CINXE.COM

Search results for: Vickers hardness tester

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Vickers hardness tester</title> <meta name="description" content="Search results for: Vickers hardness tester"> <meta name="keywords" content="Vickers hardness tester"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Vickers hardness tester" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Vickers hardness tester"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 827</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Vickers hardness tester</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">827</span> Comparison of Surface Hardness of Filling Material Glass Ionomer Cement Which Soaked in Alcohol Containing Mouthwash and Alcohol-Free Mouthwash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Yuristiawan">Farid Yuristiawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aulina%20R.%20Rahmi"> Aulina R. Rahmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Detty%20Iryani"> Detty Iryani</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunawan"> Gunawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass ionomer cement is one of the filling material that often used in the field of dentistry because it is relatively less expensive and mostly available. Surface hardness is one of the most important properties of restoration material; it is the ability of material to stand against indentation, which is directly connected to the material compressive strength and its ability to withstand abrasion. The higher surface hardness of a material means it is better to withstand abrasion. The existence of glass ionomer cement in the mouth makes it susceptible to any substance that comes into mouth, one of them is mouthwash which is a solution that used for many purposes such as antiseptic, astringent, to prevent caries, and bad breath. The presence of alcohol in mouthwash could affect the properties of glass ionomer cement, surface hardness. Objective: To determine the comparison of surface hardness of glass ionomer cement which soaked in alcohol containing mouthwash and alcohol-free mouthwash. Methods: This research is a laboratory experimental type study. There were 30 samples made from GC FUJI IX GP EXTRA and then soaked in artificial saliva for the first 24 hours inside incubator which temperature and humidity were controlled. Samples then divided into three groups. The first group will be soaked in alcohol-containing mouthwash; second group will be soaked alcohol-free mouthwash and control group will be soaked in artificial saliva for 6 hours inside incubator. Listerine is the mouthwash that was used on this research and surface hardness was examined using Vickers Hardness Tester. The result of this research shows mean value for surface hardness of the first group is 16.36 VHN, 24.04 VHN for second group, and 43.60 VHN for control group. The result one way ANOVA with post hoc Bonferroni comparing test show significant results p = 0.00. Conclusions: The data showed there were statistically significant differences of surface hardness between each group, which surface hardness of the first group is lower than the second group, and both surface hardness of the first (alcohol mouthwash) and second group (alcohol-free mouthwash) are lowered than control group (p = 0.00). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20ionomer%20cement" title="glass ionomer cement">glass ionomer cement</a>, <a href="https://publications.waset.org/abstracts/search?q=mouthwash" title=" mouthwash"> mouthwash</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20hardness" title=" surface hardness"> surface hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20tester" title=" Vickers hardness tester"> Vickers hardness tester</a> </p> <a href="https://publications.waset.org/abstracts/71287/comparison-of-surface-hardness-of-filling-material-glass-ionomer-cement-which-soaked-in-alcohol-containing-mouthwash-and-alcohol-free-mouthwash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">826</span> Synthesis Using Sintering and Characterisation of FeCrCoNiZn Alloy Using SEM and Nanoindentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steadyman%20Chikumba">Steadyman Chikumba</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasudeva%20Vereedhi%20Rao"> Vasudeva Vereedhi Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on the synthesis of FeCrCoNiZn and its characterisation using SEM and nanoindentation. The high entropy alloy FeCrCoNiZn was fabricated using spark plasma sintering at a temperature of 1100ᵒC from powders mixed for 9 hours. The powders mixture was equimolar, and the resultant microstructure had a single crystalline structure when studied under SEM. Several nano Vickers hardness measurements were taken on a polished surface etched by Nital solution. The hardness ranged from 711 Vickers to a maximum of 1773.2. The alloy FeCrCoNiZn showed a nano hardness of 1070 Vickers and a modulus of elasticity of 460.4 MPa. The process managed to fabricate a very hard material that can find applications where wear resistance is desired. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20entropy%20alloy" title="high entropy alloy">high entropy alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=FeCrVNiZn" title=" FeCrVNiZn"> FeCrVNiZn</a>, <a href="https://publications.waset.org/abstracts/search?q=nanohardness" title=" nanohardness"> nanohardness</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/149240/synthesis-using-sintering-and-characterisation-of-fecrconizn-alloy-using-sem-and-nanoindentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">825</span> Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Prabhu">P. R. Prabhu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Kulkarni"> S. M. Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Sharma"> S. S. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jagannath"> K. Jagannath</a>, <a href="https://publications.waset.org/abstracts/search?q=Achutha%20Kini%20U."> Achutha Kini U. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardness" title="hardness">hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20design" title=" central composite design"> central composite design</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20cold%20rolling" title=" deep cold rolling"> deep cold rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/26087/analysis-of-surface-hardness-surface-roughness-and-near-surface-microstructure-of-aisi-4140-steel-worked-with-turn-assisted-deep-cold-rolling-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">824</span> Microstructural Mechanical Properties of Human Trabecular Bone Based on Nanoindentation Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Jankowski">K. Jankowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pawlikowski"> M. Pawlikowski</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Makuch"> A. Makuch</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Skalski"> K. Skalski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Depth-sensing indentation (DSI) or nanoindentation is becoming a more and more popular method of measuring mechanical properties of various materials and tissues at a micro-scale. This technique allows measurements without complicated sample preparation procedures which makes this method very useful. As a result of measurement force and displacement of the intender are obtained. It is also possible to determine three measures of hardness i.e. Martens hardness (HM), nanohardness (HIT), Vickers hardness (HV) and Young modulus EIT. In this work trabecular bone mechanical properties were investigated. The bone samples were harvested from human femoral heads during hip replacement surgery. Patients were of different age, sexes and stages of tissue degeneration caused by osteoarthritis. The specimens were divided into three groups. Each group contained samples harvested from patients of different range of age. All samples were investigated with the same measurement conditions. The maximum load was Pmax=500 mN and the loading rate was 500 mN/min. The tests were held without hold at the peak force. The tests were conducted with indenter Vickers tip and spherical tip of the diameter 0.2 mm. Each trabecular bone sample was tested 7 times in a close area of the same trabecula. The measured loading P as a function of indentation depth allowed to obtain hysteresis loop and HM, HIT, HV, EIT. Results for arbitrarily chosen sample are HM=289.95 ± 42.31 MPa, HIT=430.75 ± 45.37 MPa, HV=40.66 ± 4.28 Vickers, EIT=7.37 ± 1.84 GPa for Vickers tip and HM=115.19 ± 15.03 MPa, HIT=165.80 ± 19.30 MPa, HV=16.90 ± 1.97 Vickers, EIT=5.30 ± 1.31 GPa for spherical tip. Results of nanoindentation tests show that this method is very useful and is perfect for obtaining mechanical properties of trabecular bone. Estimated values of elastic modulus are similar. The differences between hardness are significant but it is a result of using two different types of tips. However, it has to be emphasised that the differences in the values of elastic modulus and hardness result from different testing protocols, anisotropy and asymmetry of the micro-samples and the hydration of bone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20bone" title="human bone">human bone</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20hardness%20nanoindentation" title=" nano hardness nanoindentation"> nano hardness nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=trabecular%20bone" title=" trabecular bone"> trabecular bone</a> </p> <a href="https://publications.waset.org/abstracts/75064/microstructural-mechanical-properties-of-human-trabecular-bone-based-on-nanoindentation-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> Hardness Analysis of Samples of Friction Stir Welded Joints of (Al-Cu)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Upamanyu%20Majumder">Upamanyu Majumder</a>, <a href="https://publications.waset.org/abstracts/search?q=Angshuman%20Das"> Angshuman Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction Stir Welding (FSW) is a Solid-State joining process. Unlike fusion welding techniques it does not involve operation above the melting point temperature of metals, but above the re-crystallization temperature. FSW also does not involve fusion of other material. FSW of ALUMINIUM has been commercialized and recent studies on joining dissimilar metals have been studied. Friction stir welding was introduced and patented in 1991 by The Welding Institute. For this paper, a total of nine samples each of copper and ALUMINIUM(Dissimilar metals) were welded using FSW process and Vickers Hardness were conducted on each of the samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding%20%28FSW%29" title="friction stir welding (FSW)">friction stir welding (FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallization%20temperature" title=" recrystallization temperature"> recrystallization temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=dissimilar%20metals" title=" dissimilar metals"> dissimilar metals</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium-copper" title=" aluminium-copper"> aluminium-copper</a>, <a href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20test" title=" Vickers hardness test"> Vickers hardness test</a> </p> <a href="https://publications.waset.org/abstracts/37637/hardness-analysis-of-samples-of-friction-stir-welded-joints-of-al-cu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Joseph%20Raviselvan">R. Joseph Raviselvan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ramanathan"> K. Ramanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Perumal"> P. Perumal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Thansekhar"> M. R. Thansekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength and corrosion resistant. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardness" title="hardness">hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=sputtering" title=" sputtering"> sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=TiN%20XRD" title=" TiN XRD"> TiN XRD</a> </p> <a href="https://publications.waset.org/abstracts/42534/response-surface-methodology-for-optimum-hardness-of-tin-on-steel-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">821</span> Deposition of Diamond Like Carbon Thin Film by Pulse Laser Deposition for Surgical Instruments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid%20Alamgir">M. Khalid Alamgir</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Ahsan%20Bhatti"> Javed Ahsan Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zafarullah%20Khan"> M. Zafarullah Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin film of amorphous carbon (DLC) was deposited on 316 steel using Nd: YAG laser having energy 300mJ. Pure graphite was used as a target. The vacuum in the deposition chamber was generated in the range of 10-6 mbar by turbo molecular pump. Ratio of sp3 to sp2 content shows amorphous nature of the film. This was confirmed by Raman spectra having two peaks around 1300 cm-1 i.e. D-band to 1700 cm-1 i.e. G-band. If sp3 bonding ratio is high, the films behave like diamond-like whereas, with high sp2, films are graphite-like. The ratio of sp3 and sp2 contents in the film depends upon the deposition method, hydrogen contents and system parameters. The structural study of the film was carried out by XRD. The hardness of the films as measured by Vickers hardness tester and was found to be 28 GPa. The EDX result shows the presence of carbon contents on the surface in high rate and optical microscopy result shows the smoothness of the film on substrate. The film possesses good adhesion and can be used to coat surgical instruments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DLC" title="DLC">DLC</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=EDX" title=" EDX"> EDX</a> </p> <a href="https://publications.waset.org/abstracts/29422/deposition-of-diamond-like-carbon-thin-film-by-pulse-laser-deposition-for-surgical-instruments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taiwo%20Ebenezer%20Abioye">Taiwo Ebenezer Abioye</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Medrano-Tellez"> Alexis Medrano-Tellez</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Kayode%20Farayibi"> Peter Kayode Farayibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Kayode%20Oke"> Peter Kayode Oke</a>, <a href="https://publications.waset.org/abstracts/search?q="> </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition" title="laser metal deposition">laser metal deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20tensile%20strength" title=" ultimate tensile strength"> ultimate tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=wall" title=" wall"> wall</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/45174/an-investigation-into-mechanical-properties-of-laser-fabricated-308lsi-stainless-steel-walls-by-wire-feedstock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> High Temperature Oxidation Resistance of NiCrAl Bond Coat Produced by Spark Plasma Sintering as Thermal Barrier Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Folorunso%20Omoniyi">Folorunso Omoniyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Olubambi">Peter Olubambi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotimi%20Sadiku"> Rotimi Sadiku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal barrier coating (TBC) system is used in both aero engines and other gas turbines to offer oxidation protection to superalloy substrate component. In the present work, it shows the ability of a new fabrication technique to develop rapidly new coating composition and microstructure. The compact powders were prepared by Powder Metallurgy method involving powder mixing and the bond coat was synthesized through the application of Spark Plasma Sintering (SPS) at 10500C to produce a fully dense (97%) NiCrAl bulk samples. The influence of sintering temperature on the hardness of NiCrAl, done by Micro Vickers hardness tester, was investigated. And Oxidation test was carried out at 1100oC for 20h, 40h, and 100h. The resulting coat was characterized with optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX) and x-ray diffraction (XRD). Micro XRD analysis after the oxidation test revealed the formation of protective oxides and non-protective oxides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20oxidation" title="high-temperature oxidation">high-temperature oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a> </p> <a href="https://publications.waset.org/abstracts/34130/high-temperature-oxidation-resistance-of-nicral-bond-coat-produced-by-spark-plasma-sintering-as-thermal-barrier-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">818</span> Microstructure and Mechanical Properties of Boron-Containing AZ91D Mg Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Chan%20Kim">Ji Chan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min"> Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of boron addition on the microstructure and mechanical properties of AZ91D Mg alloy was investigated in this study. Through calculation of phase equilibria, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as 420 °C where supersaturated solid solution can be obtained. Solid solution treatment was conducted at 420 °C for 24 hrs followed by hot rolling at 420 °C and the total reduction was about 60%. Recrystallization heat treatment was followed at 420 °C for 6 hrs to obtain equiaxed microstructure. After recrystallization treatment, aging heat treatment was conducted at temperature of 200 °C for time intervals from 1 min to 200 hrs and hardness of each condition was measured by micro-Vickers method. Peak hardness was observed after 20 hrs. Tensile tests were also conducted on the specimens aged for various time intervals and the results were compared with hardness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AZ91D%20Mg%20alloy" title="AZ91D Mg alloy">AZ91D Mg alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/62213/microstructure-and-mechanical-properties-of-boron-containing-az91d-mg-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">817</span> Enhancing the Rollability of Cu-Ge-Ni Alloy through Heat Treatment Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Hadi">Morteza Hadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the potential enhancement of the rollability of Cu-Ge-Ni alloy through the mitigation of microstructural and compositional inhomogeneities via two distinct heat treatment methods: homogenization and solution treatment. To achieve this objective, the alloy with the desired composition was fabricated using a vacuum arc remelting furnace (VAR), followed by sample preparation for microstructural, compositional, and heat treatment analyses at varying temperatures and durations. Characterization was conducted employing optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and Vickers hardness testing. The results obtained indicate that a minimum duration of 10 hours is necessary for adequate homogenization of the alloy at 750°C. This heat treatment effectively removes coarse dendrites from the casting microstructure and significantly reduces elemental separations. However, despite these improvements, the presence of a second phase with markedly different hardness from the matrix results in poor rolling ability for the alloy. The optimal time for solution treatment at various temperatures was determined, with the most effective cycle identified as 750°C for 2 hours, followed by rapid quenching in water. This process induces the formation of a single-phase microstructure and complete elimination of the second  phase, as confirmed by X-ray diffraction analysis. Results demonstrate a reduction in hardness by 30 Vickers, and the elimination of microstructural unevenness enables successful thickness reduction by up to 50% through rolling without encountering cracking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Ge-Ni%20alloy" title="Cu-Ge-Ni alloy">Cu-Ge-Ni alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization.%20solution%20treatment" title=" homogenization. solution treatment"> homogenization. solution treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=rollability" title=" rollability"> rollability</a> </p> <a href="https://publications.waset.org/abstracts/184647/enhancing-the-rollability-of-cu-ge-ni-alloy-through-heat-treatment-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">816</span> Effect of Yttrium Doping on Properties of Bi2Sr1.9Ca0.1-xYxCu2O7+δ (Bi-2202) Cuprate Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Boudjadja">Y. Boudjadja</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amira"> A. Amira</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Saoudel"> A. Saoudel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Varilci"> A. Varilci</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Altintas"> S. P. Altintas</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Terzioglu"> C. Terzioglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we report the effect of Y3+ doping on structural, mechanical and electrical properties of Bi-2202 phase. Samples of Bi2Sr1.9Ca0.1-xYxCu2O7+δ with x = 0, 0.025, 0.05, 0.075 and 0.1 are elaborated in air by conventional solid state reaction and characterized by X-Ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) combined with EDS spectroscopy, density, Vickers micro-hardness and resistivity measurements. A good correlation between the variations of the bulk density and the Vickers micro-hardness with doping is obtained. The SEM photograph shows that the samples are composed of grains with a flat shape that characterizes the Bi-based cuprates. Quantitative EDS analysis confirms the reduction of Ca content and the increase of Y content when x is increased. The variation of resistivity with temperature shows that only samples with x = 0, 0.025 and 0.05 present an onset transition to the superconducting state. The higher onset transition temperature is obtained for x = 0.025 and is about 93.62 K. The transition is wide and is realized in two steps confirming then the presence of the low Tc Bi-2201 phase in the samples. For x = 0.075 and 0.1, a transition to a semiconducting state is seen at low temperatures. Some physical parameters are extracted from these curves and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bi-2202%20phase" title="Bi-2202 phase">Bi-2202 phase</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20and%20electrical%20properties" title=" mechanical and electrical properties"> mechanical and electrical properties</a> </p> <a href="https://publications.waset.org/abstracts/6146/effect-of-yttrium-doping-on-properties-of-bi2sr19ca01-xyxcu2o7d-bi-2202-cuprate-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">815</span> Erosion Wear of Cast Al-Si Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Verma">Pooja Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajnesh%20Tyagi"> Rajnesh Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Mohan"> Sunil Mohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Al-Si alloys are widely used in various components such as liner-less engine blocks, piston, compressor bodies and pumps for automobile sector and aerospace industries due to their excellent combination of properties like low thermal expansion coefficient, low density, excellent wear resistance, high corrosion resistance, excellent cast ability, and high hardness. The low density and high hardness of primary Si phase results in significant reduction in density and improvement in wear resistance of hypereutectic Al-Si alloys. Keeping in view of the industrial importance of the alloys, hypereutectic Al-Si alloys containing 14, 16, 18 and 20 wt. % of Si were prepared in a resistance furnace using adequate amount of deoxidizer and degasser and their erosion behavior was evaluated by conducting tests at impingement angles of 30°, 60°, and 90° with an erodent discharge rate of 7.5 Hz, pressure 1 bar using erosion test rig. Microstructures of the cast alloys were examined using Optical microscopy (OM) and scanning electron microscopy (SEM) and the presence of Si particles was confirmed by x-ray diffractometer (XRD). The mechanical properties and hardness were measured using uniaxial tension tests at a strain rate of 10-3/s and Vickers hardness tester. Microstructures of the alloys and X-ray examination revealed the presence of primary and eutectic Si particles in the shape of cuboids or polyhedral and finer needles. Yield strength (YS), ultimate tensile strength (UTS), and uniform elongation of the hypereutectic Al-Si alloys were observed to increase with increasing content of Si. The optimal strength and ductility was observed for Al-20 wt. % Si alloy which is significantly higher than the Al-14 wt. % Si alloy. The increased hardness and the strength of the alloys with increasing amount of Si has been attributed presence of Si in the solid solution which creates strain, and this strain interacts with dislocations resulting in solid-solution strengthening. The interactions between distributed primary Si particles and dislocations also provide Orowan strengthening leading to increased strength. The steady state erosion rate was found to decrease with increasing angle of impact as well as Si content for all the alloys except at 900 where it was observed to increase with the increase in the Si content. The minimum erosion rate is observed in Al-20 wt. % Si alloy at 300 and 600 impingement angles because of its higher hardness in comparison to other alloys. However, at 90° impingement angle the wear rate for Al-20 wt. % Si alloy is found to be the minimum due to deformation, subsequent cracking and chipping off material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Si%20alloy" title="Al-Si alloy">Al-Si alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20wear" title=" erosion wear"> erosion wear</a>, <a href="https://publications.waset.org/abstracts/search?q=cast%20alloys" title=" cast alloys"> cast alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=dislocation" title=" dislocation"> dislocation</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/144812/erosion-wear-of-cast-al-si-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">814</span> Mechanical Properties, Vibrational Response and Flow-Field Analysis of Staghorn Coral Skeleton, Acropora cervicornis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alejandro%20Carrasco-Pena">Alejandro Carrasco-Pena</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Omer"> Mahmoud Omer</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20Orlovskaya"> Nina Orlovskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The results of studies of microstructure, mechanical behavior, vibrational response, and flow field analysis of critically endangered staghorn coral (Acropora cervicornis) skeletons are reported. The CaCO₃ aragonite structure of a chemically-cleaned coral skeleton of A. cervicornis was studied by optical microscopy and computer tomography. The mechanical behavior was studied using uniaxial compression and Vickers hardness technique. The average maximum stress measured during skeleton uniaxial compression was 10.7 ± 2.24 MPa and Vickers hardness was 3.56 ± 0.31 GPa. The vibrational response of the aragonite structure was studied by micro-Raman spectroscopy, which showed a substantial dependence of the structure on applied compressive stress. The flow-field around a single coral skeleton forming vortices in the wake of the moving skeleton was measured using Particle Image Velocimetry (PIV). The results are important for further analysis of time-dependent mechanical fatigue behavior and predicting the lifetime of staghorn corals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/108257/mechanical-properties-vibrational-response-and-flow-field-analysis-of-staghorn-coral-skeleton-acropora-cervicornis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">813</span> Enhancement of Hardness and Corrosion Resistance of Plasma Nitrided Low Alloy Tool Steel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalimi%20Trinadh">Kalimi Trinadh</a>, <a href="https://publications.waset.org/abstracts/search?q=Corinne%20Nouveau"> Corinne Nouveau</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Khanna"> A. S. Khanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Karanveer%20S.%20Aneja"> Karanveer S. Aneja</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ram%20Mohan%20Rao"> K. Ram Mohan Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study concerns improving the corrosion resistance of low alloy steel after plasma nitriding performed at variable time and temperature. Nitriding carried out in the temperature range of 450-550ᵒC for a various time period of 1-8 hrs. at 500Pa in a glow discharge plasma of H₂ and N₂ (80:20). The substrate was kept biased negatively at 250V. Following nitriding the X-ray diffraction studies shown that the phases formed were mainly γ′ (Fe₄N) and ε (Fe₂₋₃N). The ε (Fe₂₋₃N) phase found to be the dominating phase. Cross sections of the samples under scanning electron microscope point analyses revealed the presence of nitrogen in the surface region. For the assessment of corrosion resistance property, potentiodynamic polarization tests were performed in 3.5% NaCl solution. It has been shown that the plasma nitriding significantly improved the corrosion resistance when compared to the as-received steel. Furthermore, it has also been found that nitriding for 6h has more corrosion resistance than nitriding for the 8h duration. The hardness of the nitrided samples was measured by Vicker’s microhardness tester. The hardness of the nitrided steel was found to be improved much above the hardness of the steel in the as-received condition. It was found to be around two-fold of the initial hardness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20nitriding" title=" plasma nitriding"> plasma nitriding</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/93019/enhancement-of-hardness-and-corrosion-resistance-of-plasma-nitrided-low-alloy-tool-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">812</span> Characterising the Effects of Heat Treatment on 3CR12 and AISI 316 Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esther%20T.%20Akinlabi">Esther T. Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20A.%20Akinlabi"> Stephen A. Akinlabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on the effects of heat treatment on 3CR12 and AISI 316 stainless steel grades. Heat treatment was conducted on the steel grades and cooled using two different media; air and water in order to study the effect of each medium on the evolving properties of the samples. The heat treated samples were characterized through the evolving microstructure and hardness. It was found that there was a significant grain size reduction in both the heat treated stainless steel specimens compared to the parent materials. The finer grain sizes were achieved as a result of impediment to growth of one phase by the other. The Vickers micro-hardness values of the heat treated samples were higher compared to the parent materials due to the fact that each of the steel grades had a proportion of martensitic structures in their microstructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenite" title="austenite">austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite" title=" ferrite"> ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size" title=" grain size"> grain size</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite" title=" martensite"> martensite</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20and%20stainless%20steel" title=" microstructure and stainless steel"> microstructure and stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/5781/characterising-the-effects-of-heat-treatment-on-3cr12-and-aisi-316-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">811</span> Effect of Martensite Content and Its Morphology on Mechanical Properties of Microalloyed Dual Phase Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Manoj">M. K. Manoj</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Pancholi"> V. Pancholi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nath"> S. K. Nath </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalloyed dual phase steels have been prepared by intercritical austenitisation (ICA) treatment of normalized steel at different temperature and time. Water quenching wad carried to obtain different martensite volume fraction (MVF) in DP steels. DP steels and normalized steels have been characterized by optical and scanning electron microscopy, Vickers hardness measurements and tensile properties determination. The effect of MVF and martensite morphology on mechanical properties and fracture behavior of microalloyed dual phase steels have been explained in the present work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20phase%20steel" title="dual phase steel">dual phase steel</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite%20morphology" title=" martensite morphology"> martensite morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/85013/effect-of-martensite-content-and-its-morphology-on-mechanical-properties-of-microalloyed-dual-phase-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">810</span> Investigation of Microstructure of Differently Sub-Zero Treated Vanadis 6 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Pta%C4%8Dinov%C3%A1">J. Ptačinová</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20%C4%8Eurica"> J. Ďurica</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Jur%C4%8Di"> P. Jurči</a>, <a href="https://publications.waset.org/abstracts/search?q=M%20Kus%C3%BD"> M Kusý</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ledeburitic tool steel Vanadis 6 has been subjected to sub-zero treatment (SZT) at -140 &deg;C and -196 &deg;C, for different durations up to 48 h. The microstructure and hardness have been examined with reference to the same material after room temperature quenching, by using the light microscopy, scanning electron microscopy, X-ray diffraction, and Vickers hardness testing method. The microstructure of the material consists of the martensitic matrix with certain amount of retained austenite, and of several types of carbides &ndash; eutectic carbides, secondary carbides, and small globular carbides. SZT reduces the retained austenite amount &ndash; this is more effective at -196 &deg;C than at -140 &deg;C. Alternatively, the amount of small globular carbides increases more rapidly after SZT at -140 &deg;C than after the treatment at -140 &deg;C. The hardness of sub-zero treated material is higher than that of conventionally treated steel when tempered at low temperature. Compressive hydrostatic stresses are developed in the retained austenite due to the application of SZT, as a result of more complete martensitic transformation. This is also why the population density of small globular carbides is substantially increased due to the SZT. In contrast, the hardness of sub-zero treated samples decreases more rapidly compared to that of conventionally treated steel, and in addition, sub-zero treated material induces a loss the secondary hardening peak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstructure" title="microstructure">microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanadis%206%20tool%20steel" title=" Vanadis 6 tool steel"> Vanadis 6 tool steel</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-zero%20treatment" title=" sub-zero treatment"> sub-zero treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=carbides" title=" carbides"> carbides</a> </p> <a href="https://publications.waset.org/abstracts/81094/investigation-of-microstructure-of-differently-sub-zero-treated-vanadis-6-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">809</span> Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hassan">M. A. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Sakinah"> M. H. Sakinah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kadirgama"> K. Kadirgama</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ramasamy"> D. Ramasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Noor"> M. M. Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman"> M. M. Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tribological properties that include nanoparticles are an alternative to improve the tribological behaviour of lubricating oil, which has been investigated by many researchers for the past few decades. Various nanostructures can be used as additives for tribological improvement. However, this also depends on the characteristics of the nanoparticles. In this study, tribological investigation was performed to examine the effect of CuO nanoparticles on the tribological behaviour of Syntium 800 SL 10W−30. Three parameters used in the analysis using the wear tester (piston ring) were load, revolutions per minute (rpm), and concentration. The specifications of the nanoparticles, such as size, concentration, hardness, and shape, can affect the tribological behaviour of the lubricant. The friction and wear experiment was conducted using a tribo-tester and the Response Surface Methodology method was used to analyse any improvement of the performance. Therefore, two concentrations of 40 nm nanoparticles were used to conduct the experiments, namely, 0.005 wt % and 0.01 wt % and compared with base oil 0 wt % (control). A water bath sonicator was used to disperse the nanoparticles in base oil, while a tribo-tester was used to measure the coefficient of friction and wear rate. In addition, the thermal properties of the nanolubricant were also measured. The results have shown that the thermal conductivity of the nanolubricant was increased when compared with the base oil. Therefore, the results indicated that CuO nanoparticles had improved the tribological behaviour as well as the thermal properties of the nanolubricant oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentration" title="concentration">concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement" title=" improvement"> improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological" title=" tribological"> tribological</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20%28II%29%20oxide" title=" copper (II) oxide"> copper (II) oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20lubricant" title=" nano lubricant"> nano lubricant</a> </p> <a href="https://publications.waset.org/abstracts/38109/tribological-behaviour-improvement-of-lubricant-using-copper-ii-oxide-nanoparticles-as-additive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">808</span> Wheel Diameter and Width Influence in Variability of Brake Data Measurement at Ministry of Transport Facilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Senabre">Carolina Senabre</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Valero"> Sergio Valero</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Velasco"> Emilio Velasco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The brake systems of vehicles are tested periodically by a &ldquo;brake tester&rdquo; at Ministry of Transport (MOT) stations. This tester measures the effectiveness of vehicle. This parameter is established by the International Committee of Vehicle Inspection (CITA). In this paper, we present an investigation of the influence of the tire size on the measurements of brake force on three MOT brake testers. We performed an analysis of the vehicle braking capacity test at MOT stations. The influence of varying wheel diameter and width on the measurement of braking at MOT stations has been analyzed. Thereby, the MOT brake tester as a verification system for a vehicle has been evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20tester" title="brake tester">brake tester</a>, <a href="https://publications.waset.org/abstracts/search?q=ministry%20of%20transport%20facilities" title=" ministry of transport facilities"> ministry of transport facilities</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20diameter" title=" wheel diameter"> wheel diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/48087/wheel-diameter-and-width-influence-in-variability-of-brake-data-measurement-at-ministry-of-transport-facilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">807</span> Effect of Rotation Speed on Microstructure and Microhardness of AA7039 Rods Joined by Friction Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Karakoc">H. Karakoc</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Uzun"> A. Uzun</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20K%C4%B1rm%C4%B1z%C4%B1"> G. Kırmızı</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20%C3%87inici"> H. Çinici</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20%C3%87itak"> R. Çitak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this investigation was to apply friction welding for joining of AA7039 rods produced by powder metallurgy. Friction welding joints were carried out using a rotational friction welding machine. Friction welds were obtained under different rotational speeds between (2700 and 2900 rpm). The friction pressure of 10 MPa and friction time of 30 s was kept constant. The cross sections of joints were observed by optical microscopy. The microstructures were analyzed using scanning electron microscope/energy dispersive X-ray spectroscopy. The Vickers micro hardness measurement of the interface was evaluated using a micro hardness testing machine. Finally the results obtained were compared and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aluminum%20alloy" title="Aluminum alloy">Aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20welding" title=" friction welding"> friction welding</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/30362/effect-of-rotation-speed-on-microstructure-and-microhardness-of-aa7039-rods-joined-by-friction-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">806</span> Microstructure and Mechanical Properties of Mg-Zn Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Sik%20Kim">Young Sik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage&reg; and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mg-Zn%20alloy" title="Mg-Zn alloy">Mg-Zn alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/44160/microstructure-and-mechanical-properties-of-mg-zn-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">805</span> Synthesis and Tribological Properties of the Al-Cr-N/MoS₂ Self-Lubricating Coatings by Hybrid Magnetron Sputtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tie-Gang%20Wang">Tie-Gang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=De-Qiang%20Meng"> De-Qiang Meng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan-Mei%20Liu"> Yan-Mei Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ternary AlCrN coatings were widely used to prolong cutting tool life because of their high hardness and excellent abrasion resistance. However, the friction between the workpiece and cutter surface was increased remarkably during machining difficult-to-cut materials (such as superalloy, titanium, etc.). As a result, a lot of cutting heat was generated and cutting tool life was shortened. In this work, an appropriate amount of solid lubricant MoS₂ was added into the AlCrN coating to reduce the friction between the tool and the workpiece. A series of Al-Cr-N/MoS₂ self-lubricating coatings with different MoS₂ contents were prepared by high power impulse magnetron sputtering (HiPIMS) and pulsed direct current magnetron sputtering (Pulsed DC) compound system. The MoS₂ content in the coatings was changed by adjusting the sputtering power of the MoS₂ target. The composition, structure and mechanical properties of the Al-Cr-N/MoS2 coatings were systematically evaluated by energy dispersive spectrometer, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometer, nano-indenter tester, scratch tester, and ball-on-disk tribometer. The results indicated the lubricant content played an important role in the coating properties. As the sputtering power of the MoS₂ target was 0.1 kW, the coating possessed the highest hardness 14.1GPa, the highest critical load 44.8 N, and the lowest wear rate 4.4×10−3μm2/N. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-lubricating%20coating" title="self-lubricating coating">self-lubricating coating</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Cr-N%2FMoS%E2%82%82%20coating" title=" Al-Cr-N/MoS₂ coating"> Al-Cr-N/MoS₂ coating</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a> </p> <a href="https://publications.waset.org/abstracts/116546/synthesis-and-tribological-properties-of-the-al-cr-nmos2-self-lubricating-coatings-by-hybrid-magnetron-sputtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">804</span> Novel Development on Orthopedic Prosthesis by Nanocrystalline Hydroxyapatite Nanocomposite Coated on 316 L Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neriman%20Ozada">Neriman Ozada</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Karamian"> Ebrahim Karamian</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirsalar%20Khandan"> Amirsalar Khandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Ghafoorpoor%20Yazdi"> Sina Ghafoorpoor Yazdi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural hydroxyapatite, NHA, coatings on the surface of 316 L stainless steel implants has been widely employed in order to achieve better osteoconductivity. For coating, the plasma spraying method is generally used because they ensure adhesion between the coating and the 316 L stainless steel (SS) surface. Some compounds such as zircon (ZrSiO4) is employed as an additive in an attempt to improve HA’s mechanical properties such as wear resistance and hardness. In this study wear resistance has been carried out in different chemical compositions of coating. Therefore, nanocomposites based on NHA containing of 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon were used as a coating on the SS implants. The samples consisted of NHA, derived from calf heated at 850 °C for 3 h. The composite mixture was coated on SS by plasma spray method. The results were estimated using the scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques were utilized to characterize the shape and size of NHA powder. Disc wear test and Vickers hardness were utilized to characterize the coated nanocomposite samples. The prepared NHA powder had nano-scale morphological structure with the mean crystallite size of 30-50 nm in diameter. The wear resistance are almost 320, 380, 415, and 395 m/g and hardness are approximately 376, 391, 420, 410 VHN in ceramic composite materials containing ZrSiO4. The results have been shown that the best wear resistance and hardness occurred in the sample coated by NHA/ZrSiO4 containing of 10 wt.% of zircon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zircon" title="zircon">zircon</a>, <a href="https://publications.waset.org/abstracts/search?q=316%20L%20stainless%20steel" title=" 316 L stainless steel"> 316 L stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=orthopedic%20applications" title=" orthopedic applications"> orthopedic applications</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20spray" title=" plasma spray "> plasma spray </a> </p> <a href="https://publications.waset.org/abstracts/23159/novel-development-on-orthopedic-prosthesis-by-nanocrystalline-hydroxyapatite-nanocomposite-coated-on-316-l-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">803</span> Mechanical Behavior of PVD Single Layer and Multilayer under Indentation Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Kaouther">K. Kaouther</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Hafedh"> D. Hafedh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ben%20Cheikh%20Larbi"> A. Ben Cheikh Larbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various structures and compositions thin films were deposited on 100C6 (AISI 52100) steel substrate by PVD magnetron sputtering system. The morphological proprieties were evaluated using an atomic force microscopy (AFM). Vickers microindentation tests were performed with a Shimadzu HMV-2000 hardness testing machine. Hardness measurement was carried out using Jonsson and Hogmark model. The results show that the coatings topography was dominated by domes and craters. Mechanical behavior and failure modes under microindentation were depending of coatings structure and composition. TiAlN multilayer showed exception in the microindentation resistance compared to TiN single layer and TiAlN/TiAlN nanolayer. Piled structure provides an increase of failure resistance and a decrease in cracks propagation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVD%20thin%20films" title="PVD thin films">PVD thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer" title=" multilayer"> multilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=microindentation" title=" microindentation"> microindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking" title=" cracking"> cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20mechanisms" title=" damage mechanisms"> damage mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/21806/mechanical-behavior-of-pvd-single-layer-and-multilayer-under-indentation-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">802</span> Surface Engineering and Characterization of S-Phase Formed in AISI 304 By Low-Temperature Nitrocarburizing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeet%20Vijay%20Sah">Jeet Vijay Sah</a>, <a href="https://publications.waset.org/abstracts/search?q=Alphonsa%20Joseph"> Alphonsa Joseph</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravin%20Kumari%20Dwivedi"> Pravin Kumari Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghanshyam%20Jhala"> Ghanshyam Jhala</a>, <a href="https://publications.waset.org/abstracts/search?q=Subroto%20Mukherjee"> Subroto Mukherjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> AISI 304 is known for its corrosion resistance which comes from Cr that forms passive Cr₂O₃ on the surface. But its poor hardness makes it unsuitable for applications where the steel also requires high wear resistance. This can be improved by surface hardening using nitrocarburizing processes, which form ε-Fe2-3N, γ’-Fe4N, nitrides, and carbides of Cr and Fe on the surface and subsurface. These formed phases give the surface greater hardness, but the corrosion resistance drops because of the lack of Cr2O3 passivation as a result. To overcome this problem, plasma nitrocarburizing processes are being developed where the process temperatures are kept below 723 K to avoid Cr-N precipitation. In the presented work, low-temperature pulsed-DC plasma nitrocarburizing utilizing a discharge of N₂-H₂-C₂H₂ at 500 Pa with varying N₂:H₂ ratios was conducted on AISI 304 samples at 673 K. The process durations were also varied, and the samples were characterized by microindentation using Vicker’s hardness tester, corrosion resistances were established from electrochemical impedance studies, and corrosion potentials and corrosion currents were obtained by potentiodynamic polarization testing. XRD revealed S-phase, which is a supersaturated solid solution of N and C in the γ phase. The S-phase was observed to be composed of the expanded phases of γ; γN, γC, and γ’N and ε’N phases. Significant improvement in surface hardness was achieved after every process, which is attributed to the S-phase. Corrosion resistance was also found to improve after the processes. The samples were also characterized by XPS, SEM, and GDOES. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AISI%20304" title="AISI 304">AISI 304</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20engineering" title=" surface engineering"> surface engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrocarburizing" title=" nitrocarburizing"> nitrocarburizing</a>, <a href="https://publications.waset.org/abstracts/search?q=S-phase" title=" S-phase"> S-phase</a> </p> <a href="https://publications.waset.org/abstracts/155543/surface-engineering-and-characterization-of-s-phase-formed-in-aisi-304-by-low-temperature-nitrocarburizing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">801</span> Development of Wear Resistant Ceramic Coating on Steel Using High Velocity Oxygen Flame Thermal Spray</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Pattnayak">Abhijit Pattnayak</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijith%20N.V"> Abhijith N.V</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Kumar"> Deepak Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayant%20Jain"> Jayant Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Chaudhry"> Vijay Chaudhry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hard and dense ceramic coatings deposited on the surface provide the ideal solution to the poor tribological properties exhibited by some popular stainless steels like EN-36, 17-4PH, etc. These steels are widely used in nuclear, fertilizer, food processing, and marine industries under extreme environmental conditions. The present study focuses on the development of Al₂O₃-CeO₂-rGO-based coatings on the surface of 17-4PH steel using High-Velocity Oxygen Flame (HVOF) thermal spray process. The coating is developed using an oxyacetylene flame. Further, we report the physical (Density, Surface roughness, Surface energetics), Metallurgical (Scanning electron microscopy, X-ray diffraction, Raman), Mechanical (Hardness(Vickers and Nano Hard-ness)), Tribological (Wear, Scratch hardness) and Chemical (corrosion) characterization of both As-sprayed coating and the Substrate (17-4 PH steel). The comparison of the properties will help us to understand the microstructure-property relationship of the coating and reveal the necessity and challenges of such coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20spray%20process" title="thermal spray process">thermal spray process</a>, <a href="https://publications.waset.org/abstracts/search?q=HVOF" title=" HVOF"> HVOF</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20coating" title=" ceramic coating"> ceramic coating</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a> </p> <a href="https://publications.waset.org/abstracts/162461/development-of-wear-resistant-ceramic-coating-on-steel-using-high-velocity-oxygen-flame-thermal-spray" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">800</span> Austempered Compacted Graphite Irons: Influence of Austempering Temperature on Microstructure and Microscratch Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohollah%20Ghasemi">Rohollah Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvin%20Ghorbani"> Arvin Ghorbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effect of austempering temperature on microstructure and scratch behavior of the austempered heat-treated compacted graphite irons. The as-cast was used as base material for heat treatment practices. The samples were extracted from as-cast ferritic CGI pieces and were heat treated under austenitising temperature of 900°C for 60 minutes which followed by quenching in salt-bath at different austempering temperatures of 275°C, 325°C and 375°C. For all heat treatments, an austempering holding time of 30 minutes was selected for this study. Light optical microscope (LOM) and scanning electron microscope (SEM) and electron back scattered diffraction (EBSD) analysis confirmed the ausferritic matrix formed in all heat-treated samples. Microscratches were performed under the load of 200, 600 and 1000 mN using a sphero-conical diamond indenter with a tip radius of 50 μm and induced cone angle 90° at a speed of 10 μm/s at room temperature ~25°C. An instrumented nanoindentation machine was used for performing nanoindentation hardness measurement and microscratch testing. Hardness measurements and scratch resistance showed a significant increase in Brinell, Vickers, and nanoindentation hardness values as well as microscratch resistance of the heat-treated samples compared to the as-cast ferritic sample. The increase in hardness and improvement in microscratch resistance are associated with the formation of the ausferrite matrix consisted of carbon-saturated retained austenite and acicular ferrite in austempered matrix. The maximum hardness was observed for samples austempered at 275°C which resulted in the formation of very fine acicular ferrite. In addition, nanohardness values showed a quite significant variation in the matrix due to the presence of acicular ferrite and carbon-saturated retained austenite. It was also observed that the increase of austempering temperature resulted in increase of volume of the carbon-saturated retained austenite and decrease of hardness values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austempered%20CGI" title="austempered CGI">austempered CGI</a>, <a href="https://publications.waset.org/abstracts/search?q=austempering" title=" austempering"> austempering</a>, <a href="https://publications.waset.org/abstracts/search?q=scratch%20testing" title=" scratch testing"> scratch testing</a>, <a href="https://publications.waset.org/abstracts/search?q=scratch%20plastic%20deformation" title=" scratch plastic deformation"> scratch plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=scratch%20hardness" title=" scratch hardness"> scratch hardness</a> </p> <a href="https://publications.waset.org/abstracts/103557/austempered-compacted-graphite-irons-influence-of-austempering-temperature-on-microstructure-and-microscratch-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">799</span> Effect of Fiber Content and Chemical Treatment on Hardness of Bagasse Fiber Reinforced Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varun%20Mittal">Varun Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Sinha"> Shishir Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present experimental study focused on the hardness behavior of bagasse fiber-epoxy composites. The relationship between bagasse fiber content and effect of chemical treatment on bagasse fiber as a function of Brinell hardness of bagasse fiber epoxy was investigated. Bagasse fiber was treated with sodium hydroxide followed by acrylic acid before they were reinforced with epoxy resin. Compared hardness properties with the untreated bagasse filled epoxy composites. It was observed that Brinell hardness increased up to 15 wt% fiber content and further decreases, however, chemical treatment also improved the hardness properties of composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagasse%20fiber" title="bagasse fiber">bagasse fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/52160/effect-of-fiber-content-and-chemical-treatment-on-hardness-of-bagasse-fiber-reinforced-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">798</span> Parallel PRBS Generation and Parallel BER Tester for 8-Gbps On-chip Interconnection Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Bin">Zhao Bin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Dan%20Lei"> Yan Dan Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a multi-pattern parallel PRBS generator and a dedicated parallel BER tester is proposed for the 8-Gbps On-chip interconnection testing. A unique full-parallel PRBS checker is also proposed. The proposed design, together with the custom-designed high-speed parallel-to-serial and the serial-to-parallel circuit, will be used to test different on-chip interconnection transceivers. The design is implemented in TSMC 28nm CMOS technology with working voltage at 1.0 V. The serial to parallel ratio is 8:1 so the parallel PRBS generation and BER Tester can be run at lower speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PRBS" title="PRBS">PRBS</a>, <a href="https://publications.waset.org/abstracts/search?q=BER" title=" BER"> BER</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed" title=" high speed"> high speed</a>, <a href="https://publications.waset.org/abstracts/search?q=generator" title=" generator"> generator</a> </p> <a href="https://publications.waset.org/abstracts/35064/parallel-prbs-generation-and-parallel-ber-tester-for-8-gbps-on-chip-interconnection-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">760</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20tester&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20tester&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20tester&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20tester&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20tester&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20tester&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20tester&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20tester&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20tester&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20tester&amp;page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20tester&amp;page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20tester&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10