CINXE.COM

Search results for: malaria vivax

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: malaria vivax</title> <meta name="description" content="Search results for: malaria vivax"> <meta name="keywords" content="malaria vivax"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="malaria vivax" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="malaria vivax"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 163</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: malaria vivax</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Platelet Indices among the Cases of Vivax Malaria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirza%20Sultan%20Ahmad">Mirza Sultan Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashra%20Ahmad"> Mubashra Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramlah%20Mehmood"> Ramlah Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazia%20Mahboob"> Nazia Mahboob</a>, <a href="https://publications.waset.org/abstracts/search?q=Waqar%20Nasir"> Waqar Nasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To ascertain the prevalence of thrombocytopenia and study changes in MPV and PDW among cases of vivax malaria. Design: Descriptive analytic study. Place and duration of study: Department of pediatrics, Fazle Omar Hospital, from January to December 2012. Methodology: All patients from birth to 16 years age, who presented in Fazle- Omar hospital, Rabwah from January to December 2012 were included in this study. Hundred patients with other febrile illnesses were taken as control. Full blood counts were checked by Madonic CA 620 analyzer. Name, age, sex, weight, platelet counts. MPV, PDW, any evidence of bleeding, outcome of cases included in this study and taken as control were recorded on data sheets. Results: One hundred and forty-two patients were included in this study. There was no incidence of death or active bleeding. Median platelet count was 109000/mm3. Thrombocytopenia was present in 108 (76.1%) patients. Severe thrombocytopenia was present in 10(7%) patients. Minimum count was 27000/mm3 and maximum was 341000/mm3. Platelet counts of control group was significantly more as compared with study group.(p<.001) Median MPV was 8.70. Minimum value was 6.40 and maximum was 11.90. MPV of study group was significantly more than control group.(p<.001) Median PDW was 11.30. Minimum value was 8.5 and maximum was 16.70. There was no difference between PDW of study and control groups (p=0.246). Conclusions: Thrombocytopenia is a common complication among pediatric cases of vivax malaria. MPV of cases of vivax malaria is higher than control group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malaria%20vivax" title="malaria vivax">malaria vivax</a>, <a href="https://publications.waset.org/abstracts/search?q=platelet" title=" platelet"> platelet</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20platelet%20volume" title=" mean platelet volume"> mean platelet volume</a>, <a href="https://publications.waset.org/abstracts/search?q=thrombocytopenia" title=" thrombocytopenia "> thrombocytopenia </a> </p> <a href="https://publications.waset.org/abstracts/16251/platelet-indices-among-the-cases-of-vivax-malaria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Renal Complications in Patients with Falciparum Malaria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saira%20Baloch">Saira Baloch</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Ali%20Baloch"> Mohsin Ali Baloch </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Malaria is a potentially life-threatening disease and also a major public health problem in Pakistan. Renal failure is an emerging problem correlated with morbidity and mortality, however can be diagnosed and treated in the early stages. Objectives: To elucidate the biochemical renal parameters in patients with falciparum malaria and comparison with healthy control subjects. Method: 80 patients, who were diagnosed to be affected by falciparum malaria. Detailed history, general physical and systemic examination and necessary pathological, biochemical renal laboratory parameters and investigations were done. Results: Among the 80 patients, 43 were males and 37 were females. All patients were infected with P. falciparum. All patients had increased serum creatinine and urea levels and urine output of less than 400 ml/day were categorized as suffering from renal failure. Conclusion: Patients infected with P. falciparum are at an increased risk of developing renal failure when compared to patients infected with other complications. P. vivax has massive potential to cause life threatening complications and even death. Further research is required to understand the exact pathogenesis of various complications encountered in vivax malaria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=falciparum%20malaria" title="falciparum malaria">falciparum malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=renal%20failure" title=" renal failure"> renal failure</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20parameters" title=" biochemical parameters"> biochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenesis" title=" pathogenesis"> pathogenesis</a> </p> <a href="https://publications.waset.org/abstracts/14798/renal-complications-in-patients-with-falciparum-malaria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> The Abnormality of Blood Cells Parasitized by Plasmodium vivax</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manas%20%20Kotepui">Manas Kotepui</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwuntida%20Uthaisar"> Kwuntida Uthaisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Phiman%20%20Thirarattanasunthon"> Phiman Thirarattanasunthon</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhukdee%20%20PhunPhuech"> Bhukdee PhunPhuech</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuoil%20%20Phiwklam"> Nuoil Phiwklam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Malaria due to Plasmodium vivax has placed huge burdens on the health, longevity, and general prosperity of large sections of the human population. This study aimed at prospectively collecting information on the clinical profile of Plasmodium vivax from subjects acutely infected with P. vivax residing in some of the highest malaria transmission regions in Thailand. Methods: A retrospective study of malaria cases, hospitalized between 2013 and 2015 was performed. Clinical characteristics, diagnosis, and parasitological results on admission, age, and gender were mined from medical records at Phop Phra Hospital located in endemic areas of Tak Province, Thailand. Venous blood samples were collected at the time of admission to the hospital to determine the present of parasite and also parasite count by thick and thin film examination, and also Complete blood count (CBC) parameters. Results: Results showed that patients infected with Plasmodium vivax (276 cases) had a high monocyte count (mean=390 cells/µL) during initial stage of infection and continuously lower during later stage (any stage with gametocyte, mean=230 cells/µL) of infection (P value=0.021) whereas, patients infected with Plasmodium vivax had a low basophil count (mean=20 cells/µL) during initial stage of infection and continuously higher during later stage of infection (mean at stage with gametocyte=70 cells/µL) (P value=0.033). In addition, patients with more than one stage infection tend to have lower lymphocyte count (mean=1180 cells/µL) than patients with only one stage infection (mean=1350 cells/µL)(P value=0.011) whereas, patients with more than one stage infection tend to have lower basophil count (mean=60 cells/µL) than patients with only one stage infection (mean=80 cells/µL) (P value=0.01). Conclusion: This study indicated that patients infected with Plasmodium vivax had high monocyte count and low basophil count during initial stage of infection which was continuously lower during later stage of infection. Patients with more than one stage infection tend to have lower lymphocyte count than patients with only one stage infection whereas, patients with more than one stage infection tend to have lower basophil count than patients with only one stage infection. This information contributes to better understanding of pathological characteristic of Plasmodium vivax infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmodium%20vivax" title="plasmodium vivax">plasmodium vivax</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a>, <a href="https://publications.waset.org/abstracts/search?q=asexual%20erythrocytic%20stages" title=" asexual erythrocytic stages"> asexual erythrocytic stages</a>, <a href="https://publications.waset.org/abstracts/search?q=hematological%20parameters" title=" hematological parameters "> hematological parameters </a> </p> <a href="https://publications.waset.org/abstracts/56781/the-abnormality-of-blood-cells-parasitized-by-plasmodium-vivax" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Clinical and Laboratory Diagnosis of Malaria in Surat Thani, Southern Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manas%20Kotepui">Manas Kotepui</a>, <a href="https://publications.waset.org/abstracts/search?q=Chatree%20Ratcha"> Chatree Ratcha</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwuntida%20Uthaisar"> Kwuntida Uthaisar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria infection is still to be considered a major public health problem in Thailand. This study, a retrospective data of patients in Surat Thani Province, Southern Thailand during 2012-2015 was retrieved and analyzed. These data include demographic data, clinical characteristics and laboratory diagnosis. Statistical analyses were performed to demonstrate the frequency, proportion, data tendency, and group comparisons. Total of 395 malaria patients were found. Most of patients were male (253 cases, 64.1%). Most of patients (262 cases, 66.3%) were admitted at 6 am-11.59 am of the day. Three hundred and fifty-five patients (97.5%) were positive with P. falciparum. Hemoglobin, hematocrit, and MCHC between P. falciparum and P. vivax were significant different (P value<0.05).During 2012-2015, prevalence of malaria was highest in 2013. Neutrophils, lymphocytes, and monocytes were significantly changed among patients with fever ≤ 3 days compared with patients with fever >3 days. This information will guide to understanding pathogenesis and characteristic of malaria infection in Sothern Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prevalence" title="prevalence">prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Surat%20Thani" title=" Surat Thani"> Surat Thani</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a> </p> <a href="https://publications.waset.org/abstracts/56407/clinical-and-laboratory-diagnosis-of-malaria-in-surat-thani-southern-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Malaria Menace in Pregnancy; Hard to Ignore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nautiyal%20Ruchira">Nautiyal Ruchira</a>, <a href="https://publications.waset.org/abstracts/search?q=Nautiyal%20Hemant"> Nautiyal Hemant</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaudhury%20Devnanda"> Chaudhury Devnanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhargava%20Surbhi"> Bhargava Surbhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chauhan%20Nidhi"> Chauhan Nidhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: South East Asian region contributes 2.5 million cases of malaria each year to the global burden of 300 to 500 million of which 76% is reported from India. Government of India launched a national program almost half a century ago, still malaria remains a major public health challenge. Pregnant women are more susceptible to severe malaria and its fetomaternal complications. Inadequate surveillance and under-reporting underestimates the problem. Aim: Present study aimed to analyze the clinical course and pattern of malaria during pregnancy and to study the feto-maternal outcome. Methodology: This is a prospective observational study carried out at Himalayan Institute of Medical Sciences – a tertiary care center in the sub-Himalayan state of Uttarakhand, Northern India. All the pregnant women with malaria and its complications were recruited in the study during 2009 to 2014 which included referred cases from the state of western Uttar Pradesh. A thorough history and clinical examination were carried out to assess maternal and fetal condition. Relevant investigations including haemogram, platelet count, LFT, RFT, and USG was done. Blood slides and rapid diagnostic tests were done to diagnose the type of malaria.The primary outcomes measured were the type of malaria infection, maternal complications associated with malaria, outcome of pregnancy and effect on the fetus. Results: 67 antenatal cases with malaria infection were studied. 71% patients were diagnosed with plasmodium vivax infection, 25% cases were plasmodium falciparum positive and in 3% cases mixed infection was found. 38(56%) patients were primigravida and 29(43%) were multiparous. Most of the patients had already received some treatment from their local doctors and presented with severe malaria with the complications. Thrombocytopenia was the commonest manifestation seen in 35(52%) patients, jaundice in 28%, severe anemia in 18%, and severe oligohydramnios in 10% and renal failure in 6% cases. Regarding pregnancy outcome there were 44 % preterm deliveries, 22% had IUFD and abortions in 6% cases.20% of newborn were low birth weight and 6% were IUGR. There was only one maternal death which occurred due to ARDS in falciparum malaria. Although Plasmodium vivax was the main parasite considering the severity of clinical presentation, all the patients received intensive care. As most of the patients had received chloroquine therapy hence they were treated with IV artesunate followed by oral artemesinin combination therapy. Other therapies in the form of packed RBC’s and platelet transfusions, dialysis and ventilator support were provided when required. Conclusion: Even in areas with annual parasite index (API) less than 2 like ours, malaria in pregnancy could be an alarming problem. Vivax malaria cannot be considered benign in pregnancy because of high incidence of morbidity. Prompt diagnosis and aggressive treatment can reduce morbidity and mortality significantly. Increased community level research, integrating ANC checkups with the distribution of insecticide-treated nets in areas of high endemicity, imparting education and awareness will strengthen the existing control strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=severe%20malaria" title="severe malaria">severe malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnancy" title=" pregnancy"> pregnancy</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmodium%20vivax" title=" plasmodium vivax"> plasmodium vivax</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmodium%20falciparum" title=" plasmodium falciparum"> plasmodium falciparum</a> </p> <a href="https://publications.waset.org/abstracts/32469/malaria-menace-in-pregnancy-hard-to-ignore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Quantifying Multivariate Spatiotemporal Dynamics of Malaria Risk Using Graph-Based Optimization in Southern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yonas%20Shuke%20Kitawa">Yonas Shuke Kitawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Although malaria incidence has substantially fallen sharply over the past few years, the rate of decline varies by district, time, and malaria type. Despite this turn-down, malaria remains a major public health threat in various districts of Ethiopia. Consequently, the present study is aimed at developing a predictive model that helps to identify the spatio-temporal variation in malaria risk by multiple plasmodium species. Methods: We propose a multivariate spatio-temporal Bayesian model to obtain a more coherent picture of the temporally varying spatial variation in disease risk. The spatial autocorrelation in such a data set is typically modeled by a set of random effects that assign a conditional autoregressive prior distribution. However, the autocorrelation considered in such cases depends on a binary neighborhood matrix specified through the border-sharing rule. Over here, we propose a graph-based optimization algorithm for estimating the neighborhood matrix that merely represents the spatial correlation by exploring the areal units as the vertices of a graph and the neighbor relations as the series of edges. Furthermore, we used aggregated malaria count in southern Ethiopia from August 2013 to May 2019. Results: We recognized that precipitation, temperature, and humidity are positively associated with the malaria threat in the area. On the other hand, enhanced vegetation index, nighttime light (NTL), and distance from coastal areas are negatively associated. Moreover, nonlinear relationships were observed between malaria incidence and precipitation, temperature, and NTL. Additionally, lagged effects of temperature and humidity have a significant effect on malaria risk by either species. More elevated risk of P. falciparum was observed following the rainy season, and unstable transmission of P. vivax was observed in the area. Finally, P. vivax risks are less sensitive to environmental factors than those of P. falciparum. Conclusion: The improved inference was gained by employing the proposed approach in comparison to the commonly used border-sharing rule. Additionally, different covariates are identified, including delayed effects, and elevated risks of either of the cases were observed in districts found in the central and western regions. As malaria transmission operates in a spatially continuous manner, a spatially continuous model should be employed when it is computationally feasible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disease%20mapping" title="disease mapping">disease mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=MSTCAR" title=" MSTCAR"> MSTCAR</a>, <a href="https://publications.waset.org/abstracts/search?q=graph-based%20optimization%20algorithm" title=" graph-based optimization algorithm"> graph-based optimization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20falciparum" title=" P. falciparum"> P. falciparum</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20vivax" title=" P. vivax"> P. vivax</a>, <a href="https://publications.waset.org/abstracts/search?q=waiting%20matrix" title=" waiting matrix"> waiting matrix</a> </p> <a href="https://publications.waset.org/abstracts/175859/quantifying-multivariate-spatiotemporal-dynamics-of-malaria-risk-using-graph-based-optimization-in-southern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Review of Malaria Diagnosis Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lubabatu%20Sada%20Sodangu">Lubabatu Sada Sodangu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is a major cause of death in tropical and subtropical nations. Malaria cases are continually rising as a result of a number of factors, despite the fact that the condition is now treatable using effective methods. In this situation, quick and effective diagnostic methods are essential for the management and control of malaria. Malaria diagnosis using conventional methods is still troublesome, hence new technologies have been created and implemented to get around the drawbacks. The review describes the currently known malaria diagnostic techniques, their strengths and shortcomings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malaria" title="malaria">malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=technique" title=" technique"> technique</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Africa" title=" Africa"> Africa</a> </p> <a href="https://publications.waset.org/abstracts/183802/review-of-malaria-diagnosis-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Review of Malaria Diagnosis Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lubabatu%20Sada%20Sodangi">Lubabatu Sada Sodangi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is a major cause of death in tropical and subtropical nations. Malaria cases are continually rising as a result of a number of factors, despite the fact that the condition is now treatable using effective methods. In this situation, quick and effective diagnostic methods are essential for the management and control of malaria. Malaria diagnosis using conventional methods is still troublesome; hence, new technologies have been created and implemented to get around the drawbacks. The review describes the currently known malaria diagnostic techniques, their strengths, and shortcomings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malaria" title="malaria">malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=technique" title=" technique"> technique</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Africa" title=" Africa"> Africa</a> </p> <a href="https://publications.waset.org/abstracts/175479/review-of-malaria-diagnosis-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Distribution of Malaria-Infected Anopheles Mosquitoes in Kudat, Ranau and Tenom of Sabah, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Fakhriy%20Hassan">Ahmad Fakhriy Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohani%20Ahmad"> Rohani Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zurainee%20Mohamed%20Nor"> Zurainee Mohamed Nor</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Najdah%20Wan%20Mohamad%20Ali"> Wan Najdah Wan Mohamad Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Malaysia, it was realized that while the incidence of human malaria is decreasing, the incidence of Plasmodium knowlesi malaria appears to be on the rise, especially in rural areas of Sabah, East Malaysia. The primary vector for P. knowlesi malaria in Sabah is An. balabacensis a species found abundant in rural areas, shown to rest and feed outdoor throughout the night, which makes its control very challenging. This study aims to examine the distribution of malaria-infected Anopheles mosquitoes in three areas in Sabah, namely Kudat, Ranau, and Tenom, known as areas in Sabah that presented high number of malaria cases. Briefly, mosquitoes were caught every 6 weeks for the period of 18 months using Human Landing Catching (HLC) technique from May 2016 to November 2017. Identification of species was done using microscopy and molecular methods. Molecular method is also used to detect malaria parasite in all mosquito collected. An. balabacensis was present in all the study areas. In Kudat, six other Anopheles species were also detected, namely, An. barumbrosus, An. latens, An. letifer, An. maculatus, An. sundaicus and An. tesselatus. In Ranau five other Anopheles species were detected, namely, An. barumbrosus, An. donaldi., An. hodgkini, An. maculatus, and An. tesselatus while in Tenom seven more species An. donaldi, An. umbrosus, An. barumbrosus, An.latens, An. hodgkini, An. maculatus, and An. tesselatus were detected. This study showed 24% out of 259, 39% out of 127, and 26% out of 265 Anopheles mosquito collected in Kudat, Ranau, and Tenom were detected positive for malaria parasite respectively. In Kudat An. balabacensis, An. barumbrosus, An. latens, An. maculatus, An. sundaicus and An. tesselatus were the six out of eight Anopheles species that were found infected with malaria parasite. All Anopheles species collected in Ranau were positive for malaria while In Tenom, only five out of eight species; An. balabacensus, An. donaldi, An. hodgkini, An. maculatus, and An. latens were detected positive for malaria parasite. Interestingly, for all study areas An. balabacensis was shown to be the only species infected with four malaria species; P. falciparum, P. knowlesi, P. vivax, and Plasmodium sp. This finding clearly indicates that An. balabacensis is the dominant malaria vector in Kudat, Ranau, and Tenom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anopheles%20balabacensis" title="Anopheles balabacensis">Anopheles balabacensis</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20landing%20catching%20technique" title=" human landing catching technique"> human landing catching technique</a>, <a href="https://publications.waset.org/abstracts/search?q=nested%20PCR" title=" nested PCR"> nested PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=Plasmodium%20knowlesi" title=" Plasmodium knowlesi"> Plasmodium knowlesi</a>, <a href="https://publications.waset.org/abstracts/search?q=Simian%20malaria" title=" Simian malaria"> Simian malaria</a> </p> <a href="https://publications.waset.org/abstracts/113441/distribution-of-malaria-infected-anopheles-mosquitoes-in-kudat-ranau-and-tenom-of-sabah-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Nine Year Trend Analysis of Malaria in Kahsay Abera General Hospital Humera Town: Western Tigrai, Northern Ethiopia: A Retrospective Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getachew%20Belay">Getachew Belay</a>, <a href="https://publications.waset.org/abstracts/search?q=Getachew%20Kahsu"> Getachew Kahsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Brhane%20Berhe"> Brhane Berhe</a>, <a href="https://publications.waset.org/abstracts/search?q=Kebede%20Tesfay"> Kebede Tesfay</a>, <a href="https://publications.waset.org/abstracts/search?q=Fitsum%20Mardu"> Fitsum Mardu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigus%20Shishay"> Nigus Shishay</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadush%20Negash"> Hadush Negash</a>, <a href="https://publications.waset.org/abstracts/search?q=Aster%20Tsegaye"> Aster Tsegaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Malaria kills million people around the world, and it is still a serious public health problem in Ethiopia. Over the past years, the disease has been consistently reported as leading cause of outpatient visits, hospitalization and death in health facilities across the country. This study assessed malaria trend in Humera Town Kahsay Abera Hospital Tigrai region, Northern Ethiopia. Method: A Health facility retrospective cross sectional study was conducted in Kahsay Abera General Hospital from January 2011 to December 2019. Data of Malaria cases were reviewed from Health Management Information System with the help of experts in the office. The nine year data were extracted and analyzed using Excel by excluding those which lack demographic data. Result: A total of 36,604 smear positive malaria cases were confirmed in last nine years in the study area. Plasmodim falcifarum was the most prevalent reported species. Higher number of malaria cases were reported during October season.Males were more infected by the disese (63.1%) than females and males aged 15 years and above were the most iffected ones. The percentage proportion of P.falcifarum and P.vivax were 61.6% to 38.4%, respectively. There was a decreasing trend over the nine years following the peak in 2013. Conclusion: Malaria smear positivity, with highest cases being recorded in October, was declined over the nine years after peaking in 2013. Males aged 15 years and above were more affected, and P falciparum was the predominat species. Strengtheing the prevention and control activities is warranted in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trend" title="trend">trend</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=kahsay%20abera%20%20general%20hospital" title=" kahsay abera general hospital"> kahsay abera general hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=tigray" title=" tigray"> tigray</a>, <a href="https://publications.waset.org/abstracts/search?q=ethiopia" title=" ethiopia"> ethiopia</a> </p> <a href="https://publications.waset.org/abstracts/170359/nine-year-trend-analysis-of-malaria-in-kahsay-abera-general-hospital-humera-town-western-tigrai-northern-ethiopia-a-retrospective-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Fuzzy Inference System for Diagnosis of Malaria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Purnima%20Pandit">Purnima Pandit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria remains one of the world’s most deadly infectious disease and arguably, the greatest menace to modern society in terms of morbidity and mortality. To choose the right treatment and to ensure a quality of life suitable for a specific patient condition, early and accurate diagnosis of malaria is essential. It reduces transmission of disease and prevents deaths. Our work focuses on designing an efficient, accurate fuzzy inference system for malaria diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20inference%20system" title="fuzzy inference system">fuzzy inference system</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria%20disease" title=" malaria disease"> malaria disease</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular%20fuzzy%20number" title=" triangular fuzzy number"> triangular fuzzy number</a> </p> <a href="https://publications.waset.org/abstracts/55107/fuzzy-inference-system-for-diagnosis-of-malaria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Lie Symmetry of a Nonlinear System Characterizing Endemic Malaria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maba%20Boniface%20Matadi">Maba Boniface Matadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyses the model of Malaria endemic from the point of view of the group theoretic approach. The study identified new independent variables that lead to the transformation of the nonlinear model. Furthermore, corresponding determining equations were constructed, and new symmetries were found. As a result, the findings of the study demonstrate of the integrability of the model to present an invariant solution for the Malaria model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=group%20theory" title="group theory">group theory</a>, <a href="https://publications.waset.org/abstracts/search?q=lie%20symmetry" title=" lie symmetry"> lie symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20solutions" title=" invariant solutions"> invariant solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a> </p> <a href="https://publications.waset.org/abstracts/148583/lie-symmetry-of-a-nonlinear-system-characterizing-endemic-malaria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Assessing the Role of Human Mobility on Malaria Transmission in South Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Mukhtar">A. Y. Mukhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20B.%20Munyakazi"> J. B. Munyakazi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ouifki"> R. Ouifki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past few decades, the unprecedented increase in mobility has raised considerable concern about the relationship between mobility and vector-borne diseases and malaria in particular. Thus, one can claim that human mobility is one of the contributing factors to the resurgence of malaria. To assess human mobility on malaria burden among hosts, we formulate a movement-based model on a network of patches. We then extend human multi-group SEIAR deterministic epidemic models into a system of stochastic differential equations (SDEs). Our quantitative stochastic model which is expressed in terms of average rates of movement between compartments is fitted to time-series data (weekly malaria data of 2011 for each patch) using the maximum likelihood approach. Using the metapopulation (multi-group) model, we compute and analyze the basic reproduction number. The result shows that human movement is sufficient to preserve malaria disease firmness in the patches with the low transmission. With these results, we concluded that the sensitivity of malaria to the human mobility is turning to be greatly important over the implications of future malaria control in South Sudan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basic%20reproduction%20number" title="basic reproduction number">basic reproduction number</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood" title=" maximum likelihood"> maximum likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=movement" title=" movement"> movement</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20model" title=" stochastic model"> stochastic model</a> </p> <a href="https://publications.waset.org/abstracts/99359/assessing-the-role-of-human-mobility-on-malaria-transmission-in-south-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> The Effects of Rumah Panggung Environment, Social Culture, and Behavior on Malaria Incidence in Kori Village, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sri%20Ratna%20Rahayu">Sri Ratna Rahayu</a>, <a href="https://publications.waset.org/abstracts/search?q=Oktia%20Woro%20Kasmini%20Handayani"> Oktia Woro Kasmini Handayani</a>, <a href="https://publications.waset.org/abstracts/search?q=Lourensiana%20Y.%20S.%20Ngaga"> Lourensiana Y. S. Ngaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Imade%20Sudana"> Imade Sudana</a>, <a href="https://publications.waset.org/abstracts/search?q=Irwan%20Budiono"> Irwan Budiono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is an infectious disease that still cannot be solved in Kori village, West Nusa Tenggara, Indonesia, where the most of people live in rumah panggung (Stilts House). The purpose of this study was to know whether there were the effects of rumah panggung environment, social culture, and behavior on malaria incidence in the Kori village. A cross-sectional study was performed to explore the effects of rumah panggung environment, social culture and behavior on malaria incidence. This study recruited 280 respondents, who live in the rumah panggung, permanent residents in Kori village, were age above 17 years old, and suffered from malaria in the past year. The collected data were analyzed with path analysis. The results of this study showed that the environment of rumah panggung and behavior have a direct effect on the incidence of malaria (p &lt; 0.05). It could be concluded that improvement of environmental conditions of rumah panggung, sociocultural, and behavioral changes to maintain a healthy environment are needed to reduce the malaria incidence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rumah%20panggung" title="Rumah panggung">Rumah panggung</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-cultural" title=" socio-cultural"> socio-cultural</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior" title=" behavior"> behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaria" title=" Malaria"> Malaria</a> </p> <a href="https://publications.waset.org/abstracts/91899/the-effects-of-rumah-panggung-environment-social-culture-and-behavior-on-malaria-incidence-in-kori-village-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Analysis of Rainfall and Malaria Trends in Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abiodun%20M.%20Adeola">Abiodun M. Adeola</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannes%20Rautenbach"> Hannes Rautenbach</a>, <a href="https://publications.waset.org/abstracts/search?q=Gbenga%20J.%20Abiodun"> Gbenga J. Abiodun</a>, <a href="https://publications.waset.org/abstracts/search?q=Thabo%20E.%20Makgoale"> Thabo E. Makgoale</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20O.%20Botai"> Joel O. Botai</a>, <a href="https://publications.waset.org/abstracts/search?q=Omolola%20M.%20Adisa"> Omolola M. Adisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20M.%20Botai"> Christina M. Botai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There was a surge in malaria morbidity as well as mortality in 2016/2017 malaria season in malaria-endemic regions of South Africa. Rainfall is a major climatic driver of malaria transmission and has potential use for predicting malaria. Annual and seasonal trends and cross-correlation analyses were performed on time series of monthly total rainfall (derived from interpolated weather station data) and monthly malaria cases in five districts of Limpopo Province for the period of 1998 to 2017. The time series analysis indicated that an average of 629.5mm of rainfall was received over the period of study. The rainfall has an annual variation of about 0.46%. Rainfall amount varies among the five districts, with the north-eastern part receiving more rainfall. Spearman’s correlation analysis indicated that total monthly rainfall with one to two months lagged effect is significant in malaria transmission in all the five districts. The strongest correlation is noticed in Mopani (r=0.54; p-value = < 0.001), Vhembe (r=0.53; p-value = < 0.001), Waterberg (r=0.40; p-value = < 0.001), Capricorn (r=0.37; p-value = < 0.001) and lowest in Sekhukhune (r=0.36; p-value = < 0.001). More particularly, malaria morbidity showed a strong relationship with an episode of rainfall above 5-year running means of rainfall of 400 mm. Both annual and seasonal analyses showed that the effect of rainfall on malaria varied across the districts and it is seasonally dependent. Adequate understanding of climatic variables dynamics annually and seasonally is imperative in seeking answers to malaria morbidity among other factors, particularly in the wake of the sudden spike of the disease in the province. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal" title=" seasonal"> seasonal</a>, <a href="https://publications.waset.org/abstracts/search?q=trends" title=" trends"> trends</a> </p> <a href="https://publications.waset.org/abstracts/92656/analysis-of-rainfall-and-malaria-trends-in-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> The Effect of Malaria Parasitaemia on Serum Reproductive Hormonal Levels of Asymptomatic HIV Subjects in Nauth Nnewi, South Eastern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezeugwunne%20Ifeoma%20Priscilla">Ezeugwunne Ifeoma Priscilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Chinedum%20Onyenekwe"> Charles Chinedum Onyenekwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Eberendu%20Ahaneku"> Joseph Eberendu Ahaneku</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosemary%20Adanma%20Analike"> Rosemary Adanma Analike</a>, <a href="https://publications.waset.org/abstracts/search?q=Adesuwa%20Peace%20Eidangbe"> Adesuwa Peace Eidangbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to assess the effect of malaria parasitaemia on serum reproductive hormone levels of asymptomatic HIV adult subjects. A total of 271 participants aged between 17 and 58 ears were conveniently recruited. 135 asymptomatic HIV-infected subjects participated in the study; 67 of them had malaria parasitaemia. 136 HIV seropositive control subjects, 68 of them had malaria parasitaemia. Blood samples were collected from the participants for the determination of HIV status by immunoassay and immunochromatography. Enzyme-linked immunosorbent assay (ELISA) was used to assay for serum LH, FSH, Estrogen, testosterone, progesterone, prolactin, and PSA levels, CD4+T cell counts by Cyflow method, thick and thin films determination of malaria parasitaemia count and density by WHO. Student's t-tests and ANOVA were used to compare means. P<0.05 was considered statistically significant. The results showed significant differences in serum levels of LH, FSH, PSA, estrogen, progesterone, and testosterone amongst the groups at P<0.05, respectively. The serum levels of LH, FSH, and PSA were significantly higher in malaria-infected asymptomatic HIV subjects than in asymptomatic HIV subjects with malaria parasitaemia (P<0.05 in each case). Also, the serum levels of LH, FSH, PSA, estrogen, and progesterone were significantly higher in malaria-infected asymptomatic HIV subjects compared with malaria-infected HIV seronegative subjects (P<0.05, respectively). The mean MP counts and MP density were significantly higher in asymptomatic HIV subjects compared to HIV seronegative subjects (P<0.05, in each case). The mean serum levels of testosterone were significantly lower in both malaria-infected and malaria uninfected HIV seronegative subjects (P<0.05, in each case). In conclusion, Malaria and HIV co-infection might increase the burden of hypogonadism as well as primary testicular failure, hyperprogesteronaemia, elevated levels of estrogen, and PSA in adult males asymptomatic HIV subjects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malaria%20parasitaemia" title="malaria parasitaemia">malaria parasitaemia</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV" title=" HIV"> HIV</a>, <a href="https://publications.waset.org/abstracts/search?q=CD4" title=" CD4"> CD4</a>, <a href="https://publications.waset.org/abstracts/search?q=reproductive%20hormones" title=" reproductive hormones"> reproductive hormones</a> </p> <a href="https://publications.waset.org/abstracts/148824/the-effect-of-malaria-parasitaemia-on-serum-reproductive-hormonal-levels-of-asymptomatic-hiv-subjects-in-nauth-nnewi-south-eastern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Malaria and Environmental Sanitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soorya%20Vennila">Soorya Vennila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comprehensive study of malaria in 165 villages (hamlets) in Harur block, Dharmapuri district, has revealed the fact that there are distinct episodes of malaria due to An. culicifacies, the vector, causes persistent transmission in the revenue village called Vedakatamaduvu. A total of 300 household adult samples are randomly selected to study both quantitatively and qualitatively the vulnerability of malaria. On the basis of the response, the problem uncommon with groups was identified as the outdoor routine, particularly open defecation, with which the samples needed to be stratified into two major groups; users of toilets 21 and those who practice open defecation 279. Open defecation, as the habit-based vulnerability, is measured with the Pearson correlation coefficient to estimate the relationship between malaria and open defecation. It is also verified from the literature that plant fluids provide mosquitoes not only with energy but also with nutrition, to the extent that they can develop fertile eggs. In the endemic areas, the bushy Presopis Juliflora, which naturally serves as a feeding and resting spot for mosquitoes, serves as a cover to practice open defecation as well. Eventually, those who get resort to Presopis for open defecation have a higher chance of getting exposed to mosquito bites and being infected with malaria. The study concludes that the combination of bushy Prosopis Juliflora and open defecation leaves the place perpetually vulnerable to malaria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malaria" title="Malaria">Malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20defecation" title=" open defecation"> open defecation</a>, <a href="https://publications.waset.org/abstracts/search?q=endemic" title=" endemic"> endemic</a>, <a href="https://publications.waset.org/abstracts/search?q=presopis%20juliflora" title=" presopis juliflora"> presopis juliflora</a> </p> <a href="https://publications.waset.org/abstracts/157104/malaria-and-environmental-sanitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Spatio-Temporal Analysis and Mapping of Malaria in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krisada%20Lekdee">Krisada Lekdee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunee%20Sammatat"> Sunee Sammatat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nittaya%20Boonsit"> Nittaya Boonsit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a GLMM with spatial and temporal effects for malaria data in Thailand. A Bayesian method is used for parameter estimation via Gibbs sampling MCMC. A conditional autoregressive (CAR) model is assumed to present the spatial effects. The temporal correlation is presented through the covariance matrix of the random effects. The malaria quarterly data have been extracted from the Bureau of Epidemiology, Ministry of Public Health of Thailand. The factors considered are rainfall and temperature. The result shows that rainfall and temperature are positively related to the malaria morbidity rate. The posterior means of the estimated morbidity rates are used to construct the malaria maps. The top 5 highest morbidity rates (per 100,000 population) are in Trat (Q3, 111.70), Chiang Mai (Q3, 104.70), Narathiwat (Q4, 97.69), Chiang Mai (Q2, 88.51), and Chanthaburi (Q3, 86.82). According to the DIC criterion, the proposed model has a better performance than the GLMM with spatial effects but without temporal terms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20method" title="Bayesian method">Bayesian method</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20linear%20mixed%20model%20%28GLMM%29" title=" generalized linear mixed model (GLMM)"> generalized linear mixed model (GLMM)</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20effects" title=" spatial effects"> spatial effects</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20correlation" title=" temporal correlation"> temporal correlation</a> </p> <a href="https://publications.waset.org/abstracts/10300/spatio-temporal-analysis-and-mapping-of-malaria-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Malaria Vulnerability Mapping from the Space: A Case Study of Damaturu Town-Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isa%20Muhammad%20Zumo">Isa Muhammad Zumo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is one of the worst illnesses that may affect humans. It is typically transmitted by the bite of a female Anopheles mosquito and is caused by parasitic protozoans from the Plasmodium parasite. Government and non-governmental organizations made numerous initiatives to combat the threat of malaria in communities. Nevertheless, the necessary attention was not paid to accurate and current information regarding the size and location of these favourable locations for mosquito development. Because mosquitoes can only reproduce in specific habitats with surface water, this study will locate and map those favourable sites that act as mosquito breeding grounds. Spatial and attribute data relating to favourable mosquito breeding places will be collected and analysed using Geographic Information Systems (GIS). The major findings will be in five classes, showing the vulnerable and risky areas for malaria cases. These risk categories are very high, high, moderate, low, and extremely low vulnerable areas. The maps produced by this study will be of great use to the health department in combating the malaria pandemic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malaria" title="Malaria">Malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=space" title=" space"> space</a>, <a href="https://publications.waset.org/abstracts/search?q=Damaturu" title=" Damaturu"> Damaturu</a> </p> <a href="https://publications.waset.org/abstracts/182231/malaria-vulnerability-mapping-from-the-space-a-case-study-of-damaturu-town-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> The Long-Run Effects of In-Utero Exposure to Malaria: Evidence from the Brazilian Eradication Campaign</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henrique%20Veras%20De%20Paiva%20Fonseca">Henrique Veras De Paiva Fonseca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the long-term relationship between early life exposure to malaria and adult socioeconomic outcomes in Brazil. The identification strategy relies on exogenous variation in the risk of malaria outbreaks in different states and seasons of the year to identify early life exposure according to the timing and location of birth. Furthermore, Brazil has undergone a successful campaign of malaria eradication during the late 1950s, which allows for comparing outcomes of birth cohorts born just prior to and just after eradication to identify the extent of in utero exposure. Instrumental variables estimates find consistent negative treatment effects of in utero exposure to malaria on socioeconomic outcomes, such as educational attainment and health status. The effects are stronger for exposure during the first trimester of pregnancy than during other periods of gestation. Additionally, consistent with previous findings, men are more likely to exhibit larger long-term effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malaria" title="malaria">malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure" title=" exposure"> exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=eradication" title=" eradication"> eradication</a>, <a href="https://publications.waset.org/abstracts/search?q=instrumental%20variables" title=" instrumental variables"> instrumental variables</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a> </p> <a href="https://publications.waset.org/abstracts/123919/the-long-run-effects-of-in-utero-exposure-to-malaria-evidence-from-the-brazilian-eradication-campaign" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Economic Cost of Malaria: A Threat to Household Income in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nsikan%20Affiah">Nsikan Affiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Kayode%20Osungbade"> Kayode Osungbade</a>, <a href="https://publications.waset.org/abstracts/search?q=Williams%20%20Uzoma"> Williams Uzoma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria remains one of the major killers of humans worldwide, threatening the lives of more than one-third of the world’s population. Some people refers it to; a disease of poverty because it contributes towards national poverty through its impact on foreign direct investment, tourism, labour productivity, and trade. At the micro level, it may cause poverty through spending on health care, income losses, and premature deaths. Unfortunately, malaria is a disease that affects both low-income household and its high-income counterpart, but low-income households are still at greater risk because significant part of the available monthly income is dedicated to various preventive and treatment measures. The objective of this study is to estimate direct and indirect cost of malaria treatment in households in a section of South-South Region (Akwa Ibom State) of Nigeria. A cross-sectional study of Six Hundred and Forty (640) heads of households or any adult representative of households in three local government areas of Akwa Ibom State, Nigeria from May 1-31, 2015 were ascertained through interviewer-administered questionnaire adapted from Nigerian Malaria Indicator Survey Report. The clustering technique was used to select 640 households with the help of Primary Health Care (PHC) house numbering system. Using exchange rate of 197 Naira/USD, result shows that direct cost of malaria treatment was 8,894.44 USD while the indirect cost of malaria treatment was 11,012.81 USD. Total cost of treatment made up of 44.7% direct cost and 55.3% indirect cost, with average direct cost of malaria treatment per household estimated at 20.6 USD and the average indirect cost of treatment per household estimated at 25.1 USD. Average total cost for each episode (888) of malaria was estimated at 22.4 USD. While at household level, the average total cost was estimated at 45.5 USD. From the average total cost, low-income households would spend 36% of monthly household income on treating malaria and the impact could be said to be catastrophic, compared to high-income households where only 1.2% of monthly household income is spent on malaria treatment. It could be concluded that the cost of malaria treatment is well beyond the means of households and given the reality of repeated bouts of malaria and its contribution to the impoverishment of households, there is a need for urgent action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20cost" title="direct cost">direct cost</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20cost" title=" indirect cost"> indirect cost</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20income%20households" title=" low income households"> low income households</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a> </p> <a href="https://publications.waset.org/abstracts/52436/economic-cost-of-malaria-a-threat-to-household-income-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Malaria Parasite Detection Using Deep Learning Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaustubh%20Chakradeo">Kaustubh Chakradeo</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Delves"> Michael Delves</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofya%20Titarenko"> Sofya Titarenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolution%20neural%20network" title="convolution neural network">convolution neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20blood%20smears" title=" thin blood smears"> thin blood smears</a> </p> <a href="https://publications.waset.org/abstracts/131600/malaria-parasite-detection-using-deep-learning-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Effectiveness of Health Education Interventions to Improve Malaria Knowledge and ITN Ownership Among Populations of Sub-Saharan Africa: Systematic Review and Meta-Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Opara%20Monica%20Onyinyechi">Opara Monica Onyinyechi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Iqmer%20Nashriq%20Mohd%20Nazan"> Ahmad Iqmer Nashriq Mohd Nazan</a>, <a href="https://publications.waset.org/abstracts/search?q=Suriani%20Ismail"> Suriani Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Global estimates of malaria indicate that at least 3.3 billion people are at risk of being infected with malaria and 1.2 billion are at high risk. The review investigates the effectiveness of health education strategies to increase the level of malaria knowledge and ITN ownership among the populations of sub-Sahara African countries. Methods: A literature search was conducted using Science direct, CINAHL, PubMed, Prisma, Pico, Cochrane library and PsycINFO databases to retrieve articles published between 2000 until 2020. Eleven studies that reported on malaria prevention and intervention using health education strategies conducted in sub-Saharan Africa were included in the final review. Results: Four studies used educational interventions to teach appropriate ITN strategies and promote ITN usage. Two others focused on improving knowledge of malaria transmission, prevention, treatment, and its signs and symptoms. The remaining five studies assessed both ITN use and malaria knowledge. Of these, 10 were eligible for meta-analysis. On average, health education interventions significantly increase the odds of a person in the intervention group to report better malaria knowledge (odds ratio 1.30, 95% CI: 1.00 to 1.70, P= 0.05) and higher ITN ownership (odds ratio 1.53, 95% CI: 1.02 to 2.29, P= 0.004) compared to those in the control group. The odds of ITN ownership also substantially increases when the intervention was based on a theory or model (odds ratio 5.27, 95% CI: 3.24 to 8.58, P= 0.05). Conclusion: Our review highlights the various health education strategies used in sub-Saharan Africa to curb malaria over the past two decades. Meta-analysis findings show that health education intervention is moderately effective in improving malaria knowledge and ITN ownership and has contributed to the effort of global malaria strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malaria" title="malaria">malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20education" title=" health education"> health education</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticide%20treated%20nets" title=" insecticide treated nets"> insecticide treated nets</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-Saharan%20Africa" title=" sub-Saharan Africa"> sub-Saharan Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-analysis" title=" meta-analysis"> meta-analysis</a> </p> <a href="https://publications.waset.org/abstracts/161762/effectiveness-of-health-education-interventions-to-improve-malaria-knowledge-and-itn-ownership-among-populations-of-sub-saharan-africa-systematic-review-and-meta-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Journals&#039; Productivity in the Literature on Malaria in Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yahya%20Ibrahim%20Harande">Yahya Ibrahim Harande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to identify the journals that published articles on malaria disease in Africa and to determine the core of productive journals from the identified journals. The data for the study were culled out from African Index Medicus (AIM) database. A total of 529 articles was gathered from 115 journal titles from 1979-2011. In order to obtain the core of productive journals, Bradford`s law was applied to the collected data. Five journal titles were identified and determined as core journals. The data used for the study was analyzed and that, the subject matter used, Malaria was in conformity with the Bradford`s law. On the aspect dispersion of the literature, English was found to be the dominant language of the journals. (80.9%) followed by French (16.5%). Followed by Portuguese (1.7%) and German (0.9%). Recommendation is hereby proposed for the medical libraries to acquire these five journals that constitute the core in malaria literature for the use of their clients. It could also help in streamlining their acquision and selection exercises. More researches in the subject area using Bibliometrics approaches are hereby recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=productive%20journals" title="productive journals">productive journals</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria%20disease%20literature" title=" malaria disease literature"> malaria disease literature</a>, <a href="https://publications.waset.org/abstracts/search?q=Bradford%60s%20law" title=" Bradford`s law"> Bradford`s law</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20journals" title=" core journals"> core journals</a>, <a href="https://publications.waset.org/abstracts/search?q=African%20scholars" title=" African scholars "> African scholars </a> </p> <a href="https://publications.waset.org/abstracts/13963/journals-productivity-in-the-literature-on-malaria-in-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> The Efficacy of Andrographis paniculata and Chromolaena odorata Plant Extract against Malaria Parasite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Funmilola%20O.%20Omoya">Funmilola O. Omoya</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20O.%20Momoh"> Abdul O. Momoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria constitutes one of the major health problems in Nigeria. One of the reasons attributed for the upsurge was the development of resistance of Plasmodium falciparum and the emergence of multi-resistant strains of the parasite to anti-malaria drugs. A continued search for other effective, safe and cheap plant-based anti-malaria agents thus becomes imperative in the face of these difficulties. The objective of this study is therefore to evaluate the in vivo anti-malarial efficacy of ethanolic extracts of Chromolaena odorata and Androgaphis paniculata leaves. The two plants were evaluated for their anti-malaria efficacy in vivo in a 4-day curative test assay against Plasmodium berghei strain in mice. The group treated with 500mg/ml dose of ethanolic extract of A. paniculata plant showed parasite suppression with increase in Packed Cell Volume (PCV) value except day 3 which showed a slight decrease in PCV value. During the 4-day curative test, an increase in the PCV values, weight measurement and zero count of Plasmodium berghei parasite values was recorded after day 3 of drug administration. These results obtained in group treated with A. paniculata extract showed anti-malarial efficacy with higher mortality rate in parasitaemia count when compared with Chromolaena odorata group. These results justify the use of ethanolic extracts of A. paniculata plant as medicinal herb used in folklore medicine in the treatment of malaria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-malaria" title="anti-malaria">anti-malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=curative" title=" curative"> curative</a>, <a href="https://publications.waset.org/abstracts/search?q=plant-based%20anti-malaria%20agents" title=" plant-based anti-malaria agents"> plant-based anti-malaria agents</a>, <a href="https://publications.waset.org/abstracts/search?q=biology" title=" biology"> biology</a> </p> <a href="https://publications.waset.org/abstracts/9014/the-efficacy-of-andrographis-paniculata-and-chromolaena-odorata-plant-extract-against-malaria-parasite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Spatial Pattern and Predictors of Malaria in Ethiopia: Application of Auto Logistics Spatial Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melkamu%20A.%20Zeru">Melkamu A. Zeru</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamral%20M.%20Warkaw"> Yamral M. Warkaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Aweke%20A.%20Mitku"> Aweke A. Mitku</a>, <a href="https://publications.waset.org/abstracts/search?q=Muluwerk%20%20Ayele"> Muluwerk Ayele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Malaria is a severe health threat in the World, mainly in Africa. It is the major cause of health problems in which the risk of morbidity and mortality associated with malaria cases are characterized by spatial variations across the county. This study aimed to investigate the spatial patterns and predictors of malaria distribution in Ethiopia. Methods: A weighted sample of 15,239 individuals with rapid diagnosis tests was obtained from the Central Statistical Agency and Ethiopia malaria indicator survey of 2015. Global Moran's I and Moran scatter plots were used in determining the distribution of malaria cases, whereas the local Moran's I statistic was used in identifying exposed areas. In data manipulation, machine learning was used for variable reduction and statistical software R, Stata, and Python were used for data management and analysis. The auto logistics spatial binary regression model was used to investigate the predictors of malaria. Results: The final auto logistics regression model reported that male clients had a positive significant effect on malaria cases as compared to female clients [AOR=2.401, 95 % CI: (2.125 - 2.713)]. The distribution of malaria across the regions was different. The highest incidence of malaria was found in Gambela [AOR=52.55, 95%CI: (40.54-68.12)] followed by Beneshangul [AOR=34.95, 95%CI: (27.159 - 44.963)]. Similarly, individuals in Amhara [AOR=0.243, 95% CI:(0.1950.303],Oromiya[AOR=0.197,95%CI:(0.1580.244)],DireDawa[AOR=0.064,95%CI(0.049-0.082)],AddisAbaba[AOR=0.057,95%CI:(0.044-0.075)], Somali[AOR=0.077,95%CI:(0.059-0.097)], SNNPR[OR=0.329, 95%CI: (0.261- 0.413)] and Harari [AOR=0.256, 95%CI:(0.201 - 0.325)] were less likely to had low incidence of malaria as compared with Tigray. Furthermore, for a one-meter increase in altitude, the odds of a positive rapid diagnostic test (RDT) decrease by 1.6% [AOR = 0.984, 95% CI :( 0.984 - 0.984)]. The use of a shared toilet facility was found as a protective factor for malaria in Ethiopia [AOR=1.671, 95% CI: (1.504 - 1.854)]. The spatial autocorrelation variable changes the constant from AOR = 0.471 for logistic regression to AOR = 0.164 for auto logistics regression. Conclusions: This study found that the incidence of malaria in Ethiopia had a spatial pattern that is associated with socio-economic, demographic, and geographic risk factors. Spatial clustering of malaria cases had occurred in all regions, and the risk of clustering was different across the regions. The risk of malaria was found to be higher for those who live in soil floor-type houses as compared to those who live in cement or ceramics floor type. Similarly, households with thatched, metal and thin, and other roof-type houses have a higher risk of malaria than ceramic tiles roof houses. Moreover, using a protected anti-mosquito net reduced the risk of malaria incidence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malaria" title="malaria">malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title=" Ethiopia"> Ethiopia</a>, <a href="https://publications.waset.org/abstracts/search?q=auto%20logistics" title=" auto logistics"> auto logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20model" title=" spatial model"> spatial model</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20clustering" title=" spatial clustering"> spatial clustering</a> </p> <a href="https://publications.waset.org/abstracts/187444/spatial-pattern-and-predictors-of-malaria-in-ethiopia-application-of-auto-logistics-spatial-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> A Case Study of the Political Determinant of Health on the Public Health Crisis of Malaria in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bisola%20Olumegbon">Bisola Olumegbon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Globally, there were about 229 million cases of malaria in 2022. The sub-Saharan African region accounted for 92% of the reported cases and 94% of deaths. Nigeria had the highest number of malaria cases and deaths, representing 27% of global cases. This scholarly project was a case study guided by the political determinants of health. Triangulation of data using thematic analysis was used to identify the political determinants of malaria in Nigeria and to understand how the concept of interaction contributes to the persistence of the disease. The analysis involved a deductive and inductive approach based on the literature review and the evidence of political determinants gathered in the data. Participants’ in-depth interviews were used to collect data from frontline personnel. Data triangulation was done using thematic analysis, a method used to identify patterns and themes in qualitative data. The study findings revealed a correlation between political determinants of health and malaria management efforts in Nigeria. Some influencing factors included voting challenges, inadequate funding, lack of health priority from the government, noncompliance among patients, and hurdles to effective communication. The findings suggest a need to deliberately increase dedication to the political agenda, provide sufficient financial resources, enhance communication, and active community involvement to address the persistent malaria endemic effectively. Further study is recommended to identify interventions to address identified factors of political determinants of health to reduce malaria in Nigeria. Such intervention must involve collaboration with diverse stakeholders such as policymakers, healthcare professionals, community leaders, and researchers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malaria" title="malaria">malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria%20management" title=" malaria management"> malaria management</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20worker" title=" health worker"> health worker</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholders" title=" stakeholders"> stakeholders</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20determinant%20of%20health" title=" political determinant of health"> political determinant of health</a> </p> <a href="https://publications.waset.org/abstracts/181478/a-case-study-of-the-political-determinant-of-health-on-the-public-health-crisis-of-malaria-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> The Correlation of Environmental Risk Factors with Malaria at Tasikmalaya District, 2013</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Destriyanti%20Sugiarti">Destriyanti Sugiarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ririn%20A%20Wulandari"> Ririn A Wulandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Malaria disease was widespread in many countries, both tropical and sub-tropical. Tasikmalaya is a region that experienced an increase in malaria cases over the last 5 years and highest in 2013, a total of 168 positive cases of malaria. Tasikmalaya region consists of coastal and mountain areas, it has a potential place for Anopheles mosquito breeding, i.e swamp, lagoon, andrice fields.The purpose of this study was to determine the correlation of environmental risk factors with the incidence of malaria in Tasikmalaya. Methods: The design of the study is case control study with 140 samples in 5 sub-district (Cineam, Cikatomas, Cipatujah, Salopa, and Jatiwaras). This study examines the environmental factors that influence the incidence of malaria in Tasikmalaya District in 2013. The research used 14 variables: individual characteristics (education, knowledge, occupation) and environmental risk factors (mobility to endemic areas, use mosquito nets, use of wire gauze at home, use mosquito repellent, repellent use, the presence of a large animal in a cage, breeding place, the presence of larvae, temperature and humidity chamber). Results: Results demonstrated an association between occupation (0.22; 0.10-0.47), the mobility of the population to the endemic areas (37.4; 14.29-98.18) ,the presence of larvae (5.26; 1.41-19.74), and the room temperature with optimum temperature for mosquito breeding is 25-30oC (3.25; 1.62- 6.50). Conclusion: The dominant factor affecting the spread of malaria in Tasikmalaya is the mobility of the population to endemic areas. The results of the study suggest migration survey conducted activity and health promotion for preventive efforts against malaria in malaria-endemic areas, and to encourage people to behave healthy life by freeing environment of mosquito larvae and protect themselves from mosquito bites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Environmental%20risk%20factors" title="Environmental risk factors">Environmental risk factors</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=Anopheles" title=" Anopheles "> Anopheles </a> </p> <a href="https://publications.waset.org/abstracts/19355/the-correlation-of-environmental-risk-factors-with-malaria-at-tasikmalaya-district-2013" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Suspected Odyssean Malaria Outbreak in Gauteng Province, September 2014</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patience%20Manjengwa-Hungwe">Patience Manjengwa-Hungwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20White"> Carmen White</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Odyssean malaria refers to malaria acquired by infected mosquito bites from malaria endemic to non-endemic regions by mechanical modes of transport, such as airplanes, water vessels, trains and vehicles. Odyssean Malaria is rare and is characterised by absence of travel history to malaria endemic areas. As not anticipated in non-endemic areas, late diagnosis and treatment lead to a high case fatality rate. On 26 September 2014, the Outbreak Response Unit at the National Institute of Communicable Diseases was notified of a suspected death from Odyssean Malaria in Johannesburg, Gauteng Province, a non-endemic area. The main objective of this investigation was to identify the etiological agent's mode and source of transmission. Methods: Epidemiological surveys were conducted with the deceased’s family and clinical details were obtained from doctors who treated the victim in Southrand, Johannesburg. Blood samples were collected prior to death and sent to the National Health Laboratory Services, Johannesburg laboratory for a full blood count, urea electrolytes, creatinine, and C-reactive protein. Environmental assessments and entomological investigations, including collection of mosquito and larvae, were conducted at the deceased’s home and surrounding areas and sent to the laboratory for analysis. Results: Epidemiological surveys revealed no travel history, no mechanical transmission through blood transfusion and no previous possible exposure of the victim to malaria mosquitoes. Laboratory findings indicated that the platelet count was low. A further smear revealed that the malaria parasite was present and malaria antigen for P. falciparum was positive. Entomological findings revealed that none of the six adult or larval mosquitoes collected on site were malaria vectors. Dumping sites found at the back of the house were identified as possible sites where mosquitoes from endemic places could possibly breed. Conclusion: Given that there was no travel history or the possibility of mechanical transmission (blood transfusion or needle), the research team concluded that it is highly probable that the infection was acquired through an infective Anopheles mosquito inadvertently translocated from a Malaria endemic area by mechanical modes of transport. We recommend that clinicians in non-endemic malaria areas be aware of this type of malaria and test for malaria in patients showing malaria-like symptoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Odyssean%20Malaria" title="Odyssean Malaria">Odyssean Malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20Bourne" title=" vector Bourne"> vector Bourne</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=epidemiological%20surveys" title=" epidemiological surveys"> epidemiological surveys</a> </p> <a href="https://publications.waset.org/abstracts/19465/suspected-odyssean-malaria-outbreak-in-gauteng-province-september-2014" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> The Potential of Ursolic Acid Acetate as an Agent for Malarial Chemotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mthokozisi%20B.%20C.%20Simelane">Mthokozisi B. C. Simelane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the various efforts by governmental and non-governmental organizations aimed at eradicating the disease, malaria is said to kill a child every 30 seconds. Traditional healers use different concoctions prepared from medicinal plants to treat malaria. In the quest to bio-prospect plant-derived triterpenes for anti-malaria activity, we report here the in vivo antiplasmodial activity of ursolic acid acetate (ursolic acid isolated from dichloromethane extract of Mimusops caffra was chemically modified to its acetate derivative). The transdermal administration of ursolic acid acetate (UAA) dose dependently showed complete inhibition of the parasites’ growth at the highest concentration of 400 mg/kg after 15 days of Plasmodium berghei infection. UAA prevented the in vitro aggregation of MDH but did not prevent the expression of PfHsp 70 in E. coli XL1 blue cells. It, however, enhanced PfHsp70 ATPase activity with the specific activity of 65 units (amount of phosphate released 73.83 nmolPi/min.mg). Ursolic acid acetate prevented the formation of hemozoin (60 ± 0.02% at 6 mg/ml). The results suggest that Ursolic acid acetate possesses potential anti-malaria properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mimusops%20caffra" title="Mimusops caffra">Mimusops caffra</a>, <a href="https://publications.waset.org/abstracts/search?q=ursolic%20acid%20acetate" title=" ursolic acid acetate"> ursolic acid acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=hemozoin" title=" hemozoin"> hemozoin</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaria" title=" Malaria"> Malaria</a> </p> <a href="https://publications.waset.org/abstracts/46821/the-potential-of-ursolic-acid-acetate-as-an-agent-for-malarial-chemotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=malaria%20vivax&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=malaria%20vivax&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=malaria%20vivax&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=malaria%20vivax&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=malaria%20vivax&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=malaria%20vivax&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10