CINXE.COM
Search results for: flavonoid rich fraction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flavonoid rich fraction</title> <meta name="description" content="Search results for: flavonoid rich fraction"> <meta name="keywords" content="flavonoid rich fraction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flavonoid rich fraction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flavonoid rich fraction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2576</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flavonoid rich fraction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2576</span> Cloning of Strawberry’s Malonyltransferase Genes and Characterisation of Their Enzymes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiran%20Wang">Xiran Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Johanna%20Trinkl"> Johanna Trinkl</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Hoffmann"> Thomas Hoffmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilfried%20Schwab"> Wilfried Schwab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malonyltransferases (MATs) are enzymes that play a key role in the biosynthesis of secondary metabolites in plants, such as flavonoids and anthocyanins. As a kind of flavonoid-rich fruit, strawberries are an ideal model to study MATs. From Goodberry metabolome data, in the hybrid generation of 2 strawberries various, Fragaria × ananassa cv. 'Senga Sengana' and 'Candonga', we found the malonylated flavonoid concentration is significantly higher in 'Senga Sengana' compared with 'Candonga'. Therefore, we aimed to identify and characterize the malonyltransferases responsible for the different malonylated flavonoid concentrations in two different strawberry cultivars. In this study, we have found 6 MATs via genome mapping, metabolome analysis, gene cloning, and enzyme assay from strawberries, which catalyzed the malonylation of flavonoid substrates: quercetin-3-glucoside, kaempferol-3-glucoside, pelargonidin-3-glucoside, and cyanidin-3-glucoside. All four compounds reacted with FaMATs to varying degrees. These MATs have important implication into strawberries’ flavonoid biosynthesis, and also provide insights into insights into flavonoid biosynthesis, potential applications in agriculture, plant science, and pharmacy, and information on the regulation of secondary metabolism in plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malonyltransferase" title="malonyltransferase">malonyltransferase</a>, <a href="https://publications.waset.org/abstracts/search?q=strawberry" title=" strawberry"> strawberry</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid%20biosynthesis" title=" flavonoid biosynthesis"> flavonoid biosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20assay" title=" enzyme assay"> enzyme assay</a> </p> <a href="https://publications.waset.org/abstracts/166257/cloning-of-strawberrys-malonyltransferase-genes-and-characterisation-of-their-enzymes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2575</span> Role of Onion Extract for Neuro-Protection in Experimental Stroke Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richa%20Shri">Richa Shri</a>, <a href="https://publications.waset.org/abstracts/search?q=Varinder%20Singh"> Varinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kundan%20Singh%20Bora"> Kundan Singh Bora</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Bhanot"> Abhishek Bhanot</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Kumar"> Rahul Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar"> Amit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravinder%20Kaur"> Ravinder Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The term ‘neuroprotection’ means preserving/salvaging function and structure of neurons. Neuroprotection is an adjunctive treatment option for neurodegenerative disorders. Oxidative stress is considered a major culprit in neurodegenerative disorders; hence, management strategies include use of antioxidants. Our search for a neuroprotective agent began with Allium cepa L. or onions, (family Amaryllidaceae) - a potent antioxidant. We have investigated the neuroprotective potential of onions in experimental models of ischemic stroke, diabetic neuropathy, neuropathic pain, and dementia. In pre and post-ischemic stroke model, the methanol extract of outer scales of onion bulbs (MEOS) prevented memory loss and motor in-coordination; reduced oxidative stress and cerebral infarct size. This also prevented and ameliorated diabetic neuropathy in mice. The MEOS was fractionated to yield a flavonoid rich fraction (FRF) that successfully reversed ischemia-reperfusion induced neuronal damage, thereby demonstrating that the flavonoids are responsible for the activity. The FRF effectively ameliorated chronic constriction induced neuropathic pain in rats. The FRF was subjected to bioactivity-guided fractionated. It was seen that FRF is more effective as compared to the isolated components probably due to synergism among the constituents (i.e., quercetin and quercetin glucosides) in the FRF. The outer scales of onion bulbs have great potential for prevention as well as for treatment of neuronal disorders. Red onions, with higher amounts of flavonoids as compared to the white onions, produced more significant neuroprotection. Thus, the standardized FRF from the waste material of a commonly used vegetable, especially the red variety, may be developed as a valuable neuroprotective agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allium%20cepa" title="Allium cepa">Allium cepa</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid%20rich%20fraction" title=" flavonoid rich fraction"> flavonoid rich fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroprotection" title=" neuroprotection"> neuroprotection</a> </p> <a href="https://publications.waset.org/abstracts/109491/role-of-onion-extract-for-neuro-protection-in-experimental-stroke-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2574</span> Extracting the Antioxidant Compounds of Medicinal Plant Limoniastrum guyonianum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assia%20Belfar">Assia Belfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hadjadj"> Mohamed Hadjadj</a>, <a href="https://publications.waset.org/abstracts/search?q=Messaouda%20Dakmouche"> Messaouda Dakmouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Ghiaba"> Zineb Ghiaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Belguidoum"> Mahdi Belguidoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: This study aims to phytochemical screening; Extracting the active compounds and estimate the effectiveness of antioxidant in Medicinal plants desert Limoniastrum guyonianum (Zeïta) from South Algeria. Methods: Total phenolic content and total flavonoid content using Folin-Ciocalteu and aluminum chloride colorimetric methods, respectively. The total antioxidant capacity was estimated by the following methods: DPPH (1.1-diphenyl-2-picrylhydrazyl radical) and reducing power assay. Results: Phytochemical screening of the plant part reveals the presence of phenols, saponins, flavonoids and tannins. While alkaloids and Terpenoids were absent. The Methanolic extract of L. guyonianum was extracted successively with ethyl acetate and butanol. Extraction of yield varied widely in the L. guyonianum ranging from (1.315 % to 4.218%). butanol fraction had the highest yield. The higher content of phenols was recorded in butanol fraction (311.81 ± 0.02mg GAE/g DW), the higher content of flavonoids was found in butanol fraction (9.58 ± 0.33mg QE/g DW). IC50 of inhibition of radical DPPH in ethyl acetate fraction was (0.05 ± 0.01µg/ml) Equal effectiveness with BHT, All extracts showed good activity of ferric reducing power, the higher power was in butanol fraction (16.16 ± 0.05mM). Conclusions: Demonstrated this study that the Methanolic extract of L. guyonianum contain a considerable quantity of phenolic compounds and possess a good antioxidant activity. It can be used as an easily accessible source of Natural Antioxidants and as a possible food supplement and in pharmaceutical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flavonoid%20compound" title="flavonoid compound">flavonoid compound</a>, <a href="https://publications.waset.org/abstracts/search?q=l.%20guyonianum" title=" l. guyonianum"> l. guyonianum</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20screening" title=" phytochemical screening"> phytochemical screening</a> </p> <a href="https://publications.waset.org/abstracts/45913/extracting-the-antioxidant-compounds-of-medicinal-plant-limoniastrum-guyonianum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2573</span> Flavonoid Content and Antioxidant Potential of White and Brown Sesame Seed Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Bello">Fatima Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Sani"> Ibrahim Sani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medicinal plants are the most important sources of life saving drugs for the majority of world’s population. People of all continents have used hundreds to thousands of indigenous plants in curing and management of many diseases. Sesame (Sesamum indicum L.) is one of the most widely cultivated species for its nutritious and medicinal seeds and oil. This research was carried out to determine the flavonoid content and antioxidant potential of two varieties of sesame seeds oil. Oil extraction was done using Soxhlet apparatus. The percentage oil yield for white and brown seeds were 47.85% and 20.72%, respectively. Flavonoid was present in both seeds with concentration of 480 mg/g and 360 mg/g in white and brown sesame seeds, respectively. The antioxidant potential was determined at different oil volume; 1.00, 0.75, 0.50 and 0.25ml. The results for the white and brown sesame seed oils were 96.8 and 70.7, 91.0 and 65.2, 83.1 and 55.4, 77.9 and 50.2, respectively. The white seed oil has higher oil yield than the brown seed oil. Likewise, the white seed oil has more flavonoid content than the brown seed oil and also better reducing power than the brown seed oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20potential" title="antioxidant potential">antioxidant potential</a>, <a href="https://publications.waset.org/abstracts/search?q=brown%20sesame%20seeds" title=" brown sesame seeds"> brown sesame seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid%20content" title=" flavonoid content"> flavonoid content</a>, <a href="https://publications.waset.org/abstracts/search?q=sesame%20seed%20oil" title=" sesame seed oil"> sesame seed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=Sesamum%20indicum%20L." title=" Sesamum indicum L."> Sesamum indicum L.</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20sesame%20seeds" title=" white sesame seeds "> white sesame seeds </a> </p> <a href="https://publications.waset.org/abstracts/32097/flavonoid-content-and-antioxidant-potential-of-white-and-brown-sesame-seed-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2572</span> Inhibition of Echis ocellatus Venom Metalloprotease by Flavonoid-Rich Ethyl Acetate Sub-fraction of Moringa oleifera Leaves (Lam.): in vitro and in silico Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeyi%20Akindele%20Oluwatosin">Adeyi Akindele Oluwatosin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Kaosarat%20Keji"> Mustapha Kaosarat Keji</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajisebiola%20Babafemi%20Siji"> Ajisebiola Babafemi Siji</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeyi%20Olubisi%20Esther"> Adeyi Olubisi Esther</a>, <a href="https://publications.waset.org/abstracts/search?q=Damilohun%20Samuel%20Metibemu"> Damilohun Samuel Metibemu</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Emuebie%20Okonji"> Raphael Emuebie Okonji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Envenoming by Echis ocellatus is potentially life-threatening due to severe hemorrhage, renal failure, and capillary leakage. These effects are attributed to snake venom metalloproteinases (SVMPs). Due to drawbacks in the use of antivenom, natural inhibitors from plants are of interest in studies of new antivenom treatment. Antagonizing effects of bioactive compounds of Moringa oleifera, a known antisnake plant, are yet to be tested against SVMPs of E. ocellatus (SVMP-EO). Ethanol crude extract of M. oleifera was partitioned using n-hexane and ethyl acetate. Each partition was fractionated using column chromatography and tested against SVMP-EO purified through ion-exchange chromatography with EchiTab-PLUS polyvalent anti-venom as control. Phytoconstituents of ethyl acetate fraction were screened against the catalytic site of crystal of BaP1-SVMP, while drug-likeness and ADMET toxicity of compound were equally determined. The molecular weight of isolated SVMP-EO was 43.28 kDa, with a specific activity of 245 U/ml, a percentage yield of 62.83 %, and a purification fold of 0.920. The Vmax and Km values are 2 mg/ml and 38.095 μmol/ml/min, respectively, while the optimal pH and temperature are 6.0 and 40°C, respectively. Polyvalent anti-venom, crude extract, and ethyl acetate fraction of M. oleifera exhibited a complete inhibitory effect against SVMP-EO activity. The inhibitions of the P-1 and P-II metalloprotease’s enzymes by the ethyl acetate fraction are largely due to methanol, 6, 8, 9-trimethyl-4-(2-phenylethyl)-3-oxabicyclo[3.3.1]non-6-en-1-yl)- and paroxypropione, respectively. Both compounds are potential drug candidates with little or no concern of toxicity, as revealed from the in-silico predictions. The inhibitory effects suggest that this compound might be a therapeutic candidate for further exploration for treatment of Ocellatus’ envenoming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Echis%20ocellatus" title="Echis ocellatus">Echis ocellatus</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20oleifera" title=" Moringa oleifera"> Moringa oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-venom" title=" anti-venom"> anti-venom</a>, <a href="https://publications.waset.org/abstracts/search?q=metalloproteases" title=" metalloproteases"> metalloproteases</a>, <a href="https://publications.waset.org/abstracts/search?q=snakebite" title=" snakebite"> snakebite</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a> </p> <a href="https://publications.waset.org/abstracts/133934/inhibition-of-echis-ocellatus-venom-metalloprotease-by-flavonoid-rich-ethyl-acetate-sub-fraction-of-moringa-oleifera-leaves-lam-in-vitro-and-in-silico-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2571</span> Phytochemical and Antioxidant Activity Test of Water Fraction Extract of Sisik Naga (Drymoglossum piloselloides) Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afifah%20Nur%20Aini">Afifah Nur Aini</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsa%20Mega%20Suryani"> Elsa Mega Suryani</a>, <a href="https://publications.waset.org/abstracts/search?q=Betty%20Lukiaty"> Betty Lukiaty </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drymoglossum piloselloides or more commonly known as sisik naga fern is a member of Polipodiaceae Family that is abundant and widely distributed in nature. That being said, there hasn’t been many studies reporting about the benefits of this fern. The aim of this study was to find out the active compounds and antioxidant activity of water fraction extract of sisik naga leaves. The study will be able to optimize the use of this fern in the future. In this study, phytochemical test was done qualitatively by using Mayer, Dragendorff and Wagner reagent for alkaloid test; FeCl3 for phenolic test; Shinoda test for flavonoid; Liebermann-Burchard test for triterprnoid and Forth test for saponin. Antioxidant activity test was done by using 20D spectronic spectrophotometer to determine the percentage of DPPH free radical inhibition. The results showed that water fraction extract of sisik naga leaves contain phenolic and IC50 = 5.44 μg/ml. This means that sisik naga leaves can be used as an antioxidant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity%20test" title="antioxidant activity test">antioxidant activity test</a>, <a href="https://publications.waset.org/abstracts/search?q=dpph" title=" dpph"> dpph</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20test" title=" phytochemical test"> phytochemical test</a>, <a href="https://publications.waset.org/abstracts/search?q=drymoglossum%20piloselloides" title=" drymoglossum piloselloides"> drymoglossum piloselloides</a> </p> <a href="https://publications.waset.org/abstracts/43437/phytochemical-and-antioxidant-activity-test-of-water-fraction-extract-of-sisik-naga-drymoglossum-piloselloides-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">908</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2570</span> Induction of Apoptosis by Diosmin through Interleukins/STAT and Mitochondria Mediated Pathway in Hep-2 and KB Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rajasekar">M. Rajasekar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Suresh"> K. Suresh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diosmin is a flavonoid, most abundantly found in many citrus fruits. As a flavonoid, it possesses a multitude of biological activities including anti-hyperglycemic, anti-lipid peroxidative, anti-inflammatory, antioxidant, and anti-mutagenic properties. At this point, we established the anti-proliferative and apoptosis-inducing activities of diosmin in Hep-2 and KB cells. Diosmin has cytotoxic effects through inhibiting cellular proliferation of Hep-2 and KB cells, which leads to the induction of apoptosis, as apparent by an increase in the fraction of cells in the sub-G1phase of the cell cycle. Results exposed that inhibition of cell proliferation is associated with regulation of the Interleukins/STAT pathway. In addition, Diosmin treatment with Hep-2 and KB cells actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. And also an imbalance in the Bax/Bcl-2 ratio triggered the caspase cascade and shifting the balance in favor of apoptosis. These observations conclude that Diosmin induce apoptosis via Interleukins /STAT-mediated pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diosmin" title="diosmin">diosmin</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=STAT%20pathway" title=" STAT pathway"> STAT pathway</a> </p> <a href="https://publications.waset.org/abstracts/37353/induction-of-apoptosis-by-diosmin-through-interleukinsstat-and-mitochondria-mediated-pathway-in-hep-2-and-kb-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2569</span> Gas Chromatography-Analysis, Antioxidant, Anti-Inflammatory, and Anticancer Activities of Some Extracts and Fractions of Linum usitatissimum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20Abdullah%20Morsi">Eman Abdullah Morsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hend%20Okasha"> Hend Okasha</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20Abdel%20Hady"> Heba Abdel Hady</a>, <a href="https://publications.waset.org/abstracts/search?q=Mortada%20El-Sayed"> Mortada El-Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abbas%20Shemis"> Mohamed Abbas Shemis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: Linum usitatissimum (Linn), known as Flaxseed, is one of the most important medicinal plants traditionally used for various health as nutritional purposes. Objective: Estimation of total phenolic and flavonoid contents as well as evaluate the antioxidant using α, α-diphenyl-β-picrylhydrazyl (DPPH), 2-2'azinobis (3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and total antioxidant capacity (TAC) assay and investigation of anti-inflammatory by Bovine serum albumin (BSA) and anticancer activities of hepatocellular carcinoma cell line (HepG2) and breast cancer cell line (MCF7) have been applied on hexane, ethyl acetate, n-butanol and methanol extracts and also, fractions of methonal extract (hexane, ethyl acetate and n-butanol). Materials and Methods: Phenolic and flavonoid contents were detected using spectrophotometric and colorimetric assays. Antioxidant and anti-inflammatory activities were estimated in-vitro. Anticancer activity of extracts and fractions of methanolic extract were tested on (HepG2) and (MCF7). Results: Methanolic extract and its ethyl acetate fraction contain higher contents of total phenols and flavonoids. In addition, methanolic extract had higher antioxidant activity. Butanolic and ethyl acetate fractions yielded higher percent of inhibition of protein denaturation. Meanwhile, ethyl acetate fraction and methanolic extract had anticancer activity against HepG2 and MCF7 (IC50=60 ± 0.24 and 29.4 ± 0.12µg.mL⁻¹) and (IC50=94.7 ± 0.21 and 227 ± 0.48µg.mL⁻¹), respectively. In Gas chromatography-mass spectrometry (GC-MS) analysis, methanolic extract has 32 compounds, whereas; ethyl acetate and butanol fractions contain 40 and 36 compounds, respectively. Conclusion: Flaxseed contains totally different biologically active compounds that have been found to possess good variable activities, which can protect human body against several diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenolic%20content" title="phenolic content">phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid%20content" title=" flavonoid content"> flavonoid content</a>, <a href="https://publications.waset.org/abstracts/search?q=HepG2" title=" HepG2"> HepG2</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF7" title=" MCF7"> MCF7</a>, <a href="https://publications.waset.org/abstracts/search?q=hemolysis-assay" title=" hemolysis-assay"> hemolysis-assay</a>, <a href="https://publications.waset.org/abstracts/search?q=flaxseed" title=" flaxseed"> flaxseed</a> </p> <a href="https://publications.waset.org/abstracts/111278/gas-chromatography-analysis-antioxidant-anti-inflammatory-and-anticancer-activities-of-some-extracts-and-fractions-of-linum-usitatissimum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2568</span> Evaluation of Antioxidants in Medicinal plant Limoniastrum guyonianum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assia%20Belfar">Assia Belfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hadjadj"> Mohamed Hadjadj</a>, <a href="https://publications.waset.org/abstracts/search?q=Messaouda%20Dakmouche"> Messaouda Dakmouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Ghiaba"> Zineb Ghiaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: This study aims to phytochemical screening; Extracting the active compounds and estimate the effectiveness of antioxidant in Medicinal plants desert Limoniastrum guyonianum (Zeïta) from South Algeria. Methods: Total phenolic content and total flavonoid content using Folin-Ciocalteu and aluminum chloride colorimetric methods, respectively. The total antioxidant capacity was estimated by the following methods: DPPH (1.1-diphenyl-2-picrylhydrazyl radical) and reducing power assay. Results: Phytochemical screening of the plant part reveals the presence of phenols, saponins, flavonoids and tannins. While alkaloids and Terpenoids were absent. The acetonic extract of L. guyonianum was extracted successively with ethyl acetate and butanol. Extraction of yield varied widely in the L. guyonianum ranging from (0.9425 %to 11.131%). The total phenolic content ranged from 53.33 mg GAE/g DW to 672.79 mg GAE/g DW. The total flavonoid concentrations varied from 5.45 to 21.71 mg/100g. IC50 values ranged from 0.02 ± 0.0004 to 0.13 ± 0.002 mg/ml. All extracts showed very good activity of ferric reducing power, the higher power was in butanol fraction (23.91 mM) more effective than BHA, BHT and VC. Conclusions: Demonstrated this study that the acetonic extract of L. guyonianum contain a considerable quantity of phenolic compounds and possess a good antioxidant activity. Can be used as an easily accessible source of Natural Antioxidants and as a possible food supplement and in the pharmaceutical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=limoniastrum%20guyonianum" title="limoniastrum guyonianum">limoniastrum guyonianum</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics%20compounds" title=" phenolics compounds"> phenolics compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid%20compound" title=" flavonoid compound"> flavonoid compound</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/38407/evaluation-of-antioxidants-in-medicinal-plant-limoniastrum-guyonianum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2567</span> In-vitro Antioxidant Activity of Two Selected Herbal Medicines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Vinotha">S. Vinotha</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Thabrew"> I. Thabrew</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sri%20Ranjani"> S. Sri Ranjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hot aqueous and methanol extracts of the two selected herbal medicines such are Vellarugu Chooranam (V.C) and Amukkirai Chooranam (A.C) were examined for total phenolic and flavonoid contents and in-vitro antioxidant activity using four different methods. The total phenolic and flavonoid contents in methanol extract of V.C were found to be higher (44.41±1.26 mg GAE⁄g; 174.44±9.32 mg QE⁄g) than in the methanol extract of A.C (20.56±0.67 mg GAE⁄g;7.21±0.85 mg QE⁄g). Hot methanol and aqueous extracts of both medicines showed low antioxidant activity in DPPH, ABTS, and FRAP methods and Iron chelating activity not found at highest possible concentration. V.C contains higher concentrations of total phenolic and flavonoid contents than A.C and can also exert greater antioxidant activity than A.C, although the activities demonstrated were lower than the positive control Trolox. The in-vitro antioxidant activity was not related with the total phenolic and flavonoid contents of the methanol and aqueous extracts of both herbal medicines (A.C and V.C). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activity" title="activity">activity</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20extracts" title=" different extracts"> different extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20medicines" title=" herbal medicines"> herbal medicines</a>, <a href="https://publications.waset.org/abstracts/search?q=in-vitro%20antioxidant" title=" in-vitro antioxidant"> in-vitro antioxidant</a> </p> <a href="https://publications.waset.org/abstracts/16823/in-vitro-antioxidant-activity-of-two-selected-herbal-medicines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2566</span> In Vitro and in Vivo Biological Investigations of Philodendron Bipinnatifidum Schott Ex Endl (Araceae) and Its Bioactive Phenolic Constituents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alia%20Ragheb">Alia Ragheb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Philodendron species were reported in traditional medicine for the treatment of several diseases. From the 70% methanol extract of the aerial parts of Philodendron bipinnatifidum Schott ex Endl, nine flavonoid compounds were isolated and identified for the first time; saponarin, genkwanin 8-C-(2′′-O-β-glucopyranosyl)-β-glucopyranoside, apigenin 6-C-(2′′-O-β-glucopyranosyl)-β-glucopyranoside, schaftoside, swertisin, swertiajaponin, isoswertisin, isorhamnetin 3-O-(2′′-acetyl)-β-glucopyranoside and apigenin. Characterization of the plant was achieved using chromatographic, physical, chemical, spectroscopic, and spectrometric techniques. The 70% methanol aerial parts extract and the methanol fraction of the plant were in vivo screened for their acute anti-inflammatory, antipyretic and analgesic effects where significant effects were exhibited compared to that of reference drugs. From the reported literature, these biological activities could be attributed to its phenolic constituent. The 70% methanol aerial parts and successive extracts, as well as some pure isolated flavonoid compounds, were in vitro investigated for their antioxidant, antimicrobial and cytotoxic activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=araceae" title=" araceae"> araceae</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a> </p> <a href="https://publications.waset.org/abstracts/131603/in-vitro-and-in-vivo-biological-investigations-of-philodendron-bipinnatifidum-schott-ex-endl-araceae-and-its-bioactive-phenolic-constituents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2565</span> Glucose Uptake Rate of Insulin-Resistant Human Liver Carcinoma Cells (IR/HepG2) by Flavonoids from Enicostema littorale via IR/IRS1/AKT Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Mokashi">Priyanka Mokashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aparna%20Khanna"> Aparna Khanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Nancy%20Pandita"> Nancy Pandita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes mellitus is a chronic metabolic disorder which will be the 7th leading cause of death by 2030. The current line of treatment for the diabetes mellitus is oral antidiabetic drugs (biguanides, sulfonylureas, meglitinides, thiazolidinediones and alpha-glycosidase inhibitors) and insulin therapy depending upon the type 1 or type 2 diabetes mellitus. But, these treatments have their disadvantages, ranging from the developing of resistance to the drugs and adverse effects caused by them. Alternative to these synthetic agents, natural products provides a new insight for the development of more efficient and safe drugs due to their therapeutic values. Enicostema littorale blume (A. Raynal) is a traditional Indian plant belongs to the Gentianaceae family. It is widely distributed in Asia, Africa, and South America. There are few reports on Swrtiamarin, major component of this plant for its antidiabetic activity. However, the antidiabetic activity of flavonoids from E. littorale and their mechanism of action have not yet been elucidated. Flavonoids have a positive relationship with disease prevention and can act on various molecular targets and regulate different signaling pathways in pancreatic β-cells, adipocytes, hepatocytes and skeletal myofibers. They may exert beneficial effects in diabetes by (i) improving hyperglycemia through regulation of glucose metabolism in hepatocytes; (ii) enhancing insulin secretion and reducing apoptosis and promoting proliferation of pancreatic β-cells; (iii) increasing glucose uptake in hepatocytes, skeletal muscle and white adipose tissue (iv) reducing insulin resistance, inflammation and oxidative stress. Therefore, we have isolated four flavonoid rich fractions, Fraction A (FA), Fraction B (FB), Fraction C (FC), Fraction D (FD) from crude alcoholic hot (AH) extract from E. littorale, identified by LC/MS. Total eight flavonoids were identified on the basis of fragmentation pattern. Flavonoid FA showed the presence of swertisin, isovitexin, and saponarin; FB showed genkwanin, quercetin, isovitexin, FC showed apigenin, swertisin, quercetin, 5-O-glucosylswertisin and 5-O-glucosylisoswertisin whereas FD showed the presence of swertisin. Further, these fractions were assessed for their antidiabetic activity on stimulating glucose uptake in insulin-resistant HepG2 cell line model (IR/HepG2). The results showed that FD containing C-glycoside Swertisin has significantly increased the glucose uptake rate of IR/HepG2 cells at the concentration of 10 µg/ml as compared to positive control Metformin (0.5mM) which was determined by glucose oxidase- peroxidase method. It has been reported that enhancement of glucose uptake of cells occurs due the translocation of Glut4 vesicles to cell membrane through IR/IRS1/AKT pathway. Therefore, we have studied expressions of three genes IRS1, AKT and Glut4 by real-time PCR to evaluate whether they follow the same pathway or not. It was seen that the glucose uptake rate has increased in FD treated IR/HepG2 cells due to the activation of insulin receptor substrate-1 (IRS1) followed by protein kinase B (AKT) through phosphoinositide 3-kinase (PI3K) leading to translocation of Glut 4 vesicles to cell membrane, thereby enhancing glucose uptake and insulin sensitivity of insulin resistant HepG2 cells. Hence, the up-regulation indicated the mechanism of action through which FD (Swertisin) acts as antidiabetic candidate in the treatment of type 2 diabetes mellitus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20littorale" title="E. littorale">E. littorale</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20transporter" title=" glucose transporter"> glucose transporter</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20uptake%20rate" title=" glucose uptake rate"> glucose uptake rate</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a> </p> <a href="https://publications.waset.org/abstracts/61611/glucose-uptake-rate-of-insulin-resistant-human-liver-carcinoma-cells-irhepg2-by-flavonoids-from-enicostema-littorale-via-irirs1akt-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2564</span> Tocotrienol Rich Fraction in Nicotine-Induced Embryos: Cytoskeletal Changes of Actin and Tubulin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Hamirah%20Kamsani">Nurul Hamirah Kamsani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Hamim%20Rajikin"> Mohd Hamim Rajikin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Ashikin%20Mohamed%20Noor%20Khan"> Nor Ashikin Mohamed Noor Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharaniza%20Abdul%20Rahim"> Sharaniza Abdul Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cytoskeletal structures, in particular actin and tubulin, provide a fundamental framework in all cells, including embryos. Under influence of nicotine, the cytoskeletal organization may be subjected to oxidative stress (OS) insult and cause alteration. Tocotrienol-rich fraction (TRF) is proven to enhance fertility better than the other sub-group of Vitamin E, tocopherols (TCPs). The objective of this study was to evaluate the effects of TRF on 1) actin and tubulin of 2- and 8-cell murine embryos and 2) the regulation of reactive oxygen species (ROS)-scavenging enzymes; induced by nicotine. Twenty four female Balb/C were subjected to either subcutaneous (sc) injection of 0.9% NaCl; sc injection of 3.0 mg/kg bw/day nicotine; sc injection of 3.0 mg/kg bw/day nicotine + oral gavage (OG) of 60 mg/kg bw/day TRF; or OG of 60 mg/kg bw/day TRF for 7 consecutive days. After superovulation and mating, animals were euthanized. 2-cell developing embryos were retrieved. 50% of the retrieved embryos were visualized under confocal laser staining microscopy (CLSM) for alterations of actin and tubulin. The remaining amount of embryos was cultured in vitro until 8-cell stage followed by CLSM visualization. Blood plasma was subjected to OS assays. Plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined and analysed accordingly. At both 2- and 8-cell developing stages, actin intensities were significantly reduced in the nicotine group (p<0.001). After the intervention, actin intensity was significantly increased compared to that of the nicotine group (p<0.001). The same trend was seen in tubulin at both cell stages. TRF has minimized the deleterious effects of nicotine in actin and tubulin of both 2- and 8-cell developmental stages during pre-implantation embryonic development in mice in vitro. Levels of endogenous anti-oxidative enzymes were sustained close to control accompanied by decreased levels of OS biomarker. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actin" title="actin">actin</a>, <a href="https://publications.waset.org/abstracts/search?q=nicotine" title=" nicotine"> nicotine</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-implantation%20embryos" title=" pre-implantation embryos"> pre-implantation embryos</a>, <a href="https://publications.waset.org/abstracts/search?q=tocotrienol%20rich%20fraction" title=" tocotrienol rich fraction"> tocotrienol rich fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=tubulin" title=" tubulin"> tubulin</a> </p> <a href="https://publications.waset.org/abstracts/89395/tocotrienol-rich-fraction-in-nicotine-induced-embryos-cytoskeletal-changes-of-actin-and-tubulin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2563</span> Characterization of Main Phenolic Compounds in Eleusine indica L. (Poaceae) by HPLC-DAD and 1H NMR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Condori-Pe%C3%B1aloza">E. M. Condori-Peñaloza</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Costa"> S. S. Costa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eleusine indica L, known as goose-grass, is considered a troublesome weed that can cause important economic losses in the agriculture worldwide. However, this grass is used as a medicinal plant in some regions of Brazil to treat influenza and pneumonia. In Africa and Asia, it is used to treat malaria and as diuretic, anti-helminthic, among other uses. Despite its therapeutic potential, little is known about the chemical composition and bioactive compounds of E. indica. Hitherto, two major flavonoids, schaftoside and vitexin, were isolated from aerial part of the species and showed inhibitory activity on lung neutrophil influxes in mice, suggesting a beneficial effect on airway inflammation. Therefore, the aim of this study was to analyze the chemical profile of aqueous extracts from aerial parts of Eleusine indica specimens using high performance liquid chromatography (HPLC-DAD) and 1H nuclear magnetic resonance spectroscopy (NMR), with emphasis on phenolic compounds. Specimens of E. indica were collected in Minas Gerais state, Brazil. Aerial parts of fresh plants were extracted by decoction (10% p/v). After spontaneous precipitation of the aqueous extract at 10-12°C for 24 hours, the supernatant obtained was frozen and lyophilized. After that, 1 g of the extract was dissolved into 25 mL of water and fractionated on a reverse phase chromatography column (RP-2), eluted with a gradient of H2O/EtOH. Five fractions were obtained. The extract and fractions had their chemical profile analyzed by using HPLC-DAD (C-18 column: 20 μL, 256 -365 nm; gradient water 0.01% phosphoric acid/ acetonitrile. The extract was also analyzed by NMR (1H, 500 MHz, D2O) in order to access its global chemical composition. HPLC-DAD analyses of crude extract allowed the identification of ten phenolic compounds. Fraction 1, eluted with 100% water, was poor in phenolic compounds and no major peak was detected. In fraction 2, eluted with 100% water, it was possible to observe one major peak at retention time (RT) of 23.75 minutes compatible with flavonoid; fraction 3, also eluted with 100% water, showed four peaks at RT= 21.47, 23.52, 24.33 and 25.84 minutes, all of them compatible with flavonoid. In fraction 4, eluted with 50%/ethanol/50% water, it was possible to observe 3 peaks compatible with flavonoids at RT=24.65, 26.81, 27.49 minutes, and one peak (28.83 min) compatible with a phenolic acid derivative. Finally, in fraction 5, eluted with 100% ethanol, no phenolic substance was detected. The UV spectra of all flavonoids detected were compatible with the flavone subclass (λ= 320-345 nm). The 1H NMR spectra of aerial parts extract showed signals in three regions: δ 0.8-3.0 ppm (aliphatic compounds), δ 3.0-5.5 ppm corresponding to carbohydrates (signals most abundant and overlapped), and δ 6.0-8.5 ppm (aromatic compounds). Signals compatible with flavonoids (rings A and B) could also be detected in the crude extract spectra. These results suggest the presence of several flavonoids in E. indica, which reinforces their therapeutic potential. The pharmacological activities of Eleusine indica extracts and fractions will be further evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title="flavonoids">flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR" title=" NMR"> NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a> </p> <a href="https://publications.waset.org/abstracts/46759/characterization-of-main-phenolic-compounds-in-eleusine-indica-l-poaceae-by-hplc-dad-and-1h-nmr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2562</span> Tyrosine Rich Fraction as an Immunomodulatory Agent from Ficus Religiosa Bark</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Nirmal">S. A. Nirmal</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Asane"> G. S. Asane</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Pal"> S. C. Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Mandal"> S. C. Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Ficus religiosa Linn (Moraceae) is being used in traditional medicine to improve immunity hence present work was undertaken to validate this use scientifically. Material and Methods: Dried, powdered bark of F. religiosa was extracted successively using petroleum ether and 70% ethanol in soxhlet extractor. The extracts obtained were screened for immunomodulatory activity by delayed type hypersensitivity (DTH), neutrophil adhesion test and cyclophosphamide-induced neutropenia in Swiss albino mice at the dose of 50 and 100 mg/kg, i.p. 70% ethanol extract showed significant immunostimulant activity hence subjected to column chromatography to produce tyrosine rich fraction (TRF). TRF obtained was screened for immunomodulatory activity by above methods at the dose of 10 mg/kg, i.p. Results: TRF showed potentiation of DTH response in terms of significant increase in the mean difference in foot-pad thickness and it significantly increased neutrophil adhesion to nylon fibers by 48.20%. Percentage reduction in total leukocyte count and neutrophil by TRF was found to be 43.85% and 18.72%, respectively. Conclusion: Immunostimulant activity of TRF was more pronounced and thus it has great potential as a source for natural health products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ficus%20religiosa" title="Ficus religiosa">Ficus religiosa</a>, <a href="https://publications.waset.org/abstracts/search?q=immunomodulatory" title=" immunomodulatory"> immunomodulatory</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclophosphamide" title=" cyclophosphamide"> cyclophosphamide</a>, <a href="https://publications.waset.org/abstracts/search?q=neutropenia" title=" neutropenia"> neutropenia</a> </p> <a href="https://publications.waset.org/abstracts/26530/tyrosine-rich-fraction-as-an-immunomodulatory-agent-from-ficus-religiosa-bark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2561</span> Feasibility of Phenolic Acids Rich Fraction from Gynura procumbens as Potential Antihyperlipidemic Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikneswaran%20Murugaiyah">Vikneswaran Murugaiyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Ayesh%20Mohammed%20Saghir"> Sultan Ayesh Mohammed Saghir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kisantini%20Murugesu"> Kisantini Murugesu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Zaini%20Asmawi"> Mohd. Zaini Asmawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirin%20Sadikun"> Amirin Sadikun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gynura procumbens is a popular medicinal plant used as a folk medicine in Southeast Asia to treat kidney diseases, diabetes mellitus and hyperlipidemia. The present study aims to investigate the antihyperlipidemic potential of phenolic acids rich fraction (PARF) from G. procumbens in chemically-induced acute and high fat diet-induced chronic hyperlipidemic rats. Ethanolic extract of G. procumbens leaves exhibited significant reductions in total cholesterol (TC) and triglycerides (TG) levels (P < 0.01 and P < 0.001, respectively) of poloxamer 407-induced rats compared to hyperlipidemic control after 58 h of treatment. Upon bioactivity guided fractionation the antihyperlipidemic activity was found to be concentrated in the PARF, which significantly reduced the TC and TG levels (P < 0.001). HPLC analysis revealed that 3,5-dicaffeoylquinic acid; 4,5-dicaffeoylquinic acid and chlorogenic acid are the major compounds in the PARF. Likewise, chlorogenic acid (60 mg/kg) exhibited significant reductions in TC and TG levels of hyperlipidemic rats (P < 0.001). Both chlorogenic acid and PARF significantly reduced LDL, VLDL and atherogenic index (P<0.01), while PARF increased the HDL (P < 0.01) compared to hyperlipidemic control. Both were found to be not cytotoxic against normal and cancer cell lines. In addition, LD50 of orally administered PARF was more than 5,000 mg/kg. Further investigation in high fat diet-induced chronic hyperlipidemic rats revealed that chronic administration of PARF dose-dependently restored the increase in lipids parameters. In summary, the phenolic acids rich fraction of G. procumbens leaves showed promising antihyperlipidemic effect in both chemically- and diet-induced hyperlipidemic rats that warrants further elucidation on its mechanisms of action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antihyperlipidemic" title="Antihyperlipidemic">Antihyperlipidemic</a>, <a href="https://publications.waset.org/abstracts/search?q=Gynura%20procumbens" title=" Gynura procumbens"> Gynura procumbens</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20acids" title=" phenolic acids"> phenolic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorogenic%20acid" title=" chlorogenic acid"> chlorogenic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=poloxamer-407" title=" poloxamer-407"> poloxamer-407</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20fat%20diet" title=" high fat diet"> high fat diet</a> </p> <a href="https://publications.waset.org/abstracts/61349/feasibility-of-phenolic-acids-rich-fraction-from-gynura-procumbens-as-potential-antihyperlipidemic-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2560</span> Phytochemical and Vitamin Composition of Wild Edible Plants Consumed in South West Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abebe%20Yimer">Abebe Yimer</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirawdink%20Fikereyesus%20Forsido"> Sirawdink Fikereyesus Forsido</a>, <a href="https://publications.waset.org/abstracts/search?q=Getachew%20Addis"> Getachew Addis</a>, <a href="https://publications.waset.org/abstracts/search?q=Abebe%20Ayelign"> Abebe Ayelign</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Oxidative stress has been an important health problem as itinduceschronic diseases such as cancer, cardiovascular, diabetics, and neurodegenerative disease. Plant source natural antioxidant has gained attention as synthetic antioxidant negatively impact human health. Wild edible plants arecheap source of dietary-medicine in mainly rural communityin south-west Ethiopia and elsewhere the country. Thus, the study aimed to determine total pheneol,flavoinoids, antioxidant, vitamin C, and beta-carotene content from wild edible plants Solanum nigrum L., Vigna membranacea A. Rich, Dioscorea praehensilis Benth., Trilepisium madagascariense D.C.andCleome gynandra L. Methods: Methanol was used to extract samples of oven-dried edible plants. Total phenolic compound (TPC) was determined using a Folin Ciocalteu method, whereas total flavonoid content (TFC) was determined using the Aluminium chloride colorimetric method. By using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) tests, antioxidant activities were evaluated in vitro. Additionally, beta-carotene was assessed using a spectrophotometric technique, whilst vitamin C was determined using a titration approach. Results: Total flavonoid contentranged from 0.85±0.03 to 11.25±0.01 mg CE/g in D. praehensilis Benth. tuber and C. gynandra L, respectively. Total phenolic compounds varied from 0.25±0.06 GAE/g in D. praehensilis Benth tuber to 35.73±2.52 GAE/g in S.nigrum L. leaves. In the DPPH test, the highest antioxidant value (87.65%) was obtained in the S.nigrum L. leaves, whereas the smallest amount of antioxidant (50.12%)was contained in D. praehensilis Benth tuber. Similarly in FRAP assay,D. praehensilis Benth tuber showed the least reducing potential(49.16± 2.13mM Fe2+/100 g)whilst the highest reducing potential was presented in the S.nigrum L. leaves(188.12±1.13 mM Fe2+/100 g). The beta-carotene content was found between 11.81±0.00 mg/100g in D. praehensilis Benth tubers to 34.49±0.95 mg/100g in V. membranacea A. Rich leaves. The concentration of vitamin C ranged from 10.00±0.61 in D. praehensilis Benth tubers to 45±1.80 mg/100g in V. membranacea A. Rich leaves. The results showed that high positive linear correlations between TPC and TFC of WEPs (r=0.828), as well as between FRAP and total phenolic contents (r = 0.943) and FRAP and vitamin C (r= 0.928). Conclusion: These findings showed the total phenolic and flavonoid contents of Solanum nigrum L. and Cleome gynandra L, respectively, are abundant. The outcome may be used as a natural supply of dietary antioxidants, which may be useful in preventing oxidative stress. The study's findings also showed that Vigna membranacea A. Rich leaves were cheap source of vitamin C and beta-carotene for people who consumed these wild green. Additional research on the in vivo antioxidant activity, toxicological analysis, and promotion of these wild food plants for agricultural production should be taken into consideration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-carotene" title=" beta-carotene"> beta-carotene</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20content" title=" phenolic content"> phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20vitamin%20c" title=" and vitamin c"> and vitamin c</a> </p> <a href="https://publications.waset.org/abstracts/157035/phytochemical-and-vitamin-composition-of-wild-edible-plants-consumed-in-south-west-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2559</span> In Vitro Study of Antioxidant Capacity of Chrysanthemum Indicum Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Puchita%20Chokcharoenying">Puchita Chokcharoenying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyphenols are the most abundant antioxidants found in plants, and they are highly effective at scavenging oxidative free radicals. Antioxidants are substances found in medicinal plants to help prevent heart disease, stroke, and some cancers. This study focused on evaluating the flavonoids content of Chrysanthemum Indicum and determine their antioxidant capacity by using DPPH and ABTS radical scavenging capacity assay. The total flavonoid content of C. indicumextract was determined and expressed as quercetin equivalents (QE)/g measured by an aluminiumchloride colorimetric method. The results showed that the IC50 of C. indicum extract were 83.57μg/mL ± 0.875 and52.57μg/mL ± 0.632for DPPH and ABTS, respectively. C. indicumextract exhibited antioxidant activities as a concentration dependent manner. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. In summary, C. indicum extract is rich in flavonoids, which have potent antioxidant properties. Thus, C. indicum extract is a good source of antioxidants and can be developed for medicinal purposes. Nevertheless, more research on the antioxidant activity of C. indicum extract and in vivo antioxidant studies are still needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABTS%20assay" title="ABTS assay">ABTS assay</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=chrysanthemum%20indicum" title=" chrysanthemum indicum"> chrysanthemum indicum</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20assay" title=" DPPH assay"> DPPH assay</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20flavonoid%20content" title=" total flavonoid content"> total flavonoid content</a> </p> <a href="https://publications.waset.org/abstracts/140860/in-vitro-study-of-antioxidant-capacity-of-chrysanthemum-indicum-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2558</span> Impact on the Yield of Flavonoid and Total Phenolic Content from Pomegranate Fruit by Different Extraction Methods </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Udeshika%20Yapa%20Bandara">Udeshika Yapa Bandara</a>, <a href="https://publications.waset.org/abstracts/search?q=Chamindri%20Witharana"> Chamindri Witharana</a>, <a href="https://publications.waset.org/abstracts/search?q=Preethi%20Soysa"> Preethi Soysa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pomegranate fruits are used in cancer treatment in Ayurveda, Sri Lanka. Due to prevailing therapeutic effects of phytochemicals, this study was focus on anti-cancer properties of the constituents in the parts of Pomegranate fruit. Furthermore, the method of extraction, plays a crucial step of the phytochemical analysis. Therefore, this study was focus on different extraction methods. Five techniques were involved for the peel and the pericarp to evaluate the most effective extraction method; Boiling with electric burner (BL), Sonication (SN), Microwaving (MC), Heating in a 50°C water bath (WB) and Sonication followed by Microwaving (SN-MC). The presence of polyphenolic and flavonoid contents were evaluated to recognize the best extraction method for polyphenols. The total phenolic content was measured spectrophotometrically by Folin-Ciocalteu method and expressed as Gallic Acid Equivalents (w/w% GAE). Total flavonoid content was also determined spectrophotometrically with Aluminium chloride colourimetric assay and expressed as Quercetin Equivalents (w/w % QE). Pomegranate juice was taken as fermented juice (with Saccharomyces bayanus) and fresh juice. Powdered seeds were refluxed, filtered and freeze-dried. 2g of freeze-dried powder of each component was dissolved in 100ml of De-ionized water for extraction. For the comparison of antioxidant activity and total phenol content, the polyphenols were removed by the Polyvinylpolypyrrolidone (PVVP) column and fermented and fresh juice were tested for the 1, 1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging activity, before and after the removal of polyphenols. For the peel samples of Pomegranate fruit, total phenol and flavonoid contents were high in Sonication (SN). In pericarp, total phenol and flavonoid contents were highly exhibited in method of Sonication (SN). A significant difference was observed (P< 0.05) in total phenol and flavonoid contents, between five extraction methods for both peel and pericarp samples. Fermented juice had a greatest polyphenolic and flavonoid contents comparative to fresh juice. After removing polyphenols of fermented juice and fresh juice using Polyvinyl polypyrrolidone (PVVP) column, low antioxidant activity was resulted for DPPH antioxidant activity assay. Seeds had a very low total phenol and flavonoid contents according to the results. Although, Pomegranate peel is the main waste component of the fruit, it has an excellent polyphenolic and flavonoid contents compared to other parts of the fruit, devoid of the method of extraction. Polyphenols play a major role for antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate" title=" pomegranate"> pomegranate</a> </p> <a href="https://publications.waset.org/abstracts/78637/impact-on-the-yield-of-flavonoid-and-total-phenolic-content-from-pomegranate-fruit-by-different-extraction-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2557</span> Characterization of Domestic Sewage Mixed with Baker's Yeast Factory Effluent of Beja Wastewater Treatment Plant by Respirometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fezzani%20Boubaker">Fezzani Boubaker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a comprehensive study of respirometric method was performed to assess the biodegradable COD fractions of domestic sewage mixed with baker’s yeast factory effluent treated by wastewater treatment plant (WWTP) of Beja. Three respirometric runs were performed in a closed tank reactor to characterize this mixed raw effluent. Respirometric result indicated that the readily biodegradable fraction (SS) was in range of 6-22%, the slowly biodegradable fraction (Xs) was in range of 33-42%, heterotrophic biomass (XH) was in range of 9-40% and the inert fractions: XI and SI were in range of 2-40% and 6-12% respectively which were high due to the presence of baker’s yeast factory effluent compared to domestic effluent alone. The fractions of the total nitrogen showed that SNO fraction is between 6 and 9% of TKN, the fraction of nitrogen ammonia SNH was ranging from 5 to 68%. The organic fraction divided into two compartments SND (11-85%) and XND (5-20%) the inert particulate nitrogen fraction XNI was between 0.4 and 1% and the inert soluble fraction of nitrogen SNI was ranged from 0.4 to 3%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20characterization" title="wastewater characterization">wastewater characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20fractions" title=" COD fractions"> COD fractions</a>, <a href="https://publications.waset.org/abstracts/search?q=respirometry" title=" respirometry"> respirometry</a>, <a href="https://publications.waset.org/abstracts/search?q=domestic%20sewage" title=" domestic sewage"> domestic sewage</a> </p> <a href="https://publications.waset.org/abstracts/36157/characterization-of-domestic-sewage-mixed-with-bakers-yeast-factory-effluent-of-beja-wastewater-treatment-plant-by-respirometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2556</span> Enrichment of the Antioxidant Activity of Decaffeinated Assam Green Tea by Herbal Plant: A Synergistic Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Das">Abhijit Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Runu%20Chakraborty"> Runu Chakraborty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tea is the most widely consumed beverage aside from water; it is grown in about 30 countries with a per capita worldwide consumption of approximately 0.12 liter per year. Green tea is of growing importance with its antioxidant contents associated with its health benefits. The various extraction methods can influence the polyphenol concentrations of green tea. The purpose of the study was to quantify the polyphenols, flavonoid and antioxidant activity of both caffeinated and decaffeinated form of tea manufactured commercially in Assam, North Eastern part of India. The results display that phenolic/flavonoid content well correlated with antioxidant activity which was performed by DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (Ferric reducing ability of plasma) assay. After decaffeination there is a decrease in the polyphenols concentration which also affects the antioxidant activity of green tea. For the enrichment of antioxidant activity of decaffeinated tea a herbal plant extract is used which shows a synergistic effect between green tea and herbal plant phenolic compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=decaffeination" title=" decaffeination"> decaffeination</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20tea" title=" green tea"> green tea</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid%20content" title=" flavonoid content"> flavonoid content</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20content" title=" phenolic content"> phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extract" title=" plant extract"> plant extract</a> </p> <a href="https://publications.waset.org/abstracts/40137/enrichment-of-the-antioxidant-activity-of-decaffeinated-assam-green-tea-by-herbal-plant-a-synergistic-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2555</span> Physiochemical and Antibacterial Assessment of Iranian Propolis Gathering in Qazvin Province </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nematollah%20Gheibi">Nematollah Gheibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Divan%20Khosroshahi"> Nader Divan Khosroshahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Mohammadi%20Ghanbarlou"> Mahdi Mohammadi Ghanbarlou </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Nowadays, the phenomenon of bacterial resistance is one of the most important challenge of the health community in the world. Propolis is most important production of bee colonies that collected from of various plants. So far, a lot of investigations carried out about its antibacterial effects. Material and methods: Thirty gram of propolis prepared as ethanolic extract and after different process of purification, 7.5 gr of its pure form were obtained. Propolis compounds identification was performed by TLC and VLC methods. The HPLC spectrum obtaining from propolis ethanolic extract was compared with some purified standard phenolic and flavonoid substances. Antibacterial effects of ethanol extract of purified propolis were evaluated on two strains of Staphylococcus aureus and Pseudomonas aeruginosa and their MIC was determined by the microdillution assay. Results: Ethanolic propolis extraction analyzed by TLC were resulted to confirm several phenolic and flavonoid compounds in this extract and some of the confirmed by HPLC technique. Minimum inhibitory concentration (MIC) for standard Staphylococcus aureus (ATCC25923) and Pseudomonas aeruginosa (ATCC27853) strains were obtained 2.5 mg/ml and 50 mg/ml respectively. Conclusion: Bee Propolis is a mix organic compound that has a lot of beneficial effects such as anti-bacterial that emphasized in this investigation. It is proposed as a rich source of natural phenolic and flavonoids compounds in designing of new biological resources for hygienic and medical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propolis" title="propolis">propolis</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20aeruginosa" title=" Pseudomonas aeruginosa"> Pseudomonas aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a> </p> <a href="https://publications.waset.org/abstracts/12023/physiochemical-and-antibacterial-assessment-of-iranian-propolis-gathering-in-qazvin-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2554</span> Bioassay Guided Isolation of Cytotoxic and Antimicrobial Components from Ethyl Acetate Extracts of Cassia sieberiana D.C. (Fabaceae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sani%20Abubakar">Sani Abubakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Oumar%20Al-Mubarak%20Adoum"> Oumar Al-Mubarak Adoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The leaves extracts of Cassia sieberiana D. C. were screened for antimicrobial bioassay against Staphylococcus aureus, Salmonella typhi, and Escherichia coli and cytotoxicity using Brine Shrimp Test (BST). The crude ethanol extract, Chloroform soluble fraction, aqueous soluble fraction, ethyl acetate soluble fraction, methanol soluble fraction, and n-hexane soluble fraction were tested against antimicrobial and cytotoxicity. The Ethyl acetate fraction obtained proved to be most active in inducing complete lethality at minimum doses in BST and also active on Salmonella typhi. The bioactivity result was used to guide the column chromatography, which led to the isolation of pure compound CSB-8, which was found active in the BST with an LC₅₀ value of 34(722-182)µg/ml and showed remarkable activity on Salmonella typhi (zone of inhibition 25mm) at 10,000µg/ml. The ¹H-NMR, ¹³C NMR, FTIR, and GC-MS spectra of the compound suggested the proposed structure to be 2-pentadecanone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20bioassay" title="antimicrobial bioassay">antimicrobial bioassay</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20chromatagraphy" title=" column chromatagraphy"> column chromatagraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassia%20sieberiana%20D.C." title=" Cassia sieberiana D.C."> Cassia sieberiana D.C.</a> </p> <a href="https://publications.waset.org/abstracts/187049/bioassay-guided-isolation-of-cytotoxic-and-antimicrobial-components-from-ethyl-acetate-extracts-of-cassia-sieberiana-dc-fabaceae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2553</span> Effect of Two Cooking Methods on Kinetics of Polyphenol Content, Flavonoid Content and Color of a Tunisian Meal: Molokheiya (Corchorus olitorius)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Njoumi">S. Njoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ben%20Haj%20Said"> L. Ben Haj Said</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Amiot"> M. J. Amiot</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bellagha"> S. Bellagha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research was to establish the kinetics of variation of total polyphenol content (TPC) and total flavonoid content (TFC) in Tunisian Corchorus olitorius powder and in a traditional home cooked-meal (Molokheiya) when using stewing and stir-frying as cooking methods, but also to compare the effect of these two common cooking practices on water content, TPC, TFC and color. The L*, a* and b* coordinates values of the Molokheiya varied from 24.955±0.039 to 21.301±0.036, from -1.556±0.048 to 0.23±0.026 and from 5.675±0.052 to 6.313±0.103 when using stewing and from 21.328±0.025 to 20.56±0.021, from -1.093± 0.011to 0.121±0.007 and from 5.708±0.020 to 6.263±0.007 when using stir-frying, respectively. TPC and TFC increased during cooking. TPC of Molokheiya varied from 29.852±0.866 mg GAE/100 g to 220.416±0.519 mg GAE/100 g after 150 min of stewing and from 25.257±0.259 mg GAE/100 g to 208.897 ±0.173 mg GAE/100 g using stir-frying method during 150 min. TFC of Molokheiya varied from 48.229±1.47 mg QE/100 g to 843.802±1.841 mg QE/100 g when using stewing and from 37.031± 0.368 mg QE/100 g to 775.312±0.736 mg QE/100 g when using stir-frying. Kinetics followed similar curves in all cases but resulted in different final TPC and TFC. The shape of the kinetics curves suggests zero-order kinetics. The mathematical relations and the numerical approach used to model the kinetics of polyphenol and flavonoid contents in Molokheiya are described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Corchorus%20olitorius" title="Corchorus olitorius">Corchorus olitorius</a>, <a href="https://publications.waset.org/abstracts/search?q=Molokheiya" title=" Molokheiya"> Molokheiya</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a> </p> <a href="https://publications.waset.org/abstracts/29841/effect-of-two-cooking-methods-on-kinetics-of-polyphenol-content-flavonoid-content-and-color-of-a-tunisian-meal-molokheiya-corchorus-olitorius" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2552</span> A Simplified Model of the Control System with PFM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bekmurza%20H.%20Aitchanov">Bekmurza H. Aitchanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sholpan%20K.%20Aitchanova"> Sholpan K. Aitchanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Olimzhon%20A.%20Baimuratov"> Olimzhon A. Baimuratov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aitkul%20N.%20Aldibekova"> Aitkul N. Aldibekova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work considers the automated control system (ACS) of milk quality during its magnetic field processing. For achieving high level of quality control methods were applied transformation of complex nonlinear systems in a linearized system with a less complex structure. Presented ACS is adjustable by seven parameters: mass fraction of fat, mass fraction of dry skim milk residues (DSMR), density, mass fraction of added water, temperature, mass fraction of protein, acidity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluids%20magnetization" title="fluids magnetization">fluids magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20magnetic%20resonance" title=" nuclear magnetic resonance"> nuclear magnetic resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20control%20system" title=" automated control system"> automated control system</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20pulse-frequency%20modulator" title=" dynamic pulse-frequency modulator"> dynamic pulse-frequency modulator</a>, <a href="https://publications.waset.org/abstracts/search?q=PFM" title=" PFM"> PFM</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20model" title=" structural model"> structural model</a> </p> <a href="https://publications.waset.org/abstracts/26701/a-simplified-model-of-the-control-system-with-pfm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2551</span> Extraction, Characterization, and Applicability of Rich β-Glucan Fractions from Fungal Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaida%20Perez-Bassart">Zaida Perez-Bassart</a>, <a href="https://publications.waset.org/abstracts/search?q=Berta%20Polanco-Estibalez"> Berta Polanco-Estibalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Jose%20Fabra"> Maria Jose Fabra</a>, <a href="https://publications.waset.org/abstracts/search?q=Amparo%20Lopez-Rubio"> Amparo Lopez-Rubio</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Martinez-Abad"> Antonio Martinez-Abad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mushroom production has enormously increased in recent years, not only as food products but also for applications in pharmaceuticals, nutraceuticals, and cosmetics. Consequently, interest in its chemical composition, nutritional value, and therapeutic properties has also increased. Fungi are rich in bioactive compounds such as polysaccharides, polyphenols, glycopeptides, and ergosterol, of great medicinal value, but within polysaccharides, β-glucans are the most prominent molecules. They are formed by D-glucose monomers, linked by β-glucosidic bonds β-(1,3) with side chains linked by β-(1,6) bonds. The number and position of the β-(1,6) branches strongly influence the arrangement of the tertiary structure, which, together with the molecular weight, determine the different attributed bioactivities (immunostimulating, anticancer, antimicrobial, prebiotic, etc.) and physico-chemical properties (solubility, bioaccessibility, viscosity or emulsifying). On the other hand, there is a growing interest in the study of fungi as an alternative source of chitin obtained from the by-products of the fungal industry. In this work, a cascade extraction process using aqueous neutral and alkaline treatments was carried out for Grifola frondosa and Lentinula edodes, and the compositional analysis and functional properties of each fraction were characterized. Interestingly, the first fraction obtained by using aqueous treatment at room temperature was the richest in polysaccharides, proteins, and polyphenols, thus obtaining a greater antioxidant capacity than in the other fractions. In contrast, the fractions obtained by alkaline treatments showed a higher degree of β-glucans purification compared to aqueous extractions but a lower extraction yield. Results revealed the different structural recalcitrance of β-glucans, preferentially linked to proteins or chitin depending on the fungus type, which had a direct impact on the functionalities and bioactivities of each fraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fungi" title="fungi">fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=mushroom" title=" mushroom"> mushroom</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-glucans" title=" β-glucans"> β-glucans</a>, <a href="https://publications.waset.org/abstracts/search?q=chitin" title=" chitin"> chitin</a> </p> <a href="https://publications.waset.org/abstracts/128677/extraction-characterization-and-applicability-of-rich-v-glucan-fractions-from-fungal-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2550</span> Combustion Characteristic of Propane/Acetylene Fuel Blends Pool Fire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yubo%20Bi">Yubo Bi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Chen"> Xiao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shouxiang%20Lu"> Shouxiang Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A kind of gas-fueled burner, named Burning Rate Emulator, was proposed for the purpose of the emulation of condensed fuel recently. The gaseous fuel can be pure combustible fuel gas or blends of gaseous fuel or inert gas. However, this concept was recently proposed without detailed study on the combustion characteristic of fuel blends. In this study, two kinds of common gaseous fuels were selected, propane and acetylene, to provide the combustion heat as well as a large amount of smoke, which widely exists in liquid and solid fuel burning process. A set of experiments were carried out using a gas-fueled burner with a diameter of 8 cm. The total volume flow rate of propane and acetylene was kept at 3 liters per minute. The volume fraction of propane varied from 0% to 100% at interval of 10%. It is found that the flame height increases with propane volume fraction, which may be caused by the increase of heat release rate, as the energy density of propane is larger than that of acetylene. The dimensionless flame height is correlated against dimensionless heat release rate, which shows a power function relationship. The radiation fraction of the flame does not show a monotonic relationship with propane volume fraction. With the increase of propane volume fraction from 0% to 100%, the value of radiation fraction increases first and reach a maximum value around 0.46 at a propane volume fraction of 10%, and then decreases continuously to a value of 0.25 at the propane volume fraction of 100%. The flame radiation is related to the soot in the flame. The trend of the radiation fraction reflects that there may be a synergistic effect of soot formation between propane and acetylene which can be guessed from the significantly high radiation fraction at a propane volume fraction of 10%. This work provides data for combustion of gaseous fuel blends pool fire and also give reference on the design of Burning Rate Emulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burning%20Rate%20Emulator" title="Burning Rate Emulator">Burning Rate Emulator</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20blends%20pool%20fire" title=" fuel blends pool fire"> fuel blends pool fire</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20height" title=" flame height"> flame height</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20fraction" title=" radiation fraction"> radiation fraction</a> </p> <a href="https://publications.waset.org/abstracts/74848/combustion-characteristic-of-propaneacetylene-fuel-blends-pool-fire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2549</span> Production and Quality Assessment of Antioxidant-Rich Biscuit Produced from Pearl Millet and Orange Peel Flour Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oloniyo%20Rebecca%20Olajumoke">Oloniyo Rebecca Olajumoke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unstable free radicals molecules oxidize cells throughout the body to cause oxidative stress, which has been implicated in the pathogenesis of many chronic diseases. Thus, the consumption of antioxidant-rich snacks could help to reduce the production of these free radicals in the body. This study aimed at producing antioxidant–rich biscuits from an underutilized pearl millet and agricultural waste from orange peel flour (PMF and OPF, respectively) blends. Biscuits were produced from PMF, and OPF blends using various proportions (95:05; 90:10; 85:15; 80:20 with 100% PMF as control. The functional properties of the flours, as well as the antioxidant properties, physical evaluation, and consumer acceptability of the biscuits, were evaluated. The functional properties of the composite flour showed an increase in oil absorption capacity (7.73-8.80 g/ml), water absorption capacity (6.82-7.21 g/ml), foaming (3.91-5.88 g/ml), and emulsification (52.85-58.82 g/ml) properties. The increased addition of OPF significantly (p<0.05) increased the antioxidant properties of the biscuits produced from the composite flour. For instance, the ferric reducing properties (0.10-0.4 mgAAE/g), total flavonoid (1.20-8.12 mg QE/g), and ABTS radical scavenging (1.17-2.19 mmol/TEAC/g) of the composite flours were increasingly comparable to those of 100% PMF. The physical parameters of the biscuit were significantly different (p<0.05) from one another. The addition of OPF into PMF reduced the weight, diameter, and spread ratio of biscuits produced while contrarily increasing the height of the biscuit. The incorporation of OPF at 5% (95:05) substitution yielded a consumedly acceptable biscuit product. The significant increase in antioxidant properties with an increase in OPF during the production of biscuits would therefore increase the nutritional value and potential health benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orange%20peel" title="orange peel">orange peel</a>, <a href="https://publications.waset.org/abstracts/search?q=biscuit" title=" biscuit"> biscuit</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=pearl%20millet" title=" pearl millet"> pearl millet</a> </p> <a href="https://publications.waset.org/abstracts/155927/production-and-quality-assessment-of-antioxidant-rich-biscuit-produced-from-pearl-millet-and-orange-peel-flour-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2548</span> Gas-Liquid Two Phase Flow Phenomenon in Near Horizontal Upward and Downward Inclined Pipe Orientations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afshin%20J.%20Ghajar">Afshin J. Ghajar</a>, <a href="https://publications.waset.org/abstracts/search?q=Swanand%20M.%20Bhagwat"> Swanand M. Bhagwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this work is to experimentally investigate the effect of pipe orientation on two phase flow phenomenon. Flow pattern, void fraction and two phase pressure drop is measured in a polycarbonate pipe with an inside diameter of 12.7mm for inclination angles ranging from -20° to +20° using air-water fluid combination. The experimental data covers all flow patterns and the entire range of void fraction typically observed in two phase flow. The effect of pipe orientation on void fraction and two phase pressure drop is justified with reference to the change in flow structure and two phase flow behavior. In addition to this, the top performing void fraction and two phase pressure drop correlations available in the literature are presented and their performance is assessed against the experimental data in the present study and that available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20patterns" title="flow patterns">flow patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20two%20phase%20flow" title=" inclined two phase flow"> inclined two phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20fraction" title=" void fraction "> void fraction </a> </p> <a href="https://publications.waset.org/abstracts/6215/gas-liquid-two-phase-flow-phenomenon-in-near-horizontal-upward-and-downward-inclined-pipe-orientations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">680</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2547</span> Hepatoprotective Evaluation of Potent Antioxidant Fraction from Urtica dioica L.: In vitro and In vivo Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhuwan%20C.%20Joshi">Bhuwan C. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Atish%20Prakash"> Atish Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajudhia%20N.%20Kalia"> Ajudhia N. Kalia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethnopharmacological relevance: The plant Urtica dioica L. (Urticaceae) is used in various diseases including hepatic ailments. Traditionally, the leaves and roots of the plant are used in jaundice. Objective: The aim of the present work was to evaluate hepatoprotective potential of potent antioxidant from Urtica dioica L. against CCl4 induced hepatotoxicity in-vitro and in-vivo model. Materials and methods: Antioxidant activity of hydro alcoholic extract and its fractions petroleum ether fraction (PEF), ethyl acetate fraction (EAF), n-butanol fraction (NBF) and aqueous fraction (AF) were determined by DPPH radicals scavenging assay. Fractions were subjected to in-vitro cell line study. Further, the most potent fraction (EAF) was subjected to in-vivo study. The in-vivo hepatoprotective active fraction was chromatographed on silica column to isolate the bioactive constituent(s). Structure elucidation was done by using various spectrophotometric techniques like UV, IR, 1H NMR, 13C NMR and MS spectroscopy. Results and conclusion: The ethyl acetate fraction (EAF) of Urtica. dioica L. possessed the potent antioxidant activity viz. DPPH (IC50 78.99 ± 0.17 µg/ml). The in-vitro cell line study showed EAF prevented the cell damage. The EAF significantly attenuated the increased liver enzymes activities in serum and tissue. Column chromatography of most potent antioxidant fraction (EAF) leads to the isolation of 4-hydroxy-3-methoxy cinnamic acid which is responsible for its hepatoprotective potential. Hence, the present study suggests that EAF has significant antioxidant and hepatoprotective potential on CCl4 induced hepatotoxicity in-vitro and in-vivo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urtica%20dioica%20L." title="Urtica dioica L.">Urtica dioica L.</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=HepG2%20cell%20line" title=" HepG2 cell line"> HepG2 cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatoprotective" title=" hepatoprotective"> hepatoprotective</a> </p> <a href="https://publications.waset.org/abstracts/41585/hepatoprotective-evaluation-of-potent-antioxidant-fraction-from-urtica-dioica-l-in-vitro-and-in-vivo-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flavonoid%20rich%20fraction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flavonoid%20rich%20fraction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flavonoid%20rich%20fraction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flavonoid%20rich%20fraction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flavonoid%20rich%20fraction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flavonoid%20rich%20fraction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flavonoid%20rich%20fraction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flavonoid%20rich%20fraction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flavonoid%20rich%20fraction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flavonoid%20rich%20fraction&page=85">85</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flavonoid%20rich%20fraction&page=86">86</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flavonoid%20rich%20fraction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>