CINXE.COM

Search results for: Peganum harmala

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Peganum harmala</title> <meta name="description" content="Search results for: Peganum harmala"> <meta name="keywords" content="Peganum harmala"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Peganum harmala" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Peganum harmala"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Peganum harmala</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Polyphenols Content and Antioxidant Activity of Extracts from Peganum harmala Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Kacem">Rachid Kacem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Talbi"> Sara Talbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmina%20Hemissi"> Yasmina Hemissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20%20Bouguattoucha"> Sofia Bouguattoucha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present work is the evaluation of the antioxidant activity of the Peganum harmala (P. harmala) seeds extracts. The antioxidant activity was evaluated by applying two methods, the method of ß-carotene bleaching and DPPH (2, 2-Diphenyl-1-Picryl-Hydrazyl). Using Folin-Ciocalteu assay, these results revealed that the concentration of polyphenols in EthOH E. (122.28 ± 2.24 µg GAE/mg extract) is the highest. The antiradical activity of the P. harmala seeds extracts on DPPH was found to be dose dependent with polyphenols concentration. The E. EthOH extract showed the highest antioxidant activity (IC = 252.10 ± 11.18 μg /ml). The test of β-carotene bleaching indicates that the E. EthOH of P. harmala showed the highest percentage of the antioxidant activity (49.88 %). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Peganum%20harmala" title=" Peganum harmala"> Peganum harmala</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids "> flavonoids </a> </p> <a href="https://publications.waset.org/abstracts/32852/polyphenols-content-and-antioxidant-activity-of-extracts-from-peganum-harmala-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Antiprotozoal Activity of Peganum harmala against Babesiosis in Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mustafa%20Jafar">Muhammad Mustafa Jafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ashar%20Mahfooz"> Syed Ashar Mahfooz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ejaz%20Saleem"> Muhammad Ejaz Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Asif%20Raza"> Muhammad Asif Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Asghar%20Abbas"> Asghar Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rao%20Zahid%20Abbas"> Rao Zahid Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Kasib%20Khan"> Muhammad Kasib Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Muhammad%20Ishaq"> Hafiz Muhammad Ishaq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Babesia gradually attained resistance against the synthetic medicines. To overcome the drug resistance, herbal therapy has gained more attention as compared to allopathic therapy. Peganumharmala (harmal) is a plant which has shown effective results against various protozoal diseases. Therefore, the present study was planned to monitor the efficacy of Peganumharmala (aqueous extract) against Babesiosis in cattle. For this purpose, a total of forty (n=40) infected animals were randomly divided into four equal groups (A, B, C, and D). Group A was treated with aqueous extract of Peganum harmala at 7.5 mg/kg, group B at 10 mg/kg and group C at 12.5 mg/kg of body weight. Group D served as a control group (normal). It was observed that there was a stabilization in hematological parameters (white and red blood cells, hemoglobin and Packed cell volume) in infected animals treated with Peganum harmala at different doses. Results of this study hence indicated that Peganum harmala extract at 12.5mg/kg BW is more effective against Babesiosis than lower doses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babesiosis" title="Babesiosis">Babesiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cattle" title=" cattle"> cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=Peganum%20harmala" title=" Peganum harmala"> Peganum harmala</a> </p> <a href="https://publications.waset.org/abstracts/98101/antiprotozoal-activity-of-peganum-harmala-against-babesiosis-in-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Subacute Toxicity Study of Total Alkaloids of Seeds of Peganum harmala in Female Rat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdeb%20Nadia">Mahdeb Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghadjati%20Nadhra"> Ghadjati Nadhra</a>, <a href="https://publications.waset.org/abstracts/search?q=Bettihi%20Sara"> Bettihi Sara</a>, <a href="https://publications.waset.org/abstracts/search?q=Daamouche%20Z.%20El%20Youm"> Daamouche Z. El Youm</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouzidi%20Abdelouahab"> Bouzidi Abdelouahab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of subacute administration of total alkaloids of seeds Peganum harmala were studied in female Albino-Wistar rats. After intraperitoneal administration of dose 50 mg/kg for 10 days and 40 mg/kg for 7 days of total alkaloids to the seeds of Peganum harmala (animal treatment lasted 17 days), there were remarkable changes in general appearance and deaths occurred in experimental group. After 17 days a significant reduction was observed in the surviving animals treated with total alkaloid seeds.The Red Blood Cells (RBC), Hematocrit (HCT), Hemoglobin (HGB) and White blood cells (WBCs), show significant reduction in the treated groups. There were no statistical differences in Glutamic-Oxaloacetic Transaminase (GOT), Glutamic-pyruvic Transaminase (GPT) and Alkaline Phosphatase (ALP), total protein, glucose and creatinine observed between groups. However the urea was significantly higher in the treated female rats than the control group. Histological examination of liver showed no histopathological changes. Alkaloids of Peganum harmala showed significant toxicity in female rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peganum%20harmala" title="Peganum harmala">Peganum harmala</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney" title=" kidney"> kidney</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaloids" title=" alkaloids"> alkaloids</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/10778/subacute-toxicity-study-of-total-alkaloids-of-seeds-of-peganum-harmala-in-female-rat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The Assessment of Nephrotoxic Effects of Peganum Harmala In Rat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amal%20Yamani">Amal Yamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaber%20Elgtou"> Jaber Elgtou</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Mohammed"> Aziz Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Lazaar%20Jamila"> Lazaar Jamila</a>, <a href="https://publications.waset.org/abstracts/search?q=Elachouri%20Mostafa"> Elachouri Mostafa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Peganum harmala used traditionally as an emenagogue and abortifacient agent in Morocco phytotherapy. Even thought its benefits effects, Peganum harmala remained severely toxic for the organism especially in strong doses. The present study was initiated to evaluate the nephrotoxic effects of aqueous extract of Peganum harmala seeds (PHS). The solution containing aqueous extract of PHS was administered orally by gavage at the dose of 2g/kg body weight during twenty days. Rats were used in this study, two groups were considered, a treated group received an extract of PHS at dose 2g/kg bodyweight and control group received an amount of tap water equivalent to the volume of the vehicle used for the dose of PHS extract. The data we collected showed that aqueous extracts of PHS administered during twenty days induced a significant changes in renal function expressed in decreases of diuresis (from 10 ± 0,58 to 5,33 ± 0,33 ml/24 hours) and the same profile for mean arterial blood pressure (from 125 ± 2,89 to 96,67 ± 6,01 mmHg). The histopathological study showed an alteration of kidney cells in treated group with regard the control group which is not affected. In conclusion: our results indicate that the aqueous extract of PHS induces toxicity may affect severely kidney function and causes renal histopathology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peganum%20harmala%20seeds" title="peganum harmala seeds">peganum harmala seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=nephrotoxic" title=" nephrotoxic"> nephrotoxic</a>, <a href="https://publications.waset.org/abstracts/search?q=diuresi" title=" diuresi"> diuresi</a>, <a href="https://publications.waset.org/abstracts/search?q=histpathology" title=" histpathology"> histpathology</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney" title=" kidney"> kidney</a> </p> <a href="https://publications.waset.org/abstracts/40959/the-assessment-of-nephrotoxic-effects-of-peganum-harmala-in-rat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Antibacterial Activities, Chemical Constitutes and Acute Toxicity of Peganum Harmala L. Essential Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samy%20Selim">Samy Selim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural products are still major sources of innovative therapeutic agents for various conditions, including infectious diseases. Peganum harmala L. oil had wide range uses as traditional medicinal plants. The current study was designed to evaluate the antibacterial activity of P. harmala essential oil. The chemical constitutes and toxicity of these oils was also determined to obtain further information on the correlation between the chemical contents and antibacterial activity. The antibacterial effect of the essential oils of P. harmala oil was studied against some foodborne pathogenic bacteria species. The oil of plant was subjected to gas chromatography-mass spectrometry (GC/MS). The impact of oils administration on the change in rate of weight gain and complete blood picture in hamsters were investigated. P. harmala oil had strong antibacterial effect against bacterial species especially at minimum inhibitory concentration (MIC) less than 75.0 μg/ml. From the oil of P. harmala, forty one compounds were identified, and the major constituent was 1-hexyl-2-nitrocyclohexane (9.07%). Acute toxicity test was performed on hamsters and showed complete survival after 14 days, and there were no toxicity symptoms occurred. This study demonstrated that these essential oils seemed to be destitute of toxic effect which could compromise the medicinal use of these plants in folk medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis%20mass%20spectrometry" title="analysis mass spectrometry">analysis mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activities" title=" antibacterial activities"> antibacterial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title=" acute toxicity"> acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20constitutes" title=" chemical constitutes"> chemical constitutes</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20gain" title=" weight gain"> weight gain</a>, <a href="https://publications.waset.org/abstracts/search?q=Peganum%20harmala" title=" Peganum harmala"> Peganum harmala</a> </p> <a href="https://publications.waset.org/abstracts/2219/antibacterial-activities-chemical-constitutes-and-acute-toxicity-of-peganum-harmala-l-essential-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> The Antimicrobrial Effect of Alkaloids (Harmin, Harmalin) Extracted from Peganum harmala (L) Seeds in the South of Algeria (Bousaada)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Behidj-Benyounes">Nassima Behidj-Benyounes</a>, <a href="https://publications.waset.org/abstracts/search?q=Thoraya%20Dahmene"> Thoraya Dahmene</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadjiba%20Chebout"> Nadjiba Chebout </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work examines the study of the antimicrobrial effect of alkaloids extracted from the seeds of Peganum harmala L (Zygophyllaceae). This natural substance is extracted by using different solvents (aqueous, ethanolic, and hexane). The evaluation of the antimicrobial activity has only dealt with alkaloids. The antimicrobial effect of alkaloids is evaluated on several microorganisms. It has been tested on eight bacterial strains. The extract has been studied by using two yeasts. Finally, three molds have been studied. It should be noted that these agents are characterized by a high frequency of contamination and pathogenicity. Through this study, we note that Staphylococcus aureus, Saccharomyces cerievisae and E. coli are very sensitive in respect of the ethanol extract. Pseudomonas aerogenosa and Penicillium sp. are resistant to this extract. The other microorganisms are moderately sensitive. The study of the antimicrobial activity of different extracts of the Harmel has shown an optimal activity with the ethanol extract. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peganum%20harmala%20L." title="Peganum harmala L.">Peganum harmala L.</a>, <a href="https://publications.waset.org/abstracts/search?q=seeds" title=" seeds"> seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaloids" title=" alkaloids"> alkaloids</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/1737/the-antimicrobrial-effect-of-alkaloids-harmin-harmalin-extracted-from-peganum-harmala-l-seeds-in-the-south-of-algeria-bousaada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> The Effect of Different Levels of Seed and Extract of Harmal (Peganum harmala L.) on Immune Responses of Broiler Chicks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Toghyani">M. Toghyani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghasemi"> A. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Tabeidian"> S. A. Tabeidian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out to evaluate the effect of different levels of dietary seed and extract of Harmal (Peganum harmala L.) on immunity of broiler chicks. A total of 350 one-day old broiler chicks (Ross 308) were randomly allocated to five dietary treatments with four replicates pen of 14 birds each. Dietary treatments consisted of control, 1 and 2 g/kg Harmal seed in diet, 100 and 200 mg/L Harmal seed extract in water. Broilers received dietary treatments from 1 to 42 d. Two birds from each pen were randomly weighed and sacrificed at 42 d of age, the relative weight of lymphoid organs (bursa of Fabercius and spleen) to live weight were calculated. Antibody titers against Newcastle and influenza viruses and sheep red blood cell were measured at 30 d of age. Results showed that the relative weights of lymphoid organs were not affected by dietary treatments. Furthermore, antibody titer against Newcastle and influenza viruses as well as sheep red blood cell antigen were significantly (P<0.05) enhanced by feeding Harmal seed and extract. In conclusion, the results indicated that dietary inclusion of Harmal seed and extract enhanced immunological responses in broiler chicks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler%20chicks" title="broiler chicks">broiler chicks</a>, <a href="https://publications.waset.org/abstracts/search?q=Harmal" title=" Harmal"> Harmal</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=Peganum%20harmala" title=" Peganum harmala"> Peganum harmala</a> </p> <a href="https://publications.waset.org/abstracts/20970/the-effect-of-different-levels-of-seed-and-extract-of-harmal-peganum-harmala-l-on-immune-responses-of-broiler-chicks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> In Vitro Antimycoplasmal Activity of Peganum harmala on Mycoplasma hominis Tunisian Strains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadine%20khadraoui">Nadine khadraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Rym%20Essid"> Rym Essid</a>, <a href="https://publications.waset.org/abstracts/search?q=Olfa%20Tabbene"> Olfa Tabbene</a>, <a href="https://publications.waset.org/abstracts/search?q=Imen%20Chniba"> Imen Chniba</a>, <a href="https://publications.waset.org/abstracts/search?q=Safa%20Boujemaa"> Safa Boujemaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Selim%20Jallouli"> Selim Jallouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Fares"> Nadia Fares</a>, <a href="https://publications.waset.org/abstracts/search?q=Behija%20Mlik"> Behija Mlik</a>, <a href="https://publications.waset.org/abstracts/search?q=Boutheina%20Ben%20Abdelmoumen%20Mardassi"> Boutheina Ben Abdelmoumen Mardassi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and aim: Mycoplasma hominis is an opportunistic pathogen that can cause various gynecological infections such cervicitis, infertility, and, less frequently, extra-genital infections. Previous studies on the antimicrobial susceptibility of Mycoplasma hominis Tunisian strains have highlighted a significant resistance, even multi-resistance, to the most used antibiotic in the therapy of consequential infections. To address this concern, the present study aimed for the alternative of phytotherapy. Peganum harmala seed extract was tested as an antibacterial agent against multidrug-resistant M.hominis clinical strains. Material and Methods: Peganum harmala plant was collected from Ain Sebaa, Tabarka, North West region of Tunisia in April 2018, air-dried, grounded and extracted by different solvents.The crude methanolic extract was further partitioned with n-HEX, DCM, EtOAC and n-BuOl. Antibacterial activity was evaluated against M. hominis ATCC 23114 and 20 M. hominis clinical strains.The antimycoplasmal activity was tested by the microdilution method, and MIC values were determined. Phytochemical analysis and hemolytic activity on human erythrocytes were also performed. The active fraction was then subjected to purification, and the chemical identification of the active compound was investigated. Results: Among the tested fractions, the n-BuOH extract was the most active fraction since it exhibited an inhibitory effect against M. hominis ATCC 23114 and 80% of the tested clinical strains with MIC between 125 and 1000 µg/ml. The phytochemical analysis of the n-BuOH revealed its metabolic abundance in polyphenols, flavonoids and condensed tannin with levels of 257.37 mg AGE/g, 172.27 mg EC/g and 58.27 mg EC/g, respectively. In addition, P. harmala n-BuOH extract exhibited potent bactericidal activity against all M. hominis isolates with CMB values ranging between 125 and 4000 µg/ml. Further, the active fraction exhibited weak cytotoxicity effect at active concentrations when tested on human erythrocytes. The active compound was identified by gas chromatography–mass spectrometry as an indole alkaloid harmaline. Conclusion: In summary, Peganum harmala extract demonstrated an interesting anti-mycoplasmal activity against M. hominis Tunisian strains. Therefore, it could be considered as a potential candidate for the treatment of consequential infections. However, further studies are necessary to evaluate its mechanism of action in mycoplasmas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycoplasma%20hominis" title="mycoplasma hominis">mycoplasma hominis</a>, <a href="https://publications.waset.org/abstracts/search?q=peganum%20harmala" title=" peganum harmala"> peganum harmala</a>, <a href="https://publications.waset.org/abstracts/search?q=antibioresistance" title=" antibioresistance"> antibioresistance</a>, <a href="https://publications.waset.org/abstracts/search?q=phytotherapy" title=" phytotherapy"> phytotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20analysis" title=" phytochemical analysis"> phytochemical analysis</a> </p> <a href="https://publications.waset.org/abstracts/167419/in-vitro-antimycoplasmal-activity-of-peganum-harmala-on-mycoplasma-hominis-tunisian-strains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Effect of Peganum harmala Seeds on Blood Factors, Immune Response and Intestinal Selected Bacterial Population in Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Goudarzi">Majid Goudarzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment was designed to study the effects of feeding different levels of Peganum harmala seeds (PHS) and antibiotic on serum biochemical parameters, immune response and intestinal microflora composition in Ross broiler chickens. A total of 240 one-d-old unsexed broiler chickens were randomly allocated to each of the four treatment groups, each with four replicate pens of 15 chicks. The dietary treatments included of control (C) - without PHS and antibiotic - the diet contains 300 mg/kg Lincomycin 0.88% (A) and the diets contain 2 g/kg (H1) and 4 g/kg (H2) PHS. The chicks were raised on floor pens and received diets and water ad libitum for six weeks. Blood samplings were performed for the determination of antibody titer against Newcastle disease on 14 and 21 days and for biochemical parameters on 42 days of age. The populations of Lactobacilli spp. and Escherichia coli were enumerated in ileum by conventional microbiological techniques using selective agar media. Inclusion of PHS in diet resulted in a significant decrease in total cholesterol and significant increase in HDL relative to the control and antibiotic groups. Antibody titer against NDV was not affected by experimental treatments. E. coli population in birds supplemented with antibiotic and PHS was significantly lower than control, but Lactobacilli spp. population increased only by antibiotic and not by PHS. In conclusion, the results of this study showed that addition of PHS powder seem to have a positive influence on some biochemical parameters and gastrointestinal microflora. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title="antibiotic">antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20parameters" title=" biochemical parameters"> biochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20system" title=" immune system"> immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=Peganum%20harmala" title=" Peganum harmala"> Peganum harmala</a> </p> <a href="https://publications.waset.org/abstracts/46291/effect-of-peganum-harmala-seeds-on-blood-factors-immune-response-and-intestinal-selected-bacterial-population-in-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> In vitro Susceptibility of Isolated Shigella flexneri and Shigella dysenteriae to the Ethanolic Extracts of Trachyspermum ammi and Peganum harmala</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Siddig%20Hamid">Ibrahim Siddig Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Mohamed%20Eltayeb"> Ikram Mohamed Eltayeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trachyspermum ammi belongs to the family Apiaceae, is used traditionally for the treatment of gastrointestinal ailments, lack of appetite and bronchial problems as well used as antiseptic, antimicrobial, antipyretic, febrifugal and in the treatment of typhoid fever. Peganum harmala belongs to the family Zygophyllaceae it has been reported to have an antibacterial activity and used to treat depression and recurring fevers. It also used to kill algae, bacteria, intestinal parasites and molds. In Sudan, the combination of two plants are traditionally used for the treatment of bacillary dysentery. Bacillary dysentery is caused by one or more types of Shigella species bacteria mainly Shigella dysenteri and shigella flexneri. Bacillary dysentery is mainly found in hot countries like Sudan with poor hygiene and sanitation. Bacillary dysentery causes sudden onset of high fever and chills, abdominal pain, cramps and bloating, urgency to pass stool, weight loss, and dehydration and if left untreated it can lead to serious complications including delirium, convulsions and coma. A serious infection like this can be fatal within 24 hours. The objective of this study is to investigate the in vitro susceptibility of Sh. flexneri and Sh. dysenteriae to the T. ammi and P. harmala. T. ammi and P. harmala were extracted by 96% ethanol using Soxhlet apparatus. The antimicrobial activity of the extracts was investigated according to the disc diffusion method. The discs were prepared by soaking sterilized filter paper discs in 20 microliter of serially diluted solutions of each plant extract with the concentrations (100, 50, 25, 12.5, 6.25mg/dl) then placing them on Muller Hinton Agar plates that were inoculated with bacterial suspension separately, the plates were incubated for 24 hours at 37c and the minimum inhibitory concentration of the extract which was the least concentration of the extract to inhibit fungal growth was determined. The results showed the high antimicrobial activity of T. ammi extract with an average diameter zone ranging from 18-20 mm and its minimum inhibitory concentration was found to be 25 mg/ml against the two shigella species. P. harmala extract was found to have slight antibacterial effect against the two bacteria. This result justified the Sudanese traditional use of Trachyspermum ammi plant for the treatment of bacillary dysentery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=harmala" title="harmala">harmala</a>, <a href="https://publications.waset.org/abstracts/search?q=peganum" title=" peganum"> peganum</a>, <a href="https://publications.waset.org/abstracts/search?q=shigella" title=" shigella"> shigella</a>, <a href="https://publications.waset.org/abstracts/search?q=trachyspermum" title=" trachyspermum"> trachyspermum</a> </p> <a href="https://publications.waset.org/abstracts/78181/in-vitro-susceptibility-of-isolated-shigella-flexneri-and-shigella-dysenteriae-to-the-ethanolic-extracts-of-trachyspermum-ammi-and-peganum-harmala" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> In Vitro Evaluation of the Antimitotic and Genotoxic Effect by the Allium cepa L. Test of the Aqueous Extract of Peganum harmala L. Leaves (Laghouat, Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouzid%20Yasmina">Ouzid Yasmina</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiche-Iratni%20Ghenima"> Aiche-Iratni Ghenima</a>, <a href="https://publications.waset.org/abstracts/search?q=Harchaoui%20Lina"> Harchaoui Lina</a>, <a href="https://publications.waset.org/abstracts/search?q=Saadoun%20Noria"> Saadoun Noria</a>, <a href="https://publications.waset.org/abstracts/search?q=Houali%20Karim"> Houali Karim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medicinal plants are an important source of bioactive molecules with biological activities such as anticancer, antioxidant, anti-inflammatory, antibacterial, antimitotic.... These molecules include alkaloids, polyphenols and terpenes. The latter can be extracted by different solvents, namely: water, ethanol, methanol, butanol, acetone... This is why it seemed interesting to us to evaluate in vitro the antimitotic and genotoxic effect of these secondary metabolites contained in the aqueous extract of the leaves of Peganum harmala L. by the Allium cepa L. test on meristematic cells by calculating the mitotic parameters (The mitotic index, the aberration index and the limit value of cytotoxicity).A spectrophotometric determination of secondary metabolites, namely alkaloids and flavonoids in the aqueous extract of this essence, was performed. As a result, the alkaloid content is estimated to be 28.42 μg EC/mg extract, and the flavonoid content is 12.52 μg EQ/mg extract. The determination of the mitotic index revealed disturbances in cell division with a highly significant difference between the negative control (distilled water) and the different samples (aqueous extracts, colchicine and quecetin). The exposure of meristematic cells to our samples resulted in a large number of chromosomal, nuclear and cellular aberrations with an aberration index reaching 16.21±1.28% for the 4mg/ml aqueous extract and 11.71±3.32% for the 10mg/ml aqueous extract. The limit value of cytotoxicity revealed that our samples are sublethal on Allium cepa L. meristematic cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allium%20cepa%20l." title="allium cepa l.">allium cepa l.</a>, <a href="https://publications.waset.org/abstracts/search?q=antimitotic%20and%20genotoxic%20effect" title=" antimitotic and genotoxic effect"> antimitotic and genotoxic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20leaf%20extract" title=" aqueous leaf extract"> aqueous leaf extract</a>, <a href="https://publications.waset.org/abstracts/search?q=laghouat%20%28algeria%29" title=" laghouat (algeria)"> laghouat (algeria)</a>, <a href="https://publications.waset.org/abstracts/search?q=peganum%20harmala%20l." title=" peganum harmala l."> peganum harmala l.</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a> </p> <a href="https://publications.waset.org/abstracts/167156/in-vitro-evaluation-of-the-antimitotic-and-genotoxic-effect-by-the-allium-cepa-l-test-of-the-aqueous-extract-of-peganum-harmala-l-leaves-laghouat-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Effects of Essential Oils on the Intestinal Microflora of Termite (Heterotermes indicola)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Aihetasham">Ayesha Aihetasham</a>, <a href="https://publications.waset.org/abstracts/search?q=Najma%20Arshad"> Najma Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sobia%20Khan"> Sobia Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damage causes by subterranean termites are of major concern today. Termites majorly treated with pesticides resulted in several problems related to health and environment. For this reason, plant-derived natural products specifically essential oils have been evaluated in order to control termites. The aim of the present study was to investigate the antitermitic potential of six essential oils on Heterotermes indicola subterranean termite. No-choice bioassay was used to assess the termiticidal action of essential oils. Further, gut from each set of treated termite group was extracted and analyzed for reduction in number of protozoa and bacteria by protozoal count method using haemocytometer and viable bacterial plate count (dilution method) respectively. In no-choice bioassay it was found that Foeniculum vulgare oil causes high degree of mortality 90 % average mortality at 10 mg oil concentration (10mg/0.42g weight of filter paper). Least mortality appeared to be due to Citrus sinensis oil (43.33 % average mortality at 10 mg/0.42g). The highest activity verified to be of Foeniculum vulgare followed by Eruca sativa, Trigonella foenum-graecum, Peganum harmala, Syzygium cumini and Citrus sinensis. The essential oil which caused maximum reduction in number of protozoa was P. harmala followed by T. foenum-graecum and E. sativa. In case of bacterial count E. sativa oil indicated maximum decrease in bacterial number (6.4×10⁹ CFU/ml). It is concluded that F. vulgare, E. sativa and P. harmala essential oils are highly effective against H. indicola termite and its gut microflora. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20count" title="bacterial count">bacterial count</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=Heterotermes%20indicola" title=" Heterotermes indicola"> Heterotermes indicola</a>, <a href="https://publications.waset.org/abstracts/search?q=protozoal%20count" title=" protozoal count"> protozoal count</a> </p> <a href="https://publications.waset.org/abstracts/57388/effects-of-essential-oils-on-the-intestinal-microflora-of-termite-heterotermes-indicola" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Phytochemical Composition, Antimicrobial Potential and Antioxidant Activity of Peganum harmala L. Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narayana%20Bhat">Narayana Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Majda%20Khalil"> Majda Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Al-Mansour"> Hamad Al-Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Anitha%20Manuvel"> Anitha Manuvel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vimla%20Yeddu"> Vimla Yeddu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to assess the antimicrobial and antioxidant potential and phytochemical composition of Peganum harmala L. For this purpose, powdered shoot, root, and seed samples were extracted in an accelerated solvent extractor (ASE) with methanol, ethanol, acetone, and dichloromethane. The residues were reconstituted in the above solvents and 10% dimethyl sulphoxide (DMSO). The antimicrobial activity of these extracts was tested against two bacterial (Escherichia coli E49 and Staphylococcus aureus CCUG 43507) and two fungi Candida albicans ATCC 24433, Candida glabrata ATCC 15545) strains using the well-diffusion method. The minimum inhibitory concentration (MIC) and growth pattern of these test strains were determined using microbroth dilution method, and the phospholipase assay was performed to detect tissue damage in the host cells. Results revealed that ethanolic, methanolic, and dichloromethane extracts of seeds exhibited significant antimicrobial activities against all tested strains, whereas the acetone extract of seeds was effective against E. coli only. Similarly, ethanolic and methanolic extracts of roots were effective against two bacterial strains only. One sixth of percent (0.6%) yield of methanol extract of seeds was found to be the MIC for Escherichia coli E49, Staphylococcus aureus CCUG 43507, and Candida glabrata ATCC 15545. Overall, seed extracts had greater antimicrobial activities compared to roots and shoot extracts. The original plant extract and MIC dilutions prevented phospholipase secretion in Staphylococcus aureus CCUG 43507 and Candida albicans ATCC 24433. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay revealed radical scavenging activities ranging from 71.80 ± 4.36% to 87.75 ± 1.70%. The main compound present in the root extract was 1-methyl-7-methoxy-beta-carboline (RT: 44.171), followed by norlapachol (3.62%), benzopyrazine (2.20%), palmitic acid (2.12%) and vasicinone (1.96%). In contrast, phenol,4-ethenyl-2-methoxy was in abundance in the methonolic extract of the shoot, whereas 1-methyl-7-methoxy-beta-carboline (79.59%), linoleic acid (9.05%), delta-tocopherol (5.02%), 9,12-octadecadienoic acid, methyl ester (2.65%), benzene, 1,1-1,2 ethanediyl bis 3,4dimethyl (1.15%), anthraquinone (0.58%), hexadecanoic acid, methyl ester (0.54%), palmitic acid (0.35%) and methyl stearate (0.18%) were present in the methanol extract of seeds. Major findings of this study, along with their relevance to developing effective, safe drugs, will be discussed in this presentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title="medicinal plants">medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20screening" title=" phytochemical screening"> phytochemical screening</a>, <a href="https://publications.waset.org/abstracts/search?q=bioprospecting" title=" bioprospecting"> bioprospecting</a>, <a href="https://publications.waset.org/abstracts/search?q=radical%20scavenging" title=" radical scavenging"> radical scavenging</a> </p> <a href="https://publications.waset.org/abstracts/111955/phytochemical-composition-antimicrobial-potential-and-antioxidant-activity-of-peganum-harmala-l-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Ecological Evaluation and Conservation Strategies of Economically Important Plants in Indian Arid Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sher%20Mohammed">Sher Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Purushottam%20Lal"> Purushottam Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawan%20K.%20Kasera"> Pawan K. Kasera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Thar Desert of Rajasthan covers a wide geographical area spreading between 23.3° to 30.12°, North latitude and 69.3◦ to 76◦ Eastern latitudes; having a unique spectrum of arid zone vegetation. This desert is spreading over 12 districts having a rich source of economically important/threatened plant diversity interacting and growing with adverse climatic conditions of the area. Due to variable geological, physiographic, climatic, edaphic and biotic factors, the arid zone medicinal flora exhibit a wide collection of angiosperm families. The herbal diversity of this arid region is medicinally important in household remedies among tribal communities as well as in traditional systems. The on-going increasing disturbances in natural ecosystems are due to climatic and biological, including anthropogenic factors. The unique flora and subsequently dependent faunal diversity of the desert ecosystem is losing its biotic potential. A large number of plants have no future unless immediate steps are taken to arrest the causes, leading to their biological improvement. At present the potential loss in ecological amplitude of various genera and species is making several plant species as red listed plants of arid zone vegetation such as Commmiphora wightii, Tribulus rajasthanensis, Calligonum polygonoides, Ephedra foliata, Leptadenia reticulata, Tecomella undulata, Blepharis sindica, Peganum harmala, Sarcostoma vinimale, etc. Mostly arid zone species are under serious pressure against prevailing ecosystem factors to continuation their life cycles. Genetic, molecular, cytological, biochemical, metabolic, reproductive, germination etc. are the several points where the floral diversity of the arid zone area is facing severe ecological influences. So, there is an urgent need to conserve them. There are several opportunities in the field to carry out remarkable work at particular levels to protect the native plants in their natural habitat instead of only their in vitro multiplication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecology" title="ecology">ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=xerophytes" title=" xerophytes"> xerophytes</a>, <a href="https://publications.waset.org/abstracts/search?q=economically" title=" economically"> economically</a>, <a href="https://publications.waset.org/abstracts/search?q=threatened%20plants" title=" threatened plants"> threatened plants</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/5537/ecological-evaluation-and-conservation-strategies-of-economically-important-plants-in-indian-arid-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> New Method for the Synthesis of Different Pyrroloquinazolinoquinolin Alkaloids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulkareem%20M.%20Hamid">Abdulkareem M. Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaseen%20Elhebshi"> Yaseen Elhebshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Da%C3%AFch"> Adam Daïch </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Luotonins and its derivatives (Isoluotonins) are alkaloids from the aerial parts of Peganum nigellastrum Bunge that display three major skeleton types. Luotonins A, B, and E are pyrroloquinazolinoquinoline alkaloids. A few methods were known for the sysnthesis of Isoluotonin. All luotonins have shown promising cytotoxicities towards selected human cancer cell lines, especially against leukemia P-388 cells. Luotonin A is the most active one, with its activity stemming from topoisomerase I-dependent DNA-cleavage. Such intriguing biological activities and unique structures have led not only to the development of synthetic methods for the efficient synthesis of these compounds, but also to interest in structural modifications for improving the biological properties. Recent progress in the study of luotonins is covered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=luotonin%20A" title="luotonin A">luotonin A</a>, <a href="https://publications.waset.org/abstracts/search?q=isoluotonin" title=" isoluotonin"> isoluotonin</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrroloquiolines" title=" pyrroloquiolines"> pyrroloquiolines</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaloids" title=" alkaloids"> alkaloids</a> </p> <a href="https://publications.waset.org/abstracts/2142/new-method-for-the-synthesis-of-different-pyrroloquinazolinoquinolin-alkaloids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10