CINXE.COM

Search results for: new prediction model

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: new prediction model</title> <meta name="description" content="Search results for: new prediction model"> <meta name="keywords" content="new prediction model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="new prediction model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="new prediction model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17784</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: new prediction model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17784</span> Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Sir">B. Sir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Podhoranyi"> M. Podhoranyi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kuchar"> S. Kuchar</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kocyan"> T. Kocyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainfall-runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15–May 18 2014). The prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-HMS" title=" HEC-HMS"> HEC-HMS</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff "> runoff </a> </p> <a href="https://publications.waset.org/abstracts/20151/automatic-flood-prediction-using-rainfall-runoff-model-in-moravian-silesian-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17783</span> SEMCPRA-Sar-Esembled Model for Climate Prediction in Remote Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamalpreet%20Kaur">Kamalpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Renu%20Dhir"> Renu Dhir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate prediction is an essential component of climate research, which helps evaluate possible effects on economies, communities, and ecosystems. Climate prediction involves short-term weather prediction, seasonal prediction, and long-term climate change prediction. Climate prediction can use the information gathered from satellites, ground-based stations, and ocean buoys, among other sources. The paper's four architectures, such as ResNet50, VGG19, Inception-v3, and Xception, have been combined using an ensemble approach for overall performance and robustness. An ensemble of different models makes a prediction, and the majority vote determines the final prediction. The various architectures such as ResNet50, VGG19, Inception-v3, and Xception efficiently classify the dataset RSI-CB256, which contains satellite images into cloudy and non-cloudy. The generated ensembled S-E model (Sar-ensembled model) provides an accuracy of 99.25%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20images" title=" satellite images"> satellite images</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/178864/semcpra-sar-esembled-model-for-climate-prediction-in-remote-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17782</span> Diesel Fault Prediction Based on Optimized Gray Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Bing">Han Bing</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin%20Zhenjie"> Yin Zhenjie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20prediction" title="fault prediction">fault prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=GM%281" title=" GM(1"> GM(1</a>, <a href="https://publications.waset.org/abstracts/search?q=5%29%20genetic%20algorithm" title="5) genetic algorithm">5) genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=GBPGA" title=" GBPGA"> GBPGA</a> </p> <a href="https://publications.waset.org/abstracts/48844/diesel-fault-prediction-based-on-optimized-gray-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17781</span> Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20Baldan">Muhammet Baldan</a>, <a href="https://publications.waset.org/abstracts/search?q=Emel%20Timu%C3%A7in"> Emel Timuçin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solubility" title="solubility">solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=maccs%20keys" title=" maccs keys"> maccs keys</a> </p> <a href="https://publications.waset.org/abstracts/186736/using-combination-of-sets-of-features-of-molecules-for-aqueous-solubility-prediction-a-random-forest-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17780</span> Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hang%20Lo%20Lee">Hang Lo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki%20Il%20Song"> Ki Il Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Hwan%20Ryu"> Hee Hwan Ryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TBM%20performance%20prediction%20model" title="TBM performance prediction model">TBM performance prediction model</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20system" title=" classification system"> classification system</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20regression%20analysis" title=" simple regression analysis"> simple regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20analysis" title=" residual analysis"> residual analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20input%20parameters" title=" optimal input parameters"> optimal input parameters</a> </p> <a href="https://publications.waset.org/abstracts/52738/analysis-on-prediction-models-of-tbm-performance-and-selection-of-optimal-input-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17779</span> An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor%20Zila%20Abd%20Hamid">Nor Zila Abd Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Salmi%20M.%20Noorani"> Mohd Salmi M. Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaotic%20approach" title="chaotic approach">chaotic approach</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20space" title=" phase space"> phase space</a>, <a href="https://publications.waset.org/abstracts/search?q=Cao%20method" title=" Cao method"> Cao method</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20linear%20approximation%20method" title=" local linear approximation method"> local linear approximation method</a> </p> <a href="https://publications.waset.org/abstracts/2015/an-improved-prediction-model-of-ozone-concentration-time-series-based-on-chaotic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17778</span> A Prediction Model of Adopting IPTV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeonghwan%20Jeon">Jeonghwan Jeon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the advent of IPTV in the fierce competition with existing broadcasting system, it is emerged as an important issue to predict how much the adoption of IPTV service will be. This paper aims to suggest a prediction model for adopting IPTV using classification and Ranking Belief Simplex (CaRBS). A simplex plot method of representing data allows a clear visual representation to the degree of interaction of the support from the variables to the prediction of the objects. CaRBS is applied to the survey data on the IPTV adoption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prediction" title="prediction">prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=adoption" title=" adoption"> adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=IPTV" title=" IPTV"> IPTV</a>, <a href="https://publications.waset.org/abstracts/search?q=CaRBS" title=" CaRBS"> CaRBS</a> </p> <a href="https://publications.waset.org/abstracts/2971/a-prediction-model-of-adopting-iptv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17777</span> Prediction on Housing Price Based on Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Yu">Li Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chenlu%20Jiao"> Chenlu Jiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongrun%20Xin"> Hongrun Xin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Wang"> Yan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaiyang%20Wang"> Kaiyang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=housing%20prediction" title=" housing prediction"> housing prediction</a> </p> <a href="https://publications.waset.org/abstracts/84747/prediction-on-housing-price-based-on-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17776</span> The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carl%20van%20Walraven">Carl van Walraven</a>, <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Tuna"> Meltem Tuna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prediction%20model%20accuracy" title="prediction model accuracy">prediction model accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=scaled%20brier%20score" title=" scaled brier score"> scaled brier score</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20effects%20methods" title=" fixed effects methods"> fixed effects methods</a>, <a href="https://publications.waset.org/abstracts/search?q=concurrent%20external%20validation" title=" concurrent external validation"> concurrent external validation</a> </p> <a href="https://publications.waset.org/abstracts/142792/the-network-relative-model-accuracy-nerma-score-a-method-to-quantify-the-accuracy-of-prediction-models-in-a-concurrent-external-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17775</span> Study on the Model Predicting Post-Construction Settlement of Soft Ground</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pingshan%20Chen">Pingshan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiliang%20Dong"> Zhiliang Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to estimate the post-construction settlement more objectively, the power-polynomial model is proposed, which can reflect the trend of settlement development based on the observed settlement data. It was demonstrated by an actual case history of an embankment, and during the prediction. Compared with the other three prediction models, the power-polynomial model can estimate the post-construction settlement more accurately with more simple calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prediction" title="prediction">prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=post-construction%20settlement" title=" post-construction settlement"> post-construction settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20ground" title=" soft ground"> soft ground</a> </p> <a href="https://publications.waset.org/abstracts/2187/study-on-the-model-predicting-post-construction-settlement-of-soft-ground" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17774</span> Enhanced Extra Trees Classifier for Epileptic Seizure Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maurice%20Ntahobari">Maurice Ntahobari</a>, <a href="https://publications.waset.org/abstracts/search?q=Levin%20Kuhlmann"> Levin Kuhlmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20Boley"> Mario Boley</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhinoos%20Razavi%20Hesabi"> Zhinoos Razavi Hesabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=seizure%20prediction" title=" seizure prediction"> seizure prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=extra%20tree%20classifier" title=" extra tree classifier"> extra tree classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=SHAP" title=" SHAP"> SHAP</a>, <a href="https://publications.waset.org/abstracts/search?q=epilepsy" title=" epilepsy"> epilepsy</a> </p> <a href="https://publications.waset.org/abstracts/155126/enhanced-extra-trees-classifier-for-epileptic-seizure-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17773</span> Stock Market Prediction by Regression Model with Social Moods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Ohmura">Masahiro Ohmura</a>, <a href="https://publications.waset.org/abstracts/search?q=Koh%20Kakusho"> Koh Kakusho</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Okadome"> Takeshi Okadome</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stock%20market%20prediction" title="stock market prediction">stock market prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20moods" title=" social moods"> social moods</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=DJIA" title=" DJIA"> DJIA</a> </p> <a href="https://publications.waset.org/abstracts/8713/stock-market-prediction-by-regression-model-with-social-moods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17772</span> Calibration Model of %Titratable Acidity (Citric Acid) for Intact Tomato by Transmittance SW-NIR Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Petcharaporn">K. Petcharaporn</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumchoo"> S. Kumchoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The acidity (citric acid) is one of the chemical contents that can refer to the internal quality and the maturity index of tomato. The titratable acidity (%TA) can be predicted by a non-destructive method prediction by using the transmittance short wavelength (SW-NIR). Spectroscopy in the wavelength range between 665-955 nm. The set of 167 tomato samples divided into groups of 117 tomatoes sample for training set and 50 tomatoes sample for test set were used to establish the calibration model to predict and measure %TA by partial least squares regression (PLSR) technique. The spectra were pretreated with MSC pretreatment and it gave the optimal result for calibration model as (R = 0.92, RMSEC = 0.03%) and this model obtained high accuracy result to use for %TA prediction in test set as (R = 0.81, RMSEP = 0.05%). From the result of prediction in test set shown that the transmittance SW-NIR spectroscopy technique can be used for a non-destructive method for %TA prediction of tomatoes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato" title="tomato">tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a>, <a href="https://publications.waset.org/abstracts/search?q=titratable%20acidity" title=" titratable acidity"> titratable acidity</a>, <a href="https://publications.waset.org/abstracts/search?q=citric%20acid" title=" citric acid"> citric acid</a> </p> <a href="https://publications.waset.org/abstracts/11536/calibration-model-of-titratable-acidity-citric-acid-for-intact-tomato-by-transmittance-sw-nir-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17771</span> A New Prediction Model for Soil Compression Index </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Mohammadzadeh%20S.">D. Mohammadzadeh S.</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bolouri%20Bazaz"> J. Bolouri Bazaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new prediction model for compression index of fine-grained soils using multi-gene genetic programming (MGGP) technique. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. Several laboratory test results for fine-grained were used to develop the models. Various criteria were considered to check the validity of the model. The parametric and sensitivity analyses were performed and discussed. The MGGP method was found to be very effective for predicting the soil compression index. A comparative study was further performed to prove the superiority of the MGGP model to the existing soft computing and traditional empirical equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model" title="new prediction model">new prediction model</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20index%20soil" title=" compression index soil"> compression index soil</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-gene%20genetic%20programming" title=" multi-gene genetic programming"> multi-gene genetic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=MGGP" title=" MGGP"> MGGP</a> </p> <a href="https://publications.waset.org/abstracts/35247/a-new-prediction-model-for-soil-compression-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17770</span> On Improving Breast Cancer Prediction Using GRNN-CP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kefaya%20Qaddoum">Kefaya Qaddoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title="neural network">neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=conformal%20prediction" title=" conformal prediction"> conformal prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20classification" title=" cancer classification"> cancer classification</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/74483/on-improving-breast-cancer-prediction-using-grnn-cp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17769</span> Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaogang%20Li">Xiaogang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jieqiong%20Miao"> Jieqiong Miao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square error <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grey%20prediction%20model" title="Grey prediction model">Grey prediction model</a>, <a href="https://publications.waset.org/abstracts/search?q=trigonometric%20functions" title=" trigonometric functions"> trigonometric functions</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithms" title=" genetic algorithms"> genetic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20mean%20square%20error" title=" root mean square error"> root mean square error</a> </p> <a href="https://publications.waset.org/abstracts/29370/life-prediction-method-of-lithium-ion-battery-based-on-grey-support-vector-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17768</span> Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Triantakonstantis">Dimitrios Triantakonstantis</a>, <a href="https://publications.waset.org/abstracts/search?q=Demetris%20Stathakis"> Demetris Stathakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=CORINE" title=" CORINE"> CORINE</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20atlas" title=" urban atlas"> urban atlas</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20growth%20prediction" title=" urban growth prediction"> urban growth prediction</a> </p> <a href="https://publications.waset.org/abstracts/24994/urban-growth-prediction-using-artificial-neural-networks-in-athens-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17767</span> Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20R.%20Bhende">Amit R. Bhende</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Awari"> G. K. Awari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20degradation%20data" title="bearing degradation data">bearing degradation data</a>, <a href="https://publications.waset.org/abstracts/search?q=remaining%20useful%20life%20%28RUL%29" title=" remaining useful life (RUL)"> remaining useful life (RUL)</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20propagation" title=" back propagation"> back propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=prognosis" title=" prognosis"> prognosis</a> </p> <a href="https://publications.waset.org/abstracts/45708/remaining-useful-life-rul-assessment-using-progressive-bearing-degradation-data-and-ann-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17766</span> Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Mohebbi">Mohammadreza Mohebbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Sanagou"> Masoumeh Sanagou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinical%20prediction%20models" title="clinical prediction models">clinical prediction models</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20decision%20rule" title=" clinical decision rule"> clinical decision rule</a>, <a href="https://publications.waset.org/abstracts/search?q=prognosis" title=" prognosis"> prognosis</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20validation" title=" external validation"> external validation</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20calibration" title=" model calibration"> model calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=biostatistics" title=" biostatistics"> biostatistics</a> </p> <a href="https://publications.waset.org/abstracts/73483/developing-and-evaluating-clinical-risk-prediction-models-for-coronary-artery-bypass-graft-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17765</span> A Prediction Method for Large-Size Event Occurrences in the Sandpile Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Channgam">S. Channgam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sae-Tang"> A. Sae-Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Termsaithong"> T. Termsaithong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25&times;25, 50&times;50, 75&times;75 and 100&times;100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50&times;50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bak-Tang-Wiesenfeld%20sandpile%20model" title="Bak-Tang-Wiesenfeld sandpile model">Bak-Tang-Wiesenfeld sandpile model</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-correlation" title=" cross-correlation"> cross-correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=avalanches" title=" avalanches"> avalanches</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20method" title=" prediction method"> prediction method</a> </p> <a href="https://publications.waset.org/abstracts/43151/a-prediction-method-for-large-size-event-occurrences-in-the-sandpile-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17764</span> Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soha%20A.%20Bahanshal">Soha A. Bahanshal</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20G.%20Kim"> Byung G. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20fuzzy%20weighted%20k-nearest%20neighbor" title=" hybrid fuzzy weighted k-nearest neighbor"> hybrid fuzzy weighted k-nearest neighbor</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20hospital%20readmission" title=" diabetic hospital readmission"> diabetic hospital readmission</a> </p> <a href="https://publications.waset.org/abstracts/129397/hybrid-fuzzy-weighted-k-nearest-neighbor-to-predict-hospital-readmission-for-diabetic-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17763</span> Performance Evaluation of Arrival Time Prediction Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Li">Bin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei%20Liu"> Mei Liu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arrival time information is a crucial component of advanced public transport system (APTS). The advertisement of arrival time at stops can help reduce the waiting time and anxiety of passengers, and improve the quality of service. In this research, an experiment was conducted to compare the performance on prediction accuracy and precision between the link-based and the path-based historical travel time based model with the automatic vehicle location (AVL) data collected from an actual bus route. The research results show that the path-based model is superior to the link-based model, and achieves the best improvement on peak hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bus%20transit" title="bus transit">bus transit</a>, <a href="https://publications.waset.org/abstracts/search?q=arrival%20time%20prediction" title=" arrival time prediction"> arrival time prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=link-based" title=" link-based"> link-based</a>, <a href="https://publications.waset.org/abstracts/search?q=path-based" title=" path-based"> path-based</a> </p> <a href="https://publications.waset.org/abstracts/2389/performance-evaluation-of-arrival-time-prediction-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17762</span> Soccer Match Result Prediction System (SMRPS) Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajayi%20Olusola%20Olajide">Ajayi Olusola Olajide</a>, <a href="https://publications.waset.org/abstracts/search?q=Alonge%20Olaide%20Moses"> Alonge Olaide Moses </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predicting the outcome of soccer matches poses an interesting challenge for which it is realistically impossible to successfully do so for every match. Despite this, there are lots of resources that are being expended on the correct prediction of soccer matches weekly, and all over the world. Soccer Match Result Prediction System Model (SMRPSM) is a system that is proposed whereby the results of matches between two soccer teams are auto-generated, with the added excitement of giving users a chance to test their predictive abilities. Soccer teams from different league football are loaded by the application, with each team’s corresponding manager and other information like team location, team logo and nickname. The user is also allowed to interact with the system by selecting the match to be predicted and viewing of the results of completed matches after registering/logging in. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=predicting" title="predicting">predicting</a>, <a href="https://publications.waset.org/abstracts/search?q=soccer%20match" title=" soccer match"> soccer match</a>, <a href="https://publications.waset.org/abstracts/search?q=outcome" title=" outcome"> outcome</a>, <a href="https://publications.waset.org/abstracts/search?q=soccer" title=" soccer"> soccer</a>, <a href="https://publications.waset.org/abstracts/search?q=matches" title=" matches"> matches</a>, <a href="https://publications.waset.org/abstracts/search?q=result%20prediction" title=" result prediction"> result prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=system" title=" system"> system</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a> </p> <a href="https://publications.waset.org/abstracts/15730/soccer-match-result-prediction-system-smrps-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17761</span> ARIMA-GARCH, A Statistical Modeling for Epileptic Seizure Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salman%20Mohamadi">Salman Mohamadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Ali%20Tayaranian%20Hosseini"> Seyed Mohammad Ali Tayaranian Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Amindavar"> Hamidreza Amindavar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we provide a procedure to analyze and model EEG (electroencephalogram) signal as a time series using ARIMA-GARCH to predict an epileptic attack. The heteroskedasticity of EEG signal is examined through the ARCH or GARCH, (Autore- gressive conditional heteroskedasticity, Generalized autoregressive conditional heteroskedasticity) test. The best ARIMA-GARCH model in AIC sense is utilized to measure the volatility of the EEG from epileptic canine subjects, to forecast the future values of EEG. ARIMA-only model can perform prediction, but the ARCH or GARCH model acting on the residuals of ARIMA attains a con- siderable improved forecast horizon. First, we estimate the best ARIMA model, then different orders of ARCH and GARCH modelings are surveyed to determine the best heteroskedastic model of the residuals of the mentioned ARIMA. Using the simulated conditional variance of selected ARCH or GARCH model, we suggest the procedure to predict the oncoming seizures. The results indicate that GARCH modeling determines the dynamic changes of variance well before the onset of seizure. It can be inferred that the prediction capability comes from the ability of the combined ARIMA-GARCH modeling to cover the heteroskedastic nature of EEG signal changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epileptic%20seizure%20prediction" title="epileptic seizure prediction ">epileptic seizure prediction </a>, <a href="https://publications.waset.org/abstracts/search?q=ARIMA" title=" ARIMA"> ARIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=ARCH%20and%20GARCH%20modeling" title=" ARCH and GARCH modeling"> ARCH and GARCH modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=heteroskedasticity" title=" heteroskedasticity"> heteroskedasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a> </p> <a href="https://publications.waset.org/abstracts/59028/arima-garch-a-statistical-modeling-for-epileptic-seizure-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17760</span> A Type-2 Fuzzy Model for Link Prediction in Social Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansoureh%20Naderipour">Mansoureh Naderipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20Bastani"> Susan Bastani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Fazel%20Zarandi"> Mohammad Fazel Zarandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes&rsquo; activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20network" title="social network">social network</a>, <a href="https://publications.waset.org/abstracts/search?q=link%20prediction" title=" link prediction"> link prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20computing" title=" granular computing"> granular computing</a>, <a href="https://publications.waset.org/abstracts/search?q=type-2%20fuzzy%20sets" title=" type-2 fuzzy sets"> type-2 fuzzy sets</a> </p> <a href="https://publications.waset.org/abstracts/49749/a-type-2-fuzzy-model-for-link-prediction-in-social-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17759</span> Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suriya">Suriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=AOD" title=" AOD"> AOD</a>, <a href="https://publications.waset.org/abstracts/search?q=PM2.5" title=" PM2.5"> PM2.5</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulaanbaatar" title=" Ulaanbaatar"> Ulaanbaatar</a> </p> <a href="https://publications.waset.org/abstracts/185289/prediction-of-pm25-concentration-in-ulaanbaatar-with-deep-learning-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17758</span> Research on Air pollution Spatiotemporal Forecast Model Based on LSTM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=JingWei%20Yu">JingWei Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Yang%20Yu"> Hong Yang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LSTM" title="LSTM">LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=PM2.5" title=" PM2.5"> PM2.5</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20prediction" title=" spatio-temporal prediction"> spatio-temporal prediction</a> </p> <a href="https://publications.waset.org/abstracts/147644/research-on-air-pollution-spatiotemporal-forecast-model-based-on-lstm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17757</span> Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katawut%20Kaewbanjong">Katawut Kaewbanjong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prediction%20model" title="prediction model">prediction model</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20project" title=" software project"> software project</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20satisfaction%20factor" title=" user satisfaction factor"> user satisfaction factor</a> </p> <a href="https://publications.waset.org/abstracts/121683/statistical-analysis-with-prediction-models-of-user-satisfaction-in-software-project-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17756</span> A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Mugume">Isaac Mugume</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Basalirwa"> Charles Basalirwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Waiswa"> Daniel Waiswa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20Nsabagwa"> Mary Nsabagwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Triphonia%20Jacob%20Ngailo"> Triphonia Jacob Ngailo</a>, <a href="https://publications.waset.org/abstracts/search?q=Joachim%20Reuder"> Joachim Reuder</a>, <a href="https://publications.waset.org/abstracts/search?q=Sch%C2%A8attler%20Ulrich"> Sch¨attler Ulrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Semujju"> Musa Semujju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small&ndash;scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models&rsquo; ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under&ndash;prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under&ndash;predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models&rsquo; treatment of deep convection over the tropics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparative%20performance" title="comparative performance">comparative performance</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20COSMO%20model" title=" the COSMO model"> the COSMO model</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20WRF%20model" title=" the WRF model"> the WRF model</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20rainfall%20events" title=" light rainfall events"> light rainfall events</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20rainfall%20events" title=" extreme rainfall events"> extreme rainfall events</a> </p> <a href="https://publications.waset.org/abstracts/88050/a-comparative-analysis-of-the-performance-of-cosmo-and-wrf-models-in-quantitative-rainfall-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17755</span> A Deep Learning Based Integrated Model For Spatial Flood Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinayaka%20Gude%20Divya%20Sampath">Vinayaka Gude Divya Sampath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title=" disaster management"> disaster management</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20prediction" title=" flood prediction"> flood prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flooding" title=" urban flooding"> urban flooding</a> </p> <a href="https://publications.waset.org/abstracts/129566/a-deep-learning-based-integrated-model-for-spatial-flood-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model&amp;page=592">592</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model&amp;page=593">593</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=new%20prediction%20model&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10