CINXE.COM
Search results for: photosensitizers
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: photosensitizers</title> <meta name="description" content="Search results for: photosensitizers"> <meta name="keywords" content="photosensitizers"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="photosensitizers" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="photosensitizers"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: photosensitizers</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Eradication of Gram-Positive Bacteria by Photosensitizers Immobilized in Polymers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Nisnevitch">Marina Nisnevitch</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Valkov"> Anton Valkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Faina%20Nakonechny"> Faina Nakonechny</a>, <a href="https://publications.waset.org/abstracts/search?q=Kate%20Adar%20Raik"> Kate Adar Raik</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamit%20Mualem"> Yamit Mualem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photosensitizers are dye compounds belonging to various chemical groups that in all the cases have a developed structure of conjugated double bonds. Under illumination with visible light, the photosensitizers are excited and transfer the absorbed energy to the oxygen dissolved in an aqueous phase, leading to production of a reactive oxygen species which cause irreversible damage to bacterial cells. When immobilized onto a solid phase, photosensitizers preserve their antibacterial properties. In the present study, photosensitizers were immobilized in polyethylene or propylene and tested for antimicrobial activity against Gram-positive S. aureus, S. epidermidis and Streptococcus sp. For this purpose, water-soluble photosensitizers, Rose Bengal sodium salt, and methylene blue as well as water-insoluble hematoporphyrin and Rose Bengal lactone, were immobilized by dissolution in melted polymers to yield 3 mm diameter rods and 3-5 mm beads. All four photosensitizers were found to be effective in the eradication of Gram-positive bacteria under illumination by a white luminescent lamp or sunlight. The immobilized photosensitizers can be applied for continuous water disinfection; they can be easily removed at the end of the treatment and reused. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20polymers" title="antimicrobial polymers">antimicrobial polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=gram-positive%20bacteria" title=" gram-positive bacteria"> gram-positive bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization%20of%20photosensitizers" title=" immobilization of photosensitizers"> immobilization of photosensitizers</a>, <a href="https://publications.waset.org/abstracts/search?q=photodynamic%20antibacterial%20activity" title=" photodynamic antibacterial activity"> photodynamic antibacterial activity</a> </p> <a href="https://publications.waset.org/abstracts/46641/eradication-of-gram-positive-bacteria-by-photosensitizers-immobilized-in-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> New Photosensitizers Encapsulated within Arene-Ruthenium Complexes Active in Photodynamic Therapy: Intracellular Signaling and Evaluation in Colorectal Cancer Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suzan%20Ghaddar">Suzan Ghaddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aline%20Pinon"> Aline Pinon</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Gallardo-villagran"> Manuel Gallardo-villagran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Diab-assaf"> Mona Diab-assaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Therrien"> Bruno Therrien</a>, <a href="https://publications.waset.org/abstracts/search?q=Bertrand%20Liagre"> Bertrand Liagre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colorectal cancer (CRC) is the third most common cancer and exhibits a consistently rising incidence worldwide. Despite notable advancements in CRC treatment, frequent occurrences of side effects and the development of therapy resistance persistently challenge current approaches. Eventually, innovations in focal therapies remain imperative to enhance the patient’s overall quality of life. Photodynamic therapy (PDT) emerges as a promising treatment modality, clinically used for the treatment of various cancer types. It relies on the use of photosensitive molecules called photosensitizers (PS), which are photoactivated after accumulation in cancer cells, to induce the production of reactive oxygen species (ROS) that cause cancer cell death. Among commonly used metal-based drugs in cancer therapy, ruthenium (Ru) possesses favorable attributes that demonstrate its selectivity towards cancer cells and render it suitable for anti-cancer drug design. In vitro studies using distinct arene-Ru complexes, encapsulating porphin PS, are conducted on human HCT116 and HT-29 colorectal cancer cell lines. These studies encompass the evaluation of the antiproliferative effect, ROS production, apoptosis, cell cycle progression, molecular localization, and protein expression. Preliminary results indicated that these complexes exert significant photocytotoxicity on the studied colorectal cancer cell lines, representing them as promising and potential candidates for anti- cancer agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer" title="colorectal cancer">colorectal cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=photodynamic%20therapy" title=" photodynamic therapy"> photodynamic therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=photosensitizers" title=" photosensitizers"> photosensitizers</a>, <a href="https://publications.waset.org/abstracts/search?q=arene-ruthenium%20complexes" title=" arene-ruthenium complexes"> arene-ruthenium complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a> </p> <a href="https://publications.waset.org/abstracts/173340/new-photosensitizers-encapsulated-within-arene-ruthenium-complexes-active-in-photodynamic-therapy-intracellular-signaling-and-evaluation-in-colorectal-cancer-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Functionalized Single Walled Carbon Nanotubes: Targeting, Cellular Uptake, and Applications in Photodynamic Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prabhavathi%20Sundaram">Prabhavathi Sundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Heidi%20Abrahamse"> Heidi Abrahamse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, nanotechnology coupled with photodynamic therapy (PDT) has received considerable attention in terms of improving the effectiveness of drug delivery in cancer therapeutics. The development of functionalized single-walled carbon nanotubes (SWCNTs) has become revolutionary in targeted photosensitizers delivery since it improves the therapeutic index of drugs. The objective of this study was to prepare, characterize and evaluate the potential of functionalized SWCNTs using hyaluronic acid and loading it with photosensitizer and to effectively target colon cancer cells. The single-walled carbon nanotubes were covalently functionalized with hyaluronic acid and the loaded photosensitizer by non-covalent interaction. The photodynamic effect of SWCNTs is detected under laser irradiation in vitro. The hyaluronic acid-functionalized nanocomposites had a good affinity with CD44 receptors, and it avidly binds on to the surface of CACO-2 cells. The cellular uptake of nanocomposites was studied using fluorescence microscopy using lyso tracker. The anticancer activity of nanocomposites was analyzed in CACO-2 cells using different studies such as cell morphology, cell apoptosis, and nuclear morphology. The combined effect of nanocomposites and PDT improved the therapeutic effect of cancer treatment. The study suggested that the nanocomposites and PDT have great potential in the treatment of colon cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colon%20cancer" title="colon cancer">colon cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=hyaluronic%20acid" title=" hyaluronic acid"> hyaluronic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20walled%20carbon%20nanotubes" title=" single walled carbon nanotubes"> single walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=photosensitizers" title=" photosensitizers"> photosensitizers</a>, <a href="https://publications.waset.org/abstracts/search?q=photodynamic%20therapy" title=" photodynamic therapy"> photodynamic therapy</a> </p> <a href="https://publications.waset.org/abstracts/112208/functionalized-single-walled-carbon-nanotubes-targeting-cellular-uptake-and-applications-in-photodynamic-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Extracts of Cola acuminata, Lupinus arboreus and Bougainvillea spectabilis as Natural Photosensitizers for Dye-Sensitized Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Akinyemi">M. L. Akinyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Abodurin"> T. J. Abodurin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Boyo"> A. O. Boyo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20O.%20Olugbuyiro"> J. A. O. Olugbuyiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic dyes from <em>Cola acuminata</em> (<em>C. acuminata</em>), <em>Lupinus arboreus</em> (<em>L. arboreus</em>) and <em>Bougainvillea spectabilis </em>(<em>B. spectabilis</em>) leaves and their mixtures were used as sensitizers to manufacture dye-sensitized solar cells (DSSC). Photoelectric measurements of <em>C. acuminata</em> showed a short circuit current (J<sub>sc</sub>) of 0.027 mA/ cm<sup>2</sup>, 0.026 mA/ cm<sup>2</sup> and 0.018 mA/ cm<sup>2</sup> with a mixture of mercury chloride and iodine (Hgcl<sub>2 </sub>+ I); potassium bromide and iodine (KBr + I); and potassium chloride and iodine (KCl + I) respectively. The open circuit voltage (V<sub>oc</sub>) was 24 mV, 25 mV and 20 mV for the three dyes respectively.<em> L. arboreus</em> had J<sub>sc</sub> of 0.034 mA/ cm<sup>2</sup>, 0.021 mA/ cm<sup>2</sup> and 0.013 mA/ cm<sup>2</sup>; and corresponding V<sub>oc </sub>of 28 mV, 14.2 mV and 15 mV for the three electrolytes respectively. <em>B. spectabilis</em> recorded J<sub>sc</sub> 0.023 mA/ cm<sup>2</sup>, 0.026 mA/ cm<sup>2</sup> and 0.015 mA/ cm<sup>2</sup>; and corresponding V<sub>oc</sub> values of 6.2 mV, 14.3 mV and 4.0 mV for the three electrolytes respectively. It was observed that the fill factor (FF) was 0.140 for <em>C. acuminata</em>, 0.3198 for <em>L. arboreus</em> and 0.1138 for <em>B. spectabilis.</em> Internal conversions of 0.096%, 0.056% and 0.063% were recorded for three dyes when combined with (KBr + I) electrolyte. The internal efficiency of <em>C. acuminata</em> DSSC was highest in value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dye-sensitized%20solar%20cells" title="dye-sensitized solar cells">dye-sensitized solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20dye" title=" organic dye"> organic dye</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20acuminate" title=" C. acuminate"> C. acuminate</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20arboreus" title=" L. arboreus"> L. arboreus</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20spectabilis" title=" B. spectabilis"> B. spectabilis</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20mixture" title=" dye mixture"> dye mixture</a> </p> <a href="https://publications.waset.org/abstracts/49736/extracts-of-cola-acuminata-lupinus-arboreus-and-bougainvillea-spectabilis-as-natural-photosensitizers-for-dye-sensitized-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Effect of Methoxy and Polyene Additional Functionalized Group on the Photocatalytic Properties of Polyene-Diphenylaniline Organic Chromophores for Solar Energy Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ife%20Elegbeleye">Ife Elegbeleye</a>, <a href="https://publications.waset.org/abstracts/search?q=Nnditshedzeni%20Eric"> Nnditshedzeni Eric</a>, <a href="https://publications.waset.org/abstracts/search?q=Regina%20Maphanga"> Regina Maphanga</a>, <a href="https://publications.waset.org/abstracts/search?q=Femi%20Elegbeleye"> Femi Elegbeleye</a>, <a href="https://publications.waset.org/abstracts/search?q=Femi%20Agunbiade"> Femi Agunbiade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global potential of other renewable energy sources such as wind, hydroelectric, bio-mass, and geothermal is estimated to be approximately 13 %, with hydroelectricity constituting a larger percentage. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from the sunlight strikes the Earth in one hour (4.3 × 1020 J) than all the energy consumed on the planet in a year (4.1 × 1020 J), hence, solar energy remains the most abundant clean, renewable energy resources for mankind. Photovoltaic (PV) devices such as silicon solar cells, dye sensitized solar cells are utilized for harnessing solar energy. Polyene-diphenylaniline organic molecules are important sets of molecules that has stirred many research interest as photosensitizers in TiO₂ semiconductor-based dye sensitized solar cells (DSSCs). The advantages of organic dye molecule over metal-based complexes are higher extinction coefficient, moderate cost, good environmental compatibility, and electrochemical properties. The polyene-diphenylaniline organic dyes with basic configuration of donor-π-acceptor are affordable, easy to synthesize and possess chemical structures that can easily be modified to optimize their photocatalytic and spectral properties. The enormous interest in polyene-diphenylaniline dyes as photosensitizers is due to their fascinating spectral properties which include visible light to near infra-red-light absorption. In this work, density functional theory approach via GPAW software, Avogadro and ASE were employed to study the effect of methoxy functionalized group on the spectral properties of polyene-diphenylaniline dyes and their photons absorbing characteristics in the visible region to near infrared region of the solar spectrum. Our results showed that the two-phenyl based complexes D5 and D7 exhibits maximum absorption peaks at 750 nm and 850 nm, while D9 and D11 with methoxy group shows maximum absorption peak at 800 nm and 900 nm respectively. The highest absorption wavelength is notable for D9 and D11 containing additional polyene and methoxy groups. Also, D9 and D11 chromophores with the methoxy group shows lower energy gap of 0.98 and 0.85 respectively than the corresponding D5 and D7 dyes complexes with energy gap of 1.32 and 1.08. The analysis of their electron injection kinetics ∆Ginject into the band gap of TiO₂ shows that D9 and D11 with the methoxy group has higher electron injection kinetics of -2.070 and -2.030 than the corresponding polyene-diphenylaniline complexes without the addition of polyene group with ∆Ginject values of -2.820 and -2.130 respectively. Our findings suggest that the addition of functionalized group as an extension of the organic complexes results in higher light harvesting efficiencies and bathochromic shift of the absorption spectra to higher wavelength which suggest higher current densities and open circuit voltage in DSSCs. The study suggests that the photocatalytic properties of organic chromophores/complexes with donor-π-acceptor configuration can be enhanced by the addition of functionalized groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20resource" title="renewable energy resource">renewable energy resource</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20sensitized%20solar%20cells" title=" dye sensitized solar cells"> dye sensitized solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=polyene-diphenylaniline%20organic%20chromophores" title=" polyene-diphenylaniline organic chromophores"> polyene-diphenylaniline organic chromophores</a> </p> <a href="https://publications.waset.org/abstracts/154731/effect-of-methoxy-and-polyene-additional-functionalized-group-on-the-photocatalytic-properties-of-polyene-diphenylaniline-organic-chromophores-for-solar-energy-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Investigation of Green Dye-Sensitized Solar Cells Based on Natural Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hosseinnezhad">M. Hosseinnezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gharanjig"> K. Gharanjig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural dyes, extracted from black carrot and bramble, were utilized as photosensitizers to prepare dye-sensitized solar cells (DSSCs). Spectrophotometric studies of the natural dyes in solution and on a titanium dioxide substrate were carried out in order to assess changes in the status of the dyes. The results show that the bathochromic shift is seen on the photo-electrode substrate. The chemical binding of the natural dyes at the surface photo-electrode were increased by the chelating effect of the Ti(IV) ions. The cyclic voltammetry results showed that all extracts are suitable to be performed in DSSCs. Finally, photochemical performance and stability of DSSCs based on natural dyes were studied. The DSSCs sensitized by black carrot extract have been reported to achieve up to Jsc=1.17 mAcm<sup>-2</sup>, Voc= 0.55 V, FF= 0.52, η=0.34%, whereas Bramble extract can obtain up to Jsc=2.24 mAcm<sup>-2</sup>, Voc= 0.54 V, FF= 0.57, η=0.71%. The power conversion efficiency was obtained from the mixed dyes in DSSCs. The power conversion efficiency of dye-sensitized solar cells using mixed Black carrot and Bramble dye is the average of the their efficiency in single DSSCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanin" title="anthocyanin">anthocyanin</a>, <a href="https://publications.waset.org/abstracts/search?q=dye-sensitized%20solar%20cells" title=" dye-sensitized solar cells"> dye-sensitized solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20materials" title=" optical materials"> optical materials</a> </p> <a href="https://publications.waset.org/abstracts/58409/investigation-of-green-dye-sensitized-solar-cells-based-on-natural-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Controlled Size Synthesis of ZnO and PEG-ZnO NPs and Their Biological Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahnoor%20Khan">Mahnoor Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Ahmad"> Bashir Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Khizar%20Hayat"> Khizar Hayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Ahmad%20Khan"> Saad Ahmad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Laiba%20Ahmad"> Laiba Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shumaila%20Bashir"> Shumaila Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Abid%20Ali%20Khan"> Abid Ali Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to synthesize the smallest possible size of ZnO NPs using a modified wet chemical synthesis method and to prepare core shell using polyethylene glycol (PEG) as shell material. Advanced and sophisticated techniques were used to confirm the synthesis, size, and shape of these NPs. Rounded, clustered NPs of size 5.343 nm were formed. Both the plain and core shell NPs were tested against MDR bacteria (E. cloacae, E. amnigenus, Shigella, S. odorifacae, Citrobacter, and E. coli). Both of the NPs showed excellent antibacterial properties, whereas E. cloacae showed maximum zone of inhibition of 16 mm, 27 mm, and 32 mm for 500 μg/ml, 1000 μg/ml, and 1500 μg/ml, respectively for plain ZnO NPs and 18 mm, 28 mm and 35 mm for 500 μg/ml, 1000 μg/ml and 1500 μg/ml for core shell NPs. These NPs were also biocompatible on human red blood cells showing little hemolysis of only 4% for 70 μg/ml for plain NPs and 1.5% for 70 μg/ml for core shell NPs. Core shell NPs were highly biocompatible because of the PEG. Their therapeutic effect as photosensitizers in photodynamic therapy (PDT) for cancer treatment was also monitored. The cytotoxicity of ZnO and PEG-ZnO was evaluated using MTT assay. Our results demonstrated that these NPs could generate ROS inside tumor cells after irradiation which in turn initiates an apoptotic pathway leading to cell death hence proving to be an effective candidate for PDT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO" title="ZnO">ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=hemolysis" title=" hemolysis"> hemolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxiciy%20assay" title=" cytotoxiciy assay"> cytotoxiciy assay</a>, <a href="https://publications.waset.org/abstracts/search?q=photodynamic%20therapy" title=" photodynamic therapy"> photodynamic therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a> </p> <a href="https://publications.waset.org/abstracts/153973/controlled-size-synthesis-of-zno-and-peg-zno-nps-and-their-biological-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Upconversion Nanomaterials for Applications in Life Sciences and Medicine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Zhang">Yong Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Light has proven to be useful in a wide range of biomedical applications such as fluorescence imaging, photoacoustic imaging, optogenetics, photodynamic therapy, photothermal therapy, and light controlled drug/gene delivery. Taking photodynamic therapy (PDT) as an example, PDT has been proven clinically effective in early lung cancer, bladder cancer, head, and neck cancer and is the primary treatment for skin cancer as well. However, clinical use of PDT is severely constrained by the low penetration depth of visible light through thick tissue, limiting its use to target regions only a few millimeters deep. One way to enhance the range is to use invisible near-infrared (NIR) light within the optical window (700–1100nm) for biological tissues, extending the depth up to 1cm with no observable damage to the intervening tissue. We have demonstrated use of NIR-to-visible upconversion fluorescent nanoparticles (UCNPs), emitting visible fluorescence when excited by a NIR light at 980nm, as a nanotransducer for PDT to convert deep tissue-penetrating NIR light to visible light suitable for activating photosensitizers. The unique optical properties of UCNPs enable the upconversion wavelength to be tuned and matched to the activation absorption wavelength of the photosensitizer. At depths beyond 1cm, however, tissue remains inaccessible to light even within the NIR window, and this critical depth limitation renders existing phototherapy ineffective against most deep-seated cancers. We have demonstrated some new treatment modalities for deep-seated cancers based on UCNP hydrogel implants and miniaturized, wirelessly powered optoelectronic devices for light delivery to deep tissues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=upconversion" title="upconversion">upconversion</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent" title=" fluorescent"> fluorescent</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=bioimaging" title=" bioimaging"> bioimaging</a>, <a href="https://publications.waset.org/abstracts/search?q=photodynamic%20therapy" title=" photodynamic therapy"> photodynamic therapy</a> </p> <a href="https://publications.waset.org/abstracts/145172/upconversion-nanomaterials-for-applications-in-life-sciences-and-medicine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Site-Specific Delivery of Hybrid Upconversion Nanoparticles for Photo-Activated Multimodal Therapies of Glioblastoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Chung%20Tsai">Yuan-Chung Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Masao%20Kamimura"> Masao Kamimura</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohei%20Soga"> Kohei Soga</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin-Cheng%20Chiu"> Hsin-Cheng Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to enhance the photodynamic/photothermal therapeutic efficacy on glioblastoma, the functionized upconversion nanoparticles with the capability of converting the deep tissue penetrating near-infrared light into visible wavelength for activating photochemical reaction were developed. The drug-loaded nanoparticles (NPs) were obtained from the self-assembly of oleic acid-coated upconversion nanoparticles along with maleimide-conjugated poly(ethylene glycol)-cholesterol (Mal-PEG-Chol), as the NP stabilizer, and hydrophobic photosensitizers, IR-780 (for photothermal therapy, PTT) and mTHPC (for photodynamic therapy, PDT), in aqueous phase. Both the IR-780 and mTHPC were loaded into the hydrophobic domains within NPs via hydrophobic association. The peptide targeting ligand, angiopep-2, was further conjugated with the maleimide groups at the end of PEG adducts on the NP surfaces, enabling the affinity coupling with the low-density lipoprotein receptor-related protein-1 of tumor endothelial cells and malignant astrocytes. The drug-loaded NPs with the size of ca 80 nm in diameter exhibit a good colloidal stability in physiological conditions. The in vitro data demonstrate the successful targeting delivery of drug-loaded NPs toward the ALTS1C1 cells (murine astrocytoma cells) and the pronounced cytotoxicity elicited by combinational effect of PDT and PTT. The in vivo results show the promising brain orthotopic tumor targeting of drug-loaded NPs and sound efficacy for brain tumor dual-modality treatment. This work shows great potential for improving photodynamic/photothermal therapeutic efficacy of brain cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title="drug delivery">drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotopic%20brain%20tumor" title=" orthotopic brain tumor"> orthotopic brain tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=photodynamic%2Fphotothermal%20therapies" title=" photodynamic/photothermal therapies"> photodynamic/photothermal therapies</a>, <a href="https://publications.waset.org/abstracts/search?q=upconversion%20nanoparticles" title=" upconversion nanoparticles"> upconversion nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/78103/site-specific-delivery-of-hybrid-upconversion-nanoparticles-for-photo-activated-multimodal-therapies-of-glioblastoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Preparation of Allyl BODIPY for the Click Reaction with Thioglycolic Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chrislaura%20Carmo">Chrislaura Carmo</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Deiana"> Luca Deiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mafalda%20Laranjo"> Mafalda Laranjo</a>, <a href="https://publications.waset.org/abstracts/search?q=Abilio%20Sobral"> Abilio Sobral</a>, <a href="https://publications.waset.org/abstracts/search?q=Armando%20Cordova"> Armando Cordova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photodynamic therapy (PDT) is currently used for the treatment of malignancies and premalignant tumors. It is based on the capture of a photosensitizing molecule (PS) which, when excited by light at a certain wavelength, reacts with oxygen and generates oxidizing species (radicals, singlet oxygen, triplet species) in target tissues, leading to cell death. BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indaceno) derivatives are emerging as important candidates for photosensitizer in photodynamic therapy of cancer cells due to their high triplet quantum yield. Today these dyes are relevant molecules in photovoltaic materials and fluorescent sensors. In this study, it will be demonstrated the possibility that BODIPY can be covalently linked to thioglycolic acid through the click reaction. Thiol−ene click chemistry has become a powerful synthesis method in materials science and surface modification. The design of biobased allyl-terminated precursors with high renewable carbon content for the construction of the thiol-ene polymer networks is essential for sustainable development and green chemistry. The work aims to synthesize the BODIPY (10-(4-(allyloxy) phenyl)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-c:2',1'-f] [1,3,2] diazaborinin-4-ium-5-uide) and to click reaction with Thioglycolic acid. BODIPY was synthesized by the condensation reaction between aldehyde and pyrrole in dichloromethane, followed by in situ complexation with BF3·OEt2 in the presence of the base. Then it was functionalized with allyl bromide to achieve the double bond and thus be able to carry out the click reaction. The thiol−ene click was performed using DMPA (2,2-Dimethoxy-2-phenylacetophenone) as a photo-initiator in the presence of UV light (320–500 nm) in DMF at room temperature for 24 hours. Compounds were characterized by standard analytical techniques, including UV-Vis Spectroscopy, 1H, 13C, 19F NMR and mass spectroscopy. The results of this study will be important to link BODIPY to polymers through the thiol group offering a diversity of applications and functionalization. This new molecule can be tested as third-generation photosensitizers, in which the dye is targeted by antibodies or nanocarriers by cells, mainly in cancer cells, PDT and Photodynamic Antimicrobial Chemotherapy (PACT). According to our studies, it was possible to visualize a click reaction between allyl BODIPY and thioglycolic acid. Our team will also test the reaction with other thiol groups for comparison. Further, we will do the click reaction of BODIPY with a natural polymer linked with a thiol group. The results of the above compounds will be tested in PDT assays on various lung cancer cell lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bodipy" title="bodipy">bodipy</a>, <a href="https://publications.waset.org/abstracts/search?q=click%20reaction" title=" click reaction"> click reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=thioglycolic%20acid" title=" thioglycolic acid"> thioglycolic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=allyl" title=" allyl"> allyl</a>, <a href="https://publications.waset.org/abstracts/search?q=thiol-ene%20click" title=" thiol-ene click"> thiol-ene click</a> </p> <a href="https://publications.waset.org/abstracts/151496/preparation-of-allyl-bodipy-for-the-click-reaction-with-thioglycolic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>