CINXE.COM
Search results for: tumor grade
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tumor grade</title> <meta name="description" content="Search results for: tumor grade"> <meta name="keywords" content="tumor grade"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tumor grade" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tumor grade"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1892</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tumor grade</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1892</span> Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Binas">Dimitrios Binas</a>, <a href="https://publications.waset.org/abstracts/search?q=Marianna%20Konidari"> Marianna Konidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Charis%20Bourgioti"> Charis Bourgioti</a>, <a href="https://publications.waset.org/abstracts/search?q=Lia%20Angela%20Moulopoulou"> Lia Angela Moulopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodore%20Economopoulos"> Theodore Economopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Matsopoulos"> George Matsopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High grade ovarian epithelial cancer (OEC) is fatal gynecological cancer and the poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study proposes a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title="image segmentation">image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=ovarian%20epithelial%20cancer" title=" ovarian epithelial cancer"> ovarian epithelial cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20characteristics" title=" quantitative characteristics"> quantitative characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20registration" title=" image registration"> image registration</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20visualization" title=" tumor visualization"> tumor visualization</a> </p> <a href="https://publications.waset.org/abstracts/139039/automated-3d-segmentation-system-for-detecting-tumor-and-its-heterogeneity-in-patients-with-high-grade-ovarian-epithelial-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1891</span> Grade and Maximum Tumor Dimension as Determinants of Lymphadenectomy in Patients with Endometrioid Endometrial Cancer (EEC)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20Bazzi">Ali A. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameer%20Hamza"> Ameer Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Riley%20O%E2%80%99Hara"> Riley O’Hara</a>, <a href="https://publications.waset.org/abstracts/search?q=Kimberly%20Kado"> Kimberly Kado</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20H.%20Hagglund"> Karen H. Hagglund</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamia%20Fathallah"> Lamia Fathallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20T.%20Morris"> Robert T. Morris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Endometrial Cancer is a common gynecologic malignancy primarily treated with complete surgical staging, which may include complete pelvic and para-aortic lymphadenectomy. The role of lymphadenectomy is controversial, especially the intraoperative indications for the procedure. Three factors are important in decision to proceed with lymphadenectomy: Myometrial invasion, maximum tumor dimension, and histology. Many institutions incorporate these criteria in varying degrees in the decision to proceed with lymphadenectomy. This investigation assesses the use of intraoperatively measured MTD with and without pre-operative histologic grade. Methods: This study compared retrospectively EEC patients with intraoperatively measured MTD ≤2 cm to those with MTD >2 cm from January 1, 2002 to August 31, 2017. This assessment compared those with MTD ≤ 2cm with endometrial biopsy (EB) grade 1-2 to patients with MTD > 2cm with EB grade 3. Lymph node metastasis (LNM), recurrence, and survival were compared in these groups. Results: This study reviewed 222 patient cases. In tumors > 2 cm, LNM occurred in 20% cases while in tumors ≤ 2 cm, LNM was found in 6% cases (p=0.04). Recurrence and mean survival based on last follow up visit in these two groups were not statistically different (p=0.78 and 0.36 respectively). Data demonstrated a trend that when combined with preoperative EB International Federation of Gynecology and Obstetrics (FIGO) grade, a higher proportion of patients with EB FIGO Grade 3 and MTD > 2 cm had LNM compared to those with EB FIGO Grade 1-2 and MTD ≤ 2 cm (43% vs, 11%, p=0.06). LNM was found in 15% of cases in which lymphadenectomy was performed based on current practices, whereas if the criteria of EB FIGO 3 and MTD > 2 cm were used the incidence of LNM would have been 44% cases. However, using this criterion, two patients would not have had their nodal metastases detected. Compared to the current practice, the sensitivity and specificity of the proposed criteria would be 60% and 81%, respectively. The PPV and NPV would be 43% and 90%, respectively. Conclusion: The results indicate that MTD combined with EB FIGO grade can detect LNM in a higher proportion of cases when compared to current practice. MTD combined with EB FIGO grade may eliminate the need of frozen section sampling in a substantial number of cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endometrial%20cancer" title="endometrial cancer">endometrial cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=FIGO%20grade" title=" FIGO grade"> FIGO grade</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphadenectomy" title=" lymphadenectomy"> lymphadenectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20size" title=" tumor size"> tumor size</a> </p> <a href="https://publications.waset.org/abstracts/92494/grade-and-maximum-tumor-dimension-as-determinants-of-lymphadenectomy-in-patients-with-endometrioid-endometrial-cancer-eec" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1890</span> Malignancy Assessment of Brain Tumors Using Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung-Ming%20Lo">Chung-Ming Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Li-Chun%20Hsieh"> Kevin Li-Chun Hsieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The central nervous system in the World Health Organization defines grade 2, 3, 4 gliomas according to the aggressiveness. For brain tumors, using image examination would have a lower risk than biopsy. Besides, it is a challenge to extract relevant tissues from biopsy operation. Observing the whole tumor structure and composition can provide a more objective assessment. This study further proposed a computer-aided diagnosis (CAD) system based on a convolutional neural network to quantitatively evaluate a tumor's malignancy from brain magnetic resonance imaging. A total of 30 grade 2, 43 grade 3, and 57 grade 4 gliomas were collected in the experiment. Transferred parameters from AlexNet were fine-tuned to classify the target brain tumors and achieved an accuracy of 98% and an area under the receiver operating characteristics curve (Az) of 0.99. Without pre-trained features, only 61% of accuracy was obtained. The proposed convolutional neural network can accurately and efficiently classify grade 2, 3, and 4 gliomas. The promising accuracy can provide diagnostic suggestions to radiologists in the clinic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20diagnosis" title=" computer-aided diagnosis"> computer-aided diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=glioblastoma" title=" glioblastoma"> glioblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a> </p> <a href="https://publications.waset.org/abstracts/108847/malignancy-assessment-of-brain-tumors-using-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1889</span> Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shenlun%20Chen">Shenlun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonard%20Wee"> Leonard Wee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer" title="colorectal cancer">colorectal cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiation" title=" differentiation"> differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20analysis" title=" survival analysis"> survival analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20grading" title=" tumor grading"> tumor grading</a> </p> <a href="https://publications.waset.org/abstracts/136085/deep-learning-approach-for-colorectal-cancers-automatic-tumor-grading-on-whole-slide-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1888</span> Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fumihiro%20Imai">Fumihiro Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Watanabe"> Shinichi Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Maeda"> Shingo Maeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruna%20Imai"> Haruna Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Niimi"> Hiroki Niimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is important to know the growth rate of brain tumors before surgery because it influences treatment planning, including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without the administration of a contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after a clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients, and WHO grade 4 in 2 patients), meningioma WHO grade 1 in 2 patients, and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW signals than that low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amides" title="amides">amides</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumors" title=" brain tumors"> brain tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20proliferation" title=" cell proliferation"> cell proliferation</a> </p> <a href="https://publications.waset.org/abstracts/164452/clinical-applications-of-amide-proton-transfer-magnetic-resonance-imaging-detection-of-brain-tumor-proliferative-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1887</span> Histological Grade Concordance between Core Needle Biopsy and Corresponding Surgical Specimen in Breast Carcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Szpor">J. Szpor</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Witczak"> K. Witczak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Storman"> M. Storman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Orchel"> A. Orchel</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Hodorowicz-Zaniewska"> D. Hodorowicz-Zaniewska</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Oko%C5%84"> K. Okoń</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Klimkowska"> A. Klimkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Core needle biopsy (CNB) is well established as an important diagnostic tool in diagnosing breast cancer and it is now considered the initial method of choice for diagnosing breast disease. In comparison to fine needle aspiration (FNA), CNB provides more architectural information allowing for the evaluation of prognostic and predictive factors for breast cancer, including histological grade—one of three prognostic factors used to calculate the Nottingham Prognostic Index. Several studies have previously described the concordance rate between CNB and surgical excision specimen in determination of histological grade (HG). The concordance rate previously ascribed to overall grade varies widely across literature, ranging from 59-91%. The aim of this study is to see how the data looks like in material at authors’ institution and are the results as compared to those described in previous literature. The study population included 157 women with a breast tumor who underwent a core needle biopsy for breast carcinoma and a subsequent surgical excision of the tumor. Both materials were evaluated for the determination of histological grade (scale from 1 to 3). HG was assessed only in core needle biopsies containing at least 10 well preserved HPF with invasive tumor. The degree of concordance between CNB and surgical excision specimen for the determination of tumor grade was assessed by Cohen’s kappa coefficient. The level of agreement between core needle biopsy and surgical resection specimen for overall histologic grading was 73% (113 of 155 cases). CNB correctly predicted the grade of the surgical excision specimen in 21 cases for grade 1 tumors (Kappa coefficient κ = 0.525 95% CI (0.3634; 0.6818), 52 cases for grade 2 (Kappa coefficient κ = 0.5652 95% CI (0.458; 0.667) and 40 cases for stage 3 tumors (Kappa coefficient κ = 0.6154 95% CI (0.4862; 0.7309). The highest level of agreement was observed in grade 3 malignancies. In 9 of 42 (21%) discordant cases, the grade was higher in the CNB than in the surgical excision. This composed 6% of the overall discordance. These results correspond to the noted in the literature, showing that underestimation occurs more frequently than overestimation. This study shows that authors’ institution’s histologic grading of CNBs and surgical excisions shows a fairly good correlation and is consistent with findings in previous reports. Despite the inevitable limitations of CNB, CNB is an effective method for diagnosing breast cancer and managing treatment options. Assessment of tumour grade by CNB is useful for the planning of treatment, so in authors’ opinion it is worthy to implement it in daily practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=concordance" title=" concordance"> concordance</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20needle%20biopsy" title=" core needle biopsy"> core needle biopsy</a>, <a href="https://publications.waset.org/abstracts/search?q=histological%20grade" title=" histological grade"> histological grade</a> </p> <a href="https://publications.waset.org/abstracts/136072/histological-grade-concordance-between-core-needle-biopsy-and-corresponding-surgical-specimen-in-breast-carcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1886</span> Liquid Biopsy and Screening Biomarkers in Glioma Grading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Abdu%20Qaseem%20Shamsan">Abdullah Abdu Qaseem Shamsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Gliomas represent the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, it tried to establish the potential association between glioma and specific blood groups antigen. Result: 78 patients were identified, among whom maximum percentage with glioblastoma possessed blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and least with O-. Liquid biopsy biomarkers comprised of ALT, LDH, lymphocytes, Urea, Alkaline phosphatase, AST Neutrophils, and CRP. The levels of all the components increased significantly with the severity of glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II respectively. Conclusion: Gliomas possess significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. Liquid biopsy is a non-invasive approach which aids to establish the status of the patient and determine the tumor grade, therefore may show diagnostic and prognostic utility. Additionally, our study provides evidence to demonstrate the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and validate their clinical usefulness to guide treatment approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GBM%3A%20glioblastoma%20multiforme" title="GBM: glioblastoma multiforme">GBM: glioblastoma multiforme</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%3A%20computed%20tomography" title=" CT: computed tomography"> CT: computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI%3A%20magnetic%20resonance%20imaging" title=" MRI: magnetic resonance imaging"> MRI: magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=ctRNA%3A%20circulating%20tumor%20RNA" title=" ctRNA: circulating tumor RNA"> ctRNA: circulating tumor RNA</a> </p> <a href="https://publications.waset.org/abstracts/185991/liquid-biopsy-and-screening-biomarkers-in-glioma-grading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1885</span> Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fumihiro%20Ima">Fumihiro Ima</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Watanabe"> Shinichi Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Maeda"> Shingo Maeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruna%20Imai"> Haruna Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Niimi"> Hiroki Niimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is important to know growth rate of brain tumors before surgery because it influences treatment planning including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without administration of contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients and WHO grade 4 in 2 patients), meningioma WHO grade1 in 2 patients and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW-signals than that in low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW-signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amides" title="amides">amides</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumors" title=" brain tumors"> brain tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20proliferation" title=" cell proliferation"> cell proliferation</a> </p> <a href="https://publications.waset.org/abstracts/157244/clinical-applications-of-amide-proton-transfer-magnetic-resonance-imaging-detection-of-brain-tumor-proliferative-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1884</span> WT1 Exprassion in Malignant Surface Epithelial Ovarian Tumors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoodreza%20Tahamtan">Mahmoodreza Tahamtan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Malignant surface epithelial ovarian tumors (SEOT) account for approximately 90% of primary ovarian cancer. Wilms tumor gene (WT1) product was defined as a tumor suppressor gene, but today it is considered capable of performing oncogenic functions. There seems to be differences in WT1 expression patterns among SEOT subtypes. We evaluate the immunohistochemical expression of WT1 protein among different histologic subtypes of SEOT. Materials and Methods: Immunohistochemistry for WT1 was done on 35 serous cystadenocarcinomas, 9 borderline serous tumors, 3 mucinous cystadenocarcinomas, 10 borderline mucinous tumors, 7 endometrioid ovarian carcinomas, 3 clear cell carcinomas, 1 malignant Brenner tumor, 2 metastatic adenocarcinomas, and 6 endometrial adenocarcinomas. A tumor was considered negative if < 1% of tumor cells were stained.Positive reactions were graded as follows:1+,1%-24%; 2+,25%-49%; 3+,50%-74%; 4+,75%-100%. Results: Of the 35 cases of ovarian serous cystadenocarcinoma, 30(85.7%) were diffusely positive (3+,4+),4 showed reactivity of < 50% of the tumor cells (1+,2+), and one were negative. All 9 borderline serous tumors showed immunoreactivity with WT1. All the mucinous tumors(n:13), endometrioid carcinomas (n: 7), clear cell carcinomas (n: 3), metastatic adenocarcinomas (n: 2) and primary endometrial carcinomas (n:6) were negative. The single malignant Brenner tumor showed a positive reaction for WT1(4+) Conclusion: WT1 is a good marker to distinguish primary ovarian serous carcinomas from other surface epithelial tumors (especially endometrioid subtype) and metastatic carcinomas (especially endometrial serous carcinoma), other than malignant mesothelioma. We cannot rely to the degree of expression inorder to separate high grade borderline serous tumors from low grade ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WT1" title="WT1">WT1</a>, <a href="https://publications.waset.org/abstracts/search?q=ovary" title=" ovary"> ovary</a>, <a href="https://publications.waset.org/abstracts/search?q=epithelial%20tumors" title=" epithelial tumors"> epithelial tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=malignant" title=" malignant"> malignant</a> </p> <a href="https://publications.waset.org/abstracts/159905/wt1-exprassion-in-malignant-surface-epithelial-ovarian-tumors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1883</span> PD-L1 Expression in Papillary Thyroid Carcinoma Arising Denovo or on Top of Autoimmune Thyroiditis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia%20M.%20Abouelfadl">Dalia M. Abouelfadl</a>, <a href="https://publications.waset.org/abstracts/search?q=Noha%20N.%20Yassen"> Noha N. Yassen</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20E.%20Shabana"> Marwa E. Shabana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The evolution of immune therapy motivated many to study the relation between immune response and progression of cancer. Little is known about expression of PD-L1 (a newly evolving immunotherapeutic drug) in papillary thyroid carcinoma (PTC) arising de-novo and PTC arising on top of autoimmune thyroiditis (Hashimoto's (HT) and lymphocytic thyroiditis (LT)). The aim of this work is to study the alteration of expression of PD-L1 in PTCs arising from de-novo or on top of HT OR LT using immunohistochemistry and image analyser system. Method: 100 paraffin blocks for PTC cases were collected retrospectively for staining using PD-L1 rabbit monoclonal antibody (BIOCARE-ACI 3171 A, C). The antibody expression is measured digitally using Image Analyzer Leica Qwin 3000, and the membranous and cytoplasmic expression of PD-L1 in tumor cells was considered positive. The results were correlated with tumor grade, size, and LN status. Results: The study samples consisted of 41 cases of PTC arising De novo, 36 cases on top of HT, and 23 on top of LT. Expression of PD-L1 was highest among the PTC-HL group (25 case-69%) followed by PTC-TL group (14 case-60.8%) then de-novo PTC (19 case-46%) with P Value < 0.05. PD-L1 expression correlated with nodal metastasis and was not relevant to tumor size or grade. Conclusion: The severity of the immune response in tumor microenvironment directly influences PTC prognosis. The anti PD-L1 Ab can be a very successful therapeutic agent for PTC arising on top of HT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carcinoma" title="carcinoma">carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Hashimoto%27s" title=" Hashimoto's"> Hashimoto's</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocytic" title=" lymphocytic"> lymphocytic</a>, <a href="https://publications.waset.org/abstracts/search?q=papillary" title=" papillary"> papillary</a>, <a href="https://publications.waset.org/abstracts/search?q=PD-L1" title=" PD-L1"> PD-L1</a>, <a href="https://publications.waset.org/abstracts/search?q=thyroiditis" title=" thyroiditis"> thyroiditis</a> </p> <a href="https://publications.waset.org/abstracts/131143/pd-l1-expression-in-papillary-thyroid-carcinoma-arising-denovo-or-on-top-of-autoimmune-thyroiditis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1882</span> PCR Based DNA Analysis in Detecting P53 Mutation in Human Breast Cancer (MDA-468)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debbarma%20Asis">Debbarma Asis</a>, <a href="https://publications.waset.org/abstracts/search?q=Guha%20Chandan"> Guha Chandan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tumor Protein-53 (P53) is one of the tumor suppressor proteins. P53 regulates the cell cycle that conserves stability by preventing genome mutation. It is named so as it runs as 53-kilodalton (kDa) protein on Polyacrylamide gel electrophoresis although the actual mass is 43.7 kDa. Experimental evidence has indicated that P53 cancer mutants loses tumor suppression activity and subsequently gain oncogenic activities to promote tumourigenesis. Tumor-specific DNA has recently been detected in the plasma of breast cancer patients. Detection of tumor-specific genetic materials in cancer patients may provide a unique and valuable tumor marker for diagnosis and prognosis. Commercially available MDA-468 breast cancer cell line was used for the proposed study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tumor%20protein%20%28P53%29" title="tumor protein (P53)">tumor protein (P53)</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20mutants" title=" cancer mutants"> cancer mutants</a>, <a href="https://publications.waset.org/abstracts/search?q=MDA-468" title=" MDA-468"> MDA-468</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20suppressor%20gene" title=" tumor suppressor gene"> tumor suppressor gene</a> </p> <a href="https://publications.waset.org/abstracts/43690/pcr-based-dna-analysis-in-detecting-p53-mutation-in-human-breast-cancer-mda-468" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1881</span> Nanomechanical Characterization of Healthy and Tumor Lung Tissues at Cell and Extracellular Matrix Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valeria%20Panzetta">Valeria Panzetta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ida%20Musella"> Ida Musella</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabato%20Fusco"> Sabato Fusco</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Antonio%20Netti"> Paolo Antonio Netti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the biophysics of living cells drew attention to the pivotal role of the cytoskeleton in many cell functions, such as mechanics, adhesion, proliferation, migration, differentiation and neoplastic transformation. In particular, during the complex process of malignant transformation and invasion cell cytoskeleton devolves from a rigid and organized structure to a more compliant state, which confers to the cancer cells a great ability to migrate and adapt to the extracellular environment. In order to better understand the malignant transformation process from a mechanical point of view, it is necessary to evaluate the direct crosstalk between the cells and their surrounding extracellular matrix (ECM) in a context which is close to in vivo conditions. In this study, human biopsy tissues of lung adenocarcinoma were analyzed in order to define their mechanical phenotype at cell and ECM level, by using particle tracking microrheology (PTM) technique. Polystyrene beads (500 nm) were introduced into the sample slice. The motion of beads was obtained by tracking their displacements across cell cytoskeleton and ECM structures and mean squared displacements (MSDs) were calculated from bead trajectories. It has been already demonstrated that the amplitude of MSD is inversely related to the mechanical properties of intracellular and extracellular microenvironment. For this reason, MSDs of particles introduced in cytoplasm and ECM of healthy and tumor tissues were compared. PTM analyses showed that cancerous transformation compromises mechanical integrity of cells and extracellular matrix. In particular, the MSD amplitudes in cells of adenocarcinoma were greater as compared to cells of normal tissues. The increased motion is probably associated to a less structured cytoskeleton and consequently to an increase of deformability of cells. Further, cancer transformation is also accompanied by extracellular matrix stiffening, as confirmed by the decrease of MSDs of matrix in tumor tissue, a process that promotes tumor proliferation and invasiveness, by activating typical oncogenic signaling pathways. In addition, a clear correlation between MSDs of cells and tumor grade was found. MSDs increase when tumor grade passes from 2 to 3, indicating that cells undergo to a trans-differentiation process during tumor progression. ECM stiffening is not dependent on tumor grade, but the tumor stage resulted to be strictly correlated with both cells and ECM mechanical properties. In fact, a greater stage is assigned to tumor spread to regional lymph nodes and characterized by an up-regulation of different ECM proteins, such as collagen I fibers. These results indicate that PTM can be used to get nanomechanical characterization at different scale levels in an interpretative and diagnostic context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytoskeleton" title="cytoskeleton">cytoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20matrix" title=" extracellular matrix"> extracellular matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20tracking%20microrheology" title=" particle tracking microrheology"> particle tracking microrheology</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor" title=" tumor"> tumor</a> </p> <a href="https://publications.waset.org/abstracts/57656/nanomechanical-characterization-of-healthy-and-tumor-lung-tissues-at-cell-and-extracellular-matrix-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1880</span> Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wittawat%20Wasusathien">Wittawat Wasusathien</a>, <a href="https://publications.waset.org/abstracts/search?q=Samran%20Santalunai"> Samran Santalunai</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanaset%20Thosdeekoraphat"> Thanaset Thosdeekoraphat</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanchai%20Thongsopa"> Chanchai Thongsopa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=specific%20absorption%20rate%20%28SAR%29" title="specific absorption rate (SAR)">specific absorption rate (SAR)</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20wideband%20%28UWB%29" title=" ultra wideband (UWB)"> ultra wideband (UWB)</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinates" title=" coordinates"> coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20detection" title=" cancer detection"> cancer detection</a> </p> <a href="https://publications.waset.org/abstracts/10465/ultra-wideband-breast-cancer-detection-by-using-sar-for-indication-the-tumor-location" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1879</span> Predictive Value of ¹⁸F-Fdg Accumulation in Visceral Fat Activity to Detect Colorectal Cancer Metastases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amil%20Suleimanov">Amil Suleimanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aigul%20Saduakassova"> Aigul Saduakassova</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Vinnikov"> Denis Vinnikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To assess functional visceral fat (VAT) activity evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in colorectal cancer (CRC). Materials and methods: We assessed 60 patients with histologically confirmed CRC who underwent 18F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVmax) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also report the best areas under the curve (AUC) for SUVmax with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted for age regression models and ROC analysis, 18F-FDG accumulation in RLH (cutoff SUVmax 0.74; Se 75%; Sp 61%; AUC 0.668; p = 0.049), RU (cutoff SUVmax 0.78; Se 69%; Sp 61%; AUC 0.679; p = 0.035), RRL (cutoff SUVmax 1.05; Se 69%; Sp 77%; AUC 0.682; p = 0.032) and RRI (cutoff SUVmax 0.85; Se 63%; Sp 61%; AUC 0.672; p = 0.043) could predict later metastases in CRC patients, as opposed to age, sex, primary tumor location, tumor grade and histology. Conclusions: VAT SUVmax is significantly associated with later metastases in CRC patients and can be used as their predictor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B8F-FDG" title="¹⁸F-FDG">¹⁸F-FDG</a>, <a href="https://publications.waset.org/abstracts/search?q=PET%2FCT" title=" PET/CT"> PET/CT</a>, <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer" title=" colorectal cancer"> colorectal cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20value" title=" predictive value"> predictive value</a> </p> <a href="https://publications.waset.org/abstracts/150603/predictive-value-of-18f-fdg-accumulation-in-visceral-fat-activity-to-detect-colorectal-cancer-metastases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1878</span> The Epigenetic Background Depended Treatment Planning for Glioblastoma Multiforme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasime%20Kalkan">Rasime Kalkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Ikbal%20Atli"> Emine Ikbal Atli</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Arslanta%C5%9F"> Ali Arslantaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhsin%20%C3%96zdemir"> Muhsin Özdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevilhan%20Artan"> Sevilhan Artan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma (WHO grade IV), is the malignant form of brain tumor, the genetic background of the GBM is highly variable. The tumor mass of a GBM is multilayered and every tumor layer shows distinct characteristics with a different cell population. The treatment planning of GBM should be focused on the tumor genetic characteristics. We screened primary glioblastoma multiforme (GBM) in a population-based study for MGMT and RARβ methylation and IDH1 mutation correlated them with clinical data and treatment. There was no correlation between MGMT-promoter methylation and overall survival. The overall survival time of the patients with methylated RARβ was statically (OS;p<0,05) significance between the patients who were treated with chemotherapy and radiotherapy. Here we showed the status of IDH1 gene associatied with younger age. We demonstrated that the together with MGMT gene the RARβ gene should be used as a potantial treatment decision marker for GBMs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RAR%CE%B2" title="RARβ">RARβ</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20glioblastoma%20multiforme" title=" primary glioblastoma multiforme"> primary glioblastoma multiforme</a>, <a href="https://publications.waset.org/abstracts/search?q=methylation" title=" methylation"> methylation</a>, <a href="https://publications.waset.org/abstracts/search?q=MGMT" title=" MGMT"> MGMT</a> </p> <a href="https://publications.waset.org/abstracts/66871/the-epigenetic-background-depended-treatment-planning-for-glioblastoma-multiforme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1877</span> Predictive Value of ¹⁸F-Fluorodeoxyglucose Accumulation in Visceral Fat Activity to Detect Epithelial Ovarian Cancer Metastases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Suleimanov">A. F. Suleimanov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Saduakassova"> A. B. Saduakassova</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20Pokrovsky"> V. S. Pokrovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20Vinnikov"> D. V. Vinnikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relevance: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with relapse occurring in about 70% of advanced cases with poor prognoses. The aim of the study was to evaluate functional visceral fat activity (VAT) evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in epithelial ovarian cancer (EOC). Materials and methods: We assessed 53 patients with histologically confirmed EOC who underwent ¹⁸F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVₘₐₓ) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also identified the best areas under the curve (AUC) for SUVₘₐₓ with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted-for regression models and ROC analysis, ¹⁸F-FDG accumulation in RE (cut-off SUVₘₐₓ 1.18; Se 64%; Sp 64%; AUC 0.669; p = 0.035) could predict later metastases in EOC patients, as opposed to age, sex, primary tumor location, tumor grade, and histology. Conclusions: VAT SUVₘₐₓ is significantly associated with later metastases in EOC patients and can be used as their predictor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B8F-FDG" title="¹⁸F-FDG">¹⁸F-FDG</a>, <a href="https://publications.waset.org/abstracts/search?q=PET%2FCT" title=" PET/CT"> PET/CT</a>, <a href="https://publications.waset.org/abstracts/search?q=EOC" title=" EOC"> EOC</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20value" title=" predictive value"> predictive value</a> </p> <a href="https://publications.waset.org/abstracts/150624/predictive-value-of-18f-fluorodeoxyglucose-accumulation-in-visceral-fat-activity-to-detect-epithelial-ovarian-cancer-metastases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1876</span> Prognostic Significance of Nuclear factor kappa B (p65) among Breast Cancer Patients in Cape Coast Teaching Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Precious%20Barnes">Precious Barnes</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Mensah"> Abraham Mensah</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonard%20Derkyi-Kwarteng"> Leonard Derkyi-Kwarteng</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Amoani"> Benjamin Amoani</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Adjei"> George Adjei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernest%20Adankwah"> Ernest Adankwah</a>, <a href="https://publications.waset.org/abstracts/search?q=Faustina%20Pappoe"> Faustina Pappoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwabena%20Dankwah"> Kwabena Dankwah</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Amoako-Sakyi"> Daniel Amoako-Sakyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Victor%20Nuvor"> Samuel Victor Nuvor</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorcas%20Obiri-Yeboah"> Dorcas Obiri-Yeboah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewura%20Seidu%20Yahaya"> Ewura Seidu Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Kafui%20Akakpo"> Patrick Kafui Akakpo</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Osei%20Saahene"> Roland Osei Saahene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: Breast cancer is a prevalent and aggressive type of cancer among African women, with high mortality rates in Ghana. Nuclear factor kappa B (NF-kB) is a transcription factor that has been associated with tumor progression in breast cancer. However, there is a lack of published data on NF-kB in breast cancer patients in Ghana or other African countries. Research Aim: The aim of this study was to assess the prognostic significance of NF-kB (p65) expression and its association with various clinicopathological features in breast cancer patients at the Cape Coast Teaching Hospital in Ghana. Methodology: A total of 90 formalin-fixed breast cancer tissues and 15 normal breast tissues were used in this study. The expression level of NF-kB (p65) was examined using immunohistochemical techniques. Correlation analysis between NF-kB (p65) expression and clinicopathological features was performed using SPSS version 25. Findings: The study found that NF-kB (p65) was expressed in 86.7% of breast cancer tissues. There was a significant relationship between NF-kB (p65) expression and tumor grade, proliferation index (Ki67), and molecular subtype. High-level expression of NF-kB (p65) was more common in tumor grade 3 compared to grade 1, and Ki67 > 20 had higher expression of NF-kB (p65) compared to Ki67 ≤ 20. Triple-negative breast cancer patients had the highest overexpression of NF-kB (p65) compared to other molecular subtypes. There was no significant association between NF-kB (p65) expression and other clinicopathological parameters. Theoretical Importance: This study provides important insights into the expression of NF-kB (p65) in breast cancer patients in Ghana, particularly in relation to tumor grade and proliferation index. The findings suggest that NF-kB (p65) could serve as a potential biological marker for cancer stage, progression, prognosis and as a therapeutic target. Data Collection and Analysis Procedures: Formalin-fixed breast cancer tissues and normal breast tissues were collected and analyzed using immunohistochemical techniques. Correlation analysis between NF-kB (p65) expression and clinicopathological features was performed using SPSS version 25. Question Addressed: This study addressed the question of the prognostic significance of NF-kB (p65) expression and its association with clinicopathological features in breast cancer patients in Ghana. Conclusion: This study, the first of its kind in Ghana, demonstrates that NF-kB (p65) is highly expressed among breast cancer patients at the Cape Coast Teaching Hospital, especially in triple-negative breast cancer patients. The expression of NF-kB (p65) is associated with tumor grade and proliferation index. NF-kB (p65) could potentially serve as a biological marker for cancer stage, progression, prognosis, and as a therapeutic target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki67" title=" Ki67"> Ki67</a>, <a href="https://publications.waset.org/abstracts/search?q=NF-kB%20%28p65%29" title=" NF-kB (p65)"> NF-kB (p65)</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20grade" title=" tumor grade"> tumor grade</a> </p> <a href="https://publications.waset.org/abstracts/172569/prognostic-significance-of-nuclear-factor-kappa-b-p65-among-breast-cancer-patients-in-cape-coast-teaching-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1875</span> ALDH1A1 as a Cancer Stem Cell Marker: Value of Immunohistochemical Expression in Benign Prostatic Hyperplasia, Prostatic Intraepithelial Neoplasia, and Prostatic Adenocarcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Abdelmoneim">H. M. Abdelmoneim</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Babtain"> N. A. Babtain</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Barhamain"> A. S. Barhamain</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Z.%20Kufiah"> A. Z. Kufiah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Malibari"> A. S. Malibari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Munassar"> S. F. Munassar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Rawa"> R. S. Rawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Prostate cancer is one of the most common causes of morbidity and mortality in men in developed countries. Cancer Stem Cells (CSCs) could be responsible for the progression and relapse of cancer. Therefore, CSCs markers could provide a prognostic strategy for human malignancies. Aldehyde dehydrogenase 1A1 (ALDH1A1) activity has been shown to be associated with tumorigenesis and proposed to represent a functional marker for tumor initiating cells in various tumor types including prostate cancer. Material & Methods: We analyzed the immunohistochemical expression of ALDH1A1 in benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN) and prostatic adenocarcinoma and assessed their significant correlations in 50 TURP sections. They were microscopically interpreted and the results were correlated with histopathological types and tumor grade. Results: In different prostatic histopathological lesions we found that ALDH1A1 expression was low in BPH (13.3%) and PIN (6.7%) and then its expression increased with prostatic adenocarcinoma (40%), and this was statistically highly significant (P value = 0.02). However, in different grades of prostatic adenocarcinoma we found that the higher the Gleason grade the higher the expression for ALDH1A1 and this was statistically significant (P value = 0.02). We compared the expression of ALDH1A1 in PIN and prostatic adenocarcinoma. ALDH1A1 expression was decreased in PIN and highly expressed in prostatic adenocarcinoma and this was statistically significant (P value = 0.04). Conclusion: Increasing ALDH1A1 expression is correlated with aggressive behavior of the tumor. Immunohistochemical expression of ALDH1A1 might provide a potential approach to study tumorigenesis and progression of primary prostate carcinoma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ALDH1A1" title="ALDH1A1">ALDH1A1</a>, <a href="https://publications.waset.org/abstracts/search?q=BPH" title=" BPH"> BPH</a>, <a href="https://publications.waset.org/abstracts/search?q=PIN" title=" PIN"> PIN</a>, <a href="https://publications.waset.org/abstracts/search?q=prostatic%20adenocarcinoma" title=" prostatic adenocarcinoma"> prostatic adenocarcinoma</a> </p> <a href="https://publications.waset.org/abstracts/43391/aldh1a1-as-a-cancer-stem-cell-marker-value-of-immunohistochemical-expression-in-benign-prostatic-hyperplasia-prostatic-intraepithelial-neoplasia-and-prostatic-adenocarcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1874</span> 18F-Fluoro-Ethyl-Tyrosine-Positron Emission Tomography in Gliomas: Comparison with Magnetic Resonance Imaging and Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habib%20Alah%20Dadgar">Habib Alah Dadgar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasim%20Norouzbeigi"> Nasim Norouzbeigi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The precise definition margin of high and low-grade gliomas is crucial for treatment. We aimed to assess the feasibility of assessment of the resection legions with post-operative positron emission tomography (PET) using [18F]O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET). Four patients with the suspicion of high and low-grade were enrolled. Patients underwent post-operative [18F]FET-PET, pre-operative magnetic resonance imaging (MRI) and CT for clinical evaluations. In our study, three patients had negative response to recurrence and progression and one patient indicated positive response after surgery. [18F]FET-PET revealed a legion of increased radiotracer uptake in the dura in the craniotomy site for patient 1. Corresponding to the patient history, the study was negative for recurrence of brain tumor. For patient 2, there was a lesion in the right parieto-temporal with slightly increased uptake in its posterior part with SUVmax = 3.79, so the study was negative for recurrence evaluation. In patient 3 there was no abnormal uptake with negative result for recurrence of brain tumor. Intense radiotracer uptake in the left parietal lobe where in the MRI there was a lesion with no change in enhancement in the post-contrast image is indicated in patient 4. Assessment of the resection legions in high and low-grade gliomas with [18F]FET-PET seems to be useful. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FET-PET" title="FET-PET">FET-PET</a>, <a href="https://publications.waset.org/abstracts/search?q=CT" title=" CT"> CT</a>, <a href="https://publications.waset.org/abstracts/search?q=glioma" title=" glioma"> glioma</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a> </p> <a href="https://publications.waset.org/abstracts/76126/18f-fluoro-ethyl-tyrosine-positron-emission-tomography-in-gliomas-comparison-with-magnetic-resonance-imaging-and-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1873</span> Tumor-Biological Characteristics of Invasive Lobular Carcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabine%20Danzinger">Sabine Danzinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Nora%20Hielscher"> Nora Hielscher</a>, <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Izso"> Miriam Izso</a>, <a href="https://publications.waset.org/abstracts/search?q=Johanna%20Metzler"> Johanna Metzler</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Trinkl"> Carmen Trinkl</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Pfeifer"> Christian Pfeifer</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Tendl-Schulz"> Kristina Tendl-Schulz</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20F.%20Singer"> Christian F. Singer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to analyze the characteristics of invasive lobular carcinoma (ILC) compared with invasive ductal carcinoma (IDC) and to investigate the impact of histology on axillary lymph node (ALN) involvement in luminal A subtype tumors. Methods: We retrospectively analyzed patients diagnosed with ILC or IDC from 2012 to 2016 who underwent surgery. Patients constituted 493 primary early breast cancer cases (82 ILC; 411 IDC). Results: Compared with IDC, ILC tumors were significantly more likely to be grade 2, estrogen receptor- (ER) positive (þ), have a lower proliferation rate (Ki67 <14%), and a higher patholog- ical T stage (pT2–4). The luminal A subtype was significantly more common in ILC compared with IDC. In a multivariate regression model, grade 2, ERþ, progesterone receptor-positive, pT2, and pT3 were significantly associated with ILC. Additionally, with the luminal A subtype, ALN involvement (pathological node stage (pN)1–3) was significantly more frequent with ILC versus IDC. Conclusions: Our data suggests that grade 2, positive hormone receptor status, and higher pathological T stage are associated with ILC. With the luminal A subtype, ALN involvement was more frequent with ILC versus IDC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=lobular%20histology" title=" lobular histology"> lobular histology</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20biology" title=" tumor biology"> tumor biology</a>, <a href="https://publications.waset.org/abstracts/search?q=hormone%20receptor" title=" hormone receptor"> hormone receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=ki67" title=" ki67"> ki67</a> </p> <a href="https://publications.waset.org/abstracts/193830/tumor-biological-characteristics-of-invasive-lobular-carcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1872</span> Nanoscale Mapping of the Mechanical Modifications Occurring in the Brain Tumour Microenvironment by Atomic Force Microscopy: The Case of the Highly Aggressive Glioblastoma and the Slowly Growing Meningioma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20Ciasca">Gabriele Ciasca</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanya%20E.%20Sassun"> Tanya E. Sassun</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20Minelli"> Eleonora Minelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Manila%20Antonelli"> Manila Antonelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimiliano%20Papi"> Massimiliano Papi</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Santoro"> Antonio Santoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Felice%20Giangaspero"> Felice Giangaspero</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Delfini"> Roberto Delfini</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20De%20Spirito"> Marco De Spirito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor, characterized by a diffuse infiltration of neoplastic cells into the brain parenchyma. Although rarely considered, mechanical cues play a key role in the infiltration process that is extensively mediated by the tumor microenvironment stiffness and, more in general, by the occurrence of aberrant interactions between neoplastic cells and the extracellular matrix (ECM). Here we provide a nano-mechanical characterization of the viscoelastic response of human GBM tissues by indentation-type atomic force microscopy. High-resolution elasticity maps show a large difference between the biomechanics of GBM tissues and the healthy peritumoral regions, opening possibilities to optimize the tumor resection area. Moreover, we unveil the nanomechanical signature of necrotic regions and anomalous vasculature, that are two major hallmarks useful for glioma staging. Actually, the morphological grading of GBM relies mainly on histopathological findings that make extensive use of qualitative parameters. Our findings have the potential to positively impact on the development of novel quantitative methods to assess the tumor grade, which can be used in combination with conventional histopathological examinations. In order to provide a more in-depth description of the role of mechanical cues in tumor progression, we compared the nano-mechanical fingerprint of GBM tissues with that of grade-I (WHO) meningioma, a benign lesion characterized by a completely different growth pathway with the respect to GBM, that, in turn hints at a completely different role of the biomechanical interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFM" title="AFM">AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-mechanics" title=" nano-mechanics"> nano-mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomedicine" title=" nanomedicine"> nanomedicine</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumors" title=" brain tumors"> brain tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=glioblastoma" title=" glioblastoma"> glioblastoma</a> </p> <a href="https://publications.waset.org/abstracts/63186/nanoscale-mapping-of-the-mechanical-modifications-occurring-in-the-brain-tumour-microenvironment-by-atomic-force-microscopy-the-case-of-the-highly-aggressive-glioblastoma-and-the-slowly-growing-meningioma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1871</span> Autophagy Suppresses Bladder Tumor Formation in a Mouse Orthotopic Bladder Tumor Formation Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wan-Ting%20Kuo">Wan-Ting Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Wen%20Liu"> Yi-Wen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiao-Sheng%20Liu"> Hsiao-Sheng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Annual incidence of bladder cancer increases in the world and occurs frequently in the male. Most common type is transitional cell carcinoma (TCC) which is treated by transurethral resection followed by intravesical administration of agents. In clinical treatment of bladder cancer, chemotherapeutic drugs-induced apoptosis is always used in patients. However, cancers usually develop resistance to chemotherapeutic drugs and often lead to aggressive tumors with worse clinical outcomes. Approximate 70% TCC recurs and 30% recurrent tumors progress to high-grade invasive tumors, indicating that new therapeutic agents are urgently needed to improve the successful rate of overall treatment. Nonapoptotic program cell death may assist to overcome worse clinical outcomes. Autophagy which is one of the nonapoptotic pathways provides another option for bladder cancer patients. Autophagy is reported as a potent anticancer therapy in some cancers. First of all, we established a mouse orthotopic bladder tumor formation model in order to create a similar tumor microenvironment. IVIS system and micro-ultrasound were utilized to noninvasively monitor tumor formation. In addition, we carried out intravesical treatment in our animal model to be consistent with human clinical treatment. In our study, we carried out intravesical instillation of the autophagy inducer in mouse orthotopic bladder tumor to observe tumor formation by noninvasive IVIS system and micro-ultrasound. Our results showed that bladder tumor formation is suppressed by the autophagy inducer, and there are no significant side effects in the physiology of mice. Furthermore, the autophagy inducer upregulated autophagy in bladder tissues of the treated mice was confirmed by Western blot, immunohistochemistry, and immunofluorescence. In conclusion, we reveal that a novel autophagy inducer with low side effects suppresses bladder tumor formation in our mouse orthotopic bladder tumor model, and it provides another therapeutic approach in bladder cancer patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bladder%20cancer" title="bladder cancer">bladder cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=transitional%20cell%20carcinoma" title=" transitional cell carcinoma"> transitional cell carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotopic%20bladder%20tumor%20formation%20model" title=" orthotopic bladder tumor formation model"> orthotopic bladder tumor formation model</a>, <a href="https://publications.waset.org/abstracts/search?q=autophagy" title=" autophagy"> autophagy</a> </p> <a href="https://publications.waset.org/abstracts/56139/autophagy-suppresses-bladder-tumor-formation-in-a-mouse-orthotopic-bladder-tumor-formation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1870</span> Expression of CASK Antibody in Non-Mucionus Colorectal Adenocarcinoma and Its Relation to Clinicopathological Prognostic Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reham%20H.%20Soliman">Reham H. Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Noha%20Noufal"> Noha Noufal</a>, <a href="https://publications.waset.org/abstracts/search?q=Howayda%20AbdelAal"> Howayda AbdelAal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium/calmodulin-dependent serine protein kinase (CASK) belongs to the membrane-associated guanylate kinase (MAGUK) family and has been proposed as a mediator of cell-cell adhesion and proliferation, which can contribute to tumorogenesis. CASK has been linked as a good prognostic factor with some tumor subtypes, while considered as a poor prognostic marker in others. To our knowledge, no sufficient evidence of CASK role in colorectal cancer is available. The aim of this study is to evaluate the expression of Calcium/calmodulin-dependent serine protein kinase (CASK) in non-mucinous colorectal adenocarcinoma and adenomatous polyps as precursor lesions and assess its prognostic significance. The study included 42 cases of conventional colorectal adenocarcinoma and 15 biopsies of adenomatous polyps with variable degrees of dysplasia. They were reviewed for clinicopathological prognostic factors and stained by CASK; mouse, monoclonal antibody using heat-induced antigen retrieval immunohistochemical techniques. The results showed that CASK protein was significantly overexpressed (p <0.05) in CRC compared with adenoma samples. The CASK protein was overexpressed in the majority of CRC samples with 85.7% of cases showing moderate to strong expression, while 46.7% of adenomas were positive. CASK overexpression was significantly correlated with both TNM stage and grade of differentiation (p <0.05). There was a significantly higher expression in tumor samples with early stages (I/II) rather than advanced stage (III/IV) and with low grade (59.5%) rather than high grade (40.5%). Another interesting finding was found among the adenomas group, where the stronger intensity of staining was observed in samples with high grade dysplasia (33.3%) than those of lower grades (13.3%). In conclusion, this study shows that there is significant overexpression of CASK protein in CRC as well as in adenomas with high grade dysplasia. This indicates that CASK is involved in the process of carcinogenesis and functions as a potential trigger of the adenoma-carcinoma cascade. CASK was significantly overexpressed in early stage and low-grade tumors rather than tumors with advanced stage and higher histological grades. This suggests that CASK protein is a good prognostic factor. We suggest that CASK affects CRC in two different ways derived from its physiology. CASK as part of MAGUK family can stimulate proliferation and through its cell membrane localization and as a mediator of cell-cell adhesion might contribute in tumor confinement and localization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CASK" title="CASK">CASK</a>, <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer" title=" colorectal cancer"> colorectal cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=overexpression" title=" overexpression"> overexpression</a>, <a href="https://publications.waset.org/abstracts/search?q=prognosis" title=" prognosis"> prognosis</a> </p> <a href="https://publications.waset.org/abstracts/58771/expression-of-cask-antibody-in-non-mucionus-colorectal-adenocarcinoma-and-its-relation-to-clinicopathological-prognostic-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1869</span> O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography/Computed Tomography in Patients with Suspicious Recurrent Low and High-Grade Glioma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahkameh%20Asadi">Mahkameh Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Habibollah%20Dadgar"> Habibollah Dadgar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The precise definition margin of high and low-grade glioma is crucial for choosing best treatment approach after surgery and radio-chemotherapy. The aim of the current study was to assess the O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in patients with low (LGG) and high grade glioma (HGG). We retrospectively analyzed 18F-FET PET/CT of 10 patients (age: 33 ± 12 years) with suspicious for recurrent LGG and HGG. The final decision of recurrence was made by magnetic resonance imaging (MRI) and registered clinical data. While response to radio-chemotherapy by MRI is often complex and sophisticated due to the edema, necrosis, and inflammation, emerging amino acid PET leading to better interpretations with more specifically differentiate true tumor boundaries from equivocal lesions. Therefore, integrating amino acid PET in the management of glioma to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positron%20emission%20tomography" title="positron emission tomography">positron emission tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20positron%20emission%20tomography" title=" amino acid positron emission tomography"> amino acid positron emission tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20and%20high%20grade%20glioma" title=" low and high grade glioma"> low and high grade glioma</a> </p> <a href="https://publications.waset.org/abstracts/127798/o-2-18f-fluoroethyl-l-tyrosine-positron-emission-tomographycomputed-tomography-in-patients-with-suspicious-recurrent-low-and-high-grade-glioma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1868</span> Cytology Is a Promising Tool for the Diagnosis of High-Grade Serous Ovarian Carcinoma from Ascites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miceska%20Simona">Miceska Simona</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%A0kof%20Erik"> Škof Erik</a>, <a href="https://publications.waset.org/abstracts/search?q=Frkovi%C4%87%20Grazio%20Snje%C5%BEana"> Frković Grazio Snježana</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeri%C4%8Devi%C4%87%20Anja"> Jeričević Anja</a>, <a href="https://publications.waset.org/abstracts/search?q=Smrkolj%20%C5%A0pela"> Smrkolj Špela</a>, <a href="https://publications.waset.org/abstracts/search?q=Cvjeti%C4%87anin%20Branko"> Cvjetićanin Branko</a>, <a href="https://publications.waset.org/abstracts/search?q=Novakovi%C4%87%20Srdjan"> Novaković Srdjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gr%C4%8Dar%20Kuzmanov%20Biljana"> Grčar Kuzmanov Biljana</a>, <a href="https://publications.waset.org/abstracts/search?q=Kloboves-Prevodnik%20Veronika"> Kloboves-Prevodnik Veronika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: High-grade serous ovarian cancer (HGSOC) is characterized by the dissemination of the tumor cells (TC) in the peritoneal cavity forming malignant ascites at the time of diagnosis or recurrence. Still, cytology itself has been underutilized as a modality for the diagnosis of HGSOC from ascites, and histological examination from the tumor tissue is yet the only validated method used. The objective of this study was to evaluate the reliability of cytology in the diagnosis of HGSOC in relation to the histopathological examination. Methods: The study included 42 patients with histologically confirmed HGSOC, accompanied by malignant ascites. To confirm the malignancy of the TC in the ascites and to define their immunophenotype, immunohistochemical reaction (IHC) of the following antigens: Calretinin, MOC, WT1, PAX8, p53, p16 & Ki-67 was evaluated on ascites cytospins and tissue blocks. For complete cytological determination of HGSOC, BRCA 1/2 gene mutation was determined from ascites, tissue block, and blood. BRCA1/2 mutation from blood was performed to define the type of mutation, somatic vs germline. Results: Among 42 patients, the immunophenotype of HGSOC from ascites was confirmed in 36 cases (86%). For more profound analysis, the patients were divided in 3 groups regarding the number of TC present in the ascites: patients with less than 10% TC, 10% TC, and more than 10% TC. From all included patients, in the group with less than 10% TC, there were 10 cases, and only 5 of them(50%) showed HGSOC phenotype; 12 cases had equally 10% of TC, and 11 cases (92%) showed HGSOC phenotype; 20 cases had more than 10% TC and all of them (100%) confirmed the HGSOC immunophenotype from ascites. Only 33 patients were eligible for further BRCA1/2 analysis. Eleven BRCA1/2 mutations were detected from thetissue block: 6 germline and 5 somatic. In 2 cases with less than 10% TC, BRCA1/2 mutation was not detected; 4 cases had 10% TC, and 2 of them (50%) confirmed the mutation; 4 cases had more than 10% TC, and all showed 100% reliability with the tumor tissue. Conclusions: Cytology is a highly reliable method for determining the immunophenotype of HGSOC and BRCA1/2 mutation if more than 10% of tumor cells are present in the ascites. This may present an additional non-invasive clinical approach for fast and effective diagnose in the future, especially in inoperable conditions or relapses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytology" title="cytology">cytology</a>, <a href="https://publications.waset.org/abstracts/search?q=ascites" title=" ascites"> ascites</a>, <a href="https://publications.waset.org/abstracts/search?q=high-grade%20serous%20ovarian%20cancer" title=" high-grade serous ovarian cancer"> high-grade serous ovarian cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=immunophenotype" title=" immunophenotype"> immunophenotype</a>, <a href="https://publications.waset.org/abstracts/search?q=BRCA1%2F2" title=" BRCA1/2"> BRCA1/2</a> </p> <a href="https://publications.waset.org/abstracts/144274/cytology-is-a-promising-tool-for-the-diagnosis-of-high-grade-serous-ovarian-carcinoma-from-ascites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1867</span> Evaluation of Tumor-Infiltrating Lymphocytes in Breast Carcinoma: Correlation with Molecular Subtypes and Clinicopathological Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arundhathi%20S.">Arundhathi S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Poongodi%20R."> Poongodi R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tumor-infiltrating lymphocytes (TILs) are indicative of the local immune response against tumor proliferation and metastasis. Emerging as a significant marker of immune reactivity, TILs are utilized to evaluate prognostic outcomes across various malignancies, including colon, ovarian, lung, bladder, and breast cancers. In breast cancer (BC), TILs are particularly relevant for assessing tumor response to therapy in both adjuvant and neoadjuvant settings, with a prominent role in triple-negative breast cancer (TNBC), where they have been associated with improved outcomes. As such, TILs are recognized as an independent marker of favorable prognosis in several tumor types, underscoring their potential as a tool in personalized cancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=intratumoral%20TIL" title=" intratumoral TIL"> intratumoral TIL</a>, <a href="https://publications.waset.org/abstracts/search?q=stromal%20TIL" title=" stromal TIL"> stromal TIL</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20infiltrating%20lymphocytes" title=" tumor infiltrating lymphocytes"> tumor infiltrating lymphocytes</a> </p> <a href="https://publications.waset.org/abstracts/194529/evaluation-of-tumor-infiltrating-lymphocytes-in-breast-carcinoma-correlation-with-molecular-subtypes-and-clinicopathological-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1866</span> MicroRNA Expression Distinguishes Neutrophil Subtypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20I.%20You">R. I. You</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20L.%20Ho"> C. L. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Dai"> M. S. Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Hung"> H. M. Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Yen"> S. F. Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Chen"> C. S. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Y.%20Chao"> T. Y. Chao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neutrophils are the most abundant innate immune cells to against invading microorganisms. Numerous data shown neutrophils have plasticity in response to physiological and pathological conditions. Tumor-associated neutrophils (TAN) exist in distinct types of tumor and play an important role in cancer biology. Different transcriptomic profiles of neutrophils in tumor and non-tumor samples have been identified. Several miRNAs have been recognized as regulators of gene expression in neutrophil, which may have key roles in neutrophil activation. However, the miRNAs expression patterns in TAN are not well known. To address this question, magnetic bead isolated neutrophils from tumor-bearing mice were used in this study. We analyzed production of reactive oxygen species (ROS) by luminol-dependent chemiluminescence assay. The expression of miRNAs targeting NADPH oxidase, ROS generation and autophagy was explored using quantitative real-time polymerase chain reaction. Our data suggest that tumor environment influence neutrophil develop to differential states of activation via miRNAs regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tumor-associated%20neutrophil" title="tumor-associated neutrophil">tumor-associated neutrophil</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophil" title=" neutrophil"> neutrophil</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS "> ROS </a> </p> <a href="https://publications.waset.org/abstracts/13682/microrna-expression-distinguishes-neutrophil-subtypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1865</span> Recent Advancement in Dendrimer Based Nanotechnology for the Treatment of Brain Tumor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Dwivedi">Nitin Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jigna%20Shah"> Jigna Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain tumor is metastatic neoplasm of central nervous system, in most of cases it is life threatening disease with low survival rate. Despite of enormous efforts in the development of therapeutics and diagnostic tools, the treatment of brain tumors and gliomas remain a considerable challenge in the area of neuro-oncology. The most reason behind of this the presence of physiological barriers including blood brain barrier and blood brain tumor barrier, lead to insufficient reach ability of therapeutic agents at the site of tumor, result of inadequate destruction of gliomas. So there is an indeed need empowerment of brain tumor imaging for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional different generations of dendrimer offer an improved effort for potentiate drug delivery at the site of brain tumor and gliomas. So this article emphasizes the innovative dendrimer approaches in tumor targeting, tumor imaging and delivery of therapeutic agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20brain%20barrier" title="blood brain barrier">blood brain barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrimer" title=" dendrimer"> dendrimer</a>, <a href="https://publications.waset.org/abstracts/search?q=gliomas" title=" gliomas"> gliomas</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/30047/recent-advancement-in-dendrimer-based-nanotechnology-for-the-treatment-of-brain-tumor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1864</span> Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atanu%20K%20Samanta">Atanu K Samanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Asim%20Ali%20Khan"> Asim Ali Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20tumor" title="brain tumor">brain tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20diagnostic%20%28CAD%29%20system" title=" computer-aided diagnostic (CAD) system"> computer-aided diagnostic (CAD) system</a>, <a href="https://publications.waset.org/abstracts/search?q=gray-level%20co-occurrence%20matrix%20%28GLCM%29" title=" gray-level co-occurrence matrix (GLCM)"> gray-level co-occurrence matrix (GLCM)</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20segmentation" title=" tumor segmentation"> tumor segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set%20method" title=" level set method"> level set method</a> </p> <a href="https://publications.waset.org/abstracts/61237/computer-aided-diagnostic-system-for-detection-and-classification-of-a-brain-tumor-through-mri-using-level-set-based-segmentation-technique-and-ann-classifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1863</span> Expression of DNMT Enzymes-Regulated miRNAs Involving in Epigenetic Event of Tumor and Margin Tissues in Patients with Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Zeinali%20Sehrig">Fatemeh Zeinali Sehrig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: miRNAs play an important role in the post-transcriptional regulation of genes, including genes involved in DNA methylation (DNMTs), and are also important regulators of oncogenic pathways. The study of microRNAs and DNMTs in breast cancer allows the development of targeted treatments and early detection of this cancer. Methods and Materials: Clinical Patients and Samples: Institutional guidelines, including ethical approval and informed consent, were followed by the Ethics Committee (Ethics code: IR.IAU.TABRIZ.REC.1401.063) of Tabriz Azad University, Tabriz, Iran. In this study, tissues of 100 patients with breast cancer and tissues of 100 healthy women were collected from Noor Nejat Hospital in Tabriz. The basic characteristics of the patients with breast cancer included: 1)Tumor grade(Grade 3 = 5%, Grade 2 = 87.5%, Grade 1 = 7.5%), 2)Lymph node(Yes = 87.5%, No = 12.5%), 3)Family cancer history(Yes = 47.5%, No = 41.3%, Unknown = 11.2%), 4) Abortion history(Yes = 36.2%).In silico methods (data gathering, process, and build networks): Gene Expression Omnibus (GEO), a high-throughput genomic database, was queried for miRNAs expression profiles in breast cancer. For Experimental protocol Tissue Processing, Total RNA isolation, complementary DNA(cDNA) synthesis, and quantitative real time PCR (QRT-PCR) analysis were performed. Results: In the present study, we found significant (p.value<0.05) changes in the expression level of miRNAs and DNMTs in patients with breast cancer. In bioinformatics studies, the GEO microarray data set, similar to qPCR results, showed a decreased expression of miRNAs and increased expression of DNMTs in breast cancer. Conclusion: According to the results of the present study, which showed a decrease in the expression of miRNAs and DNMTs in breast cancer, it can be said that these genes can be used as important diagnostic and therapeutic biomarkers in breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20expression%20omnibus" title="gene expression omnibus">gene expression omnibus</a>, <a href="https://publications.waset.org/abstracts/search?q=microarray%20dataset" title=" microarray dataset"> microarray dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=DNMT%20%28DNA%20methyltransferases%29" title=" DNMT (DNA methyltransferases)"> DNMT (DNA methyltransferases)</a> </p> <a href="https://publications.waset.org/abstracts/188481/expression-of-dnmt-enzymes-regulated-mirnas-involving-in-epigenetic-event-of-tumor-and-margin-tissues-in-patients-with-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20grade&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20grade&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20grade&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20grade&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20grade&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20grade&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20grade&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20grade&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20grade&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20grade&page=63">63</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20grade&page=64">64</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tumor%20grade&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>