitrary timedependent coefficient of convection term. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Solitary%20wave%20solution" title="Solitary wave solution">Solitary wave solution</a>, <a href="https://publications.waset.org/search?q=Variable%20coefficient%20Burgers-%0AFisher%20equation" title=" Variable coefficient Burgers- Fisher equation"> Variable coefficient Burgers- Fisher equation</a>, <a href="https://publications.waset.org/search?q=Auxiliary%20equation%20method." title=" Auxiliary equation method."> Auxiliary equation method.</a> </p> <a href="https://publications.waset.org/9386/solitary-wave-solutions-for-burgers-fisher-type-equations-with-variable-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9386/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9386/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9386/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9386/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9386/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9386/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9386/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9386/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9386/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9386/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1628</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> The Classification Performance in Parametric and Nonparametric Discriminant Analysis for a Class- Unbalanced Data of Diabetes Risk Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Lily%20Ingsrisawang">Lily Ingsrisawang</a>, <a href="https://publications.waset.org/search?q=Tasanee%20Nacharoen"> Tasanee Nacharoen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problems arising from unbalanced data sets generally appear in real world applications. Due to unequal class distribution, many researchers have found that the performance of existing classifiers tends to be biased towards the majority class. The k-nearest neighbors’ nonparametric discriminant analysis is a method that was proposed for classifying unbalanced classes with good performance. In this study, the methods of discriminant analysis are of interest in investigating misclassification error rates for classimbalanced data of three diabetes risk groups. The purpose of this study was to compare the classification performance between parametric discriminant analysis and nonparametric discriminant analysis in a three-class classification of class-imbalanced data of diabetes risk groups. Data from a project maintaining healthy conditions for 599 employees of a government hospital in Bangkok were obtained for the classification problem. The employees were divided into three diabetes risk groups: non-risk (90%), risk (5%), and diabetic (5%). The original data including the variables of diabetes risk group, age, gender, blood glucose, and BMI were analyzed and bootstrapped for 50 and 100 samples, 599 observations per sample, for additional estimation of the misclassification error rate. Each data set was explored for the departure of multivariate normality and the equality of covariance matrices of the three risk groups. Both the original data and the bootstrap samples showed nonnormality and unequal covariance matrices. The parametric linear discriminant function, quadratic discriminant function, and the nonparametric k-nearest neighbors’ discriminant function were performed over 50 and 100 bootstrap samples and applied to the original data. Searching the optimal classification rule, the choices of prior probabilities were set up for both equal proportions (0.33: 0.33: 0.33) and unequal proportions of (0.90:0.05:0.05), (0.80: 0.10: 0.10) and (0.70, 0.15, 0.15). The results from 50 and 100 bootstrap samples indicated that the k-nearest neighbors approach when k=3 or k=4 and the defined prior probabilities of non-risk: risk: diabetic as 0.90: 0.05:0.05 or 0.80:0.10:0.10 gave the smallest error rate of misclassification. The k-nearest neighbors approach would be suggested for classifying a three-class-imbalanced data of diabetes risk groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bootstrap" title="Bootstrap">Bootstrap</a>, <a href="https://publications.waset.org/search?q=diabetes%20risk%20groups" title=" diabetes risk groups"> diabetes risk groups</a>, <a href="https://publications.waset.org/search?q=error%20rate" title=" error rate"> error rate</a>, <a href="https://publications.waset.org/search?q=k-nearest%0D%0Aneighbors." title=" k-nearest neighbors."> k-nearest neighbors.</a> </p> <a href="https://publications.waset.org/10001482/the-classification-performance-in-parametric-and-nonparametric-discriminant-analysis-for-a-class-unbalanced-data-of-diabetes-risk-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001482/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001482/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001482/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001482/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001482/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001482/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001482/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001482/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001482/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001482/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2008</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohammed%20Rziza">Mohammed Rziza</a>, <a href="https://publications.waset.org/search?q=Mohamed%20El%20Aroussi"> Mohamed El Aroussi</a>, <a href="https://publications.waset.org/search?q=Mohammed%20El%20Hassouni"> Mohammed El Hassouni</a>, <a href="https://publications.waset.org/search?q=Sanaa%20Ghouzali"> Sanaa Ghouzali</a>, <a href="https://publications.waset.org/search?q=Driss%20Aboutajdine"> Driss Aboutajdine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients characterize the face texture and a set of simple statistical measures allows us to form compact and meaningful feature vectors. The proposed method is compared with some related feature extraction methods such as Principal component analysis (PCA), as well as Linear Discriminant Analysis LDA, and independent component Analysis (ICA). Two different muti-resolution transforms, Wavelet (DWT) and Contourlet, were also compared against the Block Based Curvelet-LDA algorithm. Experimental results on ORL, YALE and FERET face databases convince us that the proposed method provides a better representation of the class information and obtains much higher recognition accuracies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Curvelet" title="Curvelet">Curvelet</a>, <a href="https://publications.waset.org/search?q=Linear%20Discriminant%20Analysis%20%28LDA%29" title=" Linear Discriminant Analysis (LDA) "> Linear Discriminant Analysis (LDA) </a>, <a href="https://publications.waset.org/search?q=Contourlet" title=" Contourlet"> Contourlet</a>, <a href="https://publications.waset.org/search?q=Discreet%20Wavelet%20Transform" title="Discreet Wavelet Transform">Discreet Wavelet Transform</a>, <a href="https://publications.waset.org/search?q=DWT" title=" DWT"> DWT</a>, <a href="https://publications.waset.org/search?q=Block-based%20analysis" title=" Block-based analysis"> Block-based analysis</a>, <a href="https://publications.waset.org/search?q=face%20recognition%20%28FR%29." title="face recognition (FR).">face recognition (FR).</a> </p> <a href="https://publications.waset.org/6439/local-curvelet-based-classification-using-linear-discriminant-analysis-for-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6439/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6439/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6439/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6439/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6439/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6439/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6439/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6439/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6439/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6439/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1808</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Behrens-Fisher Problem with One Variance Unknown</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sa-aat%20Niwitpong">Sa-aat Niwitpong</a>, <a href="https://publications.waset.org/search?q=Rada%20Somkhuean"> Rada Somkhuean</a>, <a href="https://publications.waset.org/search?q=Suparat%20Niwitpong"> Suparat Niwitpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents the generalized p-values for testing the Behrens-Fisher problem when one variance is unknown. We also derive a closed form expression of the upper bound of the proposed generalized p-value.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Generalized%20p-value" title="Generalized p-value">Generalized p-value</a>, <a href="https://publications.waset.org/search?q=hypothesis%20testing" title=" hypothesis testing"> hypothesis testing</a>, <a href="https://publications.waset.org/search?q=upper%20bound." title=" upper bound."> upper bound.</a> </p> <a href="https://publications.waset.org/16728/behrens-fisher-problem-with-one-variance-unknown" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16728/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16728/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16728/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16728/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16728/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16728/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16728/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16728/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16728/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16728/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1458</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Upper Bound of the Generalize p-Value for the Behrens-Fisher Problem with a Known Ratio of Variances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rada%20Somkhuean">Rada Somkhuean</a>, <a href="https://publications.waset.org/search?q=Suparat%20Niwitpong"> Suparat Niwitpong</a>, <a href="https://publications.waset.org/search?q=Sa-aat%20Niwitpong"> Sa-aat Niwitpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents the generalized p-values for testing the Behrens-Fisher problem when a ratio of variance is known. We also derive a closed form expression of the upper bound of the proposed generalized p-value.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Generalized%20p-value" title="Generalized p-value">Generalized p-value</a>, <a href="https://publications.waset.org/search?q=hypothesis%20testing" title=" hypothesis testing"> hypothesis testing</a>, <a href="https://publications.waset.org/search?q=ratio%20of%20variances" title=" ratio of variances"> ratio of variances</a>, <a href="https://publications.waset.org/search?q=upper%20bound." title=" upper bound."> upper bound.</a> </p> <a href="https://publications.waset.org/16727/upper-bound-of-the-generalize-p-value-for-the-behrens-fisher-problem-with-a-known-ratio-of-variances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16727/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16727/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16727/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16727/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16727/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16727/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16727/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16727/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16727/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16727/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1233</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Analysis of Fertilizer Effect in the Tilapia Growth of Mozambique (Oreochromis mossambicus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S%C3%A9rgio%20Afonso%20Mulema">Sérgio Afonso Mulema</a>, <a href="https://publications.waset.org/search?q=Andr%C3%A9s%20Carri%C3%B3n%20Garc%C3%ADa"> Andrés Carrión García</a>, <a href="https://publications.waset.org/search?q=Vicente%20Ernesto"> Vicente Ernesto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyses the effect of fertilizer (organic and inorganic) in the growth of tilapia. An experiment was implemented in the Aquapesca Company of Mozambique; there were considered four different treatments. Each type of fertilizer was applied in two of these treatments; a feed was supplied to the third treatment, and the fourth was taken as control. The weight and length of the tilapia were used as the growth parameters, and to measure the water quality, the physical-chemical parameters were registered. The results show that the weight and length were different for tilapias cultivated in different treatments. These differences were evidenced mainly by organic and feed treatments, where there was the largest and smallest value of these parameters, respectively. In order to prove that these differences were caused only by applied treatment without interference for the aquatic environment, a Fisher discriminant analysis was applied, which confirmed that the treatments were exposed to the same environment condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fertilizer" title="Fertilizer">Fertilizer</a>, <a href="https://publications.waset.org/search?q=tilapia" title=" tilapia"> tilapia</a>, <a href="https://publications.waset.org/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/search?q=statistical%20methods." title=" statistical methods."> statistical methods.</a> </p> <a href="https://publications.waset.org/10008578/analysis-of-fertilizer-effect-in-the-tilapia-growth-of-mozambique-oreochromis-mossambicus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008578/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008578/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008578/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008578/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008578/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008578/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008578/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008578/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008578/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008578/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">899</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> A Hybrid Gene Selection Technique Using Improved Mutual Information and Fisher Score for Cancer Classification Using Microarrays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Anidha">M. Anidha</a>, <a href="https://publications.waset.org/search?q=K.%20Premalatha"> K. Premalatha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Feature Selection is significant in order to perform constructive classification in the area of cancer diagnosis. However, a large number of features compared to the number of samples makes the task of classification computationally very hard and prone to errors in microarray gene expression datasets. In this paper, we present an innovative method for selecting highly informative gene subsets of gene expression data that effectively classifies the cancer data into tumorous and non-tumorous. The hybrid gene selection technique comprises of combined Mutual Information and Fisher score to select informative genes. The gene selection is validated by classification using Support Vector Machine (SVM) which is a supervised learning algorithm capable of solving complex classification problems. The results obtained from improved Mutual Information and F-Score with SVM as a classifier has produced efficient results.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gene%20selection" title="Gene selection">Gene selection</a>, <a href="https://publications.waset.org/search?q=mutual%20information" title=" mutual information"> mutual information</a>, <a href="https://publications.waset.org/search?q=Fisher%20score" title=" Fisher score"> Fisher score</a>, <a href="https://publications.waset.org/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/search?q=SVM." title=" SVM."> SVM.</a> </p> <a href="https://publications.waset.org/10004601/a-hybrid-gene-selection-technique-using-improved-mutual-information-and-fisher-score-for-cancer-classification-using-microarrays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004601/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004601/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004601/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004601/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004601/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004601/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004601/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004601/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004601/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004601/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1152</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Study on Crater Detection Using FLDA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yoshiaki%20Takeda">Yoshiaki Takeda</a>, <a href="https://publications.waset.org/search?q=Norifumi%20Aoyama"> Norifumi Aoyama</a>, <a href="https://publications.waset.org/search?q=Takahiro%20Tanaami"> Takahiro Tanaami</a>, <a href="https://publications.waset.org/search?q=Syouhei%20Honda"> Syouhei Honda</a>, <a href="https://publications.waset.org/search?q=Kenta%20Tabata"> Kenta Tabata</a>, <a href="https://publications.waset.org/search?q=Hiroyuki%20Kamata"> Hiroyuki Kamata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we validate crater detection in moon surface image using FLDA. This proposal assumes that it is applied to SLIM (Smart Lander for Investigating Moon) project aiming at the pin-point landing to the moon surface. The point where the lander should land is judged by the position relations of the craters obtained via camera, so the real-time image processing becomes important element. Besides, in the SLIM project, 400kg-class lander is assumed, therefore, high-performance computers for image processing cannot be equipped. We are studying various crater detection methods such as Haar-Like features, LBP, and PCA. And we think these methods are appropriate to the project, however, to identify the unlearned images obtained by actual is insufficient. In this paper, we examine the crater detection using FLDA, and compare with the conventional methods.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Crater%20Detection" title="Crater Detection">Crater Detection</a>, <a href="https://publications.waset.org/search?q=Fisher%20Linear%20Discriminant%0D%0AAnalysis" title=" Fisher Linear Discriminant Analysis "> Fisher Linear Discriminant Analysis </a>, <a href="https://publications.waset.org/search?q=Haar-Like%20Feature" title=" Haar-Like Feature"> Haar-Like Feature</a>, <a href="https://publications.waset.org/search?q=Image%20Processing." title=" Image Processing."> Image Processing.</a> </p> <a href="https://publications.waset.org/15708/study-on-crater-detection-using-flda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15708/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15708/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15708/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15708/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15708/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15708/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15708/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15708/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15708/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15708/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1729</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Face Recognition using Radial Basis Function Network based on LDA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Byung-Joo%20Oh">Byung-Joo Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper describes a method to improve the robustness of a face recognition system based on the combination of two compensating classifiers. The face images are preprocessed by the appearance-based statistical approaches such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). LDA features of the face image are taken as the input of the Radial Basis Function Network (RBFN). The proposed approach has been tested on the ORL database. The experimental results show that the LDA+RBFN algorithm has achieved a recognition rate of 93.5%</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20recognition" title="Face recognition">Face recognition</a>, <a href="https://publications.waset.org/search?q=linear%20discriminant%20analysis" title=" linear discriminant analysis"> linear discriminant analysis</a>, <a href="https://publications.waset.org/search?q=radial%20basis%20function%20network." title=" radial basis function network."> radial basis function network.</a> </p> <a href="https://publications.waset.org/2876/face-recognition-using-radial-basis-function-network-based-on-lda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2876/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2876/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2876/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2876/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2876/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2876/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2876/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2876/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2876/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2876/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2122</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Maximum Likelihood Estimation of Burr Type V Distribution under Left Censored Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Feroze">N. Feroze</a>, <a href="https://publications.waset.org/search?q=M.%20Aslam"> M. Aslam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The paper deals with the maximum likelihood estimation of the parameters of the Burr type V distribution based on left censored samples. The maximum likelihood estimators (MLE) of the parameters have been derived and the Fisher information matrix for the parameters of the said distribution has been obtained explicitly. The confidence intervals for the parameters have also been discussed. A simulation study has been conducted to investigate the performance of the point and interval estimates.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fisher%20information%20matrix" title="Fisher information matrix">Fisher information matrix</a>, <a href="https://publications.waset.org/search?q=confidence%20intervals" title=" confidence intervals"> confidence intervals</a>, <a href="https://publications.waset.org/search?q=censoring." title=" censoring."> censoring.</a> </p> <a href="https://publications.waset.org/17024/maximum-likelihood-estimation-of-burr-type-v-distribution-under-left-censored-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17024/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17024/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17024/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17024/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17024/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17024/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17024/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17024/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17024/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17024/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1709</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> A New Face Recognition Method using PCA, LDA and Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Hossein%20Sahoolizadeh">A. Hossein Sahoolizadeh</a>, <a href="https://publications.waset.org/search?q=B.%20Zargham%20Heidari"> B. Zargham Heidari</a>, <a href="https://publications.waset.org/search?q=C.%20Hamid%20Dehghani"> C. Hamid Dehghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20recognition%20Principal%20component%20analysis" title="Face recognition Principal component analysis">Face recognition Principal component analysis</a>, <a href="https://publications.waset.org/search?q=Linear%20discriminant%20analysis" title=" Linear discriminant analysis"> Linear discriminant analysis</a>, <a href="https://publications.waset.org/search?q=Neural%20networks." title=" Neural networks."> Neural networks.</a> </p> <a href="https://publications.waset.org/13908/a-new-face-recognition-method-using-pca-lda-and-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13908/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13908/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13908/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13908/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13908/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13908/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13908/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13908/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13908/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13908/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3213</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Normalization Discriminant Independent Component Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Liew%20Yee%20Ping">Liew Yee Ping</a>, <a href="https://publications.waset.org/search?q=Pang%20Ying%20Han"> Pang Ying Han</a>, <a href="https://publications.waset.org/search?q=Lau%20Siong%20Hoe"> Lau Siong Hoe</a>, <a href="https://publications.waset.org/search?q=Ooi%20Shih%20Yin"> Ooi Shih Yin</a>, <a href="https://publications.waset.org/search?q=Housam%20Khalifa%20Bashier%20Babiker"> Housam Khalifa Bashier Babiker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In face recognition, feature extraction techniques attempts to search for appropriate representation of the data. However, when the feature dimension is larger than the samples size, it brings performance degradation. Hence, we propose a method called Normalization Discriminant Independent Component Analysis (NDICA). The input data will be regularized to obtain the most reliable features from the data and processed using Independent Component Analysis (ICA). The proposed method is evaluated on three face databases, Olivetti Research Ltd (ORL), Face Recognition Technology (FERET) and Face Recognition Grand Challenge (FRGC). NDICA showed it effectiveness compared with other unsupervised and supervised techniques.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20recognition" title="Face recognition">Face recognition</a>, <a href="https://publications.waset.org/search?q=small%20sample%20size" title=" small sample size"> small sample size</a>, <a href="https://publications.waset.org/search?q=regularization" title=" regularization"> regularization</a>, <a href="https://publications.waset.org/search?q=independent%20component%20analysis." title=" independent component analysis."> independent component analysis.</a> </p> <a href="https://publications.waset.org/16147/normalization-discriminant-independent-component-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16147/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16147/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16147/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16147/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16147/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16147/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16147/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16147/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16147/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16147/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1955</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Improved Tropical Wood Species Recognition System based on Multi-feature Extractor and Classifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Marzuki%20Khalid">Marzuki Khalid</a>, <a href="https://publications.waset.org/search?q=RubiyahYusof"> RubiyahYusof</a>, <a href="https://publications.waset.org/search?q=AnisSalwaMohdKhairuddin"> AnisSalwaMohdKhairuddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An automated wood recognition system is designed to classify tropical wood species.The wood features are extracted based on two feature extractors: Basic Grey Level Aura Matrix (BGLAM) technique and statistical properties of pores distribution (SPPD) technique. Due to the nonlinearity of the tropical wood species separation boundaries, a pre classification stage is proposed which consists ofKmeans clusteringand kernel discriminant analysis (KDA). Finally, Linear Discriminant Analysis (LDA) classifier and KNearest Neighbour (KNN) are implemented for comparison purposes. The study involves comparison of the system with and without pre classification using KNN classifier and LDA classifier.The results show that the inclusion of the pre classification stage has improved the accuracy of both the LDA and KNN classifiers by more than 12%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Tropical%20wood%20species" title="Tropical wood species">Tropical wood species</a>, <a href="https://publications.waset.org/search?q=nonlinear%20data" title=" nonlinear data"> nonlinear data</a>, <a href="https://publications.waset.org/search?q=featureextractors" title=" featureextractors"> featureextractors</a>, <a href="https://publications.waset.org/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/14323/improved-tropical-wood-species-recognition-system-based-on-multi-feature-extractor-and-classifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14323/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14323/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14323/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14323/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14323/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14323/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14323/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14323/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14323/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14323/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2000</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Self Organizing Mixture Network in Mixture Discriminant Analysis: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nazif%20%C3%87al%C4%B1%C5%9F">Nazif Çalış</a>, <a href="https://publications.waset.org/search?q=Murat%20Eri%C5%9Fo%C4%9Flu"> Murat Erişoğlu</a>, <a href="https://publications.waset.org/search?q=Hamza%20Erol"> Hamza Erol</a>, <a href="https://publications.waset.org/search?q=Tayfun%20Servi"> Tayfun Servi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent works related with mixture discriminant analysis (MDA), expectation and maximization (EM) algorithm is used to estimate parameters of Gaussian mixtures. But, initial values of EM algorithm affect the final parameters- estimates. Also, when EM algorithm is applied two times, for the same data set, it can be give different results for the estimate of parameters and this affect the classification accuracy of MDA. Forthcoming this problem, we use Self Organizing Mixture Network (SOMN) algorithm to estimate parameters of Gaussians mixtures in MDA that SOMN is more robust when random the initial values of the parameters are used [5]. We show effectiveness of this method on popular simulated waveform datasets and real glass data set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Self%20Organizing%20Mixture%20Network" title="Self Organizing Mixture Network">Self Organizing Mixture Network</a>, <a href="https://publications.waset.org/search?q=MixtureDiscriminant%20Analysis" title=" MixtureDiscriminant Analysis"> MixtureDiscriminant Analysis</a>, <a href="https://publications.waset.org/search?q=Waveform%20Datasets" title=" Waveform Datasets"> Waveform Datasets</a>, <a href="https://publications.waset.org/search?q=Glass%20Identification" title=" Glass Identification"> Glass Identification</a>, <a href="https://publications.waset.org/search?q=Mixture%20of%20Multivariate%20Normal%20Distributions" title="Mixture of Multivariate Normal Distributions">Mixture of Multivariate Normal Distributions</a> </p> <a href="https://publications.waset.org/5583/self-organizing-mixture-network-in-mixture-discriminant-analysis-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5583/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5583/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5583/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5583/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5583/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5583/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5583/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5583/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5583/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5583/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1517</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> The Willingness of Business Students on T Innovative Behavior within the Theory of Planned Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mei%20L.%20Lin">Mei L. Lin</a>, <a href="https://publications.waset.org/search?q=Pi-Yueh%20Cheng"> Pi-Yueh Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classes on creativity, innovation, and entrepreneurship are becoming quite popular at universities throughout the world. However, it is not easy for business students to get involved to innovative activities, especially patent application. The present study investigated how to enhance business students- intention to participate in innovative activities and which incentives universities should consider. A 22-item research scale was used, and confirmatory factor analysis was conducted to verify its reliability and validity. Multiple regression and discriminant analyses were also conducted. The results demonstrate the effect of growth-need strength on innovative behavior and indicate that the theory of planned behavior can explain and predict business students- intention to participate in innovative activities. Additionally, the results suggest that applying our proposed model in practice would effectively strengthen business students- intentions to engage in innovative activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=discriminant%20analysis" title="discriminant analysis">discriminant analysis</a>, <a href="https://publications.waset.org/search?q=growth%20need%20strength" title=" growth need strength"> growth need strength</a>, <a href="https://publications.waset.org/search?q=innovative%20behavior" title=" innovative behavior"> innovative behavior</a>, <a href="https://publications.waset.org/search?q=TPB%20model" title=" TPB model"> TPB model</a> </p> <a href="https://publications.waset.org/14135/the-willingness-of-business-students-on-t-innovative-behavior-within-the-theory-of-planned-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14135/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14135/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14135/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14135/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14135/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14135/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14135/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14135/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14135/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14135/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1560</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> An SVM based Classification Method for Cancer Data using Minimum Microarray Gene Expressions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Mallika">R. Mallika</a>, <a href="https://publications.waset.org/search?q=V.%20Saravanan"> V. Saravanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper gives a novel method for improving classification performance for cancer classification with very few microarray Gene expression data. The method employs classification with individual gene ranking and gene subset ranking. For selection and classification, the proposed method uses the same classifier. The method is applied to three publicly available cancer gene expression datasets from Lymphoma, Liver and Leukaemia datasets. Three different classifiers namely Support vector machines-one against all (SVM-OAA), K nearest neighbour (KNN) and Linear Discriminant analysis (LDA) were tested and the results indicate the improvement in performance of SVM-OAA classifier with satisfactory results on all the three datasets when compared with the other two classifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Support%20vector%20machines-one%20against%20all" title="Support vector machines-one against all">Support vector machines-one against all</a>, <a href="https://publications.waset.org/search?q=cancerclassification" title=" cancerclassification"> cancerclassification</a>, <a href="https://publications.waset.org/search?q=Linear%20Discriminant%20analysis" title=" Linear Discriminant analysis"> Linear Discriminant analysis</a>, <a href="https://publications.waset.org/search?q=K%20nearest%20neighbour" title=" K nearest neighbour"> K nearest neighbour</a>, <a href="https://publications.waset.org/search?q=microarray%20gene%20expression" title="microarray gene expression">microarray gene expression</a>, <a href="https://publications.waset.org/search?q=gene%20pair%20ranking." title=" gene pair ranking."> gene pair ranking.</a> </p> <a href="https://publications.waset.org/3742/an-svm-based-classification-method-for-cancer-data-using-minimum-microarray-gene-expressions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3742/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3742/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3742/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3742/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3742/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3742/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3742/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3742/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3742/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3742/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2562</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Image-Based (RBG) Technique for Estimating Phosphorus Levels of Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20M.%20Ali">M. M. Ali</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Al-Ani"> Ahmed Al-Ani</a>, <a href="https://publications.waset.org/search?q=Derek%20Eamus"> Derek Eamus</a>, <a href="https://publications.waset.org/search?q=Daniel%20K.%20Y.%20Tan"> Daniel K. Y. Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this glasshouse study, we developed a new imagebased non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. The plants were grown on a nutrient solution containing different P concentrations, e.g. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P). After 7 weeks of treatment, the plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. These data were further used in linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using leaf image and morphological data. Our proposed nondestructive imaging method is precise in estimating P requirements of different crop species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image-based%20techniques" title="Image-based techniques">Image-based techniques</a>, <a href="https://publications.waset.org/search?q=leaf%20area" title=" leaf area"> leaf area</a>, <a href="https://publications.waset.org/search?q=leaf%20P%20contents" title=" leaf P contents"> leaf P contents</a>, <a href="https://publications.waset.org/search?q=linear%20discriminant%20analysis." title=" linear discriminant analysis."> linear discriminant analysis.</a> </p> <a href="https://publications.waset.org/10002856/image-based-rbg-technique-for-estimating-phosphorus-levels-of-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002856/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002856/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002856/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002856/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002856/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002856/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002856/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002856/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002856/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002856/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1649</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fisher%20discriminant&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fisher%20discriminant&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fisher%20discriminant&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fisher%20discriminant&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>