CINXE.COM

Search results for: weighted scheduling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: weighted scheduling</title> <meta name="description" content="Search results for: weighted scheduling"> <meta name="keywords" content="weighted scheduling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="weighted scheduling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="weighted scheduling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 966</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: weighted scheduling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">966</span> Solving Process Planning, Weighted Earliest Due Date Scheduling and Weighted Due Date Assignment Using Simulated Annealing and Evolutionary Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halil%20Ibrahim%20Demir">Halil Ibrahim Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Hulusi%20Kokcam"> Abdullah Hulusi Kokcam</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuat%20Simsir"> Fuat Simsir</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zer%20Uygun"> Özer Uygun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, three important manufacturing functions which are process planning, scheduling and due-date assignment are performed sequentially and separately. Although there are numerous works on the integration of process planning and scheduling and plenty of works focusing on scheduling with due date assignment, there are only a few works on integrated process planning, scheduling and due-date assignment. Although due-dates are determined without taking into account of weights of the customers in the literature, here weighted due-date assignment is employed to get better performance. Jobs are scheduled according to weighted earliest due date dispatching rule and due dates are determined according to some popular due date assignment methods by taking into account of the weights of each job. Simulated Annealing, Evolutionary Strategies, Random Search, hybrid of Random Search and Simulated Annealing, and hybrid of Random Search and Evolutionary Strategies, are applied as solution techniques. Three important manufacturing functions are integrated step-by-step and higher integration levels are found better. Search meta-heuristics are found to be very useful while improving performance measure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20planning" title="process planning">process planning</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling" title=" weighted scheduling"> weighted scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20due-date%20assignment" title=" weighted due-date assignment"> weighted due-date assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20strategies" title=" evolutionary strategies"> evolutionary strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20searches" title=" hybrid searches"> hybrid searches</a> </p> <a href="https://publications.waset.org/abstracts/67706/solving-process-planning-weighted-earliest-due-date-scheduling-and-weighted-due-date-assignment-using-simulated-annealing-and-evolutionary-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">965</span> Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halil%20Ibrahim%20Demir">Halil Ibrahim Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Caner%20Erden"> Caner Erden</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumtaz%20Ipek"> Mumtaz Ipek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozer%20Uygun"> Ozer Uygun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20planning" title="process planning">process planning</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling" title=" weighted scheduling"> weighted scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20due-date%20assignment" title=" weighted due-date assignment"> weighted due-date assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20search" title=" genetic search"> genetic search</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20meta-heuristics" title=" hybrid meta-heuristics"> hybrid meta-heuristics</a> </p> <a href="https://publications.waset.org/abstracts/57629/solving-weighted-number-of-operation-plus-processing-time-due-date-assignment-weighted-scheduling-and-process-planning-integration-problem-using-genetic-and-simulated-annealing-search-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">964</span> Integrating Process Planning, WMS Dispatching, and WPPW Weighted Due Date Assignment Using a Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halil%20Ibrahim%20Demir">Halil Ibrahim Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Tar%C4%B1k%20Cakar"> Tarık Cakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Cil"> Ibrahim Cil</a>, <a href="https://publications.waset.org/abstracts/search?q=Muharrem%20Dugenci"> Muharrem Dugenci</a>, <a href="https://publications.waset.org/abstracts/search?q=Caner%20Erden"> Caner Erden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventionally, process planning, scheduling, and due-date assignment functions are performed separately and sequentially. The interdependence of these functions requires integration. Although integrated process planning and scheduling, and scheduling with due date assignment problems are popular research topics, only a few works address the integration of these three functions. This work focuses on the integration of process planning, WMS scheduling, and WPPW due date assignment. Another novelty of this work is the use of a weighted due date assignment. In the literature, due dates are generally assigned without considering the importance of customers. However, in this study, more important customers get closer due dates. Typically, only tardiness is punished, but the JIT philosophy punishes both earliness and tardiness. In this study, all weighted earliness, tardiness, and due date related costs are penalized. As no customer desires distant due dates, such distant due dates should be penalized. In this study, various levels of integration of these three functions are tested and genetic search and random search are compared both with each other and with ordinary solutions. Higher integration levels are superior, while search is always useful. Genetic searches outperformed random searches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20planning" title="process planning">process planning</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling" title=" weighted scheduling"> weighted scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20due-date%20assignment" title=" weighted due-date assignment"> weighted due-date assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20search" title=" random search"> random search</a> </p> <a href="https://publications.waset.org/abstracts/51544/integrating-process-planning-wms-dispatching-and-wppw-weighted-due-date-assignment-using-a-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">963</span> Solving Process Planning, Weighted Apparent Tardiness Cost Dispatching, and Weighted Processing plus Weight Due-Date Assignment Simultaneously Using a Hybrid Search</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halil%20Ibrahim%20Demir">Halil Ibrahim Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Caner%20Erden"> Caner Erden</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Hulusi%20Kokcam"> Abdullah Hulusi Kokcam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumtaz%20Ipek"> Mumtaz Ipek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Process planning, scheduling, and due date assignment are three important manufacturing functions which are studied independently in literature. There are hundreds of works on IPPS and SWDDA problems but a few works on IPPSDDA problem. Integrating these three functions is very crucial due to the high relationship between them. Since the scheduling problem is in the NP-Hard problem class without any integration, an integrated problem is even harder to solve. This study focuses on the integration of these functions. Sum of weighted tardiness, earliness, and due date related costs are used as a penalty function. Random search and hybrid metaheuristics are used to solve the integrated problem. Marginal improvement in random search is very high in the early iterations and reduces enormously in later iterations. At that point directed search contribute to marginal improvement more than random search. In this study, random and genetic search methods are combined to find better solutions. Results show that overall performance becomes better as the integration level increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20planning" title="process planning">process planning</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20search" title=" hybrid search"> hybrid search</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20search" title=" random search"> random search</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20due-date%20assignment" title=" weighted due-date assignment"> weighted due-date assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling" title=" weighted scheduling"> weighted scheduling</a> </p> <a href="https://publications.waset.org/abstracts/68613/solving-process-planning-weighted-apparent-tardiness-cost-dispatching-and-weighted-processing-plus-weight-due-date-assignment-simultaneously-using-a-hybrid-search" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">962</span> Metaheuristics to Solve Tasks Scheduling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Ziteuni">Rachid Ziteuni</a>, <a href="https://publications.waset.org/abstracts/search?q=Selt%20Omar"> Selt Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a new polynomial metaheuristic elaboration (tabu search) for solving scheduling problems. This method allows us to solve the scheduling problem of n tasks on m identical parallel machines with unavailability periods. This problem is NP-complete in the strong sens and finding an optimal solution appears unlikely. Note that all data in this problem are integer and deterministic. The performance criterion to optimize in this problem which we denote Pm/N-c/summs of (wjCj) is the weighted sum of the end dates of tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scheduling" title="scheduling">scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20identical%20machines" title=" parallel identical machines"> parallel identical machines</a>, <a href="https://publications.waset.org/abstracts/search?q=unavailability%20periods" title=" unavailability periods"> unavailability periods</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic" title=" metaheuristic"> metaheuristic</a>, <a href="https://publications.waset.org/abstracts/search?q=tabu%20search" title=" tabu search"> tabu search</a> </p> <a href="https://publications.waset.org/abstracts/5635/metaheuristics-to-solve-tasks-scheduling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">961</span> Intelligent Staff Scheduling: Optimizing the Solver with Tabu Search</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Ping%20Chiu">Yu-Ping Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dung-Ying%20Lin"> Dung-Ying Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional staff scheduling methods, relying on employee experience, often lead to inefficiencies and resource waste. The challenges of transferring scheduling expertise and adapting to changing labor regulations further complicate this process. Manual approaches become increasingly impractical as companies accumulate complex scheduling rules over time. This study proposes an algorithmic optimization approach to address these issues, aiming to expedite scheduling while ensuring strict compliance with labor regulations and company policies. The method focuses on generating optimal schedules that minimize weighted company objectives within a compressed timeframe. Recognizing the limitations of conventional commercial software in modeling and solving complex real-world scheduling problems efficiently, this research employs Tabu Search with both long-term and short-term memory structures. The study will present numerical results and managerial insights to demonstrate the effectiveness of this approach in achieving intelligent and efficient staff scheduling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20memory%20structures" title="intelligent memory structures">intelligent memory structures</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20programming" title=" mixed integer programming"> mixed integer programming</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-heuristics" title=" meta-heuristics"> meta-heuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=staff%20scheduling%20problem" title=" staff scheduling problem"> staff scheduling problem</a>, <a href="https://publications.waset.org/abstracts/search?q=tabu%20search" title=" tabu search"> tabu search</a> </p> <a href="https://publications.waset.org/abstracts/191996/intelligent-staff-scheduling-optimizing-the-solver-with-tabu-search" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">960</span> Multi-Objective Variable Neighborhood Search Algorithm to Solving Scheduling Problem with Transportation Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Khalili">Majid Khalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presents a new multi-objective variable neighborhood algorithm (MOVNS). A set of experimental instances are carried out to evaluate the algorithm by advanced multi-objective performance measures. The algorithm is carefully evaluated for its performance against available algorithm by means of multi-objective performance measures and statistical tools. The related results show that a variant of our proposed MOVNS provides sound performance comparing with other algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=no-wait%20hybrid%20flowshop%20scheduling%3B%20multi-objective%20variable%20neighborhood%20algorithm%3B%20makespan%3B%20total%20weighted%20tardiness" title="no-wait hybrid flowshop scheduling; multi-objective variable neighborhood algorithm; makespan; total weighted tardiness">no-wait hybrid flowshop scheduling; multi-objective variable neighborhood algorithm; makespan; total weighted tardiness</a> </p> <a href="https://publications.waset.org/abstracts/15098/multi-objective-variable-neighborhood-search-algorithm-to-solving-scheduling-problem-with-transportation-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">959</span> Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gunasekaran%20Raja">Gunasekaran Raja</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramkumar%20Jayaraman"> Ramkumar Jayaraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects &ndash; transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20layer%20network%20topology" title="cross layer network topology">cross layer network topology</a>, <a href="https://publications.waset.org/abstracts/search?q=concurrent%20scheduling" title=" concurrent scheduling"> concurrent scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=modularity%20value" title=" modularity value"> modularity value</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20communities%20and%20weighted%20load%20balancing" title=" network communities and weighted load balancing"> network communities and weighted load balancing</a> </p> <a href="https://publications.waset.org/abstracts/48858/cooperative-cross-layer-topology-for-concurrent-transmission-scheduling-scheme-in-broadband-wireless-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">958</span> Job Shop Scheduling: Classification, Constraints and Objective Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Abdolrazzagh-Nezhad">Majid Abdolrazzagh-Nezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Salwani%20Abdullah"> Salwani Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=job-shop%20scheduling" title="job-shop scheduling">job-shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=constraints" title=" constraints"> constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=objective%20functions" title=" objective functions"> objective functions</a> </p> <a href="https://publications.waset.org/abstracts/58284/job-shop-scheduling-classification-constraints-and-objective-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">957</span> Analytical Study of CPU Scheduling Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keshav%20Rathi">Keshav Rathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakriti%20Sharma"> Aakriti Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20R.%20Dinesh"> Vinayak R. Dinesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Ramzan%20Parray"> Irfan Ramzan Parray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scheduling is a basic operating system function since practically all computer resources are scheduled before use. The CPU is one of the most important computer resources. Central Processing Unit (CPU) scheduling is vital because it allows the CPU to transition between processes. A processor is the most significant resource in a computer; the operating system can increase the computer's productivity. The objective of the operating system is to allow as many processes as possible to operate at the same time in order to maximize CPU utilization. The highly efficient CPU scheduler is based on the invention of high-quality scheduling algorithms that meet the scheduling objectives. In this paper, we reviewed various fundamental CPU scheduling algorithms for a single CPU and showed which algorithm is best for the particular situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20science" title="computer science">computer science</a>, <a href="https://publications.waset.org/abstracts/search?q=Operating%20system" title=" Operating system"> Operating system</a>, <a href="https://publications.waset.org/abstracts/search?q=CPU%20scheduling" title=" CPU scheduling"> CPU scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=cpu%20algorithms" title=" cpu algorithms"> cpu algorithms</a> </p> <a href="https://publications.waset.org/abstracts/194885/analytical-study-of-cpu-scheduling-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">956</span> Towards Developing a Self-Explanatory Scheduling System Based on a Hybrid Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Zheng">Jian Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiyasu%20Takahashi"> Yoshiyasu Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuichi%20Kobayashi"> Yuichi Kobayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatsuhiro%20Sato"> Tatsuhiro Sato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the study, we present a conceptual framework for developing a scheduling system that can generate self-explanatory and easy-understanding schedules. To this end, a user interface is conceived to help planners record factors that are considered crucial in scheduling, as well as internal and external sources relating to such factors. A hybrid approach combining machine learning and constraint programming is developed to generate schedules and the corresponding factors, and accordingly display them on the user interface. Effects of the proposed system on scheduling are discussed, and it is expected that scheduling efficiency and system understandability will be improved, compared with previous scheduling systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constraint%20programming" title="constraint programming">constraint programming</a>, <a href="https://publications.waset.org/abstracts/search?q=factors%20considered%20in%20scheduling" title=" factors considered in scheduling"> factors considered in scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling%20system" title=" scheduling system"> scheduling system</a> </p> <a href="https://publications.waset.org/abstracts/43995/towards-developing-a-self-explanatory-scheduling-system-based-on-a-hybrid-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">955</span> Scheduling Jobs with Stochastic Processing Times or Due Dates on a Server to Minimize the Number of Tardy Jobs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Soroush">H. M. Soroush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of scheduling products and services for on-time deliveries is of paramount importance in today’s competitive environments. It arises in many manufacturing and service organizations where it is desirable to complete jobs (products or services) with different weights (penalties) on or before their due dates. In such environments, schedules should frequently decide whether to schedule a job based on its processing time, due-date, and the penalty for tardy delivery to improve the system performance. For example, it is common to measure the weighted number of late jobs or the percentage of on-time shipments to evaluate the performance of a semiconductor production facility or an automobile assembly line. In this paper, we address the problem of scheduling a set of jobs on a server where processing times or due-dates of jobs are random variables and fixed weights (penalties) are imposed on the jobs’ late deliveries. The goal is to find the schedule that minimizes the expected weighted number of tardy jobs. The problem is NP-hard to solve; however, we explore three scenarios of the problem wherein: (i) both processing times and due-dates are stochastic; (ii) processing times are stochastic and due-dates are deterministic; and (iii) processing times are deterministic and due-dates are stochastic. We prove that special cases of these scenarios are solvable optimally in polynomial time, and introduce efficient heuristic methods for the general cases. Our computational results show that the heuristics perform well in yielding either optimal or near optimal sequences. The results also demonstrate that the stochasticity of processing times or due-dates can affect scheduling decisions. Moreover, the proposed problem is general in the sense that its special cases reduce to some new and some classical stochastic single machine models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=number%20of%20late%20jobs" title="number of late jobs">number of late jobs</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20server" title=" single server"> single server</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic" title=" stochastic"> stochastic</a> </p> <a href="https://publications.waset.org/abstracts/22536/scheduling-jobs-with-stochastic-processing-times-or-due-dates-on-a-server-to-minimize-the-number-of-tardy-jobs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">954</span> Notes on Frames in Weighted Hardy Spaces and Generalized Weighted Composition Operators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shams%20Alyusof">Shams Alyusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is to enrich the studies of the frames due to their prominent role in pure mathematics as well as in applied mathematics and many applications in computer science and engineering. Recently, there are remarkable studies of operators that preserve frames on some spaces, and this research could be considered as an extension of such studies. Indeed, this paper is to we characterize weighted composition operators that preserve frames in weighted Hardy spaces on the open unit disk. Moreover, it shows that this characterization does not apply to generalized weighted composition operators on such spaces. Nevertheless, this study could be extended to provide more specific characterizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frames" title="frames">frames</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20weighted%20composition%20operators" title=" generalized weighted composition operators"> generalized weighted composition operators</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20Hardy%20spaces" title=" weighted Hardy spaces"> weighted Hardy spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=analytic%20functions" title=" analytic functions"> analytic functions</a> </p> <a href="https://publications.waset.org/abstracts/156372/notes-on-frames-in-weighted-hardy-spaces-and-generalized-weighted-composition-operators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">953</span> Multi-Level Priority Based Task Scheduling Algorithm for Workflows in Cloud Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anju%20Bala">Anju Bala</a>, <a href="https://publications.waset.org/abstracts/search?q=Inderveer%20Chana"> Inderveer Chana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Task scheduling is the key concern for the execution of performance-driven workflow applications. As efficient scheduling can have major impact on the performance of the system, task scheduling is often chosen for assigning the request to resources in an efficient way based on cloud resource characteristics. In this paper, priority based task scheduling algorithm has been proposed that prioritizes the tasks based on the length of the instructions. The proposed scheduling approach prioritize the tasks of Cloud applications according to the limits set by six sigma control charts based on dynamic threshold values. Further, the proposed algorithm has been validated through the CloudSim toolkit. The experimental results demonstrate that the proposed algorithm is effective for handling multiple task lists from workflows and in considerably reducing Makespan and Execution time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20based%20scheduling" title=" priority based scheduling"> priority based scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20scheduling" title=" task scheduling"> task scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=VM%20allocation" title=" VM allocation"> VM allocation</a> </p> <a href="https://publications.waset.org/abstracts/23630/multi-level-priority-based-task-scheduling-algorithm-for-workflows-in-cloud-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">952</span> Some Results for F-Minimal Hypersurfaces in Manifolds with Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdelmalek">M. Abdelmalek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we study the hypersurfaces of constant weighted mean curvature embedded in weighted manifolds. We give a condition about these hypersurfaces to be minimal. This condition is given by the ellipticity of the weighted Newton transformations. We especially prove that two compact hypersurfaces of constant weighted mean curvature embedded in space forms and with the intersection in at least a point of the boundary must be transverse. The method is based on the calculus of the matrix of the second fundamental form in a boundary point and then the matrix associated with the Newton transformations. By equality, we find the weighted elementary symmetric function on the boundary of the hypersurface. We give in the end some examples and applications. Especially in Euclidean space, we use the above result to prove the Alexandrov spherical caps conjecture for the weighted case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weighted%20mean%20curvature" title="weighted mean curvature">weighted mean curvature</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20manifolds" title=" weighted manifolds"> weighted manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=ellipticity" title=" ellipticity"> ellipticity</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20transformations" title=" Newton transformations"> Newton transformations</a> </p> <a href="https://publications.waset.org/abstracts/160174/some-results-for-f-minimal-hypersurfaces-in-manifolds-with-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">951</span> Energy-Aware Scheduling in Real-Time Systems: An Analysis of Fair Share Scheduling and Priority-Driven Preemptive Scheduling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Xiaohan">Su Xiaohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Chicheng"> Jin Chicheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Yijing"> Liu Yijing</a>, <a href="https://publications.waset.org/abstracts/search?q=Burra%20Venkata%20Durga%20Kumar"> Burra Venkata Durga Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy-aware scheduling in real-time systems aims to minimize energy consumption, but issues related to resource reservation and timing constraints remain challenges. This study focuses on analyzing two scheduling algorithms, Fair-Share Scheduling (FFS) and Priority-Driven Preemptive Scheduling (PDPS), for solving these issues and energy-aware scheduling in real-time systems. Based on research on both algorithms and the processes of solving two problems, it can be found that Fair-Share Scheduling ensures fair allocation of resources but needs to improve with an imbalanced system load, and Priority-Driven Preemptive Scheduling prioritizes tasks based on criticality to meet timing constraints through preemption but relies heavily on task prioritization and may not be energy efficient. Therefore, improvements to both algorithms with energy-aware features will be proposed. Future work should focus on developing hybrid scheduling techniques that minimize energy consumption through intelligent task prioritization, resource allocation, and meeting time constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-aware%20scheduling" title="energy-aware scheduling">energy-aware scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=fair-share%20scheduling" title=" fair-share scheduling"> fair-share scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=priority-driven%20preemptive%20scheduling" title=" priority-driven preemptive scheduling"> priority-driven preemptive scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20systems" title=" real-time systems"> real-time systems</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20reservation" title=" resource reservation"> resource reservation</a>, <a href="https://publications.waset.org/abstracts/search?q=timing%20constraints" title=" timing constraints"> timing constraints</a> </p> <a href="https://publications.waset.org/abstracts/169550/energy-aware-scheduling-in-real-time-systems-an-analysis-of-fair-share-scheduling-and-priority-driven-preemptive-scheduling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">950</span> A Task Scheduling Algorithm in Cloud Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bagherinia">Ali Bagherinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient task scheduling method can meet users' requirements, and improve the resource utilization, then increase the overall performance of the cloud computing environment. Cloud computing has new features, such as flexibility, virtualization and etc., in this paper we propose a two levels task scheduling method based on load balancing in cloud computing. This task scheduling method meet user's requirements and get high resource utilization, that simulation results in CloudSim simulator prove this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20scheduling" title=" task scheduling"> task scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=virtualization" title=" virtualization"> virtualization</a>, <a href="https://publications.waset.org/abstracts/search?q=SLA" title=" SLA"> SLA</a> </p> <a href="https://publications.waset.org/abstracts/32451/a-task-scheduling-algorithm-in-cloud-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">949</span> Comparative Study of Scheduling Algorithms for LTE Networks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samia%20Dardouri">Samia Dardouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridha%20Bouallegue"> Ridha Bouallegue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LTE" title="LTE">LTE</a>, <a href="https://publications.waset.org/abstracts/search?q=multimedia%20flows" title=" multimedia flows"> multimedia flows</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling%20algorithms" title=" scheduling algorithms"> scheduling algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20computing" title=" mobile computing"> mobile computing</a> </p> <a href="https://publications.waset.org/abstracts/8094/comparative-study-of-scheduling-algorithms-for-lte-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">948</span> Heuristic for Scheduling Correlated Parallel Machine to Minimize Maximum Lateness and Total Weighed Completion Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang-Kuei%20Lin">Yang-Kuei Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Xi%20Zhang"> Yun-Xi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on the bicriteria correlated parallel machine scheduling problem. The two objective functions considered in this problem are to minimize maximum lateness and total weighted completion time. We first present a mixed integer programming (MIP) model that can find the entire efficient frontier for the studied problem. Next, we have proposed a bicriteria heuristic that can find non-dominated solutions for the studied problem. The performance of the proposed bicriteria heuristic is compared with the efficient frontier generated by solving the MIP model. Computational results indicate that the proposed bicriteria heuristic can solve the problem efficiently and find a set of diverse solutions that are uniformly distributed along the efficient frontier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bicriteria" title="bicriteria">bicriteria</a>, <a href="https://publications.waset.org/abstracts/search?q=correlated%20parallel%20machines" title=" correlated parallel machines"> correlated parallel machines</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic" title=" heuristic"> heuristic</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a> </p> <a href="https://publications.waset.org/abstracts/108546/heuristic-for-scheduling-correlated-parallel-machine-to-minimize-maximum-lateness-and-total-weighed-completion-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">947</span> The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Sohrabi">Sahar Sohrabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20private%20cloud" title=" real-time private cloud"> real-time private cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian" title=" bayesian"> bayesian</a> </p> <a href="https://publications.waset.org/abstracts/38592/the-application-of-bayesian-heuristic-for-scheduling-in-real-time-private-clouds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">946</span> Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanatchapong%20Kongkaew">Wanatchapong Kongkaew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20process%20regression" title="Gaussian process regression">Gaussian process regression</a>, <a href="https://publications.waset.org/abstracts/search?q=iterated%20local%20search" title=" iterated local search"> iterated local search</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20machine%20total%20weighted%20tardiness" title=" single machine total weighted tardiness"> single machine total weighted tardiness</a> </p> <a href="https://publications.waset.org/abstracts/6433/solving-single-machine-total-weighted-tardiness-problem-using-gaussian-process-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">945</span> A Heuristic Approach for the General Flowshop Scheduling Problem to Minimize the Makespan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Ziaee">Mohsen Ziaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Almost all existing researches on the flowshop scheduling problems focus on the permutation schedules and there is insufficient study dedicated to the general flowshop scheduling problems in the literature, since the modeling and solving of the general flowshop scheduling problems are more difficult than the permutation ones, especially for the large-size problem instances. This paper considers the general flowshop scheduling problem with the objective function of the makespan (F//Cmax). We first find the optimal solution of the problem by solving a mixed integer linear programming model. An efficient heuristic method is then presented to solve the problem. An ant colony optimization algorithm is also proposed for the problem. In order to evaluate the performance of the methods, computational experiments are designed and performed. Numerical results show that the heuristic algorithm can result in reasonable solutions with low computational effort and even achieve optimal solutions in some cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scheduling" title="scheduling">scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20flow%20shop%20scheduling%20problem" title=" general flow shop scheduling problem"> general flow shop scheduling problem</a>, <a href="https://publications.waset.org/abstracts/search?q=makespan" title=" makespan"> makespan</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic" title=" heuristic"> heuristic</a> </p> <a href="https://publications.waset.org/abstracts/92277/a-heuristic-approach-for-the-general-flowshop-scheduling-problem-to-minimize-the-makespan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">944</span> A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivam%20Dwivedi">Shivam Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Prakash%20Gupta"> Sumit Prakash Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Durga%20Toshniwal"> Durga Toshniwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20based%20maintenance" title="condition based maintenance">condition based maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=defence%20maintenance" title=" defence maintenance"> defence maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble" title=" ensemble"> ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithms" title=" genetic algorithms"> genetic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20scheduling" title=" maintenance scheduling"> maintenance scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=mission%20capability" title=" mission capability"> mission capability</a> </p> <a href="https://publications.waset.org/abstracts/73229/a-hybrid-data-mining-algorithm-based-system-for-intelligent-defence-mission-readiness-and-maintenance-scheduling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">943</span> Examination Scheduling System with Proposed Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tabrej%20Khan">Tabrej Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Examination Scheduling System (ESS) is a scheduling system that targets as an exam committee in any academic institute to help them in managing the exams automatically. We present an algorithm for Examination Scheduling System. Nowadays, many universities have challenges with creating examination schedule fast with less confliction compared to hand works. Our aims are to develop a computerized system that can be used in examination scheduling in an academic institute versus available resources (Time, Hall, Invigilator and instructor) with no contradiction and achieve fairness among students. ESS was developed using HTML, C# language, Crystal Report and ASP.NET through Microsoft Visual Studio 2010 as developing tools with integrated SQL server database. This application can produce some benefits such as reducing the time spent in creating an exam schedule and achieving fairness among students <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=examination%20scheduling%20system%20%28ESS%29" title="examination scheduling system (ESS)">examination scheduling system (ESS)</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=ASP.NET" title=" ASP.NET"> ASP.NET</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20report" title=" crystal report"> crystal report</a> </p> <a href="https://publications.waset.org/abstracts/62755/examination-scheduling-system-with-proposed-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">942</span> A Mathematical Model for a Two-Stage Assembly Flow-Shop Scheduling Problem with Batch Delivery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Ahmadi%20Basir">Saeedeh Ahmadi Basir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mahdavi%20Mazdeh"> Mohammad Mahdavi Mazdeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Namakshenas"> Mohammad Namakshenas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturers often dispatch jobs in batches to reduce delivery costs. However, sending several jobs in batches can have a negative effect on other scheduling-related objective functions such as minimizing the number of tardy jobs which is often used to rate managers’ performance in many manufacturing environments. This paper aims to minimize the number of weighted tardy jobs and the sum of delivery costs of a two-stage assembly flow-shop problem in a batch delivery system. We present a mixed-integer linear programming (MILP) model to solve the problem. As this is an MILP model, the commercial solver (the CPLEX solver) is not guaranteed to find the optimal solution for large-size problems at a reasonable amount of time. We present several numerical examples to confirm the accuracy of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scheduling" title="scheduling">scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=two-stage%20assembly%20flow-shop" title=" two-stage assembly flow-shop"> two-stage assembly flow-shop</a>, <a href="https://publications.waset.org/abstracts/search?q=tardy%20jobs" title=" tardy jobs"> tardy jobs</a>, <a href="https://publications.waset.org/abstracts/search?q=batched%20delivery%20system" title=" batched delivery system"> batched delivery system</a> </p> <a href="https://publications.waset.org/abstracts/61194/a-mathematical-model-for-a-two-stage-assembly-flow-shop-scheduling-problem-with-batch-delivery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">941</span> Scheduling Algorithm Based on Load-Aware Queue Partitioning in Heterogeneous Multi-Core Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Kai">Hong Kai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhong%20Jun%20Jie"> Zhong Jun Jie</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Lin%20Qi"> Chen Lin Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Chen%20Guang"> Wang Chen Guang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are inefficient global scheduling parallelism and local scheduling parallelism prone to processor starvation in current scheduling algorithms. Regarding this issue, this paper proposed a load-aware queue partitioning scheduling strategy by first allocating the queues according to the number of processor cores, calculating the load factor to specify the load queue capacity, and it assigned the awaiting nodes to the appropriate perceptual queues through the precursor nodes and the communication computation overhead. At the same time, real-time computation of the load factor could effectively prevent the processor from being starved for a long time. Experimental comparison with two classical algorithms shows that there is a certain improvement in both performance metrics of scheduling length and task speedup ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load-aware" title="load-aware">load-aware</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling%20algorithm" title=" scheduling algorithm"> scheduling algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptual%20queue" title=" perceptual queue"> perceptual queue</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20multi-core" title=" heterogeneous multi-core"> heterogeneous multi-core</a> </p> <a href="https://publications.waset.org/abstracts/162110/scheduling-algorithm-based-on-load-aware-queue-partitioning-in-heterogeneous-multi-core-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">940</span> A Reactive Flexible Job Shop Scheduling Model in a Stochastic Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Khalili">Majid Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Tayebi"> Hamed Tayebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers a stochastic flexible job-shop scheduling (SFJSS) problem in the presence of production disruptions, and reactive scheduling is implemented in order to find the optimal solution under uncertainty. In this problem, there are two main disruptions including machine failure which influences operation time, and modification or cancellation of the order delivery date during production. In order to decrease the negative effects of these difficulties, two derived strategies from reactive scheduling are used; the first one is relevant to being able to allocate multiple machine to each job, and the other one is related to being able to select the best alternative process from other job while some disruptions would be created in the processes of a job. For this purpose, a Mixed Integer Linear Programming model is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20job-shop%20scheduling" title="flexible job-shop scheduling">flexible job-shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20scheduling" title=" reactive scheduling"> reactive scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20environment" title=" stochastic environment"> stochastic environment</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20linear%20programming" title=" mixed integer linear programming"> mixed integer linear programming</a> </p> <a href="https://publications.waset.org/abstracts/69932/a-reactive-flexible-job-shop-scheduling-model-in-a-stochastic-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">939</span> Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roshanak%20Khodabakhsh%20Jolfaei">Roshanak Khodabakhsh Jolfaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Akbari%20Torkestani"> Javad Akbari Torkestani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20grid" title="computational grid">computational grid</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20scheduling" title=" job scheduling"> job scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20automata" title=" learning automata"> learning automata</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20scheduling" title=" dynamic scheduling"> dynamic scheduling</a> </p> <a href="https://publications.waset.org/abstracts/40508/presenting-a-job-scheduling-algorithm-based-on-learning-automata-in-computational-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">938</span> A Polynomial Approach for a Graphical-based Integrated Production and Transport Scheduling with Capacity Restrictions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ndeley">M. Ndeley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of global manufacturing supply chains depends on the interaction of production and transport processes. Currently, the scheduling of these processes is done separately without considering mutual requirements, which leads to no optimal solutions. An integrated scheduling of both processes enables the improvement of supply chain performance. The integrated production and transport scheduling problem (PTSP) is NP-hard, so that heuristic methods are necessary to efficiently solve large problem instances as in the case of global manufacturing supply chains. This paper presents a heuristic scheduling approach which handles the integration of flexible production processes with intermodal transport, incorporating flexible land transport. The method is based on a graph that allows a reformulation of the PTSP as a shortest path problem for each job, which can be solved in polynomial time. The proposed method is applied to a supply chain scenario with a manufacturing facility in South Africa and shipments of finished product to customers within the Country. The obtained results show that the approach is suitable for the scheduling of large-scale problems and can be flexibly adapted to different scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=production%20and%20transport%20scheduling%20problem" title="production and transport scheduling problem">production and transport scheduling problem</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20based%20scheduling" title=" graph based scheduling"> graph based scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20scheduling" title=" integrated scheduling"> integrated scheduling</a> </p> <a href="https://publications.waset.org/abstracts/30253/a-polynomial-approach-for-a-graphical-based-integrated-production-and-transport-scheduling-with-capacity-restrictions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">937</span> Trends in Solving Assembly Job Shop Scheduling Problem: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Midhun%20Paul">Midhun Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Radha%20Ramanan"> T. Radha Ramanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to present a state-of-the-art literature review highlighting the challenges in the research of the scheduling of assembly job shop problem and providing an insight on how the future directions of the research would be. The number of work has been substantial that it requires a review to enable one to understand the origin of the research and how it is getting evolved. This review paper presents a comprehensive review of the literature dealing with various studies carried on assembly job shop scheduling. The review details the evolution of the AJS from the perspective of other scheduling problems and also presents a classification scheme. The work also identifies the potential directions for future research, which we believe to be worthwhile considering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20job%20shop" title="assembly job shop">assembly job shop</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20directions" title=" future directions"> future directions</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a> </p> <a href="https://publications.waset.org/abstracts/2449/trends-in-solving-assembly-job-shop-scheduling-problem-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling&amp;page=32">32</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling&amp;page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=weighted%20scheduling&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10