CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 354 results for author: <span class="mathjax">Yu, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Yu%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yu, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yu%2C+H&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yu, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Yu%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Yu%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Yu%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Yu%2C+H&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Yu%2C+H&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Yu%2C+H&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17443">arXiv:2411.17443</a> <span> [<a href="https://arxiv.org/pdf/2411.17443">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Sub-kilohertz intrinsic linewidth stimulated Brillouin laser in integrated lithium niobate microresonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+C">Chuntao Li</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+J">Jiale Deng</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+X">Xingzhao Huang</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+X">Xiaochao Luo</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+R">Renhong Gao</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+J">Jintian Lin</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Huakang Yu</a>, <a href="/search/physics?searchtype=author&query=Guan%2C+J">Jianglin Guan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhiyuan Li</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Y">Ya Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17443v1-abstract-short" style="display: inline;"> The rapid advancement of lithium niobate on insulator (LNOI) photonics has spurred interest in approaches to develop ultra-narrow linewidth Brillouin microlasers. Here we demonstrate an integrated Brillouin microlaser with 118-Hz intrinsic linewidth and 3.15-mW threshold power in a dispersion engineered and suspended LNOI microdisk resonator of 116 um diameter. Benefited from the ultrahigh Q facto… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17443v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17443v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17443v1-abstract-full" style="display: none;"> The rapid advancement of lithium niobate on insulator (LNOI) photonics has spurred interest in approaches to develop ultra-narrow linewidth Brillouin microlasers. Here we demonstrate an integrated Brillouin microlaser with 118-Hz intrinsic linewidth and 3.15-mW threshold power in a dispersion engineered and suspended LNOI microdisk resonator of 116 um diameter. Benefited from the ultrahigh Q factor and sub-millimeter-scale microresonator, large Brillouin gain is attained via the backward intermodal SBS between the dual-resonant optical WGMs with a 10-GHz whispering-gallery mechanical mode, while satisfying the requirements of both energy and momentum conservations. Such strong optomechanical coupling up to 12.1 kHz is promising for a record narrow linewidth and a lowest stimulated Brillouin laser threshold value within sub-millimeter-scale integrated microresonators reported so far. This advancement in integrated ultra-narrow linewidth Brillouin lasers with compact cavity lengths paves the way for applications ranging from coherent information processing to precision metrology within the realm of high density photonic integration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17443v1-abstract-full').style.display = 'none'; document.getElementById('2411.17443v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05256">arXiv:2411.05256</a> <span> [<a href="https://arxiv.org/pdf/2411.05256">pdf</a>, <a href="https://arxiv.org/format/2411.05256">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Radiopurity measurements of liquid scintillator for the COSINE-100 Upgrade </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kim%2C+J">J. Kim</a>, <a href="/search/physics?searchtype=author&query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+W+K">W. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+E+K">E. K. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+H">H. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+H+S">H. S. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+I+S">I. S. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+J">J. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S+H">S. H. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S+M">S. M. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+Y+J">Y. J. Lee</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+G+H">G. H. Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05256v1-abstract-short" style="display: inline;"> A new 2,400 L liquid scintillator has been produced for the COSINE-100 Upgrade, which is under construction at Yemilab for the next COSINE dark matter experiment phase. The linear-alkyl-benzene-based scintillator is designed to serve as a veto for NaI(Tl) crystal targets and a separate platform for rare event searches. We measured using a sample consisting of a custom-made 445 mL cylindrical Teflo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05256v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05256v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05256v1-abstract-full" style="display: none;"> A new 2,400 L liquid scintillator has been produced for the COSINE-100 Upgrade, which is under construction at Yemilab for the next COSINE dark matter experiment phase. The linear-alkyl-benzene-based scintillator is designed to serve as a veto for NaI(Tl) crystal targets and a separate platform for rare event searches. We measured using a sample consisting of a custom-made 445 mL cylindrical Teflon container equipped with two 3-inch photomultiplier tubes. Analyses show activity levels of $0.091 \pm 0.042$ mBq/kg for $^{238}$U and $0.012 \pm 0.007$ mBq/kg for $^{232}$Th. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05256v1-abstract-full').style.display = 'none'; document.getElementById('2411.05256v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04665">arXiv:2411.04665</a> <span> [<a href="https://arxiv.org/pdf/2411.04665">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> PZT Optical Memristors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+C">Chenlei Li</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hongyan Yu</a>, <a href="/search/physics?searchtype=author&query=Shu%2C+T">Tao Shu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yueyang Zhang</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+C">Chengfeng Wen</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+H">Hengzhen Cao</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+J">Jin Xie</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hanwen Li</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Z">Zixu Xu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+G">Gong Zhang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+Z">Zejie Yu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Huan Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Liu Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yaocheng Shi</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+F">Feng Qiu</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+D">Daoxin Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04665v4-abstract-short" style="display: inline;"> Optical memristors represent a monumental leap in the fusion of photonics and electronics, heralding a new era of applications from neuromorphic computing to artificial intelligence. However, current technologies are hindered by complex fabrication, limited endurance, high optical loss or low modulation depth. For the first time, we reveal optical non-volatility in thin-film Lead Zirconate Titanat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04665v4-abstract-full').style.display = 'inline'; document.getElementById('2411.04665v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04665v4-abstract-full" style="display: none;"> Optical memristors represent a monumental leap in the fusion of photonics and electronics, heralding a new era of applications from neuromorphic computing to artificial intelligence. However, current technologies are hindered by complex fabrication, limited endurance, high optical loss or low modulation depth. For the first time, we reveal optical non-volatility in thin-film Lead Zirconate Titanate (PZT) by electrically manipulating the ferroelectric domains to control the refractive index, providing a brand-new routine for optical memristors. The developed PZT optical memristors offer unprecedented advantages more than exceptional performance metrics like low loss of <2 dB/cm, high precision exceeding 6-bits, large modulation depth with an index change as large as 4.6x10-3. Additionally, these devices offer impressive stability, maintaining minimal wavelength variation for over three weeks and enduring more than 10,000 cycles, and require a mere 0.8 pJ of energy for non-volatile operation. The wafer-scale sol-gel fabrication process also ensures compatible with standardized mass fabrication processes and high scalability for photonic integration. Specially, these devices also demonstrate unique functional duality: setting above a threshold voltage enables non-volatile behaviors, below this threshold allows volatile high-speed optical modulation. This marks the first-ever optical memristor capable of performing high-speed (48 Gbps) and energy-efficient (450 fJ/bit) signal processing and non-volatile retention on a single platform, and is also the inaugural demonstration of scalable functional systems. The PZT optical memristors developed here facilitate the realization of novel paradigms for high-speed and energy-efficient optical interconnects, programmable PICs, quantum computing, neural networks, in-memory computing and brain-like architecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04665v4-abstract-full').style.display = 'none'; document.getElementById('2411.04665v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04623">arXiv:2410.04623</a> <span> [<a href="https://arxiv.org/pdf/2410.04623">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Poromechanical solution for one-dimensional large strain consolidation of modified cam clay soil </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+S">Sheng-Li Chen</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hai-Sui Yu</a>, <a href="/search/physics?searchtype=author&query=Abousleiman%2C+Y+N">Younane N. Abousleiman</a>, <a href="/search/physics?searchtype=author&query=Kees%2C+C+E">Christopher E. Kees</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04623v1-abstract-short" style="display: inline;"> A theoretical model describing the one-dimensional large strain consolidation of the modified Cam Clay soil is presented in this paper. The model is based on the Lagrangian formulation, and is capable of featuring the variability of soil compressibility (inherently so due to the direct incorporation of the specific Cam Clay plasticity model) and permeability, as well as the impact of overconsolida… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04623v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04623v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04623v1-abstract-full" style="display: none;"> A theoretical model describing the one-dimensional large strain consolidation of the modified Cam Clay soil is presented in this paper. The model is based on the Lagrangian formulation, and is capable of featuring the variability of soil compressibility (inherently so due to the direct incorporation of the specific Cam Clay plasticity model) and permeability, as well as the impact of overconsolidation ratio. The derivation starts from the establishment of the incremental stress-strain relations for both purely elastic and elastoplastic deformations under one-dimensional compression condition, and thereafter the coefficients of compressibility/volume change that are essential to the consolidation analysis. The governing partial differential equation is then neatly deduced in conjunction with the continuity and equilibrium conditions for the soil, with the vertical effective stress being the privileged unknown to be solved for. Subsequently, semi-analytical solution to the developed rigorous poroelastoplastic large strain consolidation model is obtained and verified with the ABAQUS finite element numerical results. Parametric analyses are finally provided to investigate in detail the influences of the soil overconsolidation ratio, large strain configuration, and the variability of the soil permeability on the calculated one-dimensional consolidation response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04623v1-abstract-full').style.display = 'none'; document.getElementById('2410.04623v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03951">arXiv:2410.03951</a> <span> [<a href="https://arxiv.org/pdf/2410.03951">pdf</a>, <a href="https://arxiv.org/format/2410.03951">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> UFLUX v2.0: A Process-Informed Machine Learning Framework for Efficient and Explainable Modelling of Terrestrial Carbon Uptake </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+W">Wenquan Dong</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+S">Songyan Zhu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+J">Jian Xu</a>, <a href="/search/physics?searchtype=author&query=Ryan%2C+C+M">Casey M. Ryan</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">Man Chen</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+J">Jingya Zeng</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hao Yu</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+C">Congfeng Cao</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+J">Jiancheng Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03951v1-abstract-short" style="display: inline;"> Gross Primary Productivity (GPP), the amount of carbon plants fixed by photosynthesis, is pivotal for understanding the global carbon cycle and ecosystem functioning. Process-based models built on the knowledge of ecological processes are susceptible to biases stemming from their assumptions and approximations. These limitations potentially result in considerable uncertainties in global GPP estima… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03951v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03951v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03951v1-abstract-full" style="display: none;"> Gross Primary Productivity (GPP), the amount of carbon plants fixed by photosynthesis, is pivotal for understanding the global carbon cycle and ecosystem functioning. Process-based models built on the knowledge of ecological processes are susceptible to biases stemming from their assumptions and approximations. These limitations potentially result in considerable uncertainties in global GPP estimation, which may pose significant challenges to our Net Zero goals. This study presents UFLUX v2.0, a process-informed model that integrates state-of-art ecological knowledge and advanced machine learning techniques to reduce uncertainties in GPP estimation by learning the biases between process-based models and eddy covariance (EC) measurements. In our findings, UFLUX v2.0 demonstrated a substantial improvement in model accuracy, achieving an R^2 of 0.79 with a reduced RMSE of 1.60 g C m^-2 d^-1, compared to the process-based model's R^2 of 0.51 and RMSE of 3.09 g C m^-2 d^-1. Our global GPP distribution analysis indicates that while UFLUX v2.0 and the process-based model achieved similar global total GPP (137.47 Pg C and 132.23 Pg C, respectively), they exhibited large differences in spatial distribution, particularly in latitudinal gradients. These differences are very likely due to systematic biases in the process-based model and differing sensitivities to climate and environmental conditions. This study offers improved adaptability for GPP modelling across diverse ecosystems, and further enhances our understanding of global carbon cycles and its responses to environmental changes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03951v1-abstract-full').style.display = 'none'; document.getElementById('2410.03951v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02413">arXiv:2410.02413</a> <span> [<a href="https://arxiv.org/pdf/2410.02413">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrathin BIC metasurfaces based on ultralow-loss Sb2Se3 phase-change material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zhaoyang Xie</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chi Li</a>, <a href="/search/physics?searchtype=author&query=Murali%2C+K">Krishna Murali</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Haoyi Yu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Changxu Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yiqing Lu</a>, <a href="/search/physics?searchtype=author&query=Maier%2C+S+A">Stefan A. Maier</a>, <a href="/search/physics?searchtype=author&query=Bhaskaran%2C+M">Madhu Bhaskaran</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+H">Haoran Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02413v1-abstract-short" style="display: inline;"> Phase-change materials (PCMs) are increasingly recognised as promising platforms for tunable photonic devices due to their ability to modulate optical properties through solid-state phase transitions. Ultrathin and low-loss PCMs are highly valued for their fast and more effective phase transitions and applications in reconfigurable photonic chips, metasurfaces, optical modulators, sensors, photoni… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02413v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02413v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02413v1-abstract-full" style="display: none;"> Phase-change materials (PCMs) are increasingly recognised as promising platforms for tunable photonic devices due to their ability to modulate optical properties through solid-state phase transitions. Ultrathin and low-loss PCMs are highly valued for their fast and more effective phase transitions and applications in reconfigurable photonic chips, metasurfaces, optical modulators, sensors, photonic memories, and neuromorphic computing. However, conventional PCMs such as GST, GSST, VO2, and In3SbTe2, despite optimisation for tunable meta-optics, suffer from high intrinsic losses in the near-infrared (NIR) region, limiting their potential for high quality factor (Q-factor) resonant metasurfaces. Here we present the design and fabrication of tunable bound states in the continuum (BIC) metasurfaces using the ultralow-loss PCM Sb2Se3. Our BIC metasurfaces, only 25 nm thick, achieve high modulation depth and broad resonance tuning in the NIR with high Q-factors up to 130, without the need for additional materials. Experimentally, we employ these BIC metasurfaces to modulate photoluminescence in rare earth-doped upconversion nanoparticles, reducing the excitation power for multiphoton photoluminescence and enabling emission polarisation manipulation. This work offers a promising platform for developing active resonant metasurfaces in the NIR region, with broad applications including super resolution imaging, optical modulation, ultrafast switches, harmonic generation, colour filtering, and optical sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02413v1-abstract-full').style.display = 'none'; document.getElementById('2410.02413v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18288">arXiv:2409.18288</a> <span> [<a href="https://arxiv.org/pdf/2409.18288">pdf</a>, <a href="https://arxiv.org/format/2409.18288">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The hypothetical track-length fitting algorithm for energy measurement in liquid argon TPCs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Alex%2C+N+S">N. S. Alex</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18288v2-abstract-short" style="display: inline;"> This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v2-abstract-full').style.display = 'inline'; document.getElementById('2409.18288v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18288v2-abstract-full" style="display: none;"> This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v2-abstract-full').style.display = 'none'; document.getElementById('2409.18288v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0561-LBNF-PPD, CERN-EP-2024-256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15748">arXiv:2409.15748</a> <span> [<a href="https://arxiv.org/pdf/2409.15748">pdf</a>, <a href="https://arxiv.org/format/2409.15748">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> COSINE-100U: Upgrading the COSINE-100 Experiment for Enhanced Sensitivity to Low-Mass Dark Matter Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lee%2C+D+H">D. H. Lee</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+J+Y">J. Y. Cho</a>, <a href="/search/physics?searchtype=author&query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&query=Jeon%2C+E+J">E. J. Jeon</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H+J">H. J. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+J">J. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+W+K">W. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+H">H. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+H+S">H. S. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+I+S">I. S. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+J">J. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S+H">S. H. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S+M">S. M. Lee</a>, <a href="/search/physics?searchtype=author&query=Maruyama%2C+R+H">R. H. Maruyama</a>, <a href="/search/physics?searchtype=author&query=Park%2C+J+C">J. C. Park</a>, <a href="/search/physics?searchtype=author&query=Park%2C+K+S">K. S. Park</a>, <a href="/search/physics?searchtype=author&query=Park%2C+K">K. Park</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S+D">S. D. Park</a>, <a href="/search/physics?searchtype=author&query=Seo%2C+K+M">K. M. Seo</a>, <a href="/search/physics?searchtype=author&query=Son%2C+M+K">M. K. Son</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15748v1-abstract-short" style="display: inline;"> An upgrade of the COSINE-100 experiment, COSINE-100U, has been prepared for installation at Yemilab, a new underground laboratory in Korea, following 6.4 years of operation at the Yangyang Underground Laboratory. The COSINE-100 experiment aimed to investigate the annual modulation signals reported by the DAMA/LIBRA but observed a null result, revealing a more than 3$蟽$ discrepancy. COSINE-100U see… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15748v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15748v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15748v1-abstract-full" style="display: none;"> An upgrade of the COSINE-100 experiment, COSINE-100U, has been prepared for installation at Yemilab, a new underground laboratory in Korea, following 6.4 years of operation at the Yangyang Underground Laboratory. The COSINE-100 experiment aimed to investigate the annual modulation signals reported by the DAMA/LIBRA but observed a null result, revealing a more than 3$蟽$ discrepancy. COSINE-100U seeks to explore new parameter spaces for dark matter detection using NaI(Tl) detectors. All eight NaI(Tl) crystals, with a total mass of 99.1 kg, have been upgraded to improve light collection efficiency, significantly enhancing dark matter detection sensitivity. This paper describes the detector upgrades, performance improvements, and the enhanced sensitivity to low-mass dark matter detection in the COSINE-100U experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15748v1-abstract-full').style.display = 'none'; document.getElementById('2409.15748v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06201">arXiv:2409.06201</a> <span> [<a href="https://arxiv.org/pdf/2409.06201">pdf</a>, <a href="https://arxiv.org/format/2409.06201">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3687996">10.1145/3687996 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Eulerian Vortex Method on Flow Maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+S">Sinan Wang</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Y">Yitong Deng</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+M">Molin Deng</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hong-Xing Yu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Junwei Zhou</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">Duowen Chen</a>, <a href="/search/physics?searchtype=author&query=Komura%2C+T">Taku Komura</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jiajun Wu</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+B">Bo Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06201v2-abstract-short" style="display: inline;"> We present an Eulerian vortex method based on the theory of flow maps to simulate the complex vortical motions of incompressible fluids. Central to our method is the novel incorporation of the flow-map transport equations for line elements, which, in combination with a bi-directional marching scheme for flow maps, enables the high-fidelity Eulerian advection of vorticity variables. The fundamental… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06201v2-abstract-full').style.display = 'inline'; document.getElementById('2409.06201v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06201v2-abstract-full" style="display: none;"> We present an Eulerian vortex method based on the theory of flow maps to simulate the complex vortical motions of incompressible fluids. Central to our method is the novel incorporation of the flow-map transport equations for line elements, which, in combination with a bi-directional marching scheme for flow maps, enables the high-fidelity Eulerian advection of vorticity variables. The fundamental motivation is that, compared to impulse $\mathbf{m}$, which has been recently bridged with flow maps to encouraging results, vorticity $\boldsymbol蠅$ promises to be preferable for its numerical stability and physical interpretability. To realize the full potential of this novel formulation, we develop a new Poisson solving scheme for vorticity-to-velocity reconstruction that is both efficient and able to accurately handle the coupling near solid boundaries. We demonstrate the efficacy of our approach with a range of vortex simulation examples, including leapfrog vortices, vortex collisions, cavity flow, and the formation of complex vortical structures due to solid-fluid interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06201v2-abstract-full').style.display = 'none'; document.getElementById('2409.06201v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at ACM Transactions on Graphics (SIGGRAPH Asia 2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03430">arXiv:2409.03430</a> <span> [<a href="https://arxiv.org/pdf/2409.03430">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Efficient prediction of potential energy surface and physical properties with Kolmogorov-Arnold Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+R">Rui Wang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hongyu Yu</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+Y">Yang Zhong</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+H">Hongjun Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03430v1-abstract-short" style="display: inline;"> The application of machine learning methodologies for predicting properties within materials science has garnered significant attention. Among recent advancements, Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to traditional Multi-Layer Perceptrons (MLPs). This study evaluates the impact of substituting MLPs with KANs within three established machine learning frameworks… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03430v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03430v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03430v1-abstract-full" style="display: none;"> The application of machine learning methodologies for predicting properties within materials science has garnered significant attention. Among recent advancements, Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to traditional Multi-Layer Perceptrons (MLPs). This study evaluates the impact of substituting MLPs with KANs within three established machine learning frameworks: Allegro, Neural Equivariant Interatomic Potentials (NequIP), and the Edge-Based Tensor Prediction Graph Neural Network (ETGNN). Our results demonstrate that the integration of KANs generally yields enhanced prediction accuracies. Specifically, replacing MLPs with KANs in the output blocks leads to notable improvements in accuracy and, in certain scenarios, also results in reduced training times. Furthermore, employing KANs exclusively in the output block facilitates faster inference and improved computational efficiency relative to utilizing KANs throughout the entire model. The selection of an optimal basis function for KANs is found to be contingent upon the particular problem at hand. Our results demonstrate the strong potential of KANs in enhancing machine learning potentials and material property predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03430v1-abstract-full').style.display = 'none'; document.getElementById('2409.03430v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14688">arXiv:2408.14688</a> <span> [<a href="https://arxiv.org/pdf/2408.14688">pdf</a>, <a href="https://arxiv.org/format/2408.14688">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Lowering threshold of NaI(Tl) scintillator to 0.7 keV in the COSINE-100 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yu%2C+G+H">G. H. Yu</a>, <a href="/search/physics?searchtype=author&query=Carlin%2C+N">N. Carlin</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+J+Y">J. Y. Cho</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+J+J">J. J. Choi</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+S">S. Choi</a>, <a href="/search/physics?searchtype=author&query=Ezeribe%2C+A+C">A. C. Ezeribe</a>, <a href="/search/physics?searchtype=author&query=Fran%C3%A7a%2C+L+E">L. E. Fran莽a</a>, <a href="/search/physics?searchtype=author&query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&query=Hahn%2C+I+S">I. S. Hahn</a>, <a href="/search/physics?searchtype=author&query=Hollick%2C+S+J">S. J. Hollick</a>, <a href="/search/physics?searchtype=author&query=Jeon%2C+E+J">E. J. Jeon</a>, <a href="/search/physics?searchtype=author&query=Joo%2C+H+W">H. W. Joo</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+W+G">W. G. Kang</a>, <a href="/search/physics?searchtype=author&query=Kauer%2C+M">M. Kauer</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+B+H">B. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H+J">H. J. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+J">J. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+W+K">W. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y+H">Y. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+D+H">D. H. Lee</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14688v1-abstract-short" style="display: inline;"> COSINE-100 is a direct dark matter search experiment, with the primary goal of testing the annual modulation signal observed by DAMA/LIBRA, using the same target material, NaI(Tl). In previous analyses, we achieved the same 1 keV energy threshold used in the DAMA/LIBRA's analysis that reported an annual modulation signal with 11.6$蟽$ significance. In this article, we report an improved analysis th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14688v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14688v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14688v1-abstract-full" style="display: none;"> COSINE-100 is a direct dark matter search experiment, with the primary goal of testing the annual modulation signal observed by DAMA/LIBRA, using the same target material, NaI(Tl). In previous analyses, we achieved the same 1 keV energy threshold used in the DAMA/LIBRA's analysis that reported an annual modulation signal with 11.6$蟽$ significance. In this article, we report an improved analysis that lowered the threshold to 0.7 keV, thanks to the application of Multi-Layer Perception network and a new likelihood parameter with waveforms in the frequency domain. The lower threshold would enable a better comparison of COSINE-100 with new DAMA results with a 0.75 keV threshold and account for differences in quenching factors. Furthermore the lower threshold can enhance COSINE-100's sensitivity to sub-GeV dark matter searches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14688v1-abstract-full').style.display = 'none'; document.getElementById('2408.14688v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12725">arXiv:2408.12725</a> <span> [<a href="https://arxiv.org/pdf/2408.12725">pdf</a>, <a href="https://arxiv.org/format/2408.12725">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12725v1-abstract-short" style="display: inline;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12725v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12725v1-abstract-full" style="display: none;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'none'; document.getElementById('2408.12725v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-TM-2833-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09806">arXiv:2408.09806</a> <span> [<a href="https://arxiv.org/pdf/2408.09806">pdf</a>, <a href="https://arxiv.org/format/2408.09806">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Improved background modeling for dark matter search with COSINE-100 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yu%2C+G+H">G. H. Yu</a>, <a href="/search/physics?searchtype=author&query=Carlin%2C+N">N. Carlin</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+J+Y">J. Y. Cho</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+J+J">J. J. Choi</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+S">S. Choi</a>, <a href="/search/physics?searchtype=author&query=Ezeribe%2C+A+C">A. C. Ezeribe</a>, <a href="/search/physics?searchtype=author&query=Franca%2C+L+E">L. E. Franca</a>, <a href="/search/physics?searchtype=author&query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&query=Hahn%2C+I+S">I. S. Hahn</a>, <a href="/search/physics?searchtype=author&query=Hollick%2C+S+J">S. J. Hollick</a>, <a href="/search/physics?searchtype=author&query=Jeon%2C+E+J">E. J. Jeon</a>, <a href="/search/physics?searchtype=author&query=Joo%2C+H+W">H. W. Joo</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+W+G">W. G. Kang</a>, <a href="/search/physics?searchtype=author&query=Kauer%2C+M">M. Kauer</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+B+H">B. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H+J">H. J. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+J">J. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+W+K">W. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y+H">Y. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+D+H">D. H. Lee</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09806v1-abstract-short" style="display: inline;"> COSINE-100 aims to conclusively test the claimed dark matter annual modulation signal detected by DAMA/LIBRA collaboration. DAMA/LIBRA has released updated analysis results by lowering the energy threshold to 0.75 keV through various upgrades. They have consistently claimed to have observed the annual modulation. In COSINE-100, it is crucial to lower the energy threshold for a direct comparison wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09806v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09806v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09806v1-abstract-full" style="display: none;"> COSINE-100 aims to conclusively test the claimed dark matter annual modulation signal detected by DAMA/LIBRA collaboration. DAMA/LIBRA has released updated analysis results by lowering the energy threshold to 0.75 keV through various upgrades. They have consistently claimed to have observed the annual modulation. In COSINE-100, it is crucial to lower the energy threshold for a direct comparison with DAMA/LIBRA, which also enhances the sensitivity of the search for low-mass dark matter, enabling COSINE-100 to explore this area. Therefore, it is essential to have a precise and quantitative understanding of the background spectrum across all energy ranges. This study expands the background modeling from 0.7 to 4000 keV using 2.82 years of COSINE-100 data. The modeling has been improved to describe the background spectrum across all energy ranges accurately. Assessments of the background spectrum are presented, considering the nonproportionality of NaI(Tl) crystals at both low and high energies and the characteristic X-rays produced by the interaction of external backgrounds with materials such as copper. Additionally, constraints on the fit parameters obtained from the alpha spectrum modeling fit are integrated into this model. These improvements are detailed in the paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09806v1-abstract-full').style.display = 'none'; document.getElementById('2408.09806v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00582">arXiv:2408.00582</a> <span> [<a href="https://arxiv.org/pdf/2408.00582">pdf</a>, <a href="https://arxiv.org/format/2408.00582">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.092011">10.1103/PhysRevD.110.092011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1341 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00582v1-abstract-short" style="display: inline;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00582v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00582v1-abstract-full" style="display: none;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'none'; document.getElementById('2408.00582v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-211, FERMILAB-PUB-24-0216-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, (2024) 092011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15081">arXiv:2407.15081</a> <span> [<a href="https://arxiv.org/pdf/2407.15081">pdf</a>, <a href="https://arxiv.org/ps/2407.15081">ps</a>, <a href="https://arxiv.org/format/2407.15081">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Deterministic and Efficient Switching of Sliding Ferroelectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Deng%2C+S">Shihan Deng</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hongyu Yu</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+J">Junyi Ji</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+C">Changsong Xu</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+H">Hongjun Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15081v1-abstract-short" style="display: inline;"> Recent studies highlight the scientific importance and broad application prospects of two-dimensional (2D) sliding ferroelectrics, which prevalently exhibit vertical polarization with suitable stackings. It is crucial to understand the mechanisms of sliding ferroelectricity and to deterministically and efficiently switch the polarization with optimized electric fields. Here, applying our newly dev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15081v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15081v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15081v1-abstract-full" style="display: none;"> Recent studies highlight the scientific importance and broad application prospects of two-dimensional (2D) sliding ferroelectrics, which prevalently exhibit vertical polarization with suitable stackings. It is crucial to understand the mechanisms of sliding ferroelectricity and to deterministically and efficiently switch the polarization with optimized electric fields. Here, applying our newly developed DREAM-Allegro multi-task equivariant neural network, which simultaneously predicts interatomic potentials and Born effective charges, we construct a comprehensive potential for boron nitride ($\mathrm{BN}$) bilayer. The molecular dynamics simulations reveal a remarkably high Curie temperature of up to 1500K, facilitated by robust intralayer chemical bonds and delicate interlayer van der Waals(vdW) interactions. More importantly, it is found that, compared to the out-of-plane electric field, the inclined field not only leads to deterministic switching of electric polarization, but also largely lower the critical strength of field, due to the presence of the in-plane polarization in the transition state. This strategy of an inclined field is demonstrated to be universal for other sliding ferroelectric systems with monolayer structures belonging to the symmetry group $p \bar{6} m 2$, such as transition metal dichalcogenides (TMDs). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15081v1-abstract-full').style.display = 'none'; document.getElementById('2407.15081v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 16 pages, 4 figures. Supplementary: 9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12969">arXiv:2407.12969</a> <span> [<a href="https://arxiv.org/pdf/2407.12969">pdf</a>, <a href="https://arxiv.org/format/2407.12969">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Angular dependent measurement of electron-ion recombination in liquid argon for ionization calorimetry in the ICARUS liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=ICARUS+collaboration"> ICARUS collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Abrego-Martinez%2C+N">N. Abrego-Martinez</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewic%2C+A">A. Aduszkiewic</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Soplin%2C+L+A">L. Aliaga Soplin</a>, <a href="/search/physics?searchtype=author&query=Pons%2C+M+A">M. Artero Pons</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Badgett%2C+W+F">W. F. Badgett</a>, <a href="/search/physics?searchtype=author&query=Baibussinov%2C+B">B. Baibussinov</a>, <a href="/search/physics?searchtype=author&query=Behera%2C+B">B. Behera</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+V">V. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benocci%2C+R">R. Benocci</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+J">J. Berger</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bertolucci%2C+S">S. Bertolucci</a>, <a href="/search/physics?searchtype=author&query=Betancourt%2C+M">M. Betancourt</a>, <a href="/search/physics?searchtype=author&query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&query=Boone%2C+T">T. Boone</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&query=Braggiotti%2C+A">A. Braggiotti</a>, <a href="/search/physics?searchtype=author&query=Brailsford%2C+D">D. Brailsford</a>, <a href="/search/physics?searchtype=author&query=Brice%2C+S+J">S. J. Brice</a>, <a href="/search/physics?searchtype=author&query=Brio%2C+V">V. Brio</a>, <a href="/search/physics?searchtype=author&query=Brizzolari%2C+C">C. Brizzolari</a> , et al. (156 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12969v2-abstract-short" style="display: inline;"> This paper reports on a measurement of electron-ion recombination in liquid argon in the ICARUS liquid argon time projection chamber (LArTPC). A clear dependence of recombination on the angle of the ionizing particle track relative to the drift electric field is observed. An ellipsoid modified box (EMB) model of recombination describes the data across all measured angles. These measurements are us… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12969v2-abstract-full').style.display = 'inline'; document.getElementById('2407.12969v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12969v2-abstract-full" style="display: none;"> This paper reports on a measurement of electron-ion recombination in liquid argon in the ICARUS liquid argon time projection chamber (LArTPC). A clear dependence of recombination on the angle of the ionizing particle track relative to the drift electric field is observed. An ellipsoid modified box (EMB) model of recombination describes the data across all measured angles. These measurements are used for the calorimetric energy scale calibration of the ICARUS TPC, which is also presented. The impact of the EMB model is studied on calorimetric particle identification, as well as muon and proton energy measurements. Accounting for the angular dependence in EMB recombination improves the accuracy and precision of these measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12969v2-abstract-full').style.display = 'none'; document.getElementById('2407.12969v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0332-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11925">arXiv:2407.11925</a> <span> [<a href="https://arxiv.org/pdf/2407.11925">pdf</a>, <a href="https://arxiv.org/format/2407.11925">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Calibration and simulation of ionization signal and electronics noise in the ICARUS liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=ICARUS+collaboration"> ICARUS collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Abrego-Martinez%2C+N">N. Abrego-Martinez</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewic%2C+A">A. Aduszkiewic</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Soplin%2C+L+A">L. Aliaga Soplin</a>, <a href="/search/physics?searchtype=author&query=Pons%2C+M+A">M. Artero Pons</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Badgett%2C+W+F">W. F. Badgett</a>, <a href="/search/physics?searchtype=author&query=Baibussinov%2C+B">B. Baibussinov</a>, <a href="/search/physics?searchtype=author&query=Behera%2C+B">B. Behera</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+V">V. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benocci%2C+R">R. Benocci</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+J">J. Berger</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bertolucci%2C+S">S. Bertolucci</a>, <a href="/search/physics?searchtype=author&query=Betancourt%2C+M">M. Betancourt</a>, <a href="/search/physics?searchtype=author&query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&query=Boone%2C+T">T. Boone</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&query=Braggiotti%2C+A">A. Braggiotti</a>, <a href="/search/physics?searchtype=author&query=Brailsford%2C+D">D. Brailsford</a>, <a href="/search/physics?searchtype=author&query=Brice%2C+S+J">S. J. Brice</a>, <a href="/search/physics?searchtype=author&query=Brio%2C+V">V. Brio</a>, <a href="/search/physics?searchtype=author&query=Brizzolari%2C+C">C. Brizzolari</a> , et al. (156 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11925v3-abstract-short" style="display: inline;"> The ICARUS liquid argon time projection chamber (LArTPC) neutrino detector has been taking physics data since 2022 as part of the Short-Baseline Neutrino (SBN) Program. This paper details the equalization of the response to charge in the ICARUS time projection chamber (TPC), as well as data-driven tuning of the simulation of ionization charge signals and electronics noise. The equalization procedu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11925v3-abstract-full').style.display = 'inline'; document.getElementById('2407.11925v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11925v3-abstract-full" style="display: none;"> The ICARUS liquid argon time projection chamber (LArTPC) neutrino detector has been taking physics data since 2022 as part of the Short-Baseline Neutrino (SBN) Program. This paper details the equalization of the response to charge in the ICARUS time projection chamber (TPC), as well as data-driven tuning of the simulation of ionization charge signals and electronics noise. The equalization procedure removes non-uniformities in the ICARUS TPC response to charge in space and time. This work leverages the copious number of cosmic ray muons available to ICARUS at the surface. The ionization signal shape simulation applies a novel procedure that tunes the simulation to match what is measured in data. The end result of the equalization procedure and simulation tuning allows for a comparison of charge measurements in ICARUS between Monte Carlo simulation and data, showing good performance with minimal residual bias between the two. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11925v3-abstract-full').style.display = 'none'; document.getElementById('2407.11925v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0330-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10339">arXiv:2407.10339</a> <span> [<a href="https://arxiv.org/pdf/2407.10339">pdf</a>, <a href="https://arxiv.org/format/2407.10339">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Supernova Pointing Capabilities of DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10339v1-abstract-short" style="display: inline;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10339v1-abstract-full" style="display: none;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'none'; document.getElementById('2407.10339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0319-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08181">arXiv:2407.08181</a> <span> [<a href="https://arxiv.org/pdf/2407.08181">pdf</a>, <a href="https://arxiv.org/ps/2407.08181">ps</a>, <a href="https://arxiv.org/format/2407.08181">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/nsg.12312">10.1002/nsg.12312 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Joint Inversion of Sources and Seismic Waveforms for Velocity Distribution: 1-D and 2-D Examples </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yu%2C+H">Han Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08181v1-abstract-short" style="display: inline;"> Waveform inversion is theoretically a powerful tool to reconstruct subsurface structures, but a usually encountered problem is that accurate sources are very rare, causing the computation unstable and divergent. This challenging problem, although sometimes ignored and even imperceptible, can easily create discrepancies in calculated shot gathers, which will then lead to wrong residuals that must b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08181v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08181v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08181v1-abstract-full" style="display: none;"> Waveform inversion is theoretically a powerful tool to reconstruct subsurface structures, but a usually encountered problem is that accurate sources are very rare, causing the computation unstable and divergent. This challenging problem, although sometimes ignored and even imperceptible, can easily create discrepancies in calculated shot gathers, which will then lead to wrong residuals that must be migrated back to the gradients, hence jeopardizing the inverted tomograms. In practice, any shot gather may correspond to its own source even if some of them can be transformed alike after data processing. To resolve this problem, we propose a collocated inversion of sources and early arrival waveforms with the two submodules executing alternatively. Not only can this method produce a decent wavelet that approaches the true source or an equivalent source, but more importantly, it can also invert for credible background velocity models with the optimized sources. Part of the cycle skipping problems can also be mitigated because it avoids the trial and error experiments on various sources. Numerical tests upon a series of different conditions validate the effectiveness of this method. Restrictions on initial sources or starting velocity models will be relaxed with this method, and it can be extended to any other applications for engineering or exploration purposes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08181v1-abstract-full').style.display = 'none'; document.getElementById('2407.08181v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Part of the content in this manuscript has already been published in the journal Near Surface Geophysics (2024), which includes a real data example</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02785">arXiv:2407.02785</a> <span> [<a href="https://arxiv.org/pdf/2407.02785">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Identifying Direct Bandgap Silicon Structures with High-throughput Search and Machine Learning Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+R">Rui Wang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hongyu Yu</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+Y">Yang Zhong</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+H">Hongjun Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02785v1-abstract-short" style="display: inline;"> Utilizations of silicon-based luminescent devices are restricted by the indirect-gap nature of diamond silicon. In this study, the high-throughput method is employed to expedite discoveries of direct-gap silicon crystals. The machine learning (ML) potential is utilized to construct a dataset comprising 2637 silicon allotropes, which is subsequently screened using an ML Hamiltonian model and densit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02785v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02785v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02785v1-abstract-full" style="display: none;"> Utilizations of silicon-based luminescent devices are restricted by the indirect-gap nature of diamond silicon. In this study, the high-throughput method is employed to expedite discoveries of direct-gap silicon crystals. The machine learning (ML) potential is utilized to construct a dataset comprising 2637 silicon allotropes, which is subsequently screened using an ML Hamiltonian model and density functional theory calculations, resulting in identification of 47 direct-gap Si structures. We calculate transition dipole moments (TDM), energies, and phonon bandstructures of these structures to validate their performance. Additionally, we recalculate bandgaps of these structures employing the HSE06 functional. 22 silicon allotropes are identified as potential photovoltaic materials. Among them, the energy per atom of Si22-Pm, which has a direct bandgap of 1.27 eV, is 0.026 eV/atom higher than diamond silicon. Si18-C2/m, which has a direct bandgap of 0.796 eV, exhibits the highest TDM among identified structures. Si16-P21/c, which has a direct bandgap of 0.907 eV, has the mass density of 2.316 g/cm3, which is the highest among identified structures and higher than that of diamond silicon. The structure Si12-P1, which possesses a direct bandgap of 1.69 eV, exhibits the highest spectroscopic limited maximum efficiency (SLME) among identified structures at 32.28%, surpassing that of diamond silicon. This study offers insights into properties of silicon crystals while presenting a systematic high-throughput method for material discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02785v1-abstract-full').style.display = 'none'; document.getElementById('2407.02785v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01914">arXiv:2407.01914</a> <span> [<a href="https://arxiv.org/pdf/2407.01914">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Switchable Ferroelectricity in Subnano Silicon Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hongyu Yu</a>, <a href="/search/physics?searchtype=author&query=deng%2C+S">Shihan deng</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+M">Muting Xie</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yuwen Zhang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+X">Xizhi Shi</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+J">Jianxin Zhong</a>, <a href="/search/physics?searchtype=author&query=He%2C+C">Chaoyu He</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+H">Hongjun Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01914v1-abstract-short" style="display: inline;"> Recent advancements underscore the critical need to develop ferroelectric materials compatible with silicon. We systematically explore possible ferroelectric silicon quantum films and discover a low-energy variant (hex-OR-2*2-P) with energy just 1 meV/atom above the ground state (hex-OR-2*2). Both hex-OR-2*2 and hex-OR-2*2-P are confirmed to be dynamically and mechanically stable semiconductors wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01914v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01914v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01914v1-abstract-full" style="display: none;"> Recent advancements underscore the critical need to develop ferroelectric materials compatible with silicon. We systematically explore possible ferroelectric silicon quantum films and discover a low-energy variant (hex-OR-2*2-P) with energy just 1 meV/atom above the ground state (hex-OR-2*2). Both hex-OR-2*2 and hex-OR-2*2-P are confirmed to be dynamically and mechanically stable semiconductors with indirect gaps of 1.323 eV and 1.311 eV, respectively. The ferroelectric hex-OR-2*2-P exhibits remarkable in-plane spontaneous polarization up to 120 Pc/m and is protected by a potential barrier (13.33 meV/atom) from spontaneously transitioning to hex-OR-22. To simulate the switching ferroelectricity in electric fields of the single-element silicon bilayer, we develop a method that simultaneously learns interatomic potentials and Born effective charges (BEC) in a single equivariant model with a physically informed loss. Our method demonstrates good performance on several ferroelectrics. Simulations of hex-OR-2*2-P silicon suggest a depolarization temperature of approximately 300 K and a coercive field of about 0.05 V/脜. These results indicate that silicon-based ferroelectric devices are feasible, and the ground state phase of the silicon bilayer (hex-OR-2*2) is an ideal system. Our findings highlight the promise of pure silicon ferroelectric materials for future experimental synthesis and applications in memory devices, sensors, and energy converters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01914v1-abstract-full').style.display = 'none'; document.getElementById('2407.01914v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18988">arXiv:2406.18988</a> <span> [<a href="https://arxiv.org/pdf/2406.18988">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Hyper-sampling imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Ze Zhang</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+H">Hemeng Xue</a>, <a href="/search/physics?searchtype=author&query=Shang%2C+M">Mingtao Shang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hongfei Yu</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+J">Jinchao Liang</a>, <a href="/search/physics?searchtype=author&query=Guan%2C+M">Meiling Guan</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+C">Chengming Sun</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Huahua Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shufeng Wang</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+Z">Zhengyu Ye</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+F">Feng Gao</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+L">Lu Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18988v1-abstract-short" style="display: inline;"> In our research, we have developed a novel mechanism that allows for a significant reduction in the smallest sampling unit of digital image sensors (DIS) to as small as 1/16th of a pixel, through measuring the intra-pixel quantum efficiency for the first time and recomputing the image. Employing our method, the physical sampling resolution of DIS can be enhanced by 16 times. The method has undergo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18988v1-abstract-full').style.display = 'inline'; document.getElementById('2406.18988v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18988v1-abstract-full" style="display: none;"> In our research, we have developed a novel mechanism that allows for a significant reduction in the smallest sampling unit of digital image sensors (DIS) to as small as 1/16th of a pixel, through measuring the intra-pixel quantum efficiency for the first time and recomputing the image. Employing our method, the physical sampling resolution of DIS can be enhanced by 16 times. The method has undergone rigorous testing in real-world imaging scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18988v1-abstract-full').style.display = 'none'; document.getElementById('2406.18988v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10123">arXiv:2406.10123</a> <span> [<a href="https://arxiv.org/pdf/2406.10123">pdf</a>, <a href="https://arxiv.org/format/2406.10123">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Improving neutrino energy estimation of charged-current interaction events with recurrent neural networks in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&query=Barnard%2C+A">A. Barnard</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&query=Bateman%2C+J">J. Bateman</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&query=Book%2C+J+Y">J. Y. Book</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10123v1-abstract-short" style="display: inline;"> We present a deep learning-based method for estimating the neutrino energy of charged-current neutrino-argon interactions. We employ a recurrent neural network (RNN) architecture for neutrino energy estimation in the MicroBooNE experiment, utilizing liquid argon time projection chamber (LArTPC) detector technology. Traditional energy estimation approaches in LArTPCs, which largely rely on reconstr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10123v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10123v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10123v1-abstract-full" style="display: none;"> We present a deep learning-based method for estimating the neutrino energy of charged-current neutrino-argon interactions. We employ a recurrent neural network (RNN) architecture for neutrino energy estimation in the MicroBooNE experiment, utilizing liquid argon time projection chamber (LArTPC) detector technology. Traditional energy estimation approaches in LArTPCs, which largely rely on reconstructing and summing visible energies, often experience sizable biases and resolution smearing because of the complex nature of neutrino interactions and the detector response. The estimation of neutrino energy can be improved after considering the kinematics information of reconstructed final-state particles. Utilizing kinematic information of reconstructed particles, the deep learning-based approach shows improved resolution and reduced bias for the muon neutrino Monte Carlo simulation sample compared to the traditional approach. In order to address the common concern about the effectiveness of this method on experimental data, the RNN-based energy estimator is further examined and validated with dedicated data-simulation consistency tests using MicroBooNE data. We also assess its potential impact on a neutrino oscillation study after accounting for all statistical and systematic uncertainties and show that it enhances physics sensitivity. This method has good potential to improve the performance of other physics analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10123v1-abstract-full').style.display = 'none'; document.getElementById('2406.10123v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0287 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03848">arXiv:2406.03848</a> <span> [<a href="https://arxiv.org/pdf/2406.03848">pdf</a>, <a href="https://arxiv.org/format/2406.03848">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> OceanCastNet: A Deep Learning Ocean Wave Model with Energy Conservation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Ziliang Zhang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Huaming Yu</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+D">Danqin Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03848v2-abstract-short" style="display: inline;"> Traditional wave forecasting models, although based on energy conservation equations, are computationally expensive. On the other hand, existing deep learning geophysical fluid models, while computationally efficient, often suffer from issues such as energy dissipation in long-term forecasts. This paper proposes a novel energy-balanced deep learning wave forecasting model called OceanCastNet (OCN)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03848v2-abstract-full').style.display = 'inline'; document.getElementById('2406.03848v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03848v2-abstract-full" style="display: none;"> Traditional wave forecasting models, although based on energy conservation equations, are computationally expensive. On the other hand, existing deep learning geophysical fluid models, while computationally efficient, often suffer from issues such as energy dissipation in long-term forecasts. This paper proposes a novel energy-balanced deep learning wave forecasting model called OceanCastNet (OCN). By incorporating wind fields at the current, previous, and future time steps, as well as wave fields at the current and previous time steps as input variables, OCN maintains energy balance within the model. Furthermore, the model employs adaptive Fourier operators as its core components and designs a masked loss function to better handle the impact of land-sea boundaries. A series of experiments on the ERA5 dataset demonstrate that OCN can achieve short-term forecast accuracy comparable to traditional models while exhibiting an understanding of the wave generation process. In comparative experiments under both normal and extreme conditions, OCN consistently outperforms the widely used WaveWatch III model in the industry. Even after long-term forecasting, OCN maintains a stable and energy-rich state. By further constructing a simple meteorological model, OCN-wind, which considers energy balance, this paper confirms the importance of energy constraints for improving the long-term forecast performance of deep learning meteorological models. This finding provides new ideas for future research on deep learning geophysical fluid models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03848v2-abstract-full').style.display = 'none'; document.getElementById('2406.03848v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01602">arXiv:2406.01602</a> <span> [<a href="https://arxiv.org/pdf/2406.01602">pdf</a>, <a href="https://arxiv.org/format/2406.01602">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Effectiveness of denoising diffusion probabilistic models for fast and high-fidelity whole-event simulation in high-energy heavy-ion experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Go%2C+Y">Yeonju Go</a>, <a href="/search/physics?searchtype=author&query=Torbunov%2C+D">Dmitrii Torbunov</a>, <a href="/search/physics?searchtype=author&query=Rinn%2C+T">Timothy Rinn</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yi Huang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Haiwang Yu</a>, <a href="/search/physics?searchtype=author&query=Viren%2C+B">Brett Viren</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Meifeng Lin</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+Y">Yihui Ren</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jin Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01602v1-abstract-short" style="display: inline;"> Artificial intelligence (AI) generative models, such as generative adversarial networks (GANs), variational auto-encoders, and normalizing flows, have been widely used and studied as efficient alternatives for traditional scientific simulations. However, they have several drawbacks, including training instability and inability to cover the entire data distribution, especially for regions where dat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01602v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01602v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01602v1-abstract-full" style="display: none;"> Artificial intelligence (AI) generative models, such as generative adversarial networks (GANs), variational auto-encoders, and normalizing flows, have been widely used and studied as efficient alternatives for traditional scientific simulations. However, they have several drawbacks, including training instability and inability to cover the entire data distribution, especially for regions where data are rare. This is particularly challenging for whole-event, full-detector simulations in high-energy heavy-ion experiments, such as sPHENIX at the Relativistic Heavy Ion Collider and Large Hadron Collider experiments, where thousands of particles are produced per event and interact with the detector. This work investigates the effectiveness of Denoising Diffusion Probabilistic Models (DDPMs) as an AI-based generative surrogate model for the sPHENIX experiment that includes the heavy-ion event generation and response of the entire calorimeter stack. DDPM performance in sPHENIX simulation data is compared with a popular rival, GANs. Results show that both DDPMs and GANs can reproduce the data distribution where the examples are abundant (low-to-medium calorimeter energies). Nonetheless, DDPMs significantly outperform GANs, especially in high-energy regions where data are rare. Additionally, DDPMs exhibit superior stability compared to GANs. The results are consistent between both central and peripheral centrality heavy-ion collision events. Moreover, DDPMs offer a substantial speedup of approximately a factor of 100 compared to the traditional Geant4 simulation method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01602v1-abstract-full').style.display = 'none'; document.getElementById('2406.01602v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12066">arXiv:2405.12066</a> <span> [<a href="https://arxiv.org/pdf/2405.12066">pdf</a>, <a href="https://arxiv.org/format/2405.12066">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> QuanEstimation.jl: An open-source Julia framework for quantum parameter estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yu%2C+H">Huai-Ming Yu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jing Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12066v1-abstract-short" style="display: inline;"> As the main theoretical support of quantum metrology, quantum parameter estimation must follow the steps of quantum metrology towards the applied science and industry. Hence, optimal scheme design will soon be a crucial and core task for quantum parameter estimation. To efficiently accomplish this task, software packages aimed at computer-aided design are in high demand. In response to this need,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12066v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12066v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12066v1-abstract-full" style="display: none;"> As the main theoretical support of quantum metrology, quantum parameter estimation must follow the steps of quantum metrology towards the applied science and industry. Hence, optimal scheme design will soon be a crucial and core task for quantum parameter estimation. To efficiently accomplish this task, software packages aimed at computer-aided design are in high demand. In response to this need, we hereby introduce QuanEstimation.jl, an open-source Julia framework for scheme evaluation and design in quantum parameter estimation. It can be used either as an independent package or as the computational core of the recently developed hybrid-language (Python-Julia) package QuanEstimation [Phys. Rev. Res. 4, 043057 (2022)]. Utilizing this framework, the scheme evaluation and design in quantum parameter estimation can be readily performed, especially when quantum noises exist. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12066v1-abstract-full').style.display = 'none'; document.getElementById('2405.12066v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures. Corresponding package version: v0.2.0</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11826">arXiv:2405.11826</a> <span> [<a href="https://arxiv.org/pdf/2405.11826">pdf</a>, <a href="https://arxiv.org/format/2405.11826">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Data quality control system and long-term performance monitor of the LHAASO-KM2A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cao%2C+Z">Zhen Cao</a>, <a href="/search/physics?searchtype=author&query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/physics?searchtype=author&query=Axikegu"> Axikegu</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y+X">Y. X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+Y+W">Y. W. Bao</a>, <a href="/search/physics?searchtype=author&query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/physics?searchtype=author&query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/physics?searchtype=author&query=Bi%2C+Y+J">Y. J. Bi</a>, <a href="/search/physics?searchtype=author&query=Bian%2C+W">W. Bian</a>, <a href="/search/physics?searchtype=author&query=Bukevich%2C+A+V">A. V. Bukevich</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+Q">Q. Cao</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+W+Y">W. Y. Cao</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+Z">Zhe Cao</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J">J. Chang</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+A+M">A. M. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+E+S">E. S. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H+X">H. X. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Liang Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Lin Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Long Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M+J">M. J. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M+L">M. L. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Q+H">Q. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">S. Chen</a> , et al. (263 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11826v3-abstract-short" style="display: inline;"> The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11826v3-abstract-full').style.display = 'inline'; document.getElementById('2405.11826v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11826v3-abstract-full" style="display: none;"> The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To ensure the reliability of the LHAASO-KM2A data, a three-level quality control system has been established. It is used to monitor the status of detector units, stability of reconstructed parameters and the performance of the array based on observations of the Crab Nebula and Moon shadow. This paper will introduce the control system and its application on the LHAASO-KM2A data collected from August 2021 to July 2023. During this period, the pointing and angular resolution of the array were stable. From the observations of the Moon shadow and Crab Nebula, the results achieved using the two methods are consistent with each other. According to the observation of the Crab Nebula at energies from 25 TeV to 100 TeV, the time averaged pointing errors are estimated to be $-0.003^{\circ} \pm 0.005^{\circ}$ and $0.001^{\circ} \pm 0.006^{\circ}$ in the R.A. and Dec directions, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11826v3-abstract-full').style.display = 'none'; document.getElementById('2405.11826v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07303">arXiv:2405.07303</a> <span> [<a href="https://arxiv.org/pdf/2405.07303">pdf</a>, <a href="https://arxiv.org/format/2405.07303">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for solar axions by Primakoff effect with the full dataset of the CDEX-1B Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S+K">S. K. Liu</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+J+R">J. R. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07303v1-abstract-short" style="display: inline;"> We present the first limit on $g_{A纬}$ coupling constant using the Bragg-Primakoff conversion based on an exposure of 1107.5 kg days of data from the CDEX-1B experiment at the China Jinping Underground Laboratory. The data are consistent with the null signal hypothesis, and no excess signals are observed. Limits of the coupling $g_{A纬}<2.08\times10^{-9}$ GeV$^{-1}$ (95\% C.L.) are derived for axio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07303v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07303v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07303v1-abstract-full" style="display: none;"> We present the first limit on $g_{A纬}$ coupling constant using the Bragg-Primakoff conversion based on an exposure of 1107.5 kg days of data from the CDEX-1B experiment at the China Jinping Underground Laboratory. The data are consistent with the null signal hypothesis, and no excess signals are observed. Limits of the coupling $g_{A纬}<2.08\times10^{-9}$ GeV$^{-1}$ (95\% C.L.) are derived for axions with mass up to 100 eV/$c^2$. Within the hadronic model of KSVZ, our results exclude axion mass $>5.3~\rm{eV}/c^2$ at 95\% C.L. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07303v1-abstract-full').style.display = 'none'; document.getElementById('2405.07303v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04629">arXiv:2405.04629</a> <span> [<a href="https://arxiv.org/pdf/2405.04629">pdf</a>, <a href="https://arxiv.org/format/2405.04629">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> ResNCT: A Deep Learning Model for the Synthesis of Nephrographic Phase Images in CT Urography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gardezi%2C+S+J+S">Syed Jamal Safdar Gardezi</a>, <a href="/search/physics?searchtype=author&query=Aronson%2C+L">Lucas Aronson</a>, <a href="/search/physics?searchtype=author&query=Wawrzyn%2C+P">Peter Wawrzyn</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hongkun Yu</a>, <a href="/search/physics?searchtype=author&query=Abel%2C+E+J">E. Jason Abel</a>, <a href="/search/physics?searchtype=author&query=Shapiro%2C+D+D">Daniel D. Shapiro</a>, <a href="/search/physics?searchtype=author&query=Lubner%2C+M+G">Meghan G. Lubner</a>, <a href="/search/physics?searchtype=author&query=Warner%2C+J">Joshua Warner</a>, <a href="/search/physics?searchtype=author&query=Toia%2C+G">Giuseppe Toia</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+L">Lu Mao</a>, <a href="/search/physics?searchtype=author&query=Tiwari%2C+P">Pallavi Tiwari</a>, <a href="/search/physics?searchtype=author&query=Wentland%2C+A+L">Andrew L. Wentland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04629v2-abstract-short" style="display: inline;"> Purpose: To develop and evaluate a transformer-based deep learning model for the synthesis of nephrographic phase images in CT urography (CTU) examinations from the unenhanced and urographic phases. Materials and Methods: This retrospective study was approved by the local Institutional Review Board. A dataset of 119 patients (mean $\pm$ SD age, 65 $\pm$ 12 years; 75/44 males/females) with three-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04629v2-abstract-full').style.display = 'inline'; document.getElementById('2405.04629v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04629v2-abstract-full" style="display: none;"> Purpose: To develop and evaluate a transformer-based deep learning model for the synthesis of nephrographic phase images in CT urography (CTU) examinations from the unenhanced and urographic phases. Materials and Methods: This retrospective study was approved by the local Institutional Review Board. A dataset of 119 patients (mean $\pm$ SD age, 65 $\pm$ 12 years; 75/44 males/females) with three-phase CT urography studies was curated for deep learning model development. The three phases for each patient were aligned with an affine registration algorithm. A custom model, coined Residual transformer model for Nephrographic phase CT image synthesis (ResNCT), was developed and implemented with paired inputs of non-contrast and urographic sets of images trained to produce the nephrographic phase images, that were compared with the corresponding ground truth nephrographic phase images. The synthesized images were evaluated with multiple performance metrics, including peak signal to noise ratio (PSNR), structural similarity index (SSIM), normalized cross correlation coefficient (NCC), mean absolute error (MAE), and root mean squared error (RMSE). Results: The ResNCT model successfully generated synthetic nephrographic images from non-contrast and urographic image inputs. With respect to ground truth nephrographic phase images, the images synthesized by the model achieved high PSNR (27.8 $\pm$ 2.7 dB), SSIM (0.88 $\pm$ 0.05), and NCC (0.98 $\pm$ 0.02), and low MAE (0.02 $\pm$ 0.005) and RMSE (0.042 $\pm$ 0.016). Conclusion: The ResNCT model synthesized nephrographic phase CT images with high similarity to ground truth images. The ResNCT model provides a means of eliminating the acquisition of the nephrographic phase with a resultant 33% reduction in radiation dose for CTU examinations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04629v2-abstract-full').style.display = 'none'; document.getElementById('2405.04629v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 Figures,2 Tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> eess.IV <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14569">arXiv:2404.14569</a> <span> [<a href="https://arxiv.org/pdf/2404.14569">pdf</a>, <a href="https://arxiv.org/format/2404.14569">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.ado8069">10.1126/science.ado8069 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Squeezing the quantum noise of a gravitational-wave detector below the standard quantum limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jia%2C+W">Wenxuan Jia</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+V">Victoria Xu</a>, <a href="/search/physics?searchtype=author&query=Kuns%2C+K">Kevin Kuns</a>, <a href="/search/physics?searchtype=author&query=Nakano%2C+M">Masayuki Nakano</a>, <a href="/search/physics?searchtype=author&query=Barsotti%2C+L">Lisa Barsotti</a>, <a href="/search/physics?searchtype=author&query=Evans%2C+M">Matthew Evans</a>, <a href="/search/physics?searchtype=author&query=Mavalvala%2C+N">Nergis Mavalvala</a>, <a href="/search/physics?searchtype=author&query=Abbott%2C+R">Rich Abbott</a>, <a href="/search/physics?searchtype=author&query=Abouelfettouh%2C+I">Ibrahim Abouelfettouh</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+R">Rana Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ananyeva%2C+A">Alena Ananyeva</a>, <a href="/search/physics?searchtype=author&query=Appert%2C+S">Stephen Appert</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+K">Koji Arai</a>, <a href="/search/physics?searchtype=author&query=Aritomi%2C+N">Naoki Aritomi</a>, <a href="/search/physics?searchtype=author&query=Aston%2C+S">Stuart Aston</a>, <a href="/search/physics?searchtype=author&query=Ball%2C+M">Matthew Ball</a>, <a href="/search/physics?searchtype=author&query=Ballmer%2C+S">Stefan Ballmer</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+D">David Barker</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+B">Beverly Berger</a>, <a href="/search/physics?searchtype=author&query=Betzwieser%2C+J">Joseph Betzwieser</a>, <a href="/search/physics?searchtype=author&query=Bhattacharjee%2C+D">Dripta Bhattacharjee</a>, <a href="/search/physics?searchtype=author&query=Billingsley%2C+G">Garilynn Billingsley</a>, <a href="/search/physics?searchtype=author&query=Bode%2C+N">Nina Bode</a>, <a href="/search/physics?searchtype=author&query=Bonilla%2C+E">Edgard Bonilla</a>, <a href="/search/physics?searchtype=author&query=Bossilkov%2C+V">Vladimir Bossilkov</a> , et al. (146 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14569v3-abstract-short" style="display: inline;"> Precision measurements of space and time, like those made by the detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO), are often confronted with fundamental limitations imposed by quantum mechanics. The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot both be precisely measured, giving rise to an apparent limitation called the Stan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14569v3-abstract-full').style.display = 'inline'; document.getElementById('2404.14569v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14569v3-abstract-full" style="display: none;"> Precision measurements of space and time, like those made by the detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO), are often confronted with fundamental limitations imposed by quantum mechanics. The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot both be precisely measured, giving rise to an apparent limitation called the Standard Quantum Limit (SQL). Reducing quantum noise below the SQL in gravitational-wave detectors, where photons are used to continuously measure the positions of freely falling mirrors, has been an active area of research for decades. Here we show how the LIGO A+ upgrade reduced the detectors' quantum noise below the SQL by up to 3 dB while achieving a broadband sensitivity improvement, more than two decades after this possibility was first presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14569v3-abstract-full').style.display = 'none'; document.getElementById('2404.14569v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400059 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 385, 1318 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09949">arXiv:2404.09949</a> <span> [<a href="https://arxiv.org/pdf/2404.09949">pdf</a>, <a href="https://arxiv.org/format/2404.09949">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the differential cross section for neutral pion production in charged-current muon neutrino interactions on argon with the MicroBooNE detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&query=Brunetti%2C+M+B">M. B. Brunetti</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+L">L. Camilleri</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09949v3-abstract-short" style="display: inline;"> We present a measurement of neutral pion production in charged-current interactions using data recorded with the MicroBooNE detector exposed to Fermilab's booster neutrino beam. The signal comprises one muon, one neutral pion, any number of nucleons, and no charged pions. Studying neutral pion production in the MicroBooNE detector provides an opportunity to better understand neutrino-argon interac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09949v3-abstract-full').style.display = 'inline'; document.getElementById('2404.09949v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09949v3-abstract-full" style="display: none;"> We present a measurement of neutral pion production in charged-current interactions using data recorded with the MicroBooNE detector exposed to Fermilab's booster neutrino beam. The signal comprises one muon, one neutral pion, any number of nucleons, and no charged pions. Studying neutral pion production in the MicroBooNE detector provides an opportunity to better understand neutrino-argon interactions, and is crucial for future accelerator-based neutrino oscillation experiments. Using a dataset corresponding to $6.86 \times 10^{20}$ protons on target, we present single-differential cross sections in muon and neutral pion momenta, scattering angles with respect to the beam for the outgoing muon and neutral pion, as well as the opening angle between the muon and neutral pion. Data extracted cross sections are compared to generator predictions. We report good agreement between the data and the models for scattering angles, except for an over-prediction by generators at muon forward angles. Similarly, the agreement between data and the models as a function of momentum is good, except for an underprediction by generators in the medium momentum ranges, $200-400$ MeV for muons and $100-200$ MeV for pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09949v3-abstract-full').style.display = 'none'; document.getElementById('2404.09949v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0142-CSAID-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09793">arXiv:2404.09793</a> <span> [<a href="https://arxiv.org/pdf/2404.09793">pdf</a>, <a href="https://arxiv.org/format/2404.09793">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> First Search for Light Fermionic Dark Matter Absorption on Electrons Using Germanium Detector in CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J+X">J. X. Liu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+J+R">J. R. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09793v1-abstract-short" style="display: inline;"> We present the first results of the search for sub-MeV fermionic dark matter absorbed by electron targets of Germanium using the 205.4~kg$\cdot$day data collected by the CDEX-10 experiment, with the analysis threshold of 160~eVee. No significant dark matter (DM) signals over the background are observed. Results are presented as limits on the cross section of DM--electron interaction. We present ne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09793v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09793v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09793v1-abstract-full" style="display: none;"> We present the first results of the search for sub-MeV fermionic dark matter absorbed by electron targets of Germanium using the 205.4~kg$\cdot$day data collected by the CDEX-10 experiment, with the analysis threshold of 160~eVee. No significant dark matter (DM) signals over the background are observed. Results are presented as limits on the cross section of DM--electron interaction. We present new constraints of cross section in the DM range of 0.1--10 keV/$c^2$ for vector and axial-vector interaction. The upper limit on the cross section is set to be $\rm 5.5\times10^{-46}~cm^2$ for vector interaction, and $\rm 1.8\times10^{-46}~cm^2$ for axial-vector interaction at DM mass of 5 keV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09793v1-abstract-full').style.display = 'none'; document.getElementById('2404.09793v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20276">arXiv:2403.20276</a> <span> [<a href="https://arxiv.org/pdf/2403.20276">pdf</a>, <a href="https://arxiv.org/format/2403.20276">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Constraints on the Blazar-Boosted Dark Matter from the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+R">R. Xu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20276v1-abstract-short" style="display: inline;"> We report new constraints on light dark matter (DM) boosted by blazars using the 205.4 kg day data from the CDEX-10 experiment located at the China Jinping Underground Laboratory. Two representative blazars, TXS 0506+56 and BL Lacertae are studied. The results derived from TXS 0506+56 exclude DM-nucleon elastic scattering cross sections from $4.6\times 10^{-33}\ \rm cm^2$ to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20276v1-abstract-full').style.display = 'inline'; document.getElementById('2403.20276v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20276v1-abstract-full" style="display: none;"> We report new constraints on light dark matter (DM) boosted by blazars using the 205.4 kg day data from the CDEX-10 experiment located at the China Jinping Underground Laboratory. Two representative blazars, TXS 0506+56 and BL Lacertae are studied. The results derived from TXS 0506+56 exclude DM-nucleon elastic scattering cross sections from $4.6\times 10^{-33}\ \rm cm^2$ to $1\times10^{-26}\ \rm cm^2$ for DM masses between 10 keV and 1 GeV, and the results derived from BL Lacertae exclude DM-nucleon elastic scattering cross sections from $2.4\times 10^{-34}\ \rm cm^2$ to $1\times10^{-26}\ \rm cm^2$ for the same range of DM masses. The constraints correspond to the best sensitivities among solid-state detector experiments in the sub-MeV mass range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20276v1-abstract-full').style.display = 'none'; document.getElementById('2403.20276v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20263">arXiv:2403.20263</a> <span> [<a href="https://arxiv.org/pdf/2403.20263">pdf</a>, <a href="https://arxiv.org/format/2403.20263">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2446-2">10.1007/s11433-024-2446-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Dark Matter Particles from Evaporating Primordial Black Holes via Electron Scattering in the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z+H">Z. H. Zhang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20263v2-abstract-short" style="display: inline;"> Dark matter (DM) is a major constituent of the Universe. However, no definite evidence of DM particles (denoted as ``$蠂$") has been found in DM direct detection (DD) experiments to date. There is a novel concept of detecting $蠂$ from evaporating primordial black holes (PBHs). We search for $蠂$ emitted from PBHs by investigating their interaction with target electrons. The examined PBH masses range… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20263v2-abstract-full').style.display = 'inline'; document.getElementById('2403.20263v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20263v2-abstract-full" style="display: none;"> Dark matter (DM) is a major constituent of the Universe. However, no definite evidence of DM particles (denoted as ``$蠂$") has been found in DM direct detection (DD) experiments to date. There is a novel concept of detecting $蠂$ from evaporating primordial black holes (PBHs). We search for $蠂$ emitted from PBHs by investigating their interaction with target electrons. The examined PBH masses range from 1$\times$10$^{15}$ to 7$\times$10$^{16}$ g under the current limits of PBH abundance $f_{PBH}$. Using 205.4 kg$\cdot$day data obtained from the CDEX-10 experiment conducted in the China Jinping Underground Laboratory, we exclude the $蠂$--electron ($蠂$--$e$) elastic-scattering cross section $蟽_{蠂e} \sim 5\times10^{-29}$ cm$^2$ for $蠂$ with a mass $m_蠂\lesssim$ 0.1 keV from our results. With the higher radiation background but lower energy threshold (160 eV), CDEX-10 fill a part of the gap in the previous work. If ($m_蠂$, $蟽_{蠂e}$) can be determined in the future, DD experiments are expected to impose strong constraints on $f_{PBH}$ for large $M_{PBH}$s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20263v2-abstract-full').style.display = 'none'; document.getElementById('2403.20263v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, 3 tables. Version updated to match SCPMA version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 67, 101011 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13243">arXiv:2403.13243</a> <span> [<a href="https://arxiv.org/pdf/2403.13243">pdf</a>, <a href="https://arxiv.org/format/2403.13243">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A Comparative Study of Machine Learning Models Predicting Energetics of Interacting Defects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hao Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13243v1-abstract-short" style="display: inline;"> Interacting defect systems are ubiquitous in materials under realistic scenarios, yet gaining an atomic-level understanding of these systems from a computational perspective is challenging - it often demands substantial resources due to the necessity of employing supercell calculations. While machine learning techniques have shown potential in accelerating materials simulations, their application… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13243v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13243v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13243v1-abstract-full" style="display: none;"> Interacting defect systems are ubiquitous in materials under realistic scenarios, yet gaining an atomic-level understanding of these systems from a computational perspective is challenging - it often demands substantial resources due to the necessity of employing supercell calculations. While machine learning techniques have shown potential in accelerating materials simulations, their application to systems involving interacting defects remains relatively rare. In this work, we present a comparative study of three different methods to predict the free energy change of systems with interacting defects. We leveraging a limited dataset from Density Functional Theory(DFT) calculations to assess the performance models using materials descriptors, graph neural networks and cluster expansion. Our findings indicate that the cluster expansion model can achieve precise energetics predictions even with this limited dataset. Furthermore, with synthetic data generate from cluster expansion model at near-DFT levels, we obtained enlarged dataset to assess the demands on data for training accurate prediction models using graph neural networks for systems featuring interacting defects. A brief discussion of the computational cost for each method is provided at the end. This research provide a preliminary evaluation of applying machine learning techniques in imperfect surface systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13243v1-abstract-full').style.display = 'none'; document.getElementById('2403.13243v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12331">arXiv:2403.12331</a> <span> [<a href="https://arxiv.org/pdf/2403.12331">pdf</a>, <a href="https://arxiv.org/format/2403.12331">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+M">Mengzhou Li</a>, <a href="/search/physics?searchtype=author&query=Niu%2C+C">Chuang Niu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+G">Ge Wang</a>, <a href="/search/physics?searchtype=author&query=Amma%2C+M+R">Maya R Amma</a>, <a href="/search/physics?searchtype=author&query=Chapagain%2C+K+M">Krishna M Chapagain</a>, <a href="/search/physics?searchtype=author&query=Gabrielson%2C+S">Stefan Gabrielson</a>, <a href="/search/physics?searchtype=author&query=Li%2C+A">Andrew Li</a>, <a href="/search/physics?searchtype=author&query=Jonker%2C+K">Kevin Jonker</a>, <a href="/search/physics?searchtype=author&query=de+Ruiter%2C+N">Niels de Ruiter</a>, <a href="/search/physics?searchtype=author&query=Clark%2C+J+A">Jennifer A Clark</a>, <a href="/search/physics?searchtype=author&query=Butler%2C+P">Phil Butler</a>, <a href="/search/physics?searchtype=author&query=Butler%2C+A">Anthony Butler</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hengyong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12331v1-abstract-short" style="display: inline;"> The latest X-ray photon-counting computed tomography (PCCT) for extremity allows multi-energy high-resolution (HR) imaging for tissue characterization and material decomposition. However, both radiation dose and imaging speed need improvement for contrast-enhanced and other studies. Despite the success of deep learning methods for 2D few-view reconstruction, applying them to HR volumetric reconstr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12331v1-abstract-full').style.display = 'inline'; document.getElementById('2403.12331v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12331v1-abstract-full" style="display: none;"> The latest X-ray photon-counting computed tomography (PCCT) for extremity allows multi-energy high-resolution (HR) imaging for tissue characterization and material decomposition. However, both radiation dose and imaging speed need improvement for contrast-enhanced and other studies. Despite the success of deep learning methods for 2D few-view reconstruction, applying them to HR volumetric reconstruction of extremity scans for clinical diagnosis has been limited due to GPU memory constraints, training data scarcity, and domain gap issues. In this paper, we propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial. Particularly, we present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data. The simulation and phantom experiments demonstrate consistently improved results under different acquisition conditions on both in- and off-domain structures using a fixed network. The image quality of 8 patients from the clinical trial are evaluated by three radiologists in comparison with the standard image reconstruction with a full-view dataset. It is shown that our proposed approach is essentially identical to or better than the clinical benchmark in terms of diagnostic image quality scores. Our approach has a great potential to improve the safety and efficiency of PCCT without compromising image quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12331v1-abstract-full').style.display = 'none'; document.getElementById('2403.12331v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05649">arXiv:2403.05649</a> <span> [<a href="https://arxiv.org/pdf/2403.05649">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Reconfigurable inverse designed phase-change photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wu%2C+C">Changming Wu</a>, <a href="/search/physics?searchtype=author&query=Jiao%2C+Z">Ziyu Jiao</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+H">Haoqin Deng</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yi-Siou Huang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Heshan Yu</a>, <a href="/search/physics?searchtype=author&query=Takeuchi%2C+I">Ichiro Takeuchi</a>, <a href="/search/physics?searchtype=author&query=Ocampo%2C+C+A+R">Carlos A. R铆os Ocampo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Mo Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05649v2-abstract-short" style="display: inline;"> Chalcogenide phase-change materials (PCMs) offer a promising approach to programmable photonics thanks to their nonvolatile, reversible phase transitions and high refractive index contrast. However, conventional designs are limited by global phase control over entire PCM thin films between fully amorphous and fully crystalline states, which restricts device functionality and confines design flexib… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05649v2-abstract-full').style.display = 'inline'; document.getElementById('2403.05649v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05649v2-abstract-full" style="display: none;"> Chalcogenide phase-change materials (PCMs) offer a promising approach to programmable photonics thanks to their nonvolatile, reversible phase transitions and high refractive index contrast. However, conventional designs are limited by global phase control over entire PCM thin films between fully amorphous and fully crystalline states, which restricts device functionality and confines design flexibility and programmability. In this work, we present a novel approach that leverages pixel-level control of PCM in inverse-designed photonic devices, enabling highly reconfigurable, multi-functional operations. We integrate low-loss Sb2Se3 onto a multi-mode interferometer (MMI) and achieve precise, localized phase manipulation through direct laser writing. This technique allows for flexible programming of the photonic device by adjusting the PCM phase pattern rather than relying on global phase states, thereby enhancing device adaptability. As a proof of concept, we programmed the device as a wavelength-division multiplexer and subsequently reconfigured it into a mode-division multiplexer. Our results underscore the potential of combining inverse design with pixel-wise tuning for next-generation programmable phase-change photonic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05649v2-abstract-full').style.display = 'none'; document.getElementById('2403.05649v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03212">arXiv:2403.03212</a> <span> [<a href="https://arxiv.org/pdf/2403.03212">pdf</a>, <a href="https://arxiv.org/format/2403.03212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Performance of a modular ton-scale pixel-readout liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03212v1-abstract-short" style="display: inline;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03212v1-abstract-full" style="display: none;"> The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03212v1-abstract-full').style.display = 'none'; document.getElementById('2403.03212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 41 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0073-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17125">arXiv:2402.17125</a> <span> [<a href="https://arxiv.org/pdf/2402.17125">pdf</a>, <a href="https://arxiv.org/format/2402.17125">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2024.169489">10.1016/j.nima.2024.169489 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Waveform Simulation for Scintillation Characteristics of NaI(Tl) Crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Choi%2C+J+J">J. J. Choi</a>, <a href="/search/physics?searchtype=author&query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&query=Jeon%2C+E+J">E. J. Jeon</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/physics?searchtype=author&query=Koh%2C+B+C">B. C. Koh</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+H+S">H. S. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S+H">S. H. Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S+M">S. M. Lee</a>, <a href="/search/physics?searchtype=author&query=Park%2C+B+J">B. J. Park</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+G+H">G. H. Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17125v2-abstract-short" style="display: inline;"> The lowering of the energy threshold in the NaI detector is crucial not only for comprehensive validation of DAMA/LIBRA but also for exploring new possibilities in the search for low-mass dark matter and observing coherent elastic scattering between neutrino and nucleus. Alongside hardware enhancements, extensive efforts have focused on refining event selection to discern noise, achieved through p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17125v2-abstract-full').style.display = 'inline'; document.getElementById('2402.17125v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17125v2-abstract-full" style="display: none;"> The lowering of the energy threshold in the NaI detector is crucial not only for comprehensive validation of DAMA/LIBRA but also for exploring new possibilities in the search for low-mass dark matter and observing coherent elastic scattering between neutrino and nucleus. Alongside hardware enhancements, extensive efforts have focused on refining event selection to discern noise, achieved through parameter development and the application of machine learning. Acquiring pure, unbiased datasets is crucial in this endeavor, for which a waveform simulation was developed. The simulation data were compared with the experimental data using several pulse shape discrimination parameters to test its performance in describing the experimental data. Additionally, we present the outcomes of multi-variable machine learning trained with simulation data as a scintillation signal sample. The distributions of outcomes for experimental and simulation data show a good agreement. As an application of the waveform simulation, we validate the trigger efficiency alongside estimations derived from the minimally biased measurement data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17125v2-abstract-full').style.display = 'none'; document.getElementById('2402.17125v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NIM A 1065, 169489 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09251">arXiv:2402.09251</a> <span> [<a href="https://arxiv.org/pdf/2402.09251">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/7/077103">10.1088/0256-307X/41/7/077103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal Machine Learning Kohn-Sham Hamiltonian for Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhong%2C+Y">Yang Zhong</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hongyu Yu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jihui Yang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X">Xingyu Guo</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+H">Hongjun Xiang</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+X">Xingao Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09251v2-abstract-short" style="display: inline;"> While density functional theory (DFT) serves as a prevalent computational approach in electronic structure calculations, its computational demands and scalability limitations persist. Recently, leveraging neural networks to parameterize the Kohn-Sham DFT Hamiltonian has emerged as a promising avenue for accelerating electronic structure computations. Despite advancements, challenges such as the ne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09251v2-abstract-full').style.display = 'inline'; document.getElementById('2402.09251v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09251v2-abstract-full" style="display: none;"> While density functional theory (DFT) serves as a prevalent computational approach in electronic structure calculations, its computational demands and scalability limitations persist. Recently, leveraging neural networks to parameterize the Kohn-Sham DFT Hamiltonian has emerged as a promising avenue for accelerating electronic structure computations. Despite advancements, challenges such as the necessity for computing extensive DFT training data to explore each new system and the complexity of establishing accurate ML models for multi-elemental materials still exist. Addressing these hurdles, this study introduces a universal electronic Hamiltonian model trained on Hamiltonian matrices obtained from first-principles DFT calculations of nearly all crystal structures on the Materials Project. We demonstrate its generality in predicting electronic structures across the whole periodic table, including complex multi-elemental systems, solid-state electrolytes, Moir茅 twisted bilayer heterostructure, and metal-organic frameworks (MOFs). Moreover, we utilize the universal model to conduct high-throughput calculations of electronic structures for crystals in GeNOME datasets, identifying 3,940 crystals with direct band gaps and 5,109 crystals with flat bands. By offering a reliable efficient framework for computing electronic properties, this universal Hamiltonian model lays the groundwork for advancements in diverse fields, such as easily providing a huge data set of electronic structures and also making the materials design across the whole periodic table possible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09251v2-abstract-full').style.display = 'none'; document.getElementById('2402.09251v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 41, 077103 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01568">arXiv:2402.01568</a> <span> [<a href="https://arxiv.org/pdf/2402.01568">pdf</a>, <a href="https://arxiv.org/format/2402.01568">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Doping Liquid Argon with Xenon in ProtoDUNE Single-Phase: Effects on Scintillation Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Es-sghir%2C+H+A">H. Amar Es-sghir</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1297 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01568v3-abstract-short" style="display: inline;"> Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUN… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01568v3-abstract-full').style.display = 'inline'; document.getElementById('2402.01568v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01568v3-abstract-full" style="display: none;"> Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01568v3-abstract-full').style.display = 'none'; document.getElementById('2402.01568v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 20 figures. Corrected author list; corrected typos across paper and polished text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-024; FERMILAB-PUB-23-0819-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11178">arXiv:2401.11178</a> <span> [<a href="https://arxiv.org/pdf/2401.11178">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Large Transverse Thermopower in Shape-Engineered Tilted Leg Thermopile </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bang%2C+K+M">Ki Mun Bang</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S+J">Sang J. Park</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hyun Yu</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+H">Hyungyu Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11178v1-abstract-short" style="display: inline;"> We demonstrate that a novel device design, where a shape-engineered tilted-leg thermopile structure is employed, significantly enhances the output voltage in the transverse direction. Owing to the shape engineering of the leg geometry, an additional temperature gradient develops along the long direction of the leg, which is perpendicular to the direction of the applied temperature gradient, thereb… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11178v1-abstract-full').style.display = 'inline'; document.getElementById('2401.11178v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11178v1-abstract-full" style="display: none;"> We demonstrate that a novel device design, where a shape-engineered tilted-leg thermopile structure is employed, significantly enhances the output voltage in the transverse direction. Owing to the shape engineering of the leg geometry, an additional temperature gradient develops along the long direction of the leg, which is perpendicular to the direction of the applied temperature gradient, thereby generating an additional Seebeck voltage V_SE that adds to the Anomalous Nernst effect (ANE) voltage V_ANE. We further show that a simple adjustment of electrode position within the device can further increase V_SE. The tilted leg device with electrode adjustment demonstrates a 990% enhanced transverse output voltage compared to that of conventional rectangular leg thermopile-structured devices, wherein only the ANE occurs. This combined output voltage from both the Seebeck effect and ANE is equivalent to the value that surpasses the state-of-the-art ANE materials and devices currently available. The numerical analysis shows the tendencies of the electrical and thermal outputs of the tilted-leg device, which guides a way to further improve the output voltage. Our study paves the way to develop highly efficient transverse TE devices that can overcome intrinsic materials challenges by utilizing the degree of freedom of device design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11178v1-abstract-full').style.display = 'none'; document.getElementById('2401.11178v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10308">arXiv:2401.10308</a> <span> [<a href="https://arxiv.org/pdf/2401.10308">pdf</a>, <a href="https://arxiv.org/format/2401.10308">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Extending Dynamic Origin-Destination Estimation to Understand Traffic Patterns During COVID-19 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yu%2C+H">Han Yu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Suyanpeng Zhang</a>, <a href="/search/physics?searchtype=author&query=Suen%2C+S">Sze-chuan Suen</a>, <a href="/search/physics?searchtype=author&query=Dessouky%2C+M">Maged Dessouky</a>, <a href="/search/physics?searchtype=author&query=Ordonez%2C+F">Fernando Ordonez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10308v1-abstract-short" style="display: inline;"> Estimating dynamic Origin-Destination (OD) traffic flow is crucial for understanding traffic patterns and the traffic network. While dynamic origin-destination estimation (DODE) has been studied for decades as a useful tool for estimating traffic flow, few existing models have considered its potential in evaluating the influence of policy on travel activity. This paper proposes a data-driven appro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10308v1-abstract-full').style.display = 'inline'; document.getElementById('2401.10308v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10308v1-abstract-full" style="display: none;"> Estimating dynamic Origin-Destination (OD) traffic flow is crucial for understanding traffic patterns and the traffic network. While dynamic origin-destination estimation (DODE) has been studied for decades as a useful tool for estimating traffic flow, few existing models have considered its potential in evaluating the influence of policy on travel activity. This paper proposes a data-driven approach to estimate OD traffic flow using sensor data on highways and local roads. We extend prior DODE models to improve accuracy and realism in order to estimate how policies affect OD traffic flow in large urban networks. We applied our approach to a case study in Los Angeles County, where we developed a traffic network, estimated OD traffic flow between health districts during COVID-19, and analyzed the relationship between OD traffic flow and demographic characteristics such as income. Our findings demonstrate that the proposed approach provides valuable insights into traffic flow patterns and their underlying demographic factors for a large-scale traffic network. Specifically, our approach allows for evaluating the impact of policy changes on travel activity. The approach has practical applications for transportation planning and traffic management, enabling a better understanding of traffic flow patterns and the impact of policy changes on travel activity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10308v1-abstract-full').style.display = 'none'; document.getElementById('2401.10308v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07462">arXiv:2401.07462</a> <span> [<a href="https://arxiv.org/pdf/2401.07462">pdf</a>, <a href="https://arxiv.org/format/2401.07462">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-12770-1">10.1140/epjc/s10052-024-12770-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonproportionality of NaI(Tl) Scintillation Detector for Dark Matter Search Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lee%2C+S+M">S. M. Lee</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+G">G. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Carlin%2C+N">N. Carlin</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+J+Y">J. Y. Cho</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+J+J">J. J. Choi</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+S">S. Choi</a>, <a href="/search/physics?searchtype=author&query=Ezeribe%2C+A+C">A. C. Ezeribe</a>, <a href="/search/physics?searchtype=author&query=a%2C+L+E+F">L. E. Fran. a</a>, <a href="/search/physics?searchtype=author&query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&query=Hahn%2C+I+S">I. S. Hahn</a>, <a href="/search/physics?searchtype=author&query=Hollick%2C+S+J">S. J. Hollick</a>, <a href="/search/physics?searchtype=author&query=Jeon%2C+E+J">E. J. Jeon</a>, <a href="/search/physics?searchtype=author&query=Joo%2C+H+W">H. W. Joo</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+W+G">W. G. Kang</a>, <a href="/search/physics?searchtype=author&query=Kauer%2C+M">M. Kauer</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+B+H">B. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H+J">H. J. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+J">J. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+W">S. W. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+W+K">W. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y+H">Y. H. Kim</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07462v2-abstract-short" style="display: inline;"> We present a comprehensive study of the nonproportionality of NaI(Tl) scintillation detectors within the context of dark matter search experiments. Our investigation, which integrates COSINE-100 data with supplementary $纬$ spectroscopy, measures light yields across diverse energy levels from full-energy $纬$ peaks produced by the decays of various isotopes. These $纬$ peaks of interest were produced… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07462v2-abstract-full').style.display = 'inline'; document.getElementById('2401.07462v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07462v2-abstract-full" style="display: none;"> We present a comprehensive study of the nonproportionality of NaI(Tl) scintillation detectors within the context of dark matter search experiments. Our investigation, which integrates COSINE-100 data with supplementary $纬$ spectroscopy, measures light yields across diverse energy levels from full-energy $纬$ peaks produced by the decays of various isotopes. These $纬$ peaks of interest were produced by decays supported by both long and short-lived isotopes. Analyzing peaks from decays supported only by short-lived isotopes presented a unique challenge due to their limited statistics and overlapping energies, which was overcome by long-term data collection and a time-dependent analysis. A key achievement is the direct measurement of the 0.87 keV light yield, resulting from the cascade following electron capture decay of $^{22}$Na from internal contamination. This measurement, previously accessible only indirectly, deepens our understanding of NaI(Tl) scintillator behavior in the region of interest for dark matter searches. This study holds substantial implications for background modeling and the interpretation of dark matter signals in NaI(Tl) experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07462v2-abstract-full').style.display = 'none'; document.getElementById('2401.07462v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 84 (2024) 484 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14635">arXiv:2312.14635</a> <span> [<a href="https://arxiv.org/pdf/2312.14635">pdf</a>, <a href="https://arxiv.org/format/2312.14635">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3618392">10.1145/3618392 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluid Simulation on Neural Flow Maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Deng%2C+Y">Yitong Deng</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hong-Xing Yu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Diyang Zhang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jiajun Wu</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+B">Bo Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14635v1-abstract-short" style="display: inline;"> We introduce Neural Flow Maps, a novel simulation method bridging the emerging paradigm of implicit neural representations with fluid simulation based on the theory of flow maps, to achieve state-of-the-art simulation of inviscid fluid phenomena. We devise a novel hybrid neural field representation, Spatially Sparse Neural Fields (SSNF), which fuses small neural networks with a pyramid of overlapp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14635v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14635v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14635v1-abstract-full" style="display: none;"> We introduce Neural Flow Maps, a novel simulation method bridging the emerging paradigm of implicit neural representations with fluid simulation based on the theory of flow maps, to achieve state-of-the-art simulation of inviscid fluid phenomena. We devise a novel hybrid neural field representation, Spatially Sparse Neural Fields (SSNF), which fuses small neural networks with a pyramid of overlapping, multi-resolution, and spatially sparse grids, to compactly represent long-term spatiotemporal velocity fields at high accuracy. With this neural velocity buffer in hand, we compute long-term, bidirectional flow maps and their Jacobians in a mechanistically symmetric manner, to facilitate drastic accuracy improvement over existing solutions. These long-range, bidirectional flow maps enable high advection accuracy with low dissipation, which in turn facilitates high-fidelity incompressible flow simulations that manifest intricate vortical structures. We demonstrate the efficacy of our neural fluid simulation in a variety of challenging simulation scenarios, including leapfrogging vortices, colliding vortices, vortex reconnections, as well as vortex generation from moving obstacles and density differences. Our examples show increased performance over existing methods in terms of energy conservation, visual complexity, adherence to experimental observations, and preservation of detailed vortical structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14635v1-abstract-full').style.display = 'none'; document.getElementById('2312.14635v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACM Trans. Graph. 42, 6, Article 248 (December 2023), 21 pages </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.03629">arXiv:2312.03629</a> <span> [<a href="https://arxiv.org/pdf/2312.03629">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Freeform Direct-write and Rewritable Photonic Integrated Circuits in Phase-Change Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wu%2C+C">Changming Wu</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+H">Haoqin Deng</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yi-Siou Huang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Heshan Yu</a>, <a href="/search/physics?searchtype=author&query=Takeuchi%2C+I">Ichiro Takeuchi</a>, <a href="/search/physics?searchtype=author&query=Ocampo%2C+C+A+R">Carlos A. R铆os Ocampo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Mo Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.03629v1-abstract-short" style="display: inline;"> Photonic integrated circuits (PICs) with rapid prototyping and reprogramming capabilities promise revolutionary impacts on a plethora of photonic technologies. Here, we report direct-write and rewritable photonic circuits on a low-loss phase change material (PCM) thin film. Complete end-to-end PICs are directly laser written in one step without additional fabrication processes, and any part of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03629v1-abstract-full').style.display = 'inline'; document.getElementById('2312.03629v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.03629v1-abstract-full" style="display: none;"> Photonic integrated circuits (PICs) with rapid prototyping and reprogramming capabilities promise revolutionary impacts on a plethora of photonic technologies. Here, we report direct-write and rewritable photonic circuits on a low-loss phase change material (PCM) thin film. Complete end-to-end PICs are directly laser written in one step without additional fabrication processes, and any part of the circuit can be erased and rewritten, facilitating rapid design modification. We demonstrate the versatility of this technique for diverse applications, including an optical interconnect fabric for reconfigurable networking, a photonic crossbar array for optical computing, and a tunable optical filter for optical signal processing. By combining the programmability of the direct laser writing technique with PCM, our technique unlocks opportunities for programmable photonic networking, computing, and signal processing. Moreover, the rewritable photonic circuits enable rapid prototyping and testing in a convenient and cost-efficient manner, eliminate the need for nanofabrication facilities, and thus promote the proliferation of photonics research and education to a broader community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03629v1-abstract-full').style.display = 'none'; document.getElementById('2312.03629v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.03130">arXiv:2312.03130</a> <span> [<a href="https://arxiv.org/pdf/2312.03130">pdf</a>, <a href="https://arxiv.org/format/2312.03130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The DUNE Far Detector Vertical Drift Technology, Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1304 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.03130v1-abstract-short" style="display: inline;"> DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precisi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03130v1-abstract-full').style.display = 'inline'; document.getElementById('2312.03130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.03130v1-abstract-full" style="display: none;"> DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03130v1-abstract-full').style.display = 'none'; document.getElementById('2312.03130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">425 pages; 281 figures Central editing team: A. Heavey, S. Kettell, A. Marchionni, S. Palestini, S. Rajogopalan, R. J. Wilson</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab Report no: TM-2813-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09098">arXiv:2311.09098</a> <span> [<a href="https://arxiv.org/pdf/2311.09098">pdf</a>, <a href="https://arxiv.org/format/2311.09098">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Broad-Wavevector Spin Pumping of Flat-Band Magnons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jinlong Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hanchen Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jilei Chen</a>, <a href="/search/physics?searchtype=author&query=Legrand%2C+W">William Legrand</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+P">Peng Chen</a>, <a href="/search/physics?searchtype=author&query=Sheng%2C+L">Lutong Sheng</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+J">Jihao Xia</a>, <a href="/search/physics?searchtype=author&query=Lan%2C+G">Guibin Lan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yuelin Zhang</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+R">Rundong Yuan</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+J">Jing Dong</a>, <a href="/search/physics?searchtype=author&query=Han%2C+X">Xiufeng Han</a>, <a href="/search/physics?searchtype=author&query=Ansermet%2C+J">Jean-Philippe Ansermet</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Haiming Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09098v1-abstract-short" style="display: inline;"> We report the experimental observation of large spin pumping signals in YIG/Pt system driven by broad-wavevector spin-wave spin current. 280 nm-wide microwave inductive antennas offer broad-wavevector excitation which, in combination with quasi-flatband of YIG, allows a large number of magnons to participate in spin pumping at a given frequency. Through comparison with ferromagnetic resonance spin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09098v1-abstract-full').style.display = 'inline'; document.getElementById('2311.09098v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09098v1-abstract-full" style="display: none;"> We report the experimental observation of large spin pumping signals in YIG/Pt system driven by broad-wavevector spin-wave spin current. 280 nm-wide microwave inductive antennas offer broad-wavevector excitation which, in combination with quasi-flatband of YIG, allows a large number of magnons to participate in spin pumping at a given frequency. Through comparison with ferromagnetic resonance spin pumping, we attribute the enhancement of the spin current to the multichromatic magnons. The high efficiency of spin current generation enables us to uncover nontrivial propagating properties in ultra-low power regions. Additionally, our study achieves the spatially separated detection of magnons, allowing the direct extraction of the decay length. The synergistic combination of the capability of broad-wavevector excitation, enhanced voltage signals, and nonlocal detection provides a new avenue for the electrical exploration of spin waves dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09098v1-abstract-full').style.display = 'none'; document.getElementById('2311.09098v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05010">arXiv:2311.05010</a> <span> [<a href="https://arxiv.org/pdf/2311.05010">pdf</a>, <a href="https://arxiv.org/format/2311.05010">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2024.102945">10.1016/j.astropartphys.2024.102945 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Alpha backgrounds in NaI(Tl) crystals of COSINE-100 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adhikari%2C+G">G. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Carlin%2C+N">N. Carlin</a>, <a href="/search/physics?searchtype=author&query=Cavalcante%2C+D+F+F+S">D. F. F. S. Cavalcante</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+J+Y">J. Y. Cho</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+J+J">J. J. Choi</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+S">S. Choi</a>, <a href="/search/physics?searchtype=author&query=Ezeribe%2C+A+C">A. C. Ezeribe</a>, <a href="/search/physics?searchtype=author&query=Franca%2C+L+E">L. E. Franca</a>, <a href="/search/physics?searchtype=author&query=Ha%2C+C">C. Ha</a>, <a href="/search/physics?searchtype=author&query=Hahn%2C+I+S">I. S. Hahn</a>, <a href="/search/physics?searchtype=author&query=Hollick%2C+S+J">S. J. Hollick</a>, <a href="/search/physics?searchtype=author&query=Jeon%2C+E+J">E. J. Jeon</a>, <a href="/search/physics?searchtype=author&query=Joo%2C+H+W">H. W. Joo</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+W+G">W. G. Kang</a>, <a href="/search/physics?searchtype=author&query=Kauer%2C+M">M. Kauer</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+B+H">B. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H+J">H. J. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+J">J. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+W">S. W. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+W+K">W. K. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y+H">Y. H. Kim</a> , et al. (38 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05010v3-abstract-short" style="display: inline;"> COSINE-100 is a dark matter direct detection experiment with 106 kg NaI(Tl) as the target material. 210Pb and daughter isotopes are a dominant background in the WIMP region of interest and are detected via beta decay and alpha decay. Analysis of the alpha channel complements the background model as observed in the beta/gamma channel. We present the measurement of the quenching factors and Monte Ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05010v3-abstract-full').style.display = 'inline'; document.getElementById('2311.05010v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05010v3-abstract-full" style="display: none;"> COSINE-100 is a dark matter direct detection experiment with 106 kg NaI(Tl) as the target material. 210Pb and daughter isotopes are a dominant background in the WIMP region of interest and are detected via beta decay and alpha decay. Analysis of the alpha channel complements the background model as observed in the beta/gamma channel. We present the measurement of the quenching factors and Monte Carlo simulation results and activity quantification of the alpha decay components of the COSINE-100 NaI(Tl) crystals. The data strongly indicate that the alpha decays probabilistically undergo two possible quenching factors but require further investigation. The fitted results are consistent with independent measurements and improve the overall understanding of the COSINE-100 backgrounds. Furthermore, the half-life of 216Po has been measured to be 143.4 +/- 1.2 ms, which is consistent with and more precise than recent measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05010v3-abstract-full').style.display = 'none'; document.getElementById('2311.05010v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17997">arXiv:2310.17997</a> <span> [<a href="https://arxiv.org/pdf/2310.17997">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning Enables Large Depth-of-Field Images for Sub-Diffraction-Limit Scanning Superlens Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sun%2C+H">Hui Sun</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+H">Hao Luo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+F">Feifei Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Q">Qingjiu Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+M">Meng Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiaoduo Wang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Haibo Yu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+G">Guanglie Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Lianqing Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jianping Wang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+D">Dapeng Wu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W+J">Wen Jung Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17997v1-abstract-short" style="display: inline;"> Scanning electron microscopy (SEM) is indispensable in diverse applications ranging from microelectronics to food processing because it provides large depth-of-field images with a resolution beyond the optical diffraction limit. However, the technology requires coating conductive films on insulator samples and a vacuum environment. We use deep learning to obtain the mapping relationship between op… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17997v1-abstract-full').style.display = 'inline'; document.getElementById('2310.17997v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17997v1-abstract-full" style="display: none;"> Scanning electron microscopy (SEM) is indispensable in diverse applications ranging from microelectronics to food processing because it provides large depth-of-field images with a resolution beyond the optical diffraction limit. However, the technology requires coating conductive films on insulator samples and a vacuum environment. We use deep learning to obtain the mapping relationship between optical super-resolution (OSR) images and SEM domain images, which enables the transformation of OSR images into SEM-like large depth-of-field images. Our custom-built scanning superlens microscopy (SSUM) system, which requires neither coating samples by conductive films nor a vacuum environment, is used to acquire the OSR images with features down to ~80 nm. The peak signal-to-noise ratio (PSNR) and structural similarity index measure values indicate that the deep learning method performs excellently in image-to-image translation, with a PSNR improvement of about 0.74 dB over the optical super-resolution images. The proposed method provides a high level of detail in the reconstructed results, indicating that it has broad applicability to chip-level defect detection, biological sample analysis, forensics, and various other fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17997v1-abstract-full').style.display = 'none'; document.getElementById('2310.17997v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages,7 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Yu%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Yu%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Yu%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Yu%2C+H&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Yu%2C+H&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Yu%2C+H&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>