CINXE.COM

Spazio metrico - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="it" dir="ltr"> <head> <meta charset="UTF-8"> <title>Spazio metrico - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )itwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","gennaio","febbraio","marzo","aprile","maggio","giugno","luglio","agosto","settembre","ottobre","novembre","dicembre"],"wgRequestId":"b6f9ffd8-7cd8-4d32-a4ef-4f65a14e5f0f","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Spazio_metrico","wgTitle":"Spazio metrico","wgCurRevisionId":136768618,"wgRevisionId":136768618,"wgArticleId":42169,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["P10037 letta da Wikidata","P9621 letta da Wikidata","P1417 letta da Wikidata","P3847 letta da Wikidata","P2812 letta da Wikidata","P7554 letta da Wikidata","Voci con codice Thesaurus BNCF","Voci con codice LCCN","Voci con codice GND","Voci con codice BNF","Voci con codice J9U","Voci con codice NDL","Voci non biografiche con codici di controllo di autorità","Geometria metrica","Spazi topologici"],"wgPageViewLanguage":"it","wgPageContentLanguage":"it" ,"wgPageContentModel":"wikitext","wgRelevantPageName":"Spazio_metrico","wgRelevantArticleId":42169,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"it","pageLanguageDir":"ltr","pageVariantFallbacks":"it"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q180953","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model" ,"platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.coloriDarkMode-default":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp", "ext.gadget.MainPageWikiList","ext.gadget.stru-commonsupload","ext.gadget.HiddenCat","ext.gadget.ReferenceTooltips","ext.gadget.TitoloErrato","ext.gadget.NewSection","ext.gadget.RichiediRevisioneBozza","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=it&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=it&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=it&amp;modules=ext.gadget.coloriDarkMode-default&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=it&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Spazio metrico - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//it.m.wikipedia.org/wiki/Spazio_metrico"> <link rel="alternate" type="application/x-wiki" title="Modifica" href="/w/index.php?title=Spazio_metrico&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (it)"> <link rel="EditURI" type="application/rsd+xml" href="//it.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://it.wikipedia.org/wiki/Spazio_metrico"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it"> <link rel="alternate" type="application/atom+xml" title="Feed Atom di Wikipedia" href="/w/index.php?title=Speciale:UltimeModifiche&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Spazio_metrico rootpage-Spazio_metrico skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Vai al contenuto</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principale" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principale</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principale</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">nascondi</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigazione </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Pagina_principale" title="Visita la pagina principale [z]" accesskey="z"><span>Pagina principale</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speciale:UltimeModifiche" title="Elenco delle ultime modifiche del sito [r]" accesskey="r"><span>Ultime modifiche</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speciale:PaginaCasuale" title="Mostra una pagina a caso [x]" accesskey="x"><span>Una voce a caso</span></a></li><li id="n-nearby-pages-title" class="mw-list-item"><a href="/wiki/Speciale:NelleVicinanze"><span>Nelle vicinanze</span></a></li><li id="n-vetrina" class="mw-list-item"><a href="/wiki/Wikipedia:Vetrina"><span>Vetrina</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aiuto:Aiuto" title="Pagine di aiuto"><span>Aiuto</span></a></li><li id="n-Sportello-informazioni" class="mw-list-item"><a href="/wiki/Aiuto:Sportello_informazioni"><span>Sportello informazioni</span></a></li> </ul> </div> </div> <div id="p-Comunità" class="vector-menu mw-portlet mw-portlet-Comunità" > <div class="vector-menu-heading"> Comunità </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Portale:Comunit%C3%A0" title="Descrizione del progetto, cosa puoi fare, dove trovare le cose"><span>Portale Comunità</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:Bar"><span>Bar</span></a></li><li id="n-wikipediano" class="mw-list-item"><a href="/wiki/Wikipedia:Wikipediano"><span>Il Wikipediano</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="/wiki/Wikipedia:Contatti"><span>Contatti</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Pagina_principale" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="L&#039;enciclopedia libera" src="/static/images/mobile/copyright/wikipedia-tagline-it.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speciale:Ricerca" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cerca in Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Ricerca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Cerca in Wikipedia" aria-label="Cerca in Wikipedia" autocapitalize="sentences" title="Cerca in Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciale:Ricerca"> </div> <button class="cdx-button cdx-search-input__end-button">Ricerca</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Strumenti personali"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifica la dimensione, la larghezza e il colore del testo" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspetto" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspetto</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_it.wikipedia.org&amp;uselang=it" class=""><span>Fai una donazione</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:CreaUtenza&amp;returnto=Spazio+metrico" title="Si consiglia di registrarsi e di effettuare l&#039;accesso, anche se non è obbligatorio" class=""><span>registrati</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:Entra&amp;returnto=Spazio+metrico" title="Si consiglia di effettuare l&#039;accesso, anche se non è obbligatorio [o]" accesskey="o" class=""><span>entra</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Altre opzioni" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti personali" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Strumenti personali</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utente" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_it.wikipedia.org&amp;uselang=it"><span>Fai una donazione</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:CreaUtenza&amp;returnto=Spazio+metrico" title="Si consiglia di registrarsi e di effettuare l&#039;accesso, anche se non è obbligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>registrati</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:Entra&amp;returnto=Spazio+metrico" title="Si consiglia di effettuare l&#039;accesso, anche se non è obbligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>entra</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pagine per utenti anonimi <a href="/wiki/Aiuto:Benvenuto" aria-label="Ulteriori informazioni sulla contribuzione"><span>ulteriori informazioni</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speciale:MieiContributi" title="Un elenco delle modifiche fatte da questo indirizzo IP [y]" accesskey="y"><span>contributi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speciale:MieDiscussioni" title="Discussioni sulle modifiche fatte da questo indirizzo IP [n]" accesskey="n"><span>discussioni</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Indice" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Indice</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">nascondi</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inizio</div> </a> </li> <li id="toc-Definizione" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definizione"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definizione</span> </div> </a> <ul id="toc-Definizione-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proprietà" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Proprietà"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Proprietà</span> </div> </a> <button aria-controls="toc-Proprietà-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Attiva/disattiva la sottosezione Proprietà</span> </button> <ul id="toc-Proprietà-sublist" class="vector-toc-list"> <li id="toc-Struttura_topologica" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Struttura_topologica"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Struttura topologica</span> </div> </a> <ul id="toc-Struttura_topologica-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spazi_normati" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spazi_normati"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Spazi normati</span> </div> </a> <ul id="toc-Spazi_normati-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Equivalenze" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Equivalenze"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Equivalenze</span> </div> </a> <ul id="toc-Equivalenze-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Distanza_tra_punti_e_insiemi_e_tra_insiemi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Distanza_tra_punti_e_insiemi_e_tra_insiemi"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Distanza tra punti e insiemi e tra insiemi</span> </div> </a> <ul id="toc-Distanza_tra_punti_e_insiemi_e_tra_insiemi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Limitatezza" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Limitatezza"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Limitatezza</span> </div> </a> <ul id="toc-Limitatezza-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spazi_metrici_prodotto" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Spazi_metrici_prodotto"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Spazi metrici prodotto</span> </div> </a> <ul id="toc-Spazi_metrici_prodotto-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Esempi_di_spazi_metrici" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Esempi_di_spazi_metrici"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Esempi di spazi metrici</span> </div> </a> <ul id="toc-Esempi_di_spazi_metrici-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Note" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Note"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Note</span> </div> </a> <ul id="toc-Note-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografia"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Bibliografia</span> </div> </a> <ul id="toc-Bibliografia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voci_correlate" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voci_correlate"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Voci correlate</span> </div> </a> <ul id="toc-Voci_correlate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Altri_progetti" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Altri_progetti"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Altri progetti</span> </div> </a> <ul id="toc-Altri_progetti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Collegamenti_esterni" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Collegamenti_esterni"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Collegamenti esterni</span> </div> </a> <ul id="toc-Collegamenti_esterni-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Indice" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Mostra/Nascondi l&#039;indice" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Mostra/Nascondi l&#039;indice</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Spazio metrico</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Vai a una voce in un&#039;altra lingua. Disponibile in 61 lingue" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-61" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">61 lingue</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%D8%A1_%D9%85%D8%AA%D8%B1%D9%8A" title="فضاء متري - arabo" lang="ar" hreflang="ar" data-title="فضاء متري" data-language-autonym="العربية" data-language-local-name="arabo" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Espaciu_m%C3%A9tricu" title="Espaciu métricu - asturiano" lang="ast" hreflang="ast" data-title="Espaciu métricu" data-language-autonym="Asturianu" data-language-local-name="asturiano" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Метрично пространство - bulgaro" lang="bg" hreflang="bg" data-title="Метрично пространство" data-language-autonym="Български" data-language-local-name="bulgaro" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Espai_m%C3%A8tric" title="Espai mètric - catalano" lang="ca" hreflang="ca" data-title="Espai mètric" data-language-autonym="Català" data-language-local-name="catalano" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%A8%DB%86%D8%B4%D8%A7%DB%8C%DB%8C%DB%8C_%D9%85%DB%95%D8%AA%D8%B1%DB%8C" title="بۆشاییی مەتری - curdo centrale" lang="ckb" hreflang="ckb" data-title="بۆشاییی مەتری" data-language-autonym="کوردی" data-language-local-name="curdo centrale" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Metrick%C3%BD_prostor" title="Metrický prostor - ceco" lang="cs" hreflang="cs" data-title="Metrický prostor" data-language-autonym="Čeština" data-language-local-name="ceco" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D0%BA%C4%83%D0%BB%D0%BB%C4%83_%D1%83%C3%A7%D0%BB%C4%83%D1%85" title="Метрикăллă уçлăх - ciuvascio" lang="cv" hreflang="cv" data-title="Метрикăллă уçлăх" data-language-autonym="Чӑвашла" data-language-local-name="ciuvascio" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Gofod_metrig" title="Gofod metrig - gallese" lang="cy" hreflang="cy" data-title="Gofod metrig" data-language-autonym="Cymraeg" data-language-local-name="gallese" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Metrisk_rum" title="Metrisk rum - danese" lang="da" hreflang="da" data-title="Metrisk rum" data-language-autonym="Dansk" data-language-local-name="danese" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Metrischer_Raum" title="Metrischer Raum - tedesco" lang="de" hreflang="de" data-title="Metrischer Raum" data-language-autonym="Deutsch" data-language-local-name="tedesco" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9C%CE%B5%CF%84%CF%81%CE%B9%CE%BA%CF%8C%CF%82_%CF%87%CF%8E%CF%81%CE%BF%CF%82" title="Μετρικός χώρος - greco" lang="el" hreflang="el" data-title="Μετρικός χώρος" data-language-autonym="Ελληνικά" data-language-local-name="greco" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Metric_space" title="Metric space - inglese" lang="en" hreflang="en" data-title="Metric space" data-language-autonym="English" data-language-local-name="inglese" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Metrika_spaco" title="Metrika spaco - esperanto" lang="eo" hreflang="eo" data-title="Metrika spaco" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Espacio_m%C3%A9trico" title="Espacio métrico - spagnolo" lang="es" hreflang="es" data-title="Espacio métrico" data-language-autonym="Español" data-language-local-name="spagnolo" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Meetriline_ruum" title="Meetriline ruum - estone" lang="et" hreflang="et" data-title="Meetriline ruum" data-language-autonym="Eesti" data-language-local-name="estone" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Espazio_metriko" title="Espazio metriko - basco" lang="eu" hreflang="eu" data-title="Espazio metriko" data-language-autonym="Euskara" data-language-local-name="basco" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%DB%8C_%D9%85%D8%AA%D8%B1%DB%8C" title="فضای متری - persiano" lang="fa" hreflang="fa" data-title="فضای متری" data-language-autonym="فارسی" data-language-local-name="persiano" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Metrinen_avaruus" title="Metrinen avaruus - finlandese" lang="fi" hreflang="fi" data-title="Metrinen avaruus" data-language-autonym="Suomi" data-language-local-name="finlandese" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Meetriline_ruum" title="Meetriline ruum - võro" lang="vro" hreflang="vro" data-title="Meetriline ruum" data-language-autonym="Võro" data-language-local-name="võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Espace_m%C3%A9trique" title="Espace métrique - francese" lang="fr" hreflang="fr" data-title="Espace métrique" data-language-autonym="Français" data-language-local-name="francese" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Sp%C3%A1s_m%C3%A9adrach" title="Spás méadrach - irlandese" lang="ga" hreflang="ga" data-title="Spás méadrach" data-language-autonym="Gaeilge" data-language-local-name="irlandese" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Espazo_m%C3%A9trico" title="Espazo métrico - galiziano" lang="gl" hreflang="gl" data-title="Espazo métrico" data-language-autonym="Galego" data-language-local-name="galiziano" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A8%D7%97%D7%91_%D7%9E%D7%98%D7%A8%D7%99" title="מרחב מטרי - ebraico" lang="he" hreflang="he" data-title="מרחב מטרי" data-language-autonym="עברית" data-language-local-name="ebraico" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Metri%C4%8Dki_prostor" title="Metrički prostor - croato" lang="hr" hreflang="hr" data-title="Metrički prostor" data-language-autonym="Hrvatski" data-language-local-name="croato" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Metrikus_t%C3%A9r" title="Metrikus tér - ungherese" lang="hu" hreflang="hu" data-title="Metrikus tér" data-language-autonym="Magyar" data-language-local-name="ungherese" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%A5%D5%BF%D6%80%D5%AB%D5%AF%D5%A1%D5%AF%D5%A1%D5%B6_%D5%BF%D5%A1%D6%80%D5%A1%D5%AE%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Մետրիկական տարածություն - armeno" lang="hy" hreflang="hy" data-title="Մետրիկական տարածություն" data-language-autonym="Հայերեն" data-language-local-name="armeno" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Ruang_metrik" title="Ruang metrik - indonesiano" lang="id" hreflang="id" data-title="Ruang metrik" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonesiano" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Fir%C3%B0r%C3%BAm" title="Firðrúm - islandese" lang="is" hreflang="is" data-title="Firðrúm" data-language-autonym="Íslenska" data-language-local-name="islandese" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%B7%9D%E9%9B%A2%E7%A9%BA%E9%96%93" title="距離空間 - giapponese" lang="ja" hreflang="ja" data-title="距離空間" data-language-autonym="日本語" data-language-local-name="giapponese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%94%E1%83%A2%E1%83%A0%E1%83%98%E1%83%99%E1%83%A3%E1%83%9A%E1%83%98_%E1%83%A1%E1%83%98%E1%83%95%E1%83%A0%E1%83%AA%E1%83%94" title="მეტრიკული სივრცე - georgiano" lang="ka" hreflang="ka" data-title="მეტრიკული სივრცე" data-language-autonym="ქართული" data-language-local-name="georgiano" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0%D0%BB%D1%8B%D2%9B_%D0%BA%D0%B5%D2%A3%D1%96%D1%81%D1%82%D1%96%D0%BA" title="Метрикалық кеңістік - kazako" lang="kk" hreflang="kk" data-title="Метрикалық кеңістік" data-language-autonym="Қазақша" data-language-local-name="kazako" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%AE%E0%B3%86%E0%B2%9F%E0%B3%8D%E0%B2%B0%E0%B2%BF%E0%B2%95%E0%B3%8D_%E0%B2%86%E0%B2%95%E0%B2%BE%E0%B2%B6" title="ಮೆಟ್ರಿಕ್ ಆಕಾಶ - kannada" lang="kn" hreflang="kn" data-title="ಮೆಟ್ರಿಕ್ ಆಕಾಶ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B1%B0%EB%A6%AC_%EA%B3%B5%EA%B0%84" title="거리 공간 - coreano" lang="ko" hreflang="ko" data-title="거리 공간" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Metresche_Raum" title="Metresche Raum - lussemburghese" lang="lb" hreflang="lb" data-title="Metresche Raum" data-language-autonym="Lëtzebuergesch" data-language-local-name="lussemburghese" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Metrin%C4%97_erdv%C4%97" title="Metrinė erdvė - lituano" lang="lt" hreflang="lt" data-title="Metrinė erdvė" data-language-autonym="Lietuvių" data-language-local-name="lituano" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BA%D0%B8_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80" title="Метрички простор - macedone" lang="mk" hreflang="mk" data-title="Метрички простор" data-language-autonym="Македонски" data-language-local-name="macedone" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Ruang_metrik" title="Ruang metrik - malese" lang="ms" hreflang="ms" data-title="Ruang metrik" data-language-autonym="Bahasa Melayu" data-language-local-name="malese" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%A1%E1%80%90%E1%80%AD%E1%80%AF%E1%80%84%E1%80%BA%E1%80%B8%E1%80%86" title="အတိုင်းဆ - birmano" lang="my" hreflang="my" data-title="အတိုင်းဆ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="birmano" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Metrische_ruimte" title="Metrische ruimte - olandese" lang="nl" hreflang="nl" data-title="Metrische ruimte" data-language-autonym="Nederlands" data-language-local-name="olandese" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Metrisk_rom" title="Metrisk rom - norvegese nynorsk" lang="nn" hreflang="nn" data-title="Metrisk rom" data-language-autonym="Norsk nynorsk" data-language-local-name="norvegese nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Metrisk_rom" title="Metrisk rom - norvegese bokmål" lang="nb" hreflang="nb" data-title="Metrisk rom" data-language-autonym="Norsk bokmål" data-language-local-name="norvegese bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Przestrze%C5%84_metryczna" title="Przestrzeń metryczna - polacco" lang="pl" hreflang="pl" data-title="Przestrzeń metryczna" data-language-autonym="Polski" data-language-local-name="polacco" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Spassi_m%C3%A9trich" title="Spassi métrich - piemontese" lang="pms" hreflang="pms" data-title="Spassi métrich" data-language-autonym="Piemontèis" data-language-local-name="piemontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Espa%C3%A7o_m%C3%A9trico" title="Espaço métrico - portoghese" lang="pt" hreflang="pt" data-title="Espaço métrico" data-language-autonym="Português" data-language-local-name="portoghese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Spa%C8%9Biu_metric" title="Spațiu metric - rumeno" lang="ro" hreflang="ro" data-title="Spațiu metric" data-language-autonym="Română" data-language-local-name="rumeno" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Метрическое пространство - russo" lang="ru" hreflang="ru" data-title="Метрическое пространство" data-language-autonym="Русский" data-language-local-name="russo" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Metric_space" title="Metric space - Simple English" lang="en-simple" hreflang="en-simple" data-title="Metric space" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Metrick%C3%BD_priestor" title="Metrický priestor - slovacco" lang="sk" hreflang="sk" data-title="Metrický priestor" data-language-autonym="Slovenčina" data-language-local-name="slovacco" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Metri%C4%8Dni_prostor" title="Metrični prostor - sloveno" lang="sl" hreflang="sl" data-title="Metrični prostor" data-language-autonym="Slovenščina" data-language-local-name="sloveno" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BA%D0%B8_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80" title="Метрички простор - serbo" lang="sr" hreflang="sr" data-title="Метрички простор" data-language-autonym="Српски / srpski" data-language-local-name="serbo" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Metriskt_rum" title="Metriskt rum - svedese" lang="sv" hreflang="sv" data-title="Metriskt rum" data-language-autonym="Svenska" data-language-local-name="svedese" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AF%86%E0%AE%9F%E0%AF%8D%E0%AE%B0%E0%AE%BF%E0%AE%95%E0%AF%8D_%E0%AE%B5%E0%AF%86%E0%AE%B3%E0%AE%BF" title="மெட்ரிக் வெளி - tamil" lang="ta" hreflang="ta" data-title="மெட்ரிக் வெளி" data-language-autonym="தமிழ்" data-language-local-name="tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Metrik_uzay" title="Metrik uzay - turco" lang="tr" hreflang="tr" data-title="Metrik uzay" data-language-autonym="Türkçe" data-language-local-name="turco" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%96%D1%80" title="Метричний простір - ucraino" lang="uk" hreflang="uk" data-title="Метричний простір" data-language-autonym="Українська" data-language-local-name="ucraino" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A8%D8%AD%D8%B1_%D9%81%D8%B6%D8%A7" title="بحر فضا - urdu" lang="ur" hreflang="ur" data-title="بحر فضا" data-language-autonym="اردو" data-language-local-name="urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Spassio_m%C3%A8trico" title="Spassio mètrico - veneto" lang="vec" hreflang="vec" data-title="Spassio mètrico" data-language-autonym="Vèneto" data-language-local-name="veneto" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Kh%C3%B4ng_gian_m%C3%AAtric" title="Không gian mêtric - vietnamita" lang="vi" hreflang="vi" data-title="Không gian mêtric" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamita" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%BA%A6%E9%87%8F%E7%A9%BA%E9%97%B4" title="度量空间 - wu" lang="wuu" hreflang="wuu" data-title="度量空间" data-language-autonym="吴语" data-language-local-name="wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%BA%A6%E9%87%8F%E7%A9%BA%E9%97%B4" title="度量空间 - cinese" lang="zh" hreflang="zh" data-title="度量空间" data-language-autonym="中文" data-language-local-name="cinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%BA%A6%E9%87%8F%E7%A9%BA%E9%96%93" title="度量空間 - cinese classico" lang="lzh" hreflang="lzh" data-title="度量空間" data-language-autonym="文言" data-language-local-name="cinese classico" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%BA%A6%E9%87%8F%E7%A9%BA%E9%96%93" title="度量空間 - cantonese" lang="yue" hreflang="yue" data-title="度量空間" data-language-autonym="粵語" data-language-local-name="cantonese" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q180953#sitelinks-wikipedia" title="Modifica collegamenti interlinguistici" class="wbc-editpage">Modifica collegamenti</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespace"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Spazio_metrico" title="Vedi la voce [c]" accesskey="c"><span>Voce</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussione:Spazio_metrico" rel="discussion" title="Vedi le discussioni relative a questa pagina [t]" accesskey="t"><span>Discussione</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambia versione linguistica" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">italiano</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visite"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Spazio_metrico"><span>Leggi</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spazio_metrico&amp;action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spazio_metrico&amp;action=history" title="Versioni precedenti di questa pagina [h]" accesskey="h"><span>Cronologia</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Strumenti</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Strumenti</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">nascondi</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Altre opzioni" > <div class="vector-menu-heading"> Azioni </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Spazio_metrico"><span>Leggi</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spazio_metrico&amp;action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spazio_metrico&amp;action=history"><span>Cronologia</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Generale </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speciale:PuntanoQui/Spazio_metrico" title="Elenco di tutte le pagine che sono collegate a questa [j]" accesskey="j"><span>Puntano qui</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speciale:ModificheCorrelate/Spazio_metrico" rel="nofollow" title="Elenco delle ultime modifiche alle pagine collegate a questa [k]" accesskey="k"><span>Modifiche correlate</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speciale:PagineSpeciali" title="Elenco di tutte le pagine speciali [q]" accesskey="q"><span>Pagine speciali</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Spazio_metrico&amp;oldid=136768618" title="Collegamento permanente a questa versione di questa pagina"><span>Link permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Spazio_metrico&amp;action=info" title="Ulteriori informazioni su questa pagina"><span>Informazioni pagina</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speciale:Cita&amp;page=Spazio_metrico&amp;id=136768618&amp;wpFormIdentifier=titleform" title="Informazioni su come citare questa pagina"><span>Cita questa voce</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speciale:UrlShortener&amp;url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FSpazio_metrico"><span>Ottieni URL breve</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speciale:QrCode&amp;url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FSpazio_metrico"><span>Scarica codice QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Stampa/esporta </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speciale:Libro&amp;bookcmd=book_creator&amp;referer=Spazio+metrico"><span>Crea un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speciale:DownloadAsPdf&amp;page=Spazio_metrico&amp;action=show-download-screen"><span>Scarica come PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Spazio_metrico&amp;printable=yes" title="Versione stampabile di questa pagina [p]" accesskey="p"><span>Versione stampabile</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In altri progetti </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Metric_geometry" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://it.wikiversity.org/wiki/Spazi_metrici" hreflang="it"><span>Wikiversità</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q180953" title="Collegamento all&#039;elemento connesso dell&#039;archivio dati [g]" accesskey="g"><span>Elemento Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspetto</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">nascondi</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Da Wikipedia, l&#039;enciclopedia libera.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="it" dir="ltr"><p>Uno <b>spazio metrico</b> è un <a href="/wiki/Insieme" title="Insieme">insieme</a> di elementi, detti <i>punti</i>, nel quale è definita una <a href="/wiki/Distanza_(matematica)" title="Distanza (matematica)">distanza</a>, detta anche <i>metrica</i>. Lo spazio metrico più comune è lo <a href="/wiki/Spazio_euclideo" title="Spazio euclideo">spazio euclideo</a> di dimensione 1, 2 o 3. </p><p>Uno spazio metrico è in particolare uno <a href="/wiki/Spazio_topologico" title="Spazio topologico">spazio topologico</a>, e quindi eredita le nozioni di <a href="/wiki/Spazio_compatto" title="Spazio compatto">compattezza</a>, <a href="/wiki/Spazio_connesso" title="Spazio connesso">connessione</a>, <a href="/wiki/Insieme_aperto" title="Insieme aperto">insieme aperto</a> e <a href="/wiki/Insieme_chiuso" title="Insieme chiuso">chiuso</a>. Si applicano quindi agli spazi metrici gli strumenti della <a href="/wiki/Topologia_algebrica" title="Topologia algebrica">topologia algebrica</a>, quali ad esempio il <a href="/wiki/Gruppo_fondamentale" title="Gruppo fondamentale">gruppo fondamentale</a>. </p><p>Qualsiasi oggetto contenuto nello spazio euclideo è esso stesso uno spazio metrico. Molti insiemi di <a href="/wiki/Funzione_(matematica)" title="Funzione (matematica)">funzioni</a> sono dotati di una metrica: accade ad esempio se formano uno <a href="/wiki/Spazio_di_Hilbert" title="Spazio di Hilbert">spazio di Hilbert</a> o <a href="/wiki/Spazio_di_Banach" title="Spazio di Banach">di Banach</a>. Per questi motivi gli spazi metrici giocano un ruolo fondamentale in <a href="/wiki/Geometria" title="Geometria">geometria</a> e in <a href="/wiki/Analisi_funzionale" title="Analisi funzionale">analisi funzionale</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definizione">Definizione</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=1" title="Modifica la sezione Definizione" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=1" title="Edit section&#039;s source code: Definizione"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Uno spazio metrico è una struttura <a href="/wiki/Matematica" title="Matematica">matematica</a> costituita da una coppia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X,d)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X,d)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb4d7a16bca9e216c0221b43a1c3377aa5e358b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.039ex; height:2.843ex;" alt="{\displaystyle (X,d)}"></span> di elementi, dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> è un <a href="/wiki/Insieme" title="Insieme">insieme</a> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> una funzione <a href="/wiki/Distanza_(matematica)" title="Distanza (matematica)">distanza</a>, detta anche <i>metrica</i>, che associa a due punti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> un <a href="/wiki/Numero_reale" title="Numero reale">numero reale</a> non negativo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3772957879a8bbf7946bddf5743c508a1d5072c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.544ex; height:2.843ex;" alt="{\displaystyle d(x,y)}"></span> in modo che le seguenti proprietà valgano per ogni scelta di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y,z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y,z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbeca34b28f569a407ef74a955d041df9f360268" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.641ex; height:2.009ex;" alt="{\displaystyle x,y,z}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>:<sup id="cite_ref-def_1-0" class="reference"><a href="#cite_note-def-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)&gt;0\iff x\neq y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)&gt;0\iff x\neq y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66256d4829bcf28c552dbfa781ddb000cc5fc270" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.286ex; height:2.843ex;" alt="{\displaystyle d(x,y)&gt;0\iff x\neq y}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=0\iff x=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=0\iff x=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32fd7ce57db3ea42e1bbb4aabb703cb709c6bfec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.286ex; height:2.843ex;" alt="{\displaystyle d(x,y)=0\iff x=y}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=d(y,x)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=d(y,x)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6075ef47b0569ea999ac9abf8e97bbcd4da92bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.768ex; height:2.843ex;" alt="{\displaystyle d(x,y)=d(y,x)\ }"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)\leq d(x,z)+d(z,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)\leq d(x,z)+d(z,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d5d6179f9dbf3ce34351feebb3698e28c973719" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.263ex; height:2.843ex;" alt="{\displaystyle d(x,y)\leq d(x,z)+d(z,y)}"></span></li></ul> <p>L'ultima proprietà è detta <a href="/wiki/Disuguaglianza_triangolare" title="Disuguaglianza triangolare">disuguaglianza triangolare</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Proprietà"><span id="Propriet.C3.A0"></span>Proprietà</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=2" title="Modifica la sezione Proprietà" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=2" title="Edit section&#039;s source code: Proprietà"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Struttura_topologica">Struttura topologica</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=3" title="Modifica la sezione Struttura topologica" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=3" title="Edit section&#039;s source code: Struttura topologica"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Uno spazio metrico possiede naturalmente anche una struttura <a href="/wiki/Spazio_topologico" title="Spazio topologico">topologica</a>: l'insieme delle <a href="/wiki/Palla_(matematica)" title="Palla (matematica)">palle</a> aperte centrate nei vari punti avente raggio variabile fornisce infatti una sua <a href="/wiki/Base_(topologia)" title="Base (topologia)">base topologica</a>. </p><p>Esplicitamente, un insieme sarà <a href="/wiki/Insieme_aperto" title="Insieme aperto">aperto</a> se è l'<a href="/wiki/Unione_(insiemistica)" title="Unione (insiemistica)">unione</a> di un certo numero (finito o infinito) di palle. Uno spazio metrico è perciò, quasi per definizione, uno <a href="/wiki/Spazio_metrizzabile" title="Spazio metrizzabile">spazio metrizzabile</a>. </p><p>Per una <a href="/wiki/Funzione_(matematica)" title="Funzione (matematica)">funzione</a> definita in uno spazio metrico sarà possibile dunque parlare di <a href="/wiki/Funzione_continua" title="Funzione continua">continuità</a> e la definizione generale (usando le <a href="/wiki/Controimmagine" title="Controimmagine">controimmagini</a> degli aperti) potrà essere riformulata in funzione di dischi: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:(X,d)\to (Y,d')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo>,</mo> <msup> <mi>d</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:(X,d)\to (Y,d')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9eca2a7c9807e22bc30e3dad7278202f918a0bf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.388ex; height:3.009ex;" alt="{\displaystyle f:(X,d)\to (Y,d&#039;)}"></span> è continua in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> se per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23cbbcd53bd13620bc53490e3eec42790850b452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.176ex;" alt="{\displaystyle r&gt;0}"></span> esiste un <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (r)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (r)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0431229dae0d56b2c205c905fd3b8be66b1610fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.168ex; height:2.843ex;" alt="{\displaystyle \delta (r)&gt;0}"></span> tale che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in B_{d}(x_{0},\delta (r))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in B_{d}(x_{0},\delta (r))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c86d93dd740f11fcee6166426efd3de515aeaa85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.16ex; height:2.843ex;" alt="{\displaystyle x\in B_{d}(x_{0},\delta (r))}"></span> implica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\in B_{d'}(f(x_{0}),r)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>d</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\in B_{d'}(f(x_{0}),r)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdffe9a8b58f4f6be28fafef60d33f576da406eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.011ex; height:2.843ex;" alt="{\displaystyle f(x)\in B_{d&#039;}(f(x_{0}),r)}"></span>,</dd></dl> <p>dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8152ba18cface59883b0d177b0295a249b6433db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.856ex; height:2.509ex;" alt="{\displaystyle B_{d}}"></span> (risp. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{d'}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>d</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{d'}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/529bc7d6b1fd4c8727f24cbc97c2ba89fdc5472d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.389ex; height:2.676ex;" alt="{\displaystyle B_{d&#039;}}"></span>) rappresenta la palla nella metrica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> (risp. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f310a68106a9e308bdaf887ff8f7171c4cb9d96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.903ex; height:2.509ex;" alt="{\displaystyle d&#039;}"></span>). Scritta in un altro modo, questa definizione dice che: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:(X,d)\to (Y,d')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo>,</mo> <msup> <mi>d</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:(X,d)\to (Y,d')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9eca2a7c9807e22bc30e3dad7278202f918a0bf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.388ex; height:3.009ex;" alt="{\displaystyle f:(X,d)\to (Y,d&#039;)}"></span> è continua in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> se per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23cbbcd53bd13620bc53490e3eec42790850b452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.176ex;" alt="{\displaystyle r&gt;0}"></span> esiste un <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (r)&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (r)&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0431229dae0d56b2c205c905fd3b8be66b1610fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.168ex; height:2.843ex;" alt="{\displaystyle \delta (r)&gt;0}"></span> tale che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,x_{0})&lt;\delta (r)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,x_{0})&lt;\delta (r)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/653cde64a7692507710e20b4596bc2878ac3db75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.778ex; height:2.843ex;" alt="{\displaystyle d(x,x_{0})&lt;\delta (r)}"></span> implica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d'(f(x),f(x_{0}))&lt;r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d'(f(x),f(x_{0}))&lt;r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f8db72294d3e0ef4488bc4ac8dc2ee92d478019" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.783ex; height:3.009ex;" alt="{\displaystyle d&#039;(f(x),f(x_{0}))&lt;r}"></span>.</dd></dl> <p>Tale definizione è già molto vicina a quella usuale per funzioni <a href="/wiki/Numero_reale" title="Numero reale">reali</a>. </p><p>Addizionalmente, uno spazio metrico è anche uno <a href="/wiki/Spazio_uniforme" title="Spazio uniforme">spazio uniforme</a>, definendo un sottoinsieme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\times M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x00D7;<!-- × --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\times M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/674e3ff5ea2de11c108d05ccd695a5ef97f1a215" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.725ex; height:2.176ex;" alt="{\displaystyle M\times M}"></span> essere un entourage se e solo se esiste un <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon &gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon &gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/568095ad3924314374a5ab68fae17343661f2a71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.205ex; height:2.176ex;" alt="{\displaystyle \epsilon &gt;0}"></span> tale che se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)&lt;\epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>&#x03F5;<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)&lt;\epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64e1e513bab784b06b54f6aa697342e41becd645" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.587ex; height:2.843ex;" alt="{\displaystyle d(x,y)&lt;\epsilon }"></span> allora <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)\in V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)\in V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94a765d76f66c745840fbff14fe8fea1d10d51cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.956ex; height:2.843ex;" alt="{\displaystyle (x,y)\in V}"></span>. La struttura uniforme generalizza quella topologica. </p><p>È possibile costruire esempi semplici di metriche topologicamente equivalenti ma con strutture uniformi distinte: basta prendere, in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cccb5a6a2f1acab4ca255e0be86c224ed82282a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{1}}"></span> la <a href="/wiki/Metrica_euclidea" class="mw-redirect" title="Metrica euclidea">metrica euclidea</a> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{2}(x,y)=|e^{x}-e^{y}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{2}(x,y)=|e^{x}-e^{y}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19a3e99dc2dae777a5220ad2c5a5840b96baebf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.213ex; height:2.843ex;" alt="{\displaystyle d_{2}(x,y)=|e^{x}-e^{y}|}"></span>; allora <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{(x,y)\in \mathbb {R} ^{2}:|x-y|&lt;1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{(x,y)\in \mathbb {R} ^{2}:|x-y|&lt;1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6aad5560cba5c07f8164b28ffaf2e643522bfec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.044ex; height:3.176ex;" alt="{\displaystyle \{(x,y)\in \mathbb {R} ^{2}:|x-y|&lt;1\}}"></span> è un entourage nella struttura uniforme data da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cccb5a6a2f1acab4ca255e0be86c224ed82282a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{1}}"></span> ma non in quella data da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9276f8f68c5c23329de74ad76e69f6801358fb1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{2}}"></span>. Intuitivamente, la difformità è data dalla <i>distorsione</i> della metrica usuale secondo una funzione non <a href="/wiki/Continuit%C3%A0_uniforme" title="Continuità uniforme">uniformemente continua</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Spazi_normati">Spazi normati</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=4" title="Modifica la sezione Spazi normati" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=4" title="Edit section&#039;s source code: Spazi normati"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Uno <a href="/wiki/Spazio_normato" title="Spazio normato">spazio vettoriale normato</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M,\|\cdot \|)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M,\|\cdot \|)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1edc92ef37fc0ffde3003ca97f0232aad68ab816" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.289ex; height:2.843ex;" alt="{\displaystyle (M,\|\cdot \|)}"></span></dd></dl> <p>è in modo naturale anche uno spazio metrico dotato della distanza </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=\|x-y\|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=\|x-y\|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94df456fedac6b08c33cb4dffa5345a0ce0891f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.293ex; height:2.843ex;" alt="{\displaystyle d(x,y)=\|x-y\|}"></span></dd></dl> <p>Le proprietà della distanza discendono infatti da quelle della <a href="/wiki/Norma_(matematica)" title="Norma (matematica)">norma</a>. </p><p>Uno <a href="/wiki/Spazio_vettoriale" title="Spazio vettoriale">spazio vettoriale</a> munito di una <a href="/wiki/Seminorma" title="Seminorma">seminorma</a> genera invece una <a href="/wiki/Distanza_(matematica)#Generalizzazioni" title="Distanza (matematica)">pseudometrica</a>, cioè una funzione che può assegnare distanza nulla a punti diversi, e quindi <b>non</b> uno spazio metrico. Si può ovviare all'inconveniente introducendo la <a href="/wiki/Relazione_di_equivalenza" title="Relazione di equivalenza">relazione di equivalenza</a> ~, che identifica due punti se e solo se hanno distanza nulla. Passando dunque all'<a href="/wiki/Insieme_quoziente" class="mw-redirect" title="Insieme quoziente">insieme quoziente</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{*}=X_{/\sim }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo>&#x223C;<!-- ∼ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{*}=X_{/\sim }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cab8b327b7602e0b99fb51820f2d789ce877834" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.407ex; height:3.176ex;" alt="{\displaystyle X^{*}=X_{/\sim }}"></span></dd></dl> <p>e definendo, se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> è la pseudometrica, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d^{*}([x],[y])=d(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mo stretchy="false">[</mo> <mi>y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d^{*}([x],[y])=d(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fda81c746e0e8fd5da138b85df63ce27d004b35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.831ex; height:2.843ex;" alt="{\displaystyle d^{*}([x],[y])=d(x,y)}"></span></dd></dl> <p>la funzione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6de21e957a2d59bc958c7b842fd35f2b5277728e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.272ex; height:2.343ex;" alt="{\displaystyle d^{*}}"></span> risulta essere, oltre che ben definita, proprio una metrica per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01924e6e5570e2631081fea6c6981b4872d3e04b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.051ex; height:2.343ex;" alt="{\displaystyle X^{*}}"></span>. Il quoziente conserva la <a href="/wiki/Spazio_topologico" title="Spazio topologico">topologia</a> che la pseudometrica induce su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> (esattamente nello stesso modo in cui lo fa una metrica), cioè <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> è <a href="/wiki/Insieme_aperto" title="Insieme aperto">aperto</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> se e solo se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi (A)=[A]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi>A</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi (A)=[A]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16c06c4f361a7509e4003d7a538d4f3cb1e65469" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.02ex; height:2.843ex;" alt="{\displaystyle \pi (A)=[A]}"></span> (ovvero i punti di A considerati a meno dell'equivalenza) è aperto in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01924e6e5570e2631081fea6c6981b4872d3e04b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.051ex; height:2.343ex;" alt="{\displaystyle X^{*}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Equivalenze">Equivalenze</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=5" title="Modifica la sezione Equivalenze" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=5" title="Edit section&#039;s source code: Equivalenze"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Una <a href="/wiki/Biiezione" class="mw-redirect" title="Biiezione">biiezione</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> tra due spazi metrici <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M_{1},d_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M_{1},d_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94d3c0aca0772489db301d6c287dc52c5545bc75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.415ex; height:2.843ex;" alt="{\displaystyle (M_{1},d_{1})}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M_{2},d_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M_{2},d_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b05a4c68a67ff10c60270286f08ee4917de29200" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.415ex; height:2.843ex;" alt="{\displaystyle (M_{2},d_{2})}"></span> si dice </p> <ul><li>una <a href="/wiki/Isometria" title="Isometria">isometria</a> se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{2}(f(x),f(y))=d_{1}(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{2}(f(x),f(y))=d_{1}(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cb738b19f7a02611c7a0e7c5d23018f8bfb8c94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.457ex; height:2.843ex;" alt="{\displaystyle d_{2}(f(x),f(y))=d_{1}(x,y)}"></span> per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ea0abffd33a692ded22accc104515a032851dff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.519ex; height:2.009ex;" alt="{\displaystyle x,y}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/577d686fc81d1d1eb3ae54e78aeee8957baf6718" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.308ex; height:2.509ex;" alt="{\displaystyle M_{1}}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5d4dffae5ee0db4cc433e252ee9ed7530e5cf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.308ex; height:2.509ex;" alt="{\displaystyle M_{2}}"></span> sono <i>isometrici</i>).</li> <li>una <a href="/wiki/Similitudine_(geometria)" title="Similitudine (geometria)">similitudine</a> se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{2}(f(x),f(y))=kd_{1}(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{2}(f(x),f(y))=kd_{1}(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f25c874c45752a0df09497543b08624d1b423d0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.669ex; height:2.843ex;" alt="{\displaystyle d_{2}(f(x),f(y))=kd_{1}(x,y)}"></span> per qualche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27b3af208b148139eefc03f0f80fa94c38c5af45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.472ex; height:2.176ex;" alt="{\displaystyle k&gt;0}"></span>, per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ea0abffd33a692ded22accc104515a032851dff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.519ex; height:2.009ex;" alt="{\displaystyle x,y}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/577d686fc81d1d1eb3ae54e78aeee8957baf6718" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.308ex; height:2.509ex;" alt="{\displaystyle M_{1}}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5d4dffae5ee0db4cc433e252ee9ed7530e5cf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.308ex; height:2.509ex;" alt="{\displaystyle M_{2}}"></span> sono <i>simili</i>).</li> <li>una <a href="/w/index.php?title=Uniformit%C3%A0&amp;action=edit&amp;redlink=1" class="new" title="Uniformità (la pagina non esiste)">uniformità</a> se è un <a href="/wiki/Isomorfismo" title="Isomorfismo">isomorfismo</a> tra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/577d686fc81d1d1eb3ae54e78aeee8957baf6718" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.308ex; height:2.509ex;" alt="{\displaystyle M_{1}}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5d4dffae5ee0db4cc433e252ee9ed7530e5cf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.308ex; height:2.509ex;" alt="{\displaystyle M_{2}}"></span> visti come <a href="/wiki/Spazio_uniforme" title="Spazio uniforme">spazi uniformi</a>.</li> <li>un <a href="/wiki/Omeomorfismo" title="Omeomorfismo">omeomorfismo</a> se è un <a href="/wiki/Isomorfismo" title="Isomorfismo">isomorfismo</a> tra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/577d686fc81d1d1eb3ae54e78aeee8957baf6718" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.308ex; height:2.509ex;" alt="{\displaystyle M_{1}}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5d4dffae5ee0db4cc433e252ee9ed7530e5cf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.308ex; height:2.509ex;" alt="{\displaystyle M_{2}}"></span> visti come spazi topologici (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/577d686fc81d1d1eb3ae54e78aeee8957baf6718" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.308ex; height:2.509ex;" alt="{\displaystyle M_{1}}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5d4dffae5ee0db4cc433e252ee9ed7530e5cf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.308ex; height:2.509ex;" alt="{\displaystyle M_{2}}"></span> sono <i>omeomorfi</i>).</li></ul> <div class="mw-heading mw-heading2"><h2 id="Distanza_tra_punti_e_insiemi_e_tra_insiemi">Distanza tra punti e insiemi e tra insiemi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=6" title="Modifica la sezione Distanza tra punti e insiemi e tra insiemi" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=6" title="Edit section&#039;s source code: Distanza tra punti e insiemi e tra insiemi"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Oltre alla distanza tra punti, in uno spazio metrico si possono introdurre altri concetti accessori, come la distanza <i>tra un punto e un insieme</i>, definita come </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x,E)=\inf _{y\in E}d(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">inf</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>E</mi> </mrow> </munder> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x,E)=\inf _{y\in E}d(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/537a1aa3f67a08111bd3a42519356eb70c08966f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.196ex; height:4.343ex;" alt="{\displaystyle \delta (x,E)=\inf _{y\in E}d(x,y)}"></span></dd></dl> <p>È <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x,E)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x,E)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5060c2c969b941f692c5c3c7239cc4724832cd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.258ex; height:2.843ex;" alt="{\displaystyle \delta (x,E)=0}"></span> se e solo se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> appartiene alla <a href="/wiki/Chiusura_(topologia)" title="Chiusura (topologia)">chiusura</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>. Per questa funzione vale una versione generale della <a href="/wiki/Disuguaglianza_triangolare" title="Disuguaglianza triangolare">disuguaglianza triangolare</a>, cioè </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x,E)\leq d(x,y)+\delta (y,E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x,E)\leq d(x,y)+\delta (y,E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/789890f889dad7081b2e28dc2bb3a3e671b5b5e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.303ex; height:2.843ex;" alt="{\displaystyle \delta (x,E)\leq d(x,y)+\delta (y,E)}"></span>.</dd></dl> <p>Si possono definire inoltre più <i>distanze tra insiemi</i>. </p> <ul><li>Una è definita come l'<a href="/wiki/Estremo_inferiore" class="mw-redirect" title="Estremo inferiore">estremo inferiore</a> della distanza tra due punti dei due insiemi:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(E,F)=\inf _{x\in E,y\in F}d(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">inf</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>E</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>F</mi> </mrow> </munder> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(E,F)=\inf _{x\in E,y\in F}d(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fe5b7b5e39add2497153e87087dac8663794af7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.499ex; height:4.343ex;" alt="{\displaystyle d(E,F)=\inf _{x\in E,y\in F}d(x,y)}"></span></dd></dl> <p>Questa definizione, che è molto intuitiva, si rivela però poco utile, perché è solo una <a href="/wiki/Distanza_(matematica)#Generalizzazioni" title="Distanza (matematica)">parametrica</a> simmetrica, cioè soddisfa solo la non negatività e l'"auto-distanza" nulla: due insiemi non coincidenti con <a href="/wiki/Intersezione_(insiemistica)" title="Intersezione (insiemistica)">intersezione</a> non vuota o che si toccano (cioè per esempio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [1,2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [1,2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f29a59e6206d7c2c77fcbb74d6295a233190475" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.91ex; height:2.843ex;" alt="{\displaystyle [1,2)}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2,3]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2,3]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d314fd895c3ff8bbf663247da7475abf0f432307" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.91ex; height:2.843ex;" alt="{\displaystyle (2,3]}"></span>) hanno distanza nulla. </p> <ul><li>Una definizione migliore è stata data da <a href="/wiki/Felix_Hausdorff" title="Felix Hausdorff">Felix Hausdorff</a> ed è la seguente:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(A,B)=\max\{e(A,B),e(B,A)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">max</mo> <mo fence="false" stretchy="false">{</mo> <mi>e</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>e</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>,</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(A,B)=\max\{e(A,B),e(B,A)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a4b3ecb09ded2a7de4b9c005d16b1322e554f8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.065ex; height:2.843ex;" alt="{\displaystyle H(A,B)=\max\{e(A,B),e(B,A)\}}"></span>,</dd></dl> <p>dove per evitare notazioni pesanti si è indicato con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle e(A,B)=\sup _{x\in A}\delta (x,B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>e</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mrow> </munder> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle e(A,B)=\sup _{x\in A}\delta (x,B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cc77b9c4e555ae38f679630741298739ef0d112" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.908ex; height:2.843ex;" alt="{\textstyle e(A,B)=\sup _{x\in A}\delta (x,B)}"></span> l'<i>eccedenza</i> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> è detta proprio <i><a href="/wiki/Distanza_di_Hausdorff" title="Distanza di Hausdorff">distanza di Hausdorff</a></i> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>. In generale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> è solo una pseudometrica: la sua restrizione ai sottoinsiemi <a href="/wiki/Insieme_chiuso" title="Insieme chiuso">chiusi</a> dello spazio metrico soddisfa però anche l'ultima proprietà mancante e la rende dunque una metrica su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{f}(X)=\{S\subseteq X:S\,{\mbox{chiuso}}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>S</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>X</mi> <mo>:</mo> <mi>S</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>chiuso</mtext> </mstyle> </mrow> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{f}(X)=\{S\subseteq X:S\,{\mbox{chiuso}}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/628e74560016c515e52775fb37020d9275a9d26f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.585ex; height:3.009ex;" alt="{\displaystyle P_{f}(X)=\{S\subseteq X:S\,{\mbox{chiuso}}\}}"></span>, sottoclasse dell'<a href="/wiki/Insieme_delle_parti" title="Insieme delle parti">insieme delle parti</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Limitatezza">Limitatezza</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=7" title="Modifica la sezione Limitatezza" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=7" title="Edit section&#039;s source code: Limitatezza"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r130657691">body:not(.skin-minerva) .mw-parser-output .vedi-anche{font-size:95%}</style><style data-mw-deduplicate="TemplateStyles:r139142988">.mw-parser-output .hatnote-content{align-items:center;display:flex}.mw-parser-output .hatnote-icon{flex-shrink:0}.mw-parser-output .hatnote-icon img{display:flex}.mw-parser-output .hatnote-text{font-style:italic}body:not(.skin-minerva) .mw-parser-output .hatnote{border:1px solid #CCC;display:flex;margin:.5em 0;padding:.2em .5em}body:not(.skin-minerva) .mw-parser-output .hatnote-text{padding-left:.5em}body.skin-minerva .mw-parser-output .hatnote-icon{padding-right:8px}body.skin-minerva .mw-parser-output .hatnote-icon img{height:auto;width:16px}body.skin--responsive .mw-parser-output .hatnote a.new{color:#d73333}body.skin--responsive .mw-parser-output .hatnote a.new:visited{color:#a55858}</style> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Insieme_limitato" title="Insieme limitato">Insieme limitato</a></b>.</span></div> </div> <p>Lo spazio metrico è la struttura più povera in cui si può cominciare a parlare di limitatezza di un insieme. Se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\subseteq X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\subseteq X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4359fae89639fe08a113bd9154bff6b52047c7c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.854ex; height:2.343ex;" alt="{\displaystyle E\subseteq X}"></span>, allora <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> si dice limitato secondo la metrica presente <i>d</i> se esiste un raggio finito M tale che </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\subset B_{d}(x,M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>&#x2282;<!-- ⊂ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\subset B_{d}(x,M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4aebe4485638eb1aeb2b434c0202b4f7b6bd337" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.345ex; height:2.843ex;" alt="{\displaystyle E\subset B_{d}(x,M)}"></span> per qualche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>.</dd></dl> <p>Ci sono altre definizioni equivalenti, cioè: </p> <ul><li>ponendo per definizione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle diam(E)=\sup _{x,y\in E}d(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>m</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>E</mi> </mrow> </munder> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle diam(E)=\sup _{x,y\in E}d(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8f1fa17c2adf454ad7322c26c9ab9222b49adf9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:27.203ex; height:3.176ex;" alt="{\textstyle diam(E)=\sup _{x,y\in E}d(x,y)}"></span> il <a href="/wiki/Diametro" title="Diametro">diametro</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>, se esso è un numero finito;</li> <li>se la sua <a href="/wiki/Chiusura_(topologia)" title="Chiusura (topologia)">chiusura</a> è limitata.</li></ul> <p>La nozione è però ovviamente dipendente dalla distanza che si pone sull'insieme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>: se per esempio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> è uno spazio illimitato con distanza <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>, esso ha diametro 1 nella distanza <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d'={d \over 1+d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mn>1</mn> <mo>+</mo> <mi>d</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d'={d \over 1+d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c2eabbb34795f80161a7968856e30a393dd77a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:11.056ex; height:5.676ex;" alt="{\displaystyle d&#039;={d \over 1+d}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Spazi_metrici_prodotto">Spazi metrici prodotto</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=8" title="Modifica la sezione Spazi metrici prodotto" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=8" title="Edit section&#039;s source code: Spazi metrici prodotto"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\dots ,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\dots ,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38ed92ce88f900210607bbb8f4d66e14d52d7a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.299ex; height:2.509ex;" alt="{\displaystyle X_{1},\dots ,X_{n}}"></span> sono spazi metrici con distanze <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{1},\dots ,g_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{1},\dots ,g_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ab736e4d81fa410e1a1f5971ce627bf1aa00a92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.669ex; height:2.009ex;" alt="{\displaystyle g_{1},\dots ,g_{n}}"></span> rispettivamente allora si può definire una metrica nel <a href="/wiki/Prodotto_cartesiano" title="Prodotto cartesiano">prodotto cartesiano</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}\times \dots \times X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}\times \dots \times X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ff15ea6ed20dbacd07a87b7e2994db36f9a3282" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.525ex; height:2.509ex;" alt="{\displaystyle X_{1}\times \dots \times X_{n}}"></span> tra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {x}}=(x_{1},\dots ,x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {x}}=(x_{1},\dots ,x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0a328cea1d32a254b4491c73047468ea335b1c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.348ex; height:2.843ex;" alt="{\displaystyle {\vec {x}}=(x_{1},\dots ,x_{n})}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {y}}=(y_{1},\dots ,y_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {y}}=(y_{1},\dots ,y_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c57d2104f58638cfaa662cefeba31cd795db5cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.902ex; height:2.843ex;" alt="{\displaystyle {\vec {y}}=(y_{1},\dots ,y_{n})}"></span> come </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g_{1}\times \dots \times g_{n})({\vec {x}},{\vec {y}}):=\sum _{i=1}^{n}{1 \over 2^{i}}{g_{i}(x_{i},y_{i}) \over 1+g_{i}(x_{i},y_{i})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>:=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g_{1}\times \dots \times g_{n})({\vec {x}},{\vec {y}}):=\sum _{i=1}^{n}{1 \over 2^{i}}{g_{i}(x_{i},y_{i}) \over 1+g_{i}(x_{i},y_{i})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11912623b032e8f26f4474bee96035b303c0c358" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.086ex; height:6.843ex;" alt="{\displaystyle (g_{1}\times \dots \times g_{n})({\vec {x}},{\vec {y}}):=\sum _{i=1}^{n}{1 \over 2^{i}}{g_{i}(x_{i},y_{i}) \over 1+g_{i}(x_{i},y_{i})}}"></span>.</dd></dl> <p>La formula può essere estesa anche per prodotti <a href="/wiki/Insieme_numerabile" title="Insieme numerabile">numerabili</a>. </p><p>In generale, se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> è una <a href="/wiki/Norma_(matematica)" title="Norma (matematica)">norma</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>, allora si può definire la <i>metrica normata</i> nel prodotto cartesiano come </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N(d_{1},\dots ,d_{n}){\Big (}(x_{1},\dots ,x_{n}),(y_{1},\ldots ,y_{n}){\Big )}=N{\Big (}d_{1}(x_{1},y_{1}),\ldots ,d_{n}(x_{n},y_{n}){\Big )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mo>=</mo> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N(d_{1},\dots ,d_{n}){\Big (}(x_{1},\dots ,x_{n}),(y_{1},\ldots ,y_{n}){\Big )}=N{\Big (}d_{1}(x_{1},y_{1}),\ldots ,d_{n}(x_{n},y_{n}){\Big )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60305e87cbd9ecff874c485eb4551e3b812e8ae9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:73.985ex; height:4.843ex;" alt="{\displaystyle N(d_{1},\dots ,d_{n}){\Big (}(x_{1},\dots ,x_{n}),(y_{1},\ldots ,y_{n}){\Big )}=N{\Big (}d_{1}(x_{1},y_{1}),\ldots ,d_{n}(x_{n},y_{n}){\Big )}}"></span></dd></dl> <p>e la topologia generata è coerente con la <a href="/wiki/Topologia_prodotto" title="Topologia prodotto">topologia prodotto</a>. </p><p>Come caso particolare, se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a02c8bd752d2cc859747ca1f3a508281bdbc3b34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=2}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}=X_{2}=X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}=X_{2}=X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64b68d46539eefa70480bb415b45fe10de032b8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.134ex; height:2.509ex;" alt="{\displaystyle X_{1}=X_{2}=X}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}=d_{2}=d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}=d_{2}=d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/564b0f4a4b8103f4c77b5e54bb5ac8e0dfdfc079" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.939ex; height:2.509ex;" alt="{\displaystyle d_{1}=d_{2}=d}"></span> allora viene fuori che la funzione distanza <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\colon X\times X\to \mathbb {R} ^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>&#x003A;<!-- : --></mo> <mi>X</mi> <mo>&#x00D7;<!-- × --></mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\colon X\times X\to \mathbb {R} ^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43a60abe0925792a644fa0cfefba22b98372e60a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.853ex; height:2.509ex;" alt="{\displaystyle d\colon X\times X\to \mathbb {R} ^{+}}"></span> è <a href="/wiki/Continuit%C3%A0_uniforme" title="Continuità uniforme">uniformemente continua</a> rispetto ogni metrica normata e dunque è una <a href="/wiki/Funzione_continua" title="Funzione continua">funzione continua</a> rispetto alla topologia prodotto su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\times X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x00D7;<!-- × --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\times X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0008a48abb9837a4cb0f495dd85d0ffda22ead92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.8ex; height:2.176ex;" alt="{\displaystyle X\times X}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Esempi_di_spazi_metrici">Esempi di spazi metrici</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=9" title="Modifica la sezione Esempi di spazi metrici" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=9" title="Edit section&#039;s source code: Esempi di spazi metrici"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Lo <a href="/wiki/Spazio_euclideo" title="Spazio euclideo">spazio euclideo</a> con la <a href="/wiki/Distanza_euclidea" title="Distanza euclidea">normale nozione di distanza</a>.</li> <li>Un insieme qualsiasi con la distanza definita nel modo seguente: la distanza tra due punti è <a href="/wiki/Uno" class="mw-redirect" title="Uno">1</a> se i punti sono diversi, <a href="/wiki/Zero" class="mw-redirect" title="Zero">0</a> altrimenti; in questo caso si dice distanza discreta.</li> <li>L'insieme delle <a href="/wiki/Funzione_continua" title="Funzione continua">funzioni continue</a> nell'<a href="/wiki/Intervallo_(matematica)" title="Intervallo (matematica)">intervallo</a> [0,1] è metrizzabile con la seguente metrica: date due funzioni <i>f</i><sub>1</sub>, <i>f</i><sub>2</sub> della variabile <i>x</i> il numero <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=\max |f_{1}(x)-f_{2}(x)|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=\max |f_{1}(x)-f_{2}(x)|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5582c933ffed23f3467352c9930f1d5a8da7fe4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.826ex; height:2.843ex;" alt="{\displaystyle d=\max |f_{1}(x)-f_{2}(x)|}"></span> è la distanza tra esse.</li> <li>Un sottoinsieme di uno spazio metrico si può considerare anch'esso in modo naturale uno spazio metrico: basta munirlo della opportuna restrizione della funzione distanza dello spazio di partenza. Quindi qualsiasi sottoinsieme dello spazio euclideo è un esempio di spazio metrico.</li> <li>Ogni <a href="/wiki/Spazio_normato" title="Spazio normato">spazio normato</a> è uno spazio metrico, dove la distanza tra due punti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ea0abffd33a692ded22accc104515a032851dff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.519ex; height:2.009ex;" alt="{\displaystyle x,y}"></span> è data dalla norma del vettore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x-y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x-y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3129cb3620bd9f38d0304a0fca719644d7d2d265" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.326ex; height:2.343ex;" alt="{\displaystyle x-y}"></span>. In questi casi si dice che la metrica è indotta dalla norma. Non vale però il viceversa, esistono cioè spazi metrici la cui metrica non può derivare da una norma, come mostra il prossimo esempio.</li> <li>L'<a href="/wiki/Numero_reale" title="Numero reale">insieme dei numeri reali</a>, con la distanza data da</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=|\arctan(x)-\arctan(y)|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=|\arctan(x)-\arctan(y)|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d111e54fda783e134f5c91e2455b990477d7ddea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.847ex; height:2.843ex;" alt="{\displaystyle d(x,y)=|\arctan(x)-\arctan(y)|.}"></span></dd></dl> <p>Questa distanza, diversa da quella standard, non può essere indotta da una norma, in quanto non è invariante per <a href="/wiki/Traslazione_(geometria)" title="Traslazione (geometria)">traslazioni</a> (ovvero <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x+z,y+z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>z</mi> <mo>,</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x+z,y+z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c891f4df54337f757d017f62377a7160b49e49c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.401ex; height:2.843ex;" alt="{\displaystyle d(x+z,y+z)}"></span> è in generale diversa da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3772957879a8bbf7946bddf5743c508a1d5072c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.544ex; height:2.843ex;" alt="{\displaystyle d(x,y)}"></span>), mentre tutte le distanze indotte da norme lo sono. </p> <ul><li>Se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X,d)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X,d)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb4d7a16bca9e216c0221b43a1c3377aa5e358b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.039ex; height:2.843ex;" alt="{\displaystyle (X,d)}"></span> è uno spazio metrico, allora è possibile definire una nuova metrica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cccb5a6a2f1acab4ca255e0be86c224ed82282a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{1}}"></span> su <i>X</i> tale che qualunque coppia di punti di <i>X</i> abbia distanza minore o uguale a 1. Basta infatti prendere</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}(x,y)={\frac {d(x,y)}{d(x,y)+1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}(x,y)={\frac {d(x,y)}{d(x,y)+1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07c0dfc834ddc12692f9a97f8c0bda931f8b936d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.72ex; height:6.509ex;" alt="{\displaystyle d_{1}(x,y)={\frac {d(x,y)}{d(x,y)+1}}.}"></span></dd></dl> <p>Si può verificare che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cccb5a6a2f1acab4ca255e0be86c224ed82282a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{1}}"></span> è ancora una metrica su <i>X</i>. Inoltre se <i>X</i> è <a href="/wiki/Insieme_limitato" title="Insieme limitato">illimitato</a> rispetto alla metrica <i>d</i>, risulta avere <a href="/wiki/Diametro" title="Diametro">diametro</a> 1 nella metrica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cccb5a6a2f1acab4ca255e0be86c224ed82282a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{1}}"></span>, ovvero risulta <a href="/wiki/Insieme_limitato" title="Insieme limitato">limitato</a> nella metrica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cccb5a6a2f1acab4ca255e0be86c224ed82282a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{1}}"></span>. La nozione di limitatezza di un insieme non è dunque un concetto "assoluto". </p> <div class="mw-heading mw-heading2"><h2 id="Note">Note</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=10" title="Modifica la sezione Note" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=10" title="Edit section&#039;s source code: Note"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-def-1"><a href="#cite_ref-def_1-0"><b>^</b></a> <span class="reference-text"><cite class="citation cita" style="font-style:normal"><a href="#CITEREFrudin">W. Rudin</a>,&#160;Pag. 9</cite>.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliografia">Bibliografia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=11" title="Modifica la sezione Bibliografia" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=11" title="Edit section&#039;s source code: Bibliografia"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Athanase Papadopoulos, <i>Metric Spaces, Convexity and Nonpositive Curvature</i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">European Mathematical Society</a>, 2004, SBN 978-3-03719-010-4.</li> <li><cite id="CITEREFrudin" class="citation libro" style="font-style:normal"> Walter Rudin, <span style="font-style:italic;">Real and Complex Analysis</span>, Mladinska Knjiga, McGraw-Hill, 1970, <a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/Speciale:RicercaISBN/0-07-054234-1" title="Speciale:RicercaISBN/0-07-054234-1">0-07-054234-1</a>.</cite></li></ul> <div class="mw-heading mw-heading2"><h2 id="Voci_correlate">Voci correlate</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=12" title="Modifica la sezione Voci correlate" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=12" title="Edit section&#039;s source code: Voci correlate"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Spazio_pseudometrico" title="Spazio pseudometrico">Spazio pseudometrico</a></li> <li><a href="/wiki/Spazio_ultrametrico" title="Spazio ultrametrico">Spazio ultrametrico</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Altri_progetti">Altri progetti</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=13" title="Modifica la sezione Altri progetti" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=13" title="Edit section&#039;s source code: Altri progetti"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div id="interProject" class="toccolours" style="display: none; clear: both; margin-top: 2em"><p id="sisterProjects" style="background-color: #efefef; color: black; font-weight: bold; margin: 0"><span>Altri progetti</span></p><ul title="Collegamenti verso gli altri progetti Wikimedia"> <li class="" title=""><a href="https://it.wikiversity.org/wiki/Spazi_metrici" class="extiw" title="v:Spazi metrici">Wikiversità</a></li> <li class="" title=""><span class="plainlinks" title="commons:Category:Metric geometry"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Metric_geometry?uselang=it">Wikimedia Commons</a></span></li></ul></div> <ul><li><span typeof="mw:File"><a href="https://it.wikiversity.org/wiki/" title="Collabora a Wikiversità"><img alt="Collabora a Wikiversità" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/18px-Wikiversity_logo_2017.svg.png" decoding="async" width="18" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/27px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/36px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></a></span> <a href="https://it.wikiversity.org/wiki/" class="extiw" title="v:">Wikiversità</a> contiene risorse su <b><a href="https://it.wikiversity.org/wiki/Spazi_metrici" class="extiw" title="v:Spazi metrici">spazio metrico</a></b></li> <li><span typeof="mw:File"><a href="https://commons.wikimedia.org/wiki/?uselang=it" title="Collabora a Wikimedia Commons"><img alt="Collabora a Wikimedia Commons" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png" decoding="async" width="18" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/27px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/36px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> <span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/?uselang=it">Wikimedia Commons</a></span> contiene immagini o altri file su <b><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Metric_geometry?uselang=it">spazio metrico</a></span></b></li></ul> <div class="mw-heading mw-heading2"><h2 id="Collegamenti_esterni">Collegamenti esterni</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_metrico&amp;veaction=edit&amp;section=14" title="Modifica la sezione Collegamenti esterni" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_metrico&amp;action=edit&amp;section=14" title="Edit section&#039;s source code: Collegamenti esterni"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li class="mw-empty-elt"></li> <li><cite id="CITEREFEnciclopedia_della_scienza_e_della_tecnica" class="citation libro" style="font-style:normal"> Luca Tomassini, <a rel="nofollow" class="external text" href="https://www.treccani.it/enciclopedia/spazio-metrico_(Enciclopedia-della-Scienza-e-della-Tecnica)/"><span style="font-style:italic;">spazio metrico</span></a>, in <span style="font-style:italic;">Enciclopedia della scienza e della tecnica</span>, <a href="/wiki/Istituto_dell%27Enciclopedia_Italiana" title="Istituto dell&#39;Enciclopedia Italiana">Istituto dell'Enciclopedia Italiana</a>, 2007-2008.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q180953#P10037" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFEnciclopedia_della_Matematica" class="citation libro" style="font-style:normal"> <a rel="nofollow" class="external text" href="https://www.treccani.it/enciclopedia/spazio-metrico_(Enciclopedia-della-Matematica)/"><span style="font-style:italic;">spazio metrico</span></a>, in <span style="font-style:italic;">Enciclopedia della Matematica</span>, <a href="/wiki/Istituto_dell%27Enciclopedia_Italiana" title="Istituto dell&#39;Enciclopedia Italiana">Istituto dell'Enciclopedia Italiana</a>, 2013.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q180953#P9621" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFBritannica.com" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Stephan C. Carlson, <a rel="nofollow" class="external text" href="https://www.britannica.com/topic/metric-space"><span style="font-style:italic;">metric space</span></a>, su <span style="font-style:italic;"><a href="/wiki/Enciclopedia_Britannica" title="Enciclopedia Britannica">Enciclopedia Britannica</a></span>, Encyclopædia Britannica, Inc.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q180953#P1417" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFOpen_Library" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://openlibrary.org/subjects/metric_spaces"><span style="font-style:italic;">Opere riguardanti Metric spaces</span></a>, su <span style="font-style:italic;"><a href="/wiki/Open_Library" class="mw-redirect" title="Open Library">Open Library</a></span>, <a href="/wiki/Internet_Archive" title="Internet Archive">Internet Archive</a>.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q180953#P3847" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFMathWorld" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Eric W. Weisstein, <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/MetricSpace.html"><span style="font-style:italic;">Metric Space</span></a>, su <span style="font-style:italic;"><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></span>, Wolfram Research.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q180953#P2812" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFSpringerEOM" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Metric_space"><span style="font-style:italic;">Metric space</span></a>, su <span style="font-style:italic;"><a href="/wiki/Encyclopaedia_of_Mathematics" title="Encyclopaedia of Mathematics">Encyclopaedia of Mathematics</a></span>, Springer e European Mathematical Society.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q180953#P7554" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFFOLDOC" class="citation testo" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Denis Howe, <span style="font-style:italic;"><a href="https://foldoc.org/metric_space" class="extiw" title="foldoc:metric space">metric space</a></span>, in <span style="font-style:italic;"><a href="/wiki/Free_On-line_Dictionary_of_Computing" title="Free On-line Dictionary of Computing">Free On-line Dictionary of Computing</a></span>.</cite> Disponibile con licenza <a href="/wiki/GNU_Free_Documentation_License" title="GNU Free Documentation License">GFDL</a></li></ul> <style data-mw-deduplicate="TemplateStyles:r141815314">.mw-parser-output .navbox{border:1px solid #aaa;clear:both;margin:auto;padding:2px;width:100%}.mw-parser-output .navbox th{padding-left:1em;padding-right:1em;text-align:center}.mw-parser-output .navbox>tbody>tr:first-child>th{background:#ccf;font-size:90%;width:100%;color:var(--color-base,black)}.mw-parser-output .navbox_navbar{float:left;margin:0;padding:0 10px 0 0;text-align:left;width:6em}.mw-parser-output .navbox_title{font-size:110%}.mw-parser-output .navbox_abovebelow{background:#ddf;font-size:90%;font-weight:normal}.mw-parser-output .navbox_group{background:#ddf;font-size:90%;padding:0 10px;white-space:nowrap}.mw-parser-output .navbox_list{font-size:90%;width:100%}.mw-parser-output .navbox_list a{white-space:nowrap}html:not(.vector-feature-night-mode-enabled) .mw-parser-output .navbox_odd{background:#fdfdfd;color:var(--color-base,black)}html:not(.vector-feature-night-mode-enabled) .mw-parser-output .navbox_even{background:#f7f7f7;color:var(--color-base,black)}.mw-parser-output .navbox a.mw-selflink{color:var(--color-base,black)}.mw-parser-output .navbox_center{text-align:center}.mw-parser-output .navbox .navbox_image{padding-left:7px;vertical-align:middle;width:0}.mw-parser-output .navbox+.navbox{margin-top:-1px}.mw-parser-output .navbox .mw-collapsible-toggle{font-weight:normal;text-align:right;width:7em}body.skin--responsive .mw-parser-output .navbox_image img{max-width:none!important}.mw-parser-output .subnavbox{margin:-3px;width:100%}.mw-parser-output .subnavbox_group{background:#e6e6ff;padding:0 10px}@media screen{html.skin-theme-clientpref-night .mw-parser-output .navbox>tbody>tr:first-child>th{background:var(--background-color-interactive)!important}html.skin-theme-clientpref-night .mw-parser-output .navbox th{color:var(--color-base)!important}html.skin-theme-clientpref-night .mw-parser-output .navbox_abovebelow,html.skin-theme-clientpref-night .mw-parser-output .navbox_group{background:var(--background-color-interactive-subtle)!important}html.skin-theme-clientpref-night .mw-parser-output .subnavbox_group{background:var(--background-color-neutral-subtle)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbox>tbody>tr:first-child>th{background:var(--background-color-interactive)!important}html.skin-theme-clientpref-os .mw-parser-output .navbox th{color:var(--color-base)!important}html.skin-theme-clientpref-os .mw-parser-output .navbox_abovebelow,html.skin-theme-clientpref-os .mw-parser-output .navbox_group{background:var(--background-color-interactive-subtle)!important}html.skin-theme-clientpref-os .mw-parser-output .subnavbox_group{background:var(--background-color-neutral-subtle)!important}}</style><table class="navbox mw-collapsible mw-collapsed noprint metadata" id="navbox-Topologia"><tbody><tr><th colspan="3"><div class="navbox_navbar"><div class="noprint plainlinks" style="background-color:transparent; padding:0; font-size:xx-small; color:var(--color-base, #000000); white-space:nowrap;"><a href="/wiki/Template:Topologia" title="Template:Topologia"><span title="Vai alla pagina del template">V</span></a>&#160;·&#160;<a href="/w/index.php?title=Discussioni_template:Topologia&amp;action=edit&amp;redlink=1" class="new" title="Discussioni template:Topologia (la pagina non esiste)"><span title="Discuti del template">D</span></a>&#160;·&#160;<a class="external text" href="https://it.wikipedia.org/w/index.php?title=Template:Topologia&amp;action=edit"><span title="Modifica il template. Usa l&#39;anteprima prima di salvare">M</span></a></div></div><span class="navbox_title"><a href="/wiki/Topologia" title="Topologia">Topologia</a></span></th></tr><tr><th colspan="1" class="navbox_group" style="text-align:right;">Concetti di <a href="/wiki/Topologia_generale" title="Topologia generale">Topologia generale</a></th><td colspan="1" class="navbox_list navbox_odd"><table class="subnavbox"><tbody><tr><td colspan="2" class="navbox_center"><a href="/wiki/Spazio_topologico" title="Spazio topologico">Spazio topologico</a><b>&#160;·</b> <a href="/wiki/Base_(topologia)" title="Base (topologia)">Base</a><b>&#160;·</b> <a href="/wiki/Prebase" title="Prebase">Prebase</a><b>&#160;·</b> <a href="/wiki/Ricoprimento" title="Ricoprimento">Ricoprimento</a><b>&#160;·</b> <a href="/wiki/Assiomi_di_chiusura_di_Kuratowski" title="Assiomi di chiusura di Kuratowski">Assiomi di chiusura di Kuratowski</a><b>&#160;·</b> <a href="/wiki/Invariante_topologico" title="Invariante topologico">Invariante topologico</a><b>&#160;·</b> <a href="/wiki/Relazione_di_finezza" title="Relazione di finezza">Relazione di finezza</a><b>&#160;·</b> <a href="/wiki/Partizione_dell%27unit%C3%A0" title="Partizione dell&#39;unità">Partizione dell'unità</a><b>&#160;·</b> <a href="/wiki/Propriet%C3%A0_dell%27intersezione_finita" title="Proprietà dell&#39;intersezione finita">Proprietà dell'intersezione finita</a></td></tr><tr><th class="subnavbox_group">Sottoinsiemi</th><td colspan="1"><a href="/wiki/Intervallo_(matematica)" title="Intervallo (matematica)">Intervallo</a><b>&#160;·</b> <a href="/wiki/Insieme_aperto" title="Insieme aperto">Aperto</a><b>&#160;·</b> <a href="/wiki/Intorno" title="Intorno">Intorno</a><b>&#160;·</b> <a href="/wiki/Insieme_chiuso" title="Insieme chiuso">Chiuso</a><b>&#160;·</b> <a href="/wiki/Insieme_localmente_chiuso" title="Insieme localmente chiuso">Insieme localmente chiuso</a><b>&#160;·</b> <a href="/wiki/Insieme_chiuso-aperto" title="Insieme chiuso-aperto">Insieme chiuso-aperto</a><b>&#160;·</b> <a href="/wiki/Parte_interna" title="Parte interna">Parte interna</a><b>&#160;·</b> <a href="/wiki/Chiusura_(topologia)" title="Chiusura (topologia)">Chiusura</a><b>&#160;·</b> <a href="/wiki/Frontiera_(topologia)" title="Frontiera (topologia)">Frontiera</a><b>&#160;·</b> <a href="/wiki/Insieme_derivato" title="Insieme derivato">Insieme derivato</a><b>&#160;·</b> <a href="/wiki/Insieme_limite" title="Insieme limite">Insieme limite</a><b>&#160;·</b> <a href="/wiki/Insieme_perfetto" title="Insieme perfetto">Insieme perfetto</a><b>&#160;·</b> <a href="/wiki/Insieme_denso" title="Insieme denso">Insieme denso</a><b>&#160;·</b> <a href="/wiki/Insieme_mai_denso" title="Insieme mai denso">Insieme mai denso</a></td></tr><tr><th class="subnavbox_group">Punti</th><td colspan="1"><a href="/wiki/Punto_isolato" title="Punto isolato">Punto isolato</a><b>&#160;·</b> <a href="/wiki/Punto_di_accumulazione" title="Punto di accumulazione">Punto di accumulazione</a><b>&#160;·</b> <a href="/wiki/Punto_di_aderenza" title="Punto di aderenza">Punto di aderenza</a></td></tr><tr><th class="subnavbox_group">Funzioni</th><td colspan="1"><a href="/wiki/Funzione_continua" title="Funzione continua">Funzione continua</a><b>&#160;·</b> <a href="/wiki/Omeomorfismo" title="Omeomorfismo">Omeomorfismo</a><b>&#160;·</b> <a href="/wiki/Funzione_aperta" title="Funzione aperta">Funzione aperta</a><b>&#160;·</b> <a href="/wiki/Funzione_chiusa" title="Funzione chiusa">Funzione chiusa</a><b>&#160;·</b> <a href="/wiki/Funzione_propria" title="Funzione propria">Funzione propria</a><b>&#160;·</b> <a href="/wiki/Contrazione_(matematica)" title="Contrazione (matematica)">Contrazione</a><b>&#160;·</b> <a href="/wiki/Retrazione" title="Retrazione">Retrazione</a><b>&#160;·</b> <a href="/wiki/Germe_di_funzione" title="Germe di funzione">Germe di funzione</a><b>&#160;·</b> <a href="/wiki/Funzione_a_supporto_compatto" title="Funzione a supporto compatto">Funzione a supporto compatto</a></td></tr><tr><th class="subnavbox_group">Successioni</th><td colspan="1"><a href="/wiki/Limite_(matematica)" title="Limite (matematica)">Limite</a><b>&#160;·</b> <a href="/wiki/Limite_di_una_successione" title="Limite di una successione">Limite di una successione</a><b>&#160;·</b> <a href="/wiki/Successione_(matematica)" title="Successione (matematica)">Successione</a><b>&#160;·</b> <a href="/wiki/Rete_(matematica)" title="Rete (matematica)">Rete</a><b>&#160;·</b> <a href="/wiki/Convergenza" title="Convergenza">Convergenza</a><b>&#160;·</b> <a href="/wiki/Successione_di_Cauchy" title="Successione di Cauchy">Successione di Cauchy</a></td></tr><tr><th class="subnavbox_group">Teoremi</th><td colspan="1"><a href="/wiki/Teorema_di_Weierstrass" title="Teorema di Weierstrass">Teorema di Weierstrass</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Heine-Borel" title="Teorema di Heine-Borel">Heine-Borel</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Tichonov" title="Teorema di Tichonov">Tichonov</a><b>&#160;·</b> <a href="/wiki/Lemma_del_tubo" title="Lemma del tubo">Lemma del tubo</a><b>&#160;·</b> <a href="/wiki/Lemma_di_Urysohn" title="Lemma di Urysohn">Urysohn</a><b>&#160;·</b> <a href="/wiki/Teorema_di_estensione_di_Tietze" title="Teorema di estensione di Tietze">Tietze</a><b>&#160;·</b> <a href="/wiki/Teorema_della_categoria_di_Baire" title="Teorema della categoria di Baire">Baire</a><b>&#160;·</b> <a href="/wiki/Teorema_del_punto_fisso_di_Brouwer" title="Teorema del punto fisso di Brouwer">Brouwer</a><b>&#160;·</b> <a href="/wiki/Teoremi_di_punto_fisso" title="Teoremi di punto fisso">punto fisso</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Borsuk" title="Teorema di Borsuk">Teorema di Borsuk</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Borsuk-Ulam" title="Teorema di Borsuk-Ulam">Teorema di Borsuk-Ulam</a><b>&#160;·</b> <a href="/wiki/Teorema_della_curva_di_Jordan" title="Teorema della curva di Jordan">Teorema della curva di Jordan</a><b>&#160;·</b> <a href="/wiki/Teorema_della_mappa_di_Riemann" title="Teorema della mappa di Riemann">Teorema della mappa di Riemann</a></td></tr><tr><th class="subnavbox_group">Applicazioni pratiche</th><td colspan="1"><a href="/wiki/Topologia_dello_spazio-tempo" title="Topologia dello spazio-tempo">Topologia dello spazio-tempo</a><b>&#160;·</b> <a href="/wiki/Teoria_quantistica_dei_campi_topologica" title="Teoria quantistica dei campi topologica">Teoria quantistica dei campi topologica</a><b>&#160;·</b> <a href="/wiki/K-teoria_ritorta" title="K-teoria ritorta">K-teoria ritorta</a><b>&#160;·</b> <a href="/wiki/Topologia_di_rete" title="Topologia di rete">Topologia di rete</a><b>&#160;·</b> <a href="/wiki/Controllo_della_topologia" title="Controllo della topologia">Controllo della topologia</a><b>&#160;·</b> <a href="/wiki/Topologia_molecolare" title="Topologia molecolare">Topologia molecolare</a></td></tr></tbody></table></td><td rowspan="6" class="navbox_image"><span typeof="mw:File"><a href="/wiki/File:Torus.jpg" class="mw-file-description" title="Toro"><img alt="Toro" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Torus.jpg/100px-Torus.jpg" decoding="async" width="100" height="56" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Torus.jpg/150px-Torus.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/80/Torus.jpg/200px-Torus.jpg 2x" data-file-width="300" data-file-height="168" /></a></span></td></tr><tr><th colspan="1" class="navbox_group" style="text-align:right;">Spazi topologici</th><td colspan="1" class="navbox_list navbox_even"><table class="subnavbox"><tbody><tr><th class="subnavbox_group">Topologie classiche</th><td colspan="1"><a href="/wiki/Topologia_banale" title="Topologia banale">Topologia banale</a><b>&#160;·</b> <a href="/wiki/Spazio_di_Sierpi%C5%84ski" title="Spazio di Sierpiński">Spazio di Sierpiński</a><b>&#160;·</b> <a href="/wiki/Topologia_cofinita" title="Topologia cofinita">Cofinita</a><b>&#160;·</b> <a href="/wiki/Topologia_della_semicontinuit%C3%A0_inferiore" title="Topologia della semicontinuità inferiore">Topologia della semicontinuità inferiore</a><b>&#160;·</b> <a href="/wiki/Topologia_di_Zariski" title="Topologia di Zariski">di Zariski</a><b>&#160;·</b> <a href="/wiki/Spazio_euclideo#Topologia_euclidea" title="Spazio euclideo">Euclidea</a><b>&#160;·</b> <a href="/wiki/Topologia_del_limite_inferiore" title="Topologia del limite inferiore">del limite inferiore</a> o di Sorgenfrey<b>&#160;·</b> <a href="/wiki/Topologia_discreta" title="Topologia discreta">Discreta</a><b>&#160;·</b> <a href="/wiki/Topologia_degli_interi_equispaziati" title="Topologia degli interi equispaziati">Topologia degli interi equispaziati</a><b>&#160;·</b> <a href="/wiki/Numero_reale#Insieme_reale_esteso" title="Numero reale">Insieme reale esteso</a><b>&#160;·</b> <a href="/wiki/Ordine_totale#Topologia_di_ordine" title="Ordine totale">Topologia di ordine</a><b>&#160;·</b> <a href="/wiki/Piano_di_Moore" title="Piano di Moore">Piano di Moore</a><b>&#160;·</b> <a href="/wiki/Numero_p-adico" title="Numero p-adico">Topologia p-adica</a></td></tr><tr><th class="subnavbox_group">Costruzioni topologiche</th><td colspan="1"><a href="/wiki/Topologia_prodotto" title="Topologia prodotto">Topologia prodotto</a><b>&#160;·</b> <a href="/wiki/Topologia_di_sottospazio" title="Topologia di sottospazio">Topologia di sottospazio</a><b>&#160;·</b> <a href="/wiki/Topologia_quoziente" title="Topologia quoziente">Topologia quoziente</a><b>&#160;·</b> <a href="/wiki/Compattificazione" title="Compattificazione">Compattificazione</a> (<a href="/wiki/Compattificazione_di_Alexandrov" title="Compattificazione di Alexandrov">di Alexandrov</a><b>&#160;·</b> <a href="/wiki/Compattificazione_di_Stone-%C4%8Cech" title="Compattificazione di Stone-Čech">di Stone-Čech</a>)<b>&#160;·</b> <a href="/wiki/Cono_(topologia)" title="Cono (topologia)">Cono</a><b>&#160;·</b> <a href="/wiki/Bouquet_(topologia)" title="Bouquet (topologia)">Bouquet</a><b>&#160;·</b> <a href="/wiki/Rosa_(topologia)" title="Rosa (topologia)">Rosa</a><b>&#160;·</b> <a href="/wiki/Sospensione_(matematica)" title="Sospensione (matematica)">Sospensione</a></td></tr><tr><th class="subnavbox_group">Topologie in <a href="/wiki/Analisi_funzionale" title="Analisi funzionale">Analisi funzionale</a></th><td colspan="1"><a href="/wiki/Spazio_funzionale" title="Spazio funzionale">Spazio funzionale</a><b>&#160;·</b> <a href="/wiki/Topologia_iniziale" title="Topologia iniziale">Topologia iniziale</a> o debole<b>&#160;·</b> <a href="/wiki/Topologia_operatoriale" title="Topologia operatoriale">Topologia operatoriale</a><b>&#160;·</b> <a href="/wiki/Topologia_finale" title="Topologia finale">Topologia finale</a> o forte<b>&#160;·</b> <a href="/wiki/Topologia_di_Mackey" title="Topologia di Mackey">Topologia di Mackey</a><b>&#160;·</b> <a href="/wiki/Topologia_polare" title="Topologia polare">Topologia polare</a><b>&#160;·</b> <a href="/wiki/Topologie_operatoriali_debole_e_forte" title="Topologie operatoriali debole e forte">Topologie operatoriali debole e forte</a></td></tr><tr><th class="subnavbox_group">Altri oggetti topologici</th><td colspan="1"><a href="/wiki/Sfera" title="Sfera">Sfera</a><b>&#160;·</b> <a href="/wiki/Palla_(matematica)" title="Palla (matematica)">Palla</a><b>&#160;·</b> <a href="/wiki/Toro_(geometria)" title="Toro (geometria)">Toro</a><b>&#160;·</b> <a href="/wiki/Corpo_con_manici" title="Corpo con manici">Corpo con manici</a><b>&#160;·</b> <a href="/wiki/Bottiglia_di_Klein" title="Bottiglia di Klein">Bottiglia di Klein</a><b>&#160;·</b> <a href="/wiki/Bottiglia_di_Klein_solida" title="Bottiglia di Klein solida">Bottiglia di Klein solida</a><b>&#160;·</b> <a href="/wiki/Anello_(topologia)" title="Anello (topologia)">Anello</a><b>&#160;·</b> <a href="/wiki/Nastro_di_M%C3%B6bius" title="Nastro di Möbius">Nastro di Möbius</a><b>&#160;·</b> <a href="/wiki/Retta_proiettiva" title="Retta proiettiva">Retta proiettiva</a><b>&#160;·</b> <a href="/wiki/Piano_proiettivo" title="Piano proiettivo">Piano proiettivo</a><b>&#160;·</b> <a href="/wiki/Superficie_di_Riemann" title="Superficie di Riemann">Superficie di Riemann</a><b>&#160;·</b> <a href="/wiki/Teoria_dei_nodi" title="Teoria dei nodi">Nodo</a><b>&#160;·</b> <a href="/wiki/Nodo_torico" title="Nodo torico">Nodo torico</a><b>&#160;·</b> <a href="/wiki/Link_(teoria_dei_nodi)" title="Link (teoria dei nodi)">Link</a> <table class="subnavbox"><tbody><tr><th class="subnavbox_group"><a href="/wiki/Frattale" title="Frattale">Frattali</a></th><td colspan="1"><a href="/wiki/Insieme_di_Cantor" title="Insieme di Cantor">Insieme di Cantor</a><b>&#160;·</b> <a href="/wiki/Spazio_di_Cantor" title="Spazio di Cantor">Spazio di Cantor</a><b>&#160;·</b> <a href="/wiki/Polvere_di_Cantor" title="Polvere di Cantor">Polvere di Cantor</a><b>&#160;·</b> <a href="/wiki/Spugna_di_Menger" title="Spugna di Menger">Spugna di Menger</a><b>&#160;·</b> <a href="/wiki/Sfera_di_Alexander" title="Sfera di Alexander">Sfera di Alexander</a><b>&#160;·</b> <a href="/wiki/Curva_di_Peano" title="Curva di Peano">Curva di Peano</a><b>&#160;·</b> <a href="/wiki/Laghi_di_Wada" title="Laghi di Wada">Laghi di Wada</a></td></tr></tbody></table></td></tr><tr><th class="subnavbox_group">Strutture miste</th><td colspan="1"><a href="/wiki/Spazio_vettoriale_topologico" title="Spazio vettoriale topologico">Spazio vettoriale topologico</a><b>&#160;·</b> <a href="/wiki/Gruppo_topologico" title="Gruppo topologico">Gruppo topologico</a><b>&#160;·</b> <a href="/wiki/Gruppo_di_Lie" title="Gruppo di Lie">Gruppo di Lie</a><b>&#160;·</b> <a href="/wiki/Spazio_uniforme" title="Spazio uniforme">Spazio uniforme</a><b>&#160;·</b> <a href="/wiki/Algebra_di_Borel" title="Algebra di Borel">Algebra di Borel</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group" style="text-align:right;"><a href="/wiki/Propriet%C3%A0_(matematica)" title="Proprietà (matematica)">Proprietà</a> degli spazi topologici</th><td colspan="1" class="navbox_list navbox_odd"><table class="subnavbox"><tbody><tr><th class="subnavbox_group">Numerabilità</th><td colspan="1"><a href="/wiki/Assioma_di_numerabilit%C3%A0" title="Assioma di numerabilità">Assioma di numerabilità</a><b>&#160;·</b> <a href="/wiki/Spazio_primo-numerabile" title="Spazio primo-numerabile">Spazio primo-numerabile</a><b>&#160;·</b> <a href="/wiki/Spazio_separabile" title="Spazio separabile">Spazio separabile</a><b>&#160;·</b> <a href="/wiki/Spazio_sequenziale" title="Spazio sequenziale">Spazio sequenziale</a></td></tr><tr><th class="subnavbox_group">Separazione</th><td colspan="1"><a href="/wiki/Assioma_di_separazione" title="Assioma di separazione">Assioma di separazione</a><b>&#160;·</b> <a href="/wiki/Spazio_T0" title="Spazio T0">Spazio T0</a><b>&#160;·</b> <a href="/wiki/Spazio_T1" title="Spazio T1">Spazio T1</a><b>&#160;·</b> <a href="/wiki/Spazio_di_Hausdorff" title="Spazio di Hausdorff">Spazio di Hausdorff</a><b>&#160;·</b> <a href="/wiki/Spazio_regolare" title="Spazio regolare">Spazio regolare</a><b>&#160;·</b> <a href="/wiki/Spazio_di_Tichonov" title="Spazio di Tichonov">Spazio di Tichonov</a><b>&#160;·</b> <a href="/wiki/Spazio_normale" title="Spazio normale">Spazio normale</a></td></tr><tr><th class="subnavbox_group">Compattezza</th><td colspan="1"><a href="/wiki/Spazio_compatto" title="Spazio compatto">Spazio compatto</a><b>&#160;·</b> <a href="/wiki/Spazio_paracompatto" title="Spazio paracompatto">Spazio paracompatto</a><b>&#160;·</b> <a href="/wiki/Spazio_localmente_compatto" title="Spazio localmente compatto">Spazio localmente compatto</a><b>&#160;·</b> <a href="/wiki/Spazio_di_Lindel%C3%B6f" title="Spazio di Lindelöf">Spazio di Lindelöf</a><b>&#160;·</b> <a href="/wiki/Sottospazio_relativamente_compatto" title="Sottospazio relativamente compatto">Sottospazio relativamente compatto</a><b>&#160;·</b> <a href="/wiki/Immersione_compatta" title="Immersione compatta">Immersione compatta</a></td></tr><tr><th class="subnavbox_group">Connessione</th><td colspan="1"><a href="/wiki/Spazio_connesso" title="Spazio connesso">Spazio connesso</a><b>&#160;·</b> <a href="/wiki/Spazio_semplicemente_connesso" title="Spazio semplicemente connesso">Spazio semplicemente connesso</a></td></tr><tr><th class="subnavbox_group">Metrizzabilità</th><td colspan="1"><a class="mw-selflink selflink">Spazio metrico</a><b>&#160;·</b> <a href="/wiki/Spazio_metrico_completo" title="Spazio metrico completo">Spazio metrico completo</a><b>&#160;·</b> <a href="/wiki/Spazio_metrizzabile" title="Spazio metrizzabile">Spazio metrizzabile</a><b>&#160;·</b> <a href="/wiki/Spazio_ultrametrico" title="Spazio ultrametrico">Spazio ultrametrico</a><b>&#160;·</b> <a href="/wiki/Spazio_pseudometrico" title="Spazio pseudometrico">Spazio pseudometrico</a><b>&#160;·</b> <a href="/wiki/Spazio_polacco" title="Spazio polacco">Spazio polacco</a><b>&#160;·</b> <a href="/wiki/Spazio_normato" title="Spazio normato">Spazio normato</a><b>&#160;·</b> <a href="/wiki/Spazio_totalmente_limitato" title="Spazio totalmente limitato">Spazio totalmente limitato</a></td></tr><tr><th class="subnavbox_group">Altre proprietà</th><td colspan="1"><a href="/wiki/Spazio_di_Baire" title="Spazio di Baire">Spazio di Baire</a><b>&#160;·</b> <a href="/wiki/Spazio_topologico_noetheriano" title="Spazio topologico noetheriano">Spazio topologico noetheriano</a><b>&#160;·</b> <a href="/wiki/Spazio_omogeneo" title="Spazio omogeneo">Spazio omogeneo</a><b>&#160;·</b> <a href="/wiki/Orientazione" title="Orientazione">Orientazione</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group" style="text-align:right;"><a href="/wiki/Topologia_differenziale" title="Topologia differenziale">Topologia differenziale</a></th><td colspan="1" class="navbox_list navbox_even"><a href="/wiki/Variet%C3%A0_(geometria)" title="Varietà (geometria)">Varietà</a> (<a href="/wiki/Variet%C3%A0_differenziabile" title="Varietà differenziabile">differenziabile</a><b>&#160;·</b> <a href="/wiki/Variet%C3%A0_parallelizzabile" title="Varietà parallelizzabile">parallelizzabile</a><b>&#160;·</b> <a href="/wiki/3-variet%C3%A0" title="3-varietà">3-varietà</a><b>&#160;·</b> <a href="/wiki/3-variet%C3%A0_irriducibile" title="3-varietà irriducibile">3-varietà irriducibile</a>)<b>&#160;·</b> <a href="/wiki/Atlante_(topologia)" title="Atlante (topologia)">Atlante</a><b>&#160;·</b> <a href="/wiki/Diffeomorfismo" title="Diffeomorfismo">Diffeomorfismo</a> (<a href="/wiki/Diffeomorfismo_locale" title="Diffeomorfismo locale">locale</a><b>&#160;·</b> <a href="/wiki/Diffeomorfismo_di_Anosov" title="Diffeomorfismo di Anosov">di Anosov</a>)<b>&#160;·</b> <a href="/wiki/Immersione_(geometria)" title="Immersione (geometria)">Immersione</a><b>&#160;·</b> <a href="/wiki/Curva_(matematica)" title="Curva (matematica)">Curva</a><b>&#160;·</b> <a href="/wiki/Superficie" title="Superficie">Superficie</a><b>&#160;·</b> <a href="/wiki/Campo_vettoriale" title="Campo vettoriale">Campo vettoriale</a><b>&#160;·</b> <a href="/wiki/Fibrato" title="Fibrato">Fibrato</a> (<a href="/wiki/Fibrato_principale" title="Fibrato principale">principale</a><b>&#160;·</b> <a href="/wiki/Fibrato_vettoriale" title="Fibrato vettoriale">vettoriale</a><b>&#160;·</b> <a href="/wiki/Variet%C3%A0_fibrata" title="Varietà fibrata">Varietà fibrata</a>)<b>&#160;·</b> <a href="/wiki/Fibrato_tangente" title="Fibrato tangente">Fibrato tangente</a><b>&#160;·</b> <a href="/wiki/Spazio_tangente" title="Spazio tangente">Spazio tangente</a><b>&#160;·</b> <a href="/wiki/Fibrazione_di_Hopf" title="Fibrazione di Hopf">Fibrazione di Hopf</a><b>&#160;·</b> <a href="/wiki/Variet%C3%A0_con_bordo" title="Varietà con bordo">Varietà con bordo</a><b>&#160;·</b> <a href="/wiki/Teorema_dell%27intorno_tubolare" title="Teorema dell&#39;intorno tubolare">Teorema dell'intorno tubolare</a><b>&#160;·</b> <a href="/wiki/Somma_connessa" title="Somma connessa">Somma connessa</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Kneser-Milnor" title="Teorema di Kneser-Milnor">Teorema di Kneser-Milnor</a><b>&#160;·</b> <a href="/wiki/Congettura_di_geometrizzazione_di_Thurston" title="Congettura di geometrizzazione di Thurston">Congettura di geometrizzazione di Thurston</a><b>&#160;·</b> <a href="/wiki/Cobordismo" title="Cobordismo">Cobordismo</a><b>&#160;·</b> <a href="/wiki/Dimensione_topologica" title="Dimensione topologica">Dimensione topologica</a><b>&#160;·</b> <a href="/wiki/Topologia_in_dimensione_bassa" title="Topologia in dimensione bassa">Topologia in dimensione bassa</a><b>&#160;·</b> <a href="/wiki/Chirurgia_di_Dehn" title="Chirurgia di Dehn">Chirurgia di Dehn</a><b>&#160;·</b> <a href="/wiki/Trasversalit%C3%A0" title="Trasversalità">Trasversalità</a><b>&#160;·</b> <a href="/wiki/Eversione_della_sfera" title="Eversione della sfera">Eversione della sfera</a><b>&#160;·</b> <a href="/wiki/Teoria_delle_foliazioni" title="Teoria delle foliazioni">Teoria delle foliazioni</a><b>&#160;·</b> <a href="/wiki/Decomposizione_JSJ" title="Decomposizione JSJ">Decomposizione JSJ</a></td></tr><tr><th colspan="1" class="navbox_group" style="text-align:right;"><a href="/wiki/Topologia_algebrica" title="Topologia algebrica">Topologia algebrica</a></th><td colspan="1" class="navbox_list navbox_odd"><table class="subnavbox"><tbody><tr><th class="subnavbox_group">Fondamenti</th><td colspan="1"><a href="/wiki/Spazio_semplicemente_connesso" title="Spazio semplicemente connesso">Spazio semplicemente connesso</a><b>&#160;·</b> <a href="/wiki/Gruppo_fondamentale" title="Gruppo fondamentale">Gruppo fondamentale</a></td></tr><tr><th class="subnavbox_group">Omotopia</th><td colspan="1"><a href="/wiki/Arco_(topologia)" title="Arco (topologia)">Arco</a><b>&#160;·</b> <a href="/wiki/Nerbo_(matematica)" title="Nerbo (matematica)">Nerbo</a><b>&#160;·</b> <a href="/wiki/Omotopia" title="Omotopia">Omotopia</a><b>&#160;·</b> <a href="/wiki/Gruppi_di_omotopia" title="Gruppi di omotopia">Gruppi di omotopia</a></td></tr><tr><th class="subnavbox_group">Omologia e coomologia</th><td colspan="1"><a href="/wiki/Omologia_(topologia)" title="Omologia (topologia)">Omologia</a><b>&#160;·</b> <a href="/wiki/Omologia_singolare" title="Omologia singolare">Omologia singolare</a><b>&#160;·</b> <a href="/wiki/Omologia_ciclica" title="Omologia ciclica">Omologia ciclica</a><b>&#160;·</b> <a href="/wiki/Algebra_omologica" title="Algebra omologica">Algebra omologica</a><b>&#160;·</b> <a href="/wiki/Coomologia_di_De_Rham" title="Coomologia di De Rham">Coomologia di De Rham</a><b>&#160;·</b> <a href="/wiki/Categoria_abeliana" title="Categoria abeliana">Categoria abeliana</a></td></tr><tr><th class="subnavbox_group">Sollevamento</th><td colspan="1"><a href="/wiki/Sollevamento_(matematica)" title="Sollevamento (matematica)">Sollevamento</a><b>&#160;·</b> <a href="/wiki/Teorema_del_sollevamento_dell%27omotopia" title="Teorema del sollevamento dell&#39;omotopia">Teorema del sollevamento dell'omotopia</a><b>&#160;·</b> <a href="/wiki/Teorema_di_unicit%C3%A0_del_sollevamento" title="Teorema di unicità del sollevamento">Teorema di unicità del sollevamento</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Van_Kampen" title="Teorema di Van Kampen">Teorema di Van Kampen</a></td></tr><tr><th class="subnavbox_group">Topologia algebrica avanzata</th><td colspan="1"><a href="/wiki/Grado_topologico" title="Grado topologico">Grado topologico</a><b>&#160;·</b> <a href="/wiki/Indice_di_avvolgimento" title="Indice di avvolgimento">Indice di avvolgimento</a><b>&#160;·</b> <a href="/wiki/Indice_di_un_campo_vettoriale" title="Indice di un campo vettoriale">Indice di un campo vettoriale</a><b>&#160;·</b> <a href="/wiki/Rivestimento_(topologia)" title="Rivestimento (topologia)">Rivestimento</a><b>&#160;·</b> <a href="/wiki/Numero_di_Betti" title="Numero di Betti">Numero di Betti</a><b>&#160;·</b> <a href="/wiki/Successione_di_Mayer-Vietoris" title="Successione di Mayer-Vietoris">Successione di Mayer-Vietoris</a><b>&#160;·</b> <a href="/wiki/Successione_esatta" title="Successione esatta">Successione esatta</a><b>&#160;·</b> <a href="/wiki/Successione_spettrale" title="Successione spettrale">Successione spettrale</a><b>&#160;·</b> <a href="/wiki/Complesso_simpliciale" title="Complesso simpliciale">Complesso simpliciale</a><b>&#160;·</b> <a href="/wiki/Complesso_di_celle" title="Complesso di celle">Complesso di celle</a><b>&#160;·</b> <a href="/wiki/Complesso_di_catene" title="Complesso di catene">Complesso di catene</a><b>&#160;·</b> <a href="/wiki/Schema_simpliciale" title="Schema simpliciale">Schema simpliciale</a></td></tr><tr><th class="subnavbox_group">Superfici</th><td colspan="1"><a href="/wiki/Caratteristica_di_Eulero" title="Caratteristica di Eulero">Caratteristica di Eulero</a><b>&#160;·</b> <a href="/wiki/Formula_di_Eulero_per_i_poliedri" title="Formula di Eulero per i poliedri">Formula di Eulero per i poliedri</a><b>&#160;·</b> <a href="/wiki/Genere_(matematica)" title="Genere (matematica)">Genere</a><b>&#160;·</b> <a href="/wiki/Taglio_(topologia)" title="Taglio (topologia)">Taglio</a><b>&#160;·</b> <a href="/wiki/Superficie_incompressibile" title="Superficie incompressibile">Superficie incompressibile</a><b>&#160;·</b> <a href="/wiki/Classificazione_delle_superfici" title="Classificazione delle superfici">Classificazione delle superfici</a><b>&#160;·</b> <a href="/wiki/Mapping_class_group" title="Mapping class group">Mapping class group</a><b>&#160;·</b> <a href="/wiki/Teorema_della_palla_pelosa" title="Teorema della palla pelosa">Teorema della palla pelosa</a><b>&#160;·</b> <a href="/wiki/Teorema_di_Poincar%C3%A9-Hopf" title="Teorema di Poincaré-Hopf">Teorema di Poincaré-Hopf</a><b>&#160;·</b> <a href="/wiki/Congettura_di_Poincar%C3%A9" title="Congettura di Poincaré">Congettura di Poincaré</a><b>&#160;·</b> <a href="/wiki/Congettura_di_Hodge" title="Congettura di Hodge">Congettura di Hodge</a></td></tr></tbody></table></td></tr><tr><th colspan="1" class="navbox_group" style="text-align:right;">Topologi di rilievo</th><td colspan="1" class="navbox_list navbox_even"><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a><b>&#160;·</b> <a href="/wiki/Felix_Hausdorff" title="Felix Hausdorff">Felix Hausdorff</a><b>&#160;·</b> <a href="/wiki/Georg_Cantor" title="Georg Cantor">Georg Cantor</a><b>&#160;·</b> <a href="/wiki/Eduard_%C4%8Cech" title="Eduard Čech">Eduard Čech</a><b>&#160;·</b> <a href="/wiki/John_Milnor" title="John Milnor">John Milnor</a><b>&#160;·</b> <a href="/w/index.php?title=Pierre_Samuel&amp;action=edit&amp;redlink=1" class="new" title="Pierre Samuel (la pagina non esiste)">Pierre Samuel</a><b>&#160;·</b> <a href="/w/index.php?title=Norman_Steenrod&amp;action=edit&amp;redlink=1" class="new" title="Norman Steenrod (la pagina non esiste)">Norman Steenrod</a><b>&#160;·</b> <a href="/wiki/Ren%C3%A9_Thom" title="René Thom">René Thom</a><b>&#160;·</b> <a href="/wiki/Samuel_Eilenberg" title="Samuel Eilenberg">Samuel Eilenberg</a><b>&#160;·</b> <a href="/wiki/Andrej_Nikolaevi%C4%8D_Kolmogorov" title="Andrej Nikolaevič Kolmogorov">Andrej Nikolaevič Kolmogorov</a><b>&#160;·</b> <a href="/wiki/Stephen_Smale" title="Stephen Smale">Stephen Smale</a><b>&#160;·</b> <a href="/wiki/Michael_Atiyah" title="Michael Atiyah">Michael Atiyah</a><b>&#160;·</b> <a href="/wiki/William_Thurston" title="William Thurston">William Thurston</a><b>&#160;·</b> <a href="/wiki/Marston_Morse" title="Marston Morse">Marston Morse</a><b>&#160;·</b> <a href="/wiki/Luitzen_Brouwer" title="Luitzen Brouwer">Luitzen Brouwer</a></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r140554510">.mw-parser-output .CdA{border:1px solid #aaa;width:100%;margin:auto;font-size:90%;padding:2px}.mw-parser-output .CdA th{background-color:#f2f2f2;font-weight:bold;width:20%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .CdA{border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .CdA th{background-color:#202122}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .CdA{border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .CdA th{background-color:#202122}}</style><table class="CdA"><tbody><tr><th><a href="/wiki/Aiuto:Controllo_di_autorit%C3%A0" title="Aiuto:Controllo di autorità">Controllo di autorità</a></th><td><a href="/wiki/Nuovo_soggettario" title="Nuovo soggettario">Thesaurus BNCF</a> <span class="uid"><a rel="nofollow" class="external text" href="https://thes.bncf.firenze.sbn.it/termine.php?id=46156">46156</a></span><span style="font-weight:bold;">&#160;·</span> <a href="/wiki/Library_of_Congress_Control_Number" title="Library of Congress Control Number">LCCN</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>)&#160;<a rel="nofollow" class="external text" href="http://id.loc.gov/authorities/subjects/sh85084441">sh85084441</a></span><span style="font-weight:bold;">&#160;·</span> <a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>)&#160;<a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4169745-5">4169745-5</a></span><span style="font-weight:bold;">&#160;·</span> <a href="/wiki/Biblioteca_nazionale_di_Francia" title="Biblioteca nazionale di Francia">BNF</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="francese">FR</abbr></span>)&#160;<a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119444311">cb119444311</a> <a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119444311">(data)</a></span><span style="font-weight:bold;">&#160;·</span> <a href="/wiki/Biblioteca_nazionale_di_Israele" title="Biblioteca nazionale di Israele">J9U</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr>,&#160;<abbr title="ebraico">HE</abbr></span>)&#160;<a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007529311005171">987007529311005171</a></span><span style="font-weight:bold;">&#160;·</span> <a href="/wiki/Biblioteca_della_Dieta_nazionale_del_Giappone" title="Biblioteca della Dieta nazionale del Giappone">NDL</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr>,&#160;<abbr title="giapponese">JA</abbr></span>)&#160;<a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00567250">00567250</a></span></td></tr></tbody></table> <div class="noprint" style="width:100%; padding: 3px 0; display: flex; flex-wrap: wrap; row-gap: 4px; column-gap: 8px; box-sizing: border-box;"><div style="flex-grow: 1"><style data-mw-deduplicate="TemplateStyles:r140555418">.mw-parser-output .itwiki-template-occhiello{width:100%;line-height:25px;border:1px solid #CCF;background-color:#F0EEFF;box-sizing:border-box}.mw-parser-output .itwiki-template-occhiello-progetto{background-color:#FAFAFA}@media screen{html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}</style><div class="itwiki-template-occhiello"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal128-kmplot.svg" class="mw-file-description" title="Matematica"><img alt="&#160;" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/25px-Crystal128-kmplot.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/38px-Crystal128-kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/50px-Crystal128-kmplot.svg.png 2x" data-file-width="245" data-file-height="244" /></a></span>&#32;<b><a href="/wiki/Portale:Matematica" title="Portale:Matematica">Portale Matematica</a></b>&#58; accedi alle voci di Wikipedia che trattano di matematica</div></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐67876799fc‐fcxbm Cached time: 20241127161102 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.414 seconds Real time usage: 0.761 seconds Preprocessor visited node count: 2675/1000000 Post‐expand include size: 80314/2097152 bytes Template argument size: 459/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 2/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 10246/5000000 bytes Lua time usage: 0.197/10.000 seconds Lua memory usage: 6571568/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 366.045 1 -total 40.21% 147.173 1 Template:Collegamenti_esterni 18.86% 69.035 1 Template:Topologia 17.74% 64.924 1 Template:Navbox 9.63% 35.238 1 Template:Vedi_anche 9.15% 33.477 1 Template:Interprogetto 7.60% 27.822 1 Template:Portale 7.32% 26.794 5 Template:Navbox_subgroup 5.83% 21.358 1 Template:Controllo_di_autorità 5.35% 19.593 1 Template:Cita_libro --> <!-- Saved in parser cache with key itwiki:pcache:idhash:42169-0!canonical and timestamp 20241127161102 and revision id 136768618. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Estratto da "<a dir="ltr" href="https://it.wikipedia.org/w/index.php?title=Spazio_metrico&amp;oldid=136768618">https://it.wikipedia.org/w/index.php?title=Spazio_metrico&amp;oldid=136768618</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Categoria:Categorie" title="Categoria:Categorie">Categorie</a>: <ul><li><a href="/wiki/Categoria:Geometria_metrica" title="Categoria:Geometria metrica">Geometria metrica</a></li><li><a href="/wiki/Categoria:Spazi_topologici" title="Categoria:Spazi topologici">Spazi topologici</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categorie nascoste: <ul><li><a href="/wiki/Categoria:P10037_letta_da_Wikidata" title="Categoria:P10037 letta da Wikidata">P10037 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P9621_letta_da_Wikidata" title="Categoria:P9621 letta da Wikidata">P9621 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P1417_letta_da_Wikidata" title="Categoria:P1417 letta da Wikidata">P1417 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P3847_letta_da_Wikidata" title="Categoria:P3847 letta da Wikidata">P3847 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P2812_letta_da_Wikidata" title="Categoria:P2812 letta da Wikidata">P2812 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P7554_letta_da_Wikidata" title="Categoria:P7554 letta da Wikidata">P7554 letta da Wikidata</a></li><li><a href="/wiki/Categoria:Voci_con_codice_Thesaurus_BNCF" title="Categoria:Voci con codice Thesaurus BNCF">Voci con codice Thesaurus BNCF</a></li><li><a href="/wiki/Categoria:Voci_con_codice_LCCN" title="Categoria:Voci con codice LCCN">Voci con codice LCCN</a></li><li><a href="/wiki/Categoria:Voci_con_codice_GND" title="Categoria:Voci con codice GND">Voci con codice GND</a></li><li><a href="/wiki/Categoria:Voci_con_codice_BNF" title="Categoria:Voci con codice BNF">Voci con codice BNF</a></li><li><a href="/wiki/Categoria:Voci_con_codice_J9U" title="Categoria:Voci con codice J9U">Voci con codice J9U</a></li><li><a href="/wiki/Categoria:Voci_con_codice_NDL" title="Categoria:Voci con codice NDL">Voci con codice NDL</a></li><li><a href="/wiki/Categoria:Voci_non_biografiche_con_codici_di_controllo_di_autorit%C3%A0" title="Categoria:Voci non biografiche con codici di controllo di autorità">Voci non biografiche con codici di controllo di autorità</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Questa pagina è stata modificata per l'ultima volta il&#160;6 dic 2023 alle 21:51.</li> <li id="footer-info-copyright">Il testo è disponibile secondo la <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it">licenza Creative Commons Attribuzione-Condividi allo stesso modo</a>; possono applicarsi condizioni ulteriori. Vedi le <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/it">condizioni d'uso</a> per i dettagli.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/it">Informativa sulla privacy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Sala_stampa/Wikipedia">Informazioni su Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Avvertenze_generali">Avvertenze</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Codice di condotta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Sviluppatori</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/it.wikipedia.org">Statistiche</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Dichiarazione sui cookie</a></li> <li id="footer-places-mobileview"><a href="//it.m.wikipedia.org/w/index.php?title=Spazio_metrico&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versione mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-74cc59cb9d-4l2rx","wgBackendResponseTime":130,"wgPageParseReport":{"limitreport":{"cputime":"0.414","walltime":"0.761","ppvisitednodes":{"value":2675,"limit":1000000},"postexpandincludesize":{"value":80314,"limit":2097152},"templateargumentsize":{"value":459,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":10246,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 366.045 1 -total"," 40.21% 147.173 1 Template:Collegamenti_esterni"," 18.86% 69.035 1 Template:Topologia"," 17.74% 64.924 1 Template:Navbox"," 9.63% 35.238 1 Template:Vedi_anche"," 9.15% 33.477 1 Template:Interprogetto"," 7.60% 27.822 1 Template:Portale"," 7.32% 26.794 5 Template:Navbox_subgroup"," 5.83% 21.358 1 Template:Controllo_di_autorità"," 5.35% 19.593 1 Template:Cita_libro"]},"scribunto":{"limitreport-timeusage":{"value":"0.197","limit":"10.000"},"limitreport-memusage":{"value":6571568,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-67876799fc-fcxbm","timestamp":"20241127161102","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Spazio metrico","url":"https:\/\/it.wikipedia.org\/wiki\/Spazio_metrico","sameAs":"http:\/\/www.wikidata.org\/entity\/Q180953","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q180953","author":{"@type":"Organization","name":"Contributori ai progetti Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-08-30T16:13:02Z","dateModified":"2023-12-06T20:51:34Z"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10