CINXE.COM

Search results for: Rachmat

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Rachmat</title> <meta name="description" content="Search results for: Rachmat"> <meta name="keywords" content="Rachmat"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Rachmat" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Rachmat"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Rachmat</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Organic Facies Classification, Distribution, and Their Geochemical Characteristics in Sirt Basin, Libya </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Albriki">Khaled Albriki</a>, <a href="https://publications.waset.org/abstracts/search?q=Feiyu%20Wang"> Feiyu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The failed rifted epicratonic Sirt basin is located in the northern margin of the African Plate with an area of approximately 600,000 km2. The organofacies' classification, characterization, and its distribution vertically and horizontally are carried out in 7 main troughs with 32 typical selected wells. 7 geological and geochemical cross sections including Rock-Eval data and % TOC data are considered in order to analyze and to characterize the main organofacies with respect to their geochemical and geological controls and also to remove the ambiguity behind the complexity of the orgnofacies types and distributions in the basin troughs from where the oil and gas are generated and migrated. This study confirmes that there are four different classical types of organofacies distributed in Sirt basin F, D/E, C, and B. these four clasical types of organofacies controls the type and amount of the hydrocarbon discovered in Sirt basin. Oil bulk property data from more than 20 oil and gas fields indicate that D/E organoface are significant oil and gas contributors similar to B organoface. In the western Sirt basin in Zallah-Dur Al Abd, Hagfa, Kotla, and Dur Atallha troughs, F organoface is identified for Etel formation, Kalash formation and Hagfa formation having % TOC < 0.6, whereas the good quality D/E and B organofacies present in Rachmat formation and Sirte shale formation both have % TOC > 1.1. Results from the deepest trough (Ajdabiya), Etel (Gas pron in Whadyat trough), Kalash, and Hagfa constitute F organofacies, mainly. The Rachmat and Sirt shale both have D/E to B organofacies with % TOC > 1.2, thus indicating the best organofacies quality in Ajdabiya trough. In Maragh trough, results show that Etel F organofacies and D/E, C to B organofacies related to Middle Nubian, Rachmat, and Sirte shale have %TOC > 0.66. Towards the eastern Sirt basin, in troughs (Hameimat, Faregh, and Sarir), results show that the Middle Nubian, Etel, Rachmat, and Sirte shales are strongly dominated by D/E, C to B (% TOC > 0.75) organofacies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etel" title="Etel">Etel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mid-Nubian" title=" Mid-Nubian"> Mid-Nubian</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20facies" title=" organic facies"> organic facies</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachmat" title=" Rachmat"> Rachmat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirt%20basin" title=" Sirt basin"> Sirt basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirte%20shale" title=" Sirte shale "> Sirte shale </a> </p> <a href="https://publications.waset.org/abstracts/87240/organic-facies-classification-distribution-and-their-geochemical-characteristics-in-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Effect of Slope Steepness with Toposequent on Erosion Factor: A Study Case of Cikeruh Catchment Area, West Java, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shantosa%20Yudha%20Siswanto">Shantosa Yudha Siswanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Julianto%20Arief%20Ismail"> Julianto Arief Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Harryanto"> Rachmat Harryanto </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research was conducted with the aim to know the effect of slope steepness on organic carbon and soil erodibility as erosion factor. This research was conducted from September to December 2011 in the Raharja and Cinanjung Village, Tanjungsari, Sumedang District, West Java, Indonesia. The study was carried out using physiographic free survey method, which is a survey based on land physiographic appearance. Soil sampling was carried out into transect on the similarity slope without calculating the point of observation range. Soil sampling was carried onto three classes of slope as follows: 8–15%, 15–25% and 25–40%. Each was consisted of three slope position i.e. top slope, middle slope and down slope and four samples of soil were taken from each of them, hence it resulted in 36 points of observation. The results of this study indicate that gradient of slope have some significant contribution in every sample. Middle slope with gradient 26-40% has the highest potential erosion occurrence. It has organic C content (0.84%) and the highest erodibility value (0.1092). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slope%20steepness" title="slope steepness">slope steepness</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=erodibility" title=" erodibility"> erodibility</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20factor" title=" erosion factor"> erosion factor</a> </p> <a href="https://publications.waset.org/abstracts/9258/effect-of-slope-steepness-with-toposequent-on-erosion-factor-a-study-case-of-cikeruh-catchment-area-west-java-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Erodibility Analysis of Cikapundung Hulu: A Study Case of Mekarwangi Catchment Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shantosa%20Yudha%20Siswanto">Shantosa Yudha Siswanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Harryanto"> Rachmat Harryanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research was to investigate the effect of land use and slope steepness on soil erodibility index. The research was conducted from September to December 2013 in Mekarwangi catchment area, sub watershed of Cikapundung Hulu, Indonesia. The study was carried out using descriptive method. Physiographic free survey method was used as survey method, it was a survey based on land physiographic appearance. Soil sampling was carried out into transect on the similarity of slope without calculating the range between points of observation. Soil samples were carried onto three classes of land use such as: forest, plantation and dry cultivation area. Each land use consists of three slope classes such as: 8-15%, 16-25%, and 26-40% class. Five samples of soil were taken from each of them, resulting 45 points of observation. The result of the research showed that type of land use and slope classes gave different effect on soil erodibility. The highest C-organic and permeability was found on forest with slope 16-25%. Slope of 8-15% with forest land use give the lowest effect on soil erodibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use" title="land use">land use</a>, <a href="https://publications.waset.org/abstracts/search?q=slope" title=" slope"> slope</a>, <a href="https://publications.waset.org/abstracts/search?q=erodibility" title=" erodibility"> erodibility</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a> </p> <a href="https://publications.waset.org/abstracts/8832/erodibility-analysis-of-cikapundung-hulu-a-study-case-of-mekarwangi-catchment-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Polymorphisms of Calpastatin Gene and Its Association with Growth Traits in Indonesian Thin Tail Sheep</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ihsan%20Andi%20Dagong">Muhammad Ihsan Andi Dagong</a>, <a href="https://publications.waset.org/abstracts/search?q=Cece%20Sumantri"> Cece Sumantri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronny%20Rachman%20Noor"> Ronny Rachman Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Herman"> Rachmat Herman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Yamin"> Mohamad Yamin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calpastatin involved in various physiological processes in the body such as the protein turnover, growth, fusion and mioblast migration. Thus, allegedly Calpastatin gene diversity (CAST) have an association with growth and potential use as candidate genes for growth trait. This study aims to identify the association between the genetic diversity of CAST gene with some growth properties such as body dimention (morphometric), body weight and daily weight gain in sheep. A total of 157 heads of Thin Tail Sheep (TTS) reared intensively for fattening purposes in the uniform environmental conditions. Overall sheep used were male, and maintained for 3 months. The parameters of growth properties were measured among others: body weight gain (ADG) (g/head / day), body weight (kg), body length (cm), chest circumference (cm), height (cm). All the sheep were genotyped by using PCR-SSCP (single strand conformational polymorphism) methods. CAST gene in locus fragment intron 5 - exon 6 were amplified with a predicted length of about 254 bp PCR products. Then the sheep were stratified based on their CAST genotypes. The result of this research showed that no association were found between the CAST gene variations with morphometric body weight, but there was a significant association with daily body weight gain (ADG) in sheep observed. CAST-23 and CAST-33 genotypes has higher average daily gain than other genotypes. CAST-23 and CAST-33 genotypes that carrying the CAST-2 and CAST-3 alleles potential to be used in the selection of the nature of the growth trait of the TTS sheep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20weight" title="body weight">body weight</a>, <a href="https://publications.waset.org/abstracts/search?q=calpastatin" title=" calpastatin"> calpastatin</a>, <a href="https://publications.waset.org/abstracts/search?q=genotype" title=" genotype"> genotype</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20trait" title=" growth trait"> growth trait</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20tail%20sheep" title=" thin tail sheep"> thin tail sheep</a> </p> <a href="https://publications.waset.org/abstracts/48500/polymorphisms-of-calpastatin-gene-and-its-association-with-growth-traits-in-indonesian-thin-tail-sheep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Single Fly Over as a Solution to Congestion of Intersection Junction: Case Study of Jalan Jatingaleh Semarang</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Mudiyono">Rachmat Mudiyono</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Sumiati"> Siti Sumiati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the next few years, traffic will happen most of the time. This was triggered by the growing rate of vehicles againts the road capacity which is not balance. All the time the congestion in the city of Semarang has been occured at peak hours. Congestion also occured in between Teuku Umar and Setia Budi road Jatingaleh because of a plot intersection (Kesatrian intersection, PLN intersection and Jatingaleh intersection) with the Toll Road. Jatingaleh is located in the southern city of Semarang which is a central meeting point between the upper and lower Semarang where the vehicle flows in through a combination of local current and regional traffic, and the flow of vehicles coming in and out from highway. The main cause of the problems that occurred in the area of Jatingaleh is due to the numbers of vehicles movement that occurs at the intersections. With the above issues, it is necessary to analyse the existing conditions and look into some solutions. Before carrying out an analysis of field surveys at peak hours for example morning (06:00 to 08:00 am) and for the afternoon (04:00 to 06:00 pm)should be conducted, then the number of vehicles is counted manually with “short-breakcounting” according to types of vehicles. From the analysis we found that the degree of saturation (DS) is 1.61 between Teuku Umar and Setia Budi road during the morning peak hours and 1.56 during the afternoon peak hours. This means that the capacity of the existing road is no longer able to accommodate the traffic flow. One of the solutions for the congestion that occurs at the intersection of Jatingaleh is to apply the efficiency of the intersection that is not in a plot with a Fly over, Underpass and the combination of Fly Over-Underpass. Base on the flow reduction calculation with 3 comparative modeling it shows that the Fly Over is the most technically efficient to be applied in this research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20fly%20over" title="single fly over">single fly over</a>, <a href="https://publications.waset.org/abstracts/search?q=congestion" title=" congestion"> congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=intersection" title=" intersection"> intersection</a>, <a href="https://publications.waset.org/abstracts/search?q=interchange" title=" interchange"> interchange</a> </p> <a href="https://publications.waset.org/abstracts/16536/single-fly-over-as-a-solution-to-congestion-of-intersection-junction-case-study-of-jalan-jatingaleh-semarang" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Famotidine Loaded Solid Lipid Nanoparticles (SLN) for Oral Delivery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Mauludin">Rachmat Mauludin</a>, <a href="https://publications.waset.org/abstracts/search?q=Novita%20R.%20Kusuma"> Novita R. Kusuma</a>, <a href="https://publications.waset.org/abstracts/search?q=Diky%20Mudhakir"> Diky Mudhakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Famotidine (FMT) is one of used substances in the treatment of hiperacidity and peptic ulcer, administered orally and parenterally via intravenous injection. Oral administration, which is more favorable, has been reported to have many obstacles in the process of the treatment, includes decreasing the bioavailability of FMT. This research was aimed to prepare FMT in form of solid lipid nanoparticles (SLN) with size ranging between 100-200 nm. The research was carried out also by optimizing factors that may affect physical stability of SLN. Formulation of Famotidine SLN was carried out by optimizing factors, such as duration of homogenization and sonication, lipid concentration, stabilizer composition and stabilizer concentration. SLN physical stability was evaluated (particle size distribution) for 42 days in 3 diferent temperatures. Entrapment efficiency and drug loading was determined indirectly and directly. The morphology of SLN was visualized by transmission electron microscope (TEM). In vitro release study of FMT was conducted in 2 mediums, at pH of 1.2 and 7.4. Chemical stability of FMT was determined by quantifying the concentration of FMT within 42 days. Famotidin SLN consisted of GMS as lipid and poloxamer 188, lecithin, and polysorbate 80 as stabilizers. Homogenization and sonication was performed for 5 minutes and 10 minutes. Physyical stability of nanoparticles at 3 different temperatures was no significant difference. The best formula was physically stable until 42 days with mean particle size below 200 nm. Nanoparticles produced was able to entrap FMT until 86.6%. Evaluation by TEM showed that nanoparticles was spherical and solid. In medium pH of 1.2, FMT was released only 30% during 4 hour. On the other hand, within 4 hours SLN could release FMT completely in medium pH of 7.4. The FMT concentration in nanoparticles dispersion was maintained until 95% in 42 days (40oC, RH 75%). Famotidine SLN was able to be produced with mean particle size ranging between 100-200 nm and physically stable for 42 days. SLN could be loaded by 86,6% of FMT. Morphologically, obtained SLN was spheric and solid. During 4 hours in medium pH of 1.2 and 7.4, FMT was released until 30% and 100%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20lipid%20nanoparticle%20%28SLN%29" title="solid lipid nanoparticle (SLN)">solid lipid nanoparticle (SLN)</a>, <a href="https://publications.waset.org/abstracts/search?q=famotidine%20%28FMT%29" title=" famotidine (FMT)"> famotidine (FMT)</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20properties" title=" physicochemical properties"> physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=release%20study" title=" release study"> release study</a> </p> <a href="https://publications.waset.org/abstracts/19816/famotidine-loaded-solid-lipid-nanoparticles-sln-for-oral-delivery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Formulation of Famotidine Solid Lipid Nanoparticles (SLN): Preparation, Evaluation and Release Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Mauludin">Rachmat Mauludin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurmazidah"> Nurmazidah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and purpose: Famotidine is an H2 receptor blocker. Absorption orally is rapid enough, but famotidine can be degraded by stomach acid causing dose reduction until 35.8% after 50 minutes. This drug also undergoes first-pass metabolism which reduced its bio availability only until 40-50%. To overcome these problems, Solid Lipid Nano particles (SLNs) as alternative delivery systems can be formulated. SLNs is a lipid-based drug delivery technology with 50-1000 nm particle size, where the drug incorporated into the bio compatible lipids and the lipid particles are stabilized using appropriate stabilizers. When the particle size is 200 nm or below, lipid containing famotidine can be absorbed through the lymphatic vessels to the subclavian vein, so first-pass metabolism can be avoided. Method: Famotidine SLNs with various compositions of stabilizer was prepared using a high-speed homogenization and sonication method. Then, the particle size distribution, zeta potential, entrapment efficiency, particle morphology and in vitro release profiles were evaluated. Optimization of sonication time also carried out. Result: Particle size of SLN by Particle Size Analyzer was in range 114.6 up to 455.267 nm. Ultrasonicated SLNs within 5 minutes generated smaller particle size than SLNs which was ultrasonicated for 10 and 15 minutes. Entrapment efficiency of SLNs were 74.17 up to 79.45%. Particle morphology of the SLNs was spherical and distributed individually. Release study of Famotidine revealed that in acid medium, 28.89 up to 80.55% of famotidine could be released after 2 hours. Nevertheless in basic medium, famotidine was released 40.5 up to 86.88% in the same period. Conclusion: The best formula was SLNs which stabilized by 4% Poloxamer 188 and 1 % Span 20, that had particle size 114.6 nm in diameter, 77.14% famotidine entrapped, and the particle morphology was spherical and distributed individually. SLNs with the best drug release profile was SLNs which stabilized by 4% Eudragit L 100-55 and 1% Tween 80 which had released 36.34 % in pH 1.2 solution, and 74.13% in pH 7.4 solution after 2 hours. The optimum sonication time was 5 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=famotodine" title="famotodine">famotodine</a>, <a href="https://publications.waset.org/abstracts/search?q=SLN" title=" SLN"> SLN</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20homogenization" title=" high speed homogenization"> high speed homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=release%20study" title=" release study"> release study</a> </p> <a href="https://publications.waset.org/abstracts/20331/formulation-of-famotidine-solid-lipid-nanoparticles-sln-preparation-evaluation-and-release-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">860</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Formulation of Hybrid Nanopowder-Molecular Ink for Fabricating Critical Material-Free Cu₂ZnSnS₄ Thin Film Solar Absorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anies%20Mutiari">Anies Mutiari</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Bansal"> Neha Bansal</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Artner"> Martin Artner</a>, <a href="https://publications.waset.org/abstracts/search?q=Veronika%20Mayer"> Veronika Mayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20Roth"> Juergen Roth</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Weil"> Mathias Weil</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Adhi%20Wibowo"> Rachmat Adhi Wibowo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cu₂ZnSnS₄ (CZTS) compound (mineral name kesterite) has attracted considerable interests for photovoltaic application owing to its optoelectrical properties. Moreover, its elemental abundance in Earth’s crust offers a comparative advantage for envisaged large-scale photovoltaic deployment without any material shortage issues. In this contribution, we present an innovative route to prepare CZTS solar absorber layer for photovoltaic application from low-cost and up-scalable process. CZTS layers were spin coated on the Molybdenum-coated glass from two inks composed of different solvents; dimethylsulfoxide (DMSO) and ultrapure water. Into each solvent; 0.57M CuCl₂, 0.39M ZnCl₂, 0.53M SnCl₂, and 1.85M Thiourea or Na₂S₂O₃, as well as pre-synthesized CZTS nanopowder, were added as sources of Cu, Zn, Sn and S in the ink. The crystallisation of ink into CZTS dense layers was carried out by firstly annealing the as-deposited CZTS layer in open air at 300°C for 1 minute, followed by sulfurisation at 560–620°C under atmospheric pressure for 120 minutes. Complementary electron microscopy, grazing incidence X-ray diffraction and Raman spectroscopy investigations suggest that both solvents can be used for preparing high quality and device relevant CZTS solar absorber layers. The sulphurisation crystallizes the as-deposited CZTS into highly polycrystalline CZTS layer with tetragonal structure demonstrated by the presence of tetrahedrally-shaped grains with the size of 1 µm. An advancement of the CZTS layer preparation was made by gradual substitution of volatile organic compound solvent of DMSO with ultrapure water. It is revealed that by using similar air annealing and sulphurisation process, dense and compact CZTS layers can also be fabricated from an ink with reduced volatile organic compound content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kesterite" title="kesterite">kesterite</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20ink" title=" solar ink"> solar ink</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20coating" title=" spin coating"> spin coating</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title=" photovoltaics"> photovoltaics</a> </p> <a href="https://publications.waset.org/abstracts/100965/formulation-of-hybrid-nanopowder-molecular-ink-for-fabricating-critical-material-free-cu2znsns4-thin-film-solar-absorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Nanoemulsion Formulation of Ethanolic Extracts of Propolis and Its Antioxidant Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Mauludin">Rachmat Mauludin</a>, <a href="https://publications.waset.org/abstracts/search?q=Dita%20Sasri%20Primaviri"> Dita Sasri Primaviri</a>, <a href="https://publications.waset.org/abstracts/search?q=Irda%20Fidrianny"> Irda Fidrianny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propolis contains several antioxidant compounds which can be used in topical application to protect skin against free radical, prevent skin cancer and skin aging. Previous study showed that 70% ethanolic extract of propolis (EEP) provided the greatest antioxidant activity. Since EEP has very small solubility in water, the extract was prepared in nanoemulsion (NE). Nanoemulsion is chosen as cosmetic dosage forms according to its properties namely to decrease the risk of skin’s irritation, increase penetration, prolong its time to remain in our skin, and improve stability. Propolis was extracted using reflux methods and concentrated using rotavapor. EEP was characterized with several tests such as phytochemical screening, density, and antioxidant activity using DPPH method. Optimation of total surfactant, co-surfactant, oil, and amount of EEP that can be included in NE were required to get the best NE formulation. The evaluations included to organoleptic observation, globul size, polydispersity index, morphology using TEM, viscosity, pH, centrifuge, stability, Freeze and Thaw test, radical scavenging activity using DPPH method, and primary irritation test. The yield extracts was 11.12% from raw propolis contained of steroid/triterpenoid, flavonoid, and saponin based on phytochemical screening. EEP had the value of DPPH scavenging activity 61.14% and IC50 0.41629 ppm. The best NE formulation consisted of 26.25% Kolliphor RH40; 8.75% glycerine; 5% rice bran oil; and 3% EEP. NE was transparant, had globul size of 21.9 nm; polydispersity index of 0.338; and pH of 5.67. Based on TEM morphology, NE was almost spherical and has particle size below 50 nm. NE propolis revealed to be physically stable after stability test within 63 days at 25oC, centrifuged for 30 mins at 13.000 rpm, and passed 6 cycles of Freeze and Thaw test without separated. NE propolis reduced 58% of free radical DPPH similar to antioxidant activity of the original extracts. Antioxidant activity of NE propolis is relatively stable after stored for 6 weeks. NE Propolis was proven to be safe by primary irritation test with the value of primary irritation index (OECD) was 0. The best formulation for NE propolis contained of 26.25% Kolliphor RH40; 8.75% glycerine; 5% rice bran oil; and 3% EEP with globul size of 21.9 nm and polydispersity index of 0.338. NE propolis was stable and had antioxidant activity similar to EEP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propolis" title="propolis">propolis</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoemulsion" title=" nanoemulsion"> nanoemulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=irritation%20test" title=" irritation test"> irritation test</a> </p> <a href="https://publications.waset.org/abstracts/20332/nanoemulsion-formulation-of-ethanolic-extracts-of-propolis-and-its-antioxidant-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Propolis as Antioxidant Formulated in Nanoemulsion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Mauludin">Rachmat Mauludin</a>, <a href="https://publications.waset.org/abstracts/search?q=Irda%20Fidrianny"> Irda Fidrianny</a>, <a href="https://publications.waset.org/abstracts/search?q=Dita%20Sasri%20Primaviri"> Dita Sasri Primaviri</a>, <a href="https://publications.waset.org/abstracts/search?q=Okti%20Alifiana"> Okti Alifiana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural products such as propolis, green tea and corncob are containing several compounds called antioxidant. Antioxidant can be used in topical application to protect skin against free radical, prevent skin cancer and skin aging. Previous study showed that the extract of propolis that has the highest antioxidant activity was ethanolic extract of propolis (EEP). It is important to make a dosage form that could keep the stability and could protect the effectiveness of antioxidant activity of the extracts. In this research, nanoemulsion (NE) was chosen to formulate those natural products. NE is a dispersion system between oil phase and water phase that formed by mechanical force with a lot amount of surfactants and has globule size below 100 nm. In pharmaceutical industries, NE was preferable for its stability, biodegradability, biocompatibility, its ease to be absorbed and eliminated, and for its use as carrier for lipophilic drugs. First, all of the natural products were extracted using reflux methods. Green tea and corncob were extracted using 96% ethanol while propolis using 70% ethanol. Then, the extracts were concentrated using rotavapor to obtain viscous extracts. The yield of EEP was 11.12%; green tea extract (GTE) was 23.37%; and corncob extract (CCE) was 17.23%. EEP contained steroid/triterpenoid, flavonoid and saponin. GTE contained flavonoid, tannin, and quinone while CCE contained flavonoid, phenol and tannin. The antioxidant activities of the extracts were then measured using DPPH scavenging capacity methods. The values of DPPH scavenging capacity were 61.14% for EEP; 97.16% for GTE; and 78.28% for CCE. The value of IC50 for EEP was 0.41629 ppm. After the extracts were evaluated, NE was prepared. Several surfactants and co-surfactants were used in many combinations and ratios in order to form a NE. Tween 80 and Kolliphor RH40 were used as surfactants while glycerin and propylene glycol were used as co-surfactants. The best NE consists of 26.25% of Kolliphor RH40; 8.75% of glycerin; 5% of rice bran oil; 3% of extracts; and 57% of water. EEP NE had globule size around 23.72 nm; polydispersity index below 0.5; and did not cause any irritation on rabbits. EEP NE was proven to be stable after passing stability test within 63 days at room temperature and 6 cycles of Freeze and Thaw test without separated. Based on TEM (Transmission Electron Microscopy) test, EEP NE had spherical structure with most of its size below 50 nm. The antioxidant activity of EEP NE was monitored for 6 weeks and showed no significant difference. The value of DPPH scavenging capacity for EEP NE was around 58%; for GTE NE was 96.75%; and for CCE NE was 55.69%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propolis" title="propolis">propolis</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20tea" title=" green tea"> green tea</a>, <a href="https://publications.waset.org/abstracts/search?q=corncob" title=" corncob"> corncob</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoemulsion" title=" nanoemulsion"> nanoemulsion</a> </p> <a href="https://publications.waset.org/abstracts/19818/propolis-as-antioxidant-formulated-in-nanoemulsion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Hydrocarbon Source Rocks of the Maragh Low</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elhadi%20Nasr">Elhadi Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Ramadan"> Ibrahim Ramadan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biostratigraphical analyses of well sections from the Maragh Low in the Eastern Sirt Basin has allowed high resolution correlations to be undertaken. Full integration of this data with available palaeoenvironmental, lithological, gravity, seismic, aeromagnetic, igneous, radiometric and wireline log information and a geochemical analysis of source rock quality and distribution has led to a more detailed understanding of the geological and the structural history of this area. Pre Sirt Unconformity two superimposed rifting cycles have been identified. The oldest is represented by the Amal Group of sediments and is of Late Carboniferous, Kasimovian / Gzelian to Middle Triassic, Anisian age. Unconformably overlying is a younger rift cycle which is represented the Sarir Group of sediments and is of Early Cretaceous, late Neocomian to Aptian in age. Overlying the Sirt Unconformity is the marine Late Cretaceous section. An assessment of pyrolysis results and a palynofacies analysis has allowed hydrocarbon source facies and quality to be determined. There are a number of hydrocarbon source rock horizons in the Maragh Low, these are sometimes vertically stacked and they are of fair to excellent quality. The oldest identified source rock is the Triassic Shale, this unit is unconformably overlain by sandstones belonging to the Sarir Group and conformably overlies a Triassic Siltstone unit. Palynological dating of the Triassic Shale unit indicates a Middle Triassic, Anisian age. The Triassic Shale is interpreted to have been deposited in a lacustrine palaeoenvironment. This particularly is evidenced by the dark, fine grained, organic rich nature of the sediment and is supported by palynofacies analysis and by the recovery of fish fossils. Geochemical analysis of the Triassic Shale indicates total organic carbon varying between 1.37 and 3.53. S2 pyrolysate yields vary between 2.15 mg/g and 6.61 mg/g and hydrogen indices vary between 156.91 and 278.91. The source quality of the Triassic Shale varies from being of fair to very good / rich. Linked to thermal maturity it is now a very good source for light oil and gas. It was once a very good to rich oil source. The Early Barremian Shale was also deposited in a lacustrine palaeoenvironment. Recovered palynomorphs indicate an Early Cretaceous, late Neocomian to early Barremian age. The Early Barremian Shale is conformably underlain and overlain by sandstone units belonging to the Sarir Group of sediments which are also of Early Cretaceous age. Geochemical analysis of the Early Barremian Shale indicates that it is a good oil source and was originally very good. Total organic carbon varies between 3.59% and 7%. S2 varies between 6.30 mg/g and 10.39 mg/g and the hydrogen indices vary between 148.4 and 175.5. A Late Barremian Shale unit of this age has also been identified in the central Maragh Low. Geochemical analyses indicate that total organic carbon varies between 1.05 and 2.38%, S2 pyrolysate between 1.6 and 5.34 mg/g and the hydrogen index between 152.4 and 224.4. It is a good oil source rock which is now mature. In addition to the non marine hydrocarbon source rocks pre Sirt Unconformity, three formations in the overlying Late Cretaceous section also provide hydrocarbon quality source rocks. Interbedded shales within the Rachmat Formation of Late Cretaceous, early Campanian age have total organic carbon ranging between, 0.7 and 1.47%, S2 pyrolysate varying between 1.37 and 4.00 mg/g and hydrogen indices varying between 195.7 and 272.1. The indication is that this unit would provide a fair gas source to a good oil source. Geochemical analyses of the overlying Tagrifet Limestone indicate that total organic carbon varies between 0.26% and 1.01%. S2 pyrolysate varies between 1.21 and 2.16 mg/g and hydrogen indices vary between 195.7 and 465.4. For the overlying Sirt Shale Formation of Late Cretaceous, late Campanian age, total organic carbon varies between 1.04% and 1.51%, S2 pyrolysate varies between 4.65 mg/g and 6.99 mg/g and the hydrogen indices vary between 151 and 462.9. The study has proven that both the Sirt Shale Formation and the Tagrifet Limestone are good to very good and rich sources for oil in the Maragh Low. High resolution biostratigraphical interpretations have been integrated and calibrated with thermal maturity determinations (Vitrinite Reflectance (%Ro), Spore Colour Index (SCI) and Tmax (ºC) and the determined present day geothermal gradient of 25ºC / Km for the Maragh Low. Interpretation of generated basin modelling profiles allows a detailed prediction of timing of maturation development of these source horizons and leads to a determination of amounts of missing section at major unconformities. From the results the top of the oil window (0.72% Ro) is picked as high as 10,700’ and the base of the oil window (1.35% Ro) assuming a linear trend and by projection is picked as low as 18,000’ in the Maragh Low. For the Triassic Shale the early phase of oil generation was in the Late Palaeocene / Early to Middle Eocene and the main phase of oil generation was in the Middle to Late Eocene. The Early Barremian Shale reached the main phase of oil generation in the Early Oligocene with late generation being reached in the Middle Miocene. For the Rakb Group section (Rachmat Formation, Tagrifet Limestone and Sirt Shale Formation) the early phase of oil generation started in the Late Eocene with the main phase of generation being between the Early Oligocene and the Early Miocene. From studying maturity profiles and from regional considerations it can be predicted that up to 500’ of sediment may have been deposited and eroded by the Sirt Unconformity in the central Maragh Low while up to 2000’ of sediment may have been deposited and then eroded to the south of the trough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geochemical%20analysis%20of%20the%20source%20rocks%20from%20wells%20in%20Eastern%20Sirt%20Basin." title="Geochemical analysis of the source rocks from wells in Eastern Sirt Basin.">Geochemical analysis of the source rocks from wells in Eastern Sirt Basin.</a> </p> <a href="https://publications.waset.org/abstracts/16192/hydrocarbon-source-rocks-of-the-maragh-low" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10