CINXE.COM

Search results for: aerodynamic characteristics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: aerodynamic characteristics</title> <meta name="description" content="Search results for: aerodynamic characteristics"> <meta name="keywords" content="aerodynamic characteristics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="aerodynamic characteristics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="aerodynamic characteristics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7760</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: aerodynamic characteristics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7760</span> Using Divergent Nozzle with Aerodynamic Lens to Focus Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Jumaah%20Mrayeh">Hasan Jumaah Mrayeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fue-Sang%20Lien"> Fue-Sang Lien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ANSYS Fluent will be used to simulate Computational Fluid Dynamics (CFD) for an efficient lens and nozzle design which will be explained in this paper. We have designed and characterized an aerodynamic lens and a divergent nozzle for focusing flow that transmits sub 25 nm particles through the aerodynamic lens. The design of the lens and nozzle has been improved using CFD for particle trajectories. We obtained a case for calculating nanoparticles (25 nm) flowing through the aerodynamic lens and divergent nozzle. Nanoparticles are transported by air, which is pumped into the aerodynamic lens through the nozzle at 1 atmospheric pressure. We have also developed a computational methodology that can determine the exact focus characteristics of aerodynamic lens systems. Particle trajectories were traced using the Lagrange approach. The simulation shows the ability of the aerodynamic lens to focus on 25 nm particles after using a divergent nozzle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20lens" title="aerodynamic lens">aerodynamic lens</a>, <a href="https://publications.waset.org/abstracts/search?q=divergent%20nozzle" title=" divergent nozzle"> divergent nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20Fluent" title=" ANSYS Fluent"> ANSYS Fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrange%20approach" title=" Lagrange approach"> Lagrange approach</a> </p> <a href="https://publications.waset.org/abstracts/106210/using-divergent-nozzle-with-aerodynamic-lens-to-focus-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7759</span> Influence of Major Axis on the Aerodynamic Characteristics of Elliptical Section</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Rajasekarababu">K. B. Rajasekarababu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Karthik"> J. Karthik</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vinayagamurthy"> G. Vinayagamurthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is intended to explain the influence of major axis on aerodynamic characteristics of elliptical section. Many engineering applications such as off shore structures, bridge piers, civil structures and pipelines can be modelled as a circular cylinder but flow over complex bodies like, submarines, Elliptical wing, fuselage, missiles, and rotor blades, in which the parameters such as axis ratio can influence the flow characteristics of the wake and nature of separation. Influence of Major axis in Flow characteristics of elliptical sections are examined both experimentally and computationally in this study. For this research, four elliptical models with varying major axis [*AR=1, 4, 6, 10] are analysed. Experimental works have been conducted in a subsonic wind tunnel. Furthermore, flow characteristics on elliptical model are predicted from k-ε turbulence model using the commercial CFD packages by pressure based transient solver with Standard wall conditions.The analysis can be extended to estimation and comparison of Drag coefficient and Fatigue analysis of elliptical sections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elliptical%20section" title="elliptical section">elliptical section</a>, <a href="https://publications.waset.org/abstracts/search?q=major%20axis" title=" major axis"> major axis</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics" title=" aerodynamic characteristics"> aerodynamic characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=k-%CE%B5%20turbulence%20model" title=" k-ε turbulence model"> k-ε turbulence model</a> </p> <a href="https://publications.waset.org/abstracts/37294/influence-of-major-axis-on-the-aerodynamic-characteristics-of-elliptical-section" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7758</span> Aerodynamic Analysis of Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20T.%20L.%20C%C3%B6uras%20Ford">E. T. L. Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20C.%20Vale"> V. A. C. Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20U.%20L.%20Mendes"> J. U. L. Mendes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two of the objective principal in the study of the aerodynamics of vehicles are the safety and the acting. Those objectives can be reached through the development of devices modify the drainage of air about of the vehicle and also through alterations in the way of the external surfaces. The front lowest profile of the vehicle, for instance, has great influence on the coefficient of aerodynamic penetration (Cx) and later on great part of the pressure distribution along the surface of the vehicle. The objective of this work was of analyzing the aerodynamic behavior that it happens on some types the trucks of vehicles, based on experimentation in aerodynamic tunnel, seeking to determine the aerodynamic efficiency of each one of them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicles" title=" vehicles"> vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=acting" title=" acting"> acting</a> </p> <a href="https://publications.waset.org/abstracts/18365/aerodynamic-analysis-of-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7757</span> Investigation of the Aerodynamic Characteristics of a Vertical Take-Off and Landing Mini Unmanned Aerial Vehicle Configuration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Abdelqodus">Amir Abdelqodus</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20Shehata"> Mario Shehata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the paper is to model and evaluate the aerodynamic coefficients and stability derivatives of a Vertical, Take-off and Landing Unmanned Aerial Vehicle configuration (VTOL UAV), which is a fixed wing UAV and a quad-copter hybrid capable of both vertical and conventional take-off and/or landing. The aerodynamic analysis of this configuration was carried out using CFD commercial package Ansys Fluent. Also, the aerodynamic coefficients for the case of the UAV without the quad-copter is carried out analytically using MATLAB programmed codes, and the resulting data is verified using Lifting Line Theory and potential method programs. The two results are then compared to understand the effect of adding the quad-copter on the aerodynamic performance of the UAV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20flow" title=" potential flow"> potential flow</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=VTOL" title=" VTOL"> VTOL</a> </p> <a href="https://publications.waset.org/abstracts/81527/investigation-of-the-aerodynamic-characteristics-of-a-vertical-take-off-and-landing-mini-unmanned-aerial-vehicle-configuration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7756</span> Comparison of Numerical Results of Lambda Wing under Different Turbulence Models and Wall Y+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsien%20Hao%20Teng">Hsien Hao Teng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study uses numerical simulation to analyze the aerodynamic characteristics of the 53-degree Lambda wing with a sweep angle and mainly discusses the numerical simulation results and physical characteristics of the wall y+. Use the commercial software Fluent to execute Mach number 0.15; when the angle of attack attitude is between 0 degrees and 27 degrees, the physical characteristics of the overall aerodynamic force are analyzed, especially when the fluid separation and vortex structure changes are discussed under the condition of high angle of attack, it will affect The instability of pitching moment. In the numerical calculation, the use of wall y+ and turbulence model will affect the prediction of vortex generation and the difference in structure. The analysis results are compared with experimental data to discuss the trend of the aerodynamic characteristics of the Lambda wing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lambda%20wing" title="lambda wing">lambda wing</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20function" title=" wall function"> wall function</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/142038/comparison-of-numerical-results-of-lambda-wing-under-different-turbulence-models-and-wall-y" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7755</span> Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaouche%20Mohamed">Zaouche Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Amini%20Mohamed"> Amini Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Foughali%20Khaled"> Foughali Khaled</a>, <a href="https://publications.waset.org/abstracts/search?q=Aitkaid%20Souhila"> Aitkaid Souhila</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouchiha%20Nihad%20Sarah"> Bouchiha Nihad Sarah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use Microsoft<sup>TM</sup> Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20aerodynamic%20model" title="aircraft aerodynamic model">aircraft aerodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20least%20squares%20estimation" title=" total least squares estimation"> total least squares estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=piloting%20the%20aircraft" title=" piloting the aircraft"> piloting the aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20control" title=" robust control"> robust control</a>, <a href="https://publications.waset.org/abstracts/search?q=Microsoft%20Flight%20Simulator" title=" Microsoft Flight Simulator"> Microsoft Flight Simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=MQ-1%20predator" title=" MQ-1 predator"> MQ-1 predator</a> </p> <a href="https://publications.waset.org/abstracts/44416/application-of-the-total-least-squares-estimation-method-for-an-aircraft-aerodynamic-model-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7754</span> Analysis of Stall Angle Delay in Airfoil Coupled with Spinning Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Kiran">N. Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Vikas"> S. A. Vikas</a>, <a href="https://publications.waset.org/abstracts/search?q=Yatish%20Chandra"> Yatish Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Srinivasan"> S. Srinivasan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several Centuries ago, the aerodynamic studies on rotating cylinders and spheres have started. From the observation, the rotation of a cylinder has a remarkable effect on the aerodynamic characteristics is noticed. In case of airfoils as the angle of attack increases, the drag increases with reduction in lift i.e at the critical angle of attack. If at this point a strong impulse is imparted to the boundary layer by means of a spinning cylinder, the re-energisation of boundary layer is achieved and hence delaying the boundary layer separation and stalling characteristics. Analysis of aerodynamic effects spinning cylinder either at leading edge or at trailing edge of the airfoil is carried in the past, the positioning of cylinder close to trailing edge and its effects in delaying the stall are yet to be analyzed in depth. This paper aim is to understand the combined aerodynamic effects of coupling the spinning cylinder with the airfoil closer to the Trailing edge, by considering different spin ratio of the cylinder, its location and geometrical parameters in relation to the chord of the airfoil. From the analysis, it was observed that the spinning cylinder speed of rotation and location had a impact on stalling characteristics for a prescribed free stream condition. The results predicted through CFD analysis and experimental analysis showed a raise in aerodynamic efficiency and as the spin ratio increases, increase in stalling angle of attack is noticed when compared to the airfoil without spinning cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=airfoil" title=" airfoil"> airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=spinning%20cylinder" title=" spinning cylinder"> spinning cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=stalling" title=" stalling"> stalling</a> </p> <a href="https://publications.waset.org/abstracts/34802/analysis-of-stall-angle-delay-in-airfoil-coupled-with-spinning-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7753</span> Research on Aerodynamic Brake Device for High-Speed Train</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Yun">S. Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kwak"> M. Kwak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about an aerodynamic brake device for a high-speed train. In order to apply an aerodynamic brake device, an influence of the aerodynamic brake device on a high-speed train was studied aerodynamically, acoustically and dynamically. Wind tunnel test was conducted to predict an effect of braking distance reduction with a scale model of 1/30. Aerodynamic drag increases by 244% with a brake panel of a 90 degree angle. Braking distance for an emergency state was predicted to decrease by 13%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20brake" title="aerodynamic brake">aerodynamic brake</a>, <a href="https://publications.waset.org/abstracts/search?q=braking%20distance" title=" braking distance"> braking distance</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20train" title=" high-speed train"> high-speed train</a>, <a href="https://publications.waset.org/abstracts/search?q=wind-tunnel%20test" title=" wind-tunnel test"> wind-tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/65559/research-on-aerodynamic-brake-device-for-high-speed-train" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7752</span> Aerodynamic Optimum Nose Shape Change of High-Speed Train by Design Variable Variation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minho%20Kwak">Minho Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Suhwan%20Yun"> Suhwan Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Choonsoo%20Park"> Choonsoo Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nose shape optimizations of high-speed train are performed for the improvement of aerodynamic characteristics. Based on the commercial train, KTX-Sancheon, multi-objective optimizations are conducted for the improvement of the side wind stability and the micro-pressure wave following the optimization for the reduction of aerodynamic drag. 3D nose shapes are modelled by the Vehicle Modeling Function. Aerodynamic drag and side wind stability are calculated by three-dimensional compressible Navier-Stokes solver, and micro pressure wave is done by axi-symmetric compressible Navier-Stokes solver. The Maxi-min Latin Hypercube Sampling method is used to extract sampling points to construct the approximation model. The kriging model is constructed for the approximation model and the NSGA-II algorithm was used as the multi-objective optimization algorithm. Nose length, nose tip height, and lower surface curvature are design variables. Because nose length is a dominant variable for aerodynamic characteristics of train nose, two optimization processes are progressed respectively with and without the design variable, nose length. Each pareto set was obtained and each optimized nose shape is selected respectively considering Honam high-speed rail line infrastructure in South Korea. Through the optimization process with the nose length, when compared to KTX Sancheon, aerodynamic drag was reduced by 9.0%, side wind stability was improved by 4.5%, micro-pressure wave was reduced by 5.4% whereas aerodynamic drag by 7.3%, side wind stability by 3.9%, micro-pressure wave by 3.9%, without the nose length. As a result of comparison between two optimized shapes, similar shapes are extracted other than the effect of nose length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics" title="aerodynamic characteristics">aerodynamic characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20variable" title=" design variable"> design variable</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=train%20nose%20shape" title=" train nose shape"> train nose shape</a> </p> <a href="https://publications.waset.org/abstracts/67477/aerodynamic-optimum-nose-shape-change-of-high-speed-train-by-design-variable-variation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7751</span> Aerodynamic Coefficients Prediction from Minimum Computation Combinations Using OpenVSP Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marine%20Segui">Marine Segui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruxandra%20Mihaela%20Botez"> Ruxandra Mihaela Botez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> OpenVSP is an aerodynamic solver developed by National Aeronautics and Space Administration (NASA) that allows building a reliable model of an aircraft. This software performs an aerodynamic simulation according to the angle of attack of the aircraft makes between the incoming airstream, and its speed. A reliable aerodynamic model of the Cessna Citation X was designed but it required a lot of computation time. As a consequence, a prediction method was established that allowed predicting lift and drag coefficients for all Mach numbers and for all angles of attack, exclusively for stall conditions, from a computation of three angles of attack and only one Mach number. Aerodynamic coefficients given by the prediction method for a Cessna Citation X model were finally compared with aerodynamics coefficients obtained using a complete OpenVSP study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient" title=" coefficient"> coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=cruise" title=" cruise"> cruise</a>, <a href="https://publications.waset.org/abstracts/search?q=improving" title=" improving"> improving</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal" title=" longitudinal"> longitudinal</a>, <a href="https://publications.waset.org/abstracts/search?q=openVSP" title=" openVSP"> openVSP</a>, <a href="https://publications.waset.org/abstracts/search?q=solver" title=" solver"> solver</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a> </p> <a href="https://publications.waset.org/abstracts/85268/aerodynamic-coefficients-prediction-from-minimum-computation-combinations-using-openvsp-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7750</span> Aerodynamic Brake Study of Reducing Braking Distance for High-Speed Trains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phatthara%20Surachon">Phatthara Surachon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tosaphol%20Ratniyomchai"> Tosaphol Ratniyomchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanatchai%20Kulworawanichpong"> Thanatchai Kulworawanichpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an aerodynamic brake study of reducing braking distance for high-speed trains (HST) using aerodynamic brakes as inspiration from the applications on the commercial aircraft wings. In case of emergency, both braking distance and stopping time are longer than the usual situation. Therefore, the passenger safety and the HST driving control management are definitely obtained by reducing the time and distance of train braking during emergency situation. Due to the limited study and implementation of the aerodynamic brake in HST, the possibility in use and the effectiveness of the aerodynamic brake to the train dynamic movement during braking are analyzed and considered. Regarding the aircraft’s flaps that applied in the HST, the areas of the aerodynamic brake acted as an additional drag force during train braking are able to vary depending on the operating angle and the required dynamic braking force. The HST with a varying speed of 200 km/h to 350 km/h is taken as a case study of this paper. The results show that the stopping time and the brake distance are effectively reduced by the aerodynamic brakes. The mechanical brake and its maintenance are effectively getting this benefit by extending its lifetime for longer use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-speed%20train" title="high-speed train">high-speed train</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20brake" title=" aerodynamic brake"> aerodynamic brake</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20distance" title=" brake distance"> brake distance</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20force" title=" drag force "> drag force </a> </p> <a href="https://publications.waset.org/abstracts/122559/aerodynamic-brake-study-of-reducing-braking-distance-for-high-speed-trains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7749</span> Multi-Objective Optimization of an Aerodynamic Feeding System Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Busch">Jan Busch</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Nyhuis"> Peter Nyhuis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the challenges of short product life cycles and growing variant diversity, cost minimization and manufacturing flexibility increasingly gain importance to maintain a competitive edge in today’s global and dynamic markets. In this context, an aerodynamic part feeding system for high-speed industrial assembly applications has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. The aerodynamic part feeding system outperforms conventional systems with respect to its process safety, reliability, and operating speed. In this paper, a multi-objective optimisation of the aerodynamic feeding system regarding the orientation rate, the feeding velocity and the required nozzle pressure is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20feeding%20system" title="aerodynamic feeding system">aerodynamic feeding system</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=workpiece%20orientation" title=" workpiece orientation"> workpiece orientation</a> </p> <a href="https://publications.waset.org/abstracts/34640/multi-objective-optimization-of-an-aerodynamic-feeding-system-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7748</span> Aerodynamic Devices Development for Model Aircraft Control and Wind-Driven Bicycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Moriyama">Yuta Moriyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Yamazaki"> Tsuyoshi Yamazaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Etsuo%20Morishita"> Etsuo Morishita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several aerodynamic devices currently attract engineers and research students. The plasma actuator is one of them, and it is very effective to control the flow. The actuator recovers a separated flow to an attached one. The actuator is also inversely applied to a spoiler. The model aircraft might be controlled by this actuator. We develop a model aircraft with the plasma actuator. Another interesting device is the Wells turbine which rotates in one direction. The present authors propose a bicycle with the Wells turbine in the wheels. Power reduction is measured when the turbine is driven by an electric motor at the exit of a wind tunnel. Several Watts power reduction might be possible. This means that the torque of the bike can be augmented by the turbine in the cross wind. These devices are tested in the wind tunnel with a three-component balance and the aerodynamic forces and moment are obtained. In this paper, we introduce these devices and their aerodynamic characteristics. The control force and moment of the plasma actuator are clarified and the power reduction of the bicycle is quantified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20aircraft" title=" model aircraft"> model aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20actuator" title=" plasma actuator"> plasma actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=Wells%20turbine" title=" Wells turbine"> Wells turbine</a> </p> <a href="https://publications.waset.org/abstracts/92167/aerodynamic-devices-development-for-model-aircraft-control-and-wind-driven-bicycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7747</span> Numerical Investigation of Supertall Buildings and Using Aerodynamic Characteristics to Create New Wind Power Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Masoumi">Mohammad A. Masoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zare"> Mohammad Zare</a>, <a href="https://publications.waset.org/abstracts/search?q=Soroush%20Sabouki"> Soroush Sabouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the aerodynamic characteristics of supertall buildings to evaluate wind turbine installation at high altitudes. Most recent studies have investigated supertall buildings at a horizontal plane, while a vertical plan could be as important, especially to install wind turbines. A typical square-plan building with a height of 500 m is investigated numerically at horizontal and vertical plans to evaluate wind power generation potentials. The results show good agreement with experimental data and past studies. Then four new geometries are proposed to improvise regions at high altitudes to install wind turbines. Evaluating the simulations shows two regions with high power density, which have the possibility to install wind turbines. Results show that improvised regions to install wind turbines at high altitudes contain significant power density while higher power density is found behind buildings in a far distance. In addition, power density fluctuations behind buildings are investigated, which show decreasing fluctuations by reaching 50 m altitude while altitudes lower than 20 m have the most fluctuations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title="wind power">wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=supertall%20building" title=" supertall building"> supertall building</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20density" title=" power density"> power density</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics" title=" aerodynamic characteristics"> aerodynamic characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20mobile" title=" wind turbine mobile"> wind turbine mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20assurance" title=" quality assurance"> quality assurance</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a> </p> <a href="https://publications.waset.org/abstracts/128113/numerical-investigation-of-supertall-buildings-and-using-aerodynamic-characteristics-to-create-new-wind-power-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7746</span> Study of Efficiency of Flying Animal Using Computational Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratih%20Julistina">Ratih Julistina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Agoes%20Moelyadi"> M. Agoes Moelyadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Innovation in aviation technology evolved rapidly by time to time for acquiring the most favorable value of utilization and is usually denoted by efficiency parameter. Nature always become part of inspiration, and for this sector, many researchers focused on studying the behavior of flying animal to comprehend the fundamental, one of them is birds. Experimental testing has already conducted by several researches to seek and calculate the efficiency by putting the object in wind tunnel. Hence, computational simulation is needed to conform the result and give more visualization which is based on Reynold Averaged Navier-Stokes equation solution for unsteady case in time-dependent viscous flow. By creating model from simplification of the real bird as a rigid body, those are Hawk which has low aspect ratio and Swift with high aspect ratio, subsequently generating the multi grid structured mesh to capture and calculate the aerodynamic behavior and characteristics. Mimicking the motion of downstroke and upstroke of bird flight which produced both lift and thrust, the sinusoidal function is used. Simulation is carried out for varied of flapping frequencies within upper and lower range of actual each bird’s frequency which are 1 Hz, 2.87 Hz, 5 Hz for Hawk and 5 Hz, 8.9 Hz, 13 Hz for Swift to investigate the dependency of frequency effecting the efficiency of aerodynamic characteristics production. Also, by comparing the result in different condition flights with the morphology of each bird. Simulation has shown that higher flapping frequency is used then greater aerodynamic coefficient is obtained, on other hand, efficiency on thrust production is not the same. The result is analyzed from velocity and pressure contours, mesh movement as to see the behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristics%20of%20aerodynamic" title="characteristics of aerodynamic">characteristics of aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=flapping%20frequency" title=" flapping frequency"> flapping frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=flapping%20wing" title=" flapping wing"> flapping wing</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20simulation" title=" unsteady simulation"> unsteady simulation</a> </p> <a href="https://publications.waset.org/abstracts/80712/study-of-efficiency-of-flying-animal-using-computational-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7745</span> Improvement of the Aerodynamic Behaviour of a Land Rover Discovery 4 in Turbulent Flow Using Computational Fluid Dynamics (CFD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Saadi">Ahmed Al-Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hassanpour"> Ali Hassanpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Mahmud"> Tariq Mahmud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to investigate ways to reduce the aerodynamic drag coefficient and to increase the stability of the full-size Sport Utility Vehicle using three-dimensional Computational Fluid Dynamics (CFD) simulation. The baseline model in the simulation was the Land Rover Discovery 4. Many aerodynamic devices and external design modifications were used in this study. These reduction aerodynamic techniques were tested individually or in combination to get the best design. All new models have the same capacity and comfort of the baseline model. Uniform freestream velocity of the air at inlet ranging from 28 m/s to 40 m/s was used. ANSYS Fluent software (version 16.0) was used to simulate all models. The drag coefficient obtained from the ANSYS Fluent for the baseline model was validated with experimental data. It is found that the use of modern aerodynamic add-on devices and modifications has a significant effect in reducing the aerodynamic drag coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS" title=" RANS"> RANS</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20utility%20vehicle" title=" sport utility vehicle"> sport utility vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/63731/improvement-of-the-aerodynamic-behaviour-of-a-land-rover-discovery-4-in-turbulent-flow-using-computational-fluid-dynamics-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7744</span> Formula Student Car: Design, Analysis and Lap Time Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachit%20Ahuja">Rachit Ahuja</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayush%20Chugh"> Ayush Chugh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerodynamic forces and moments, as well as tire-road forces largely affects the maneuverability of the vehicle. Car manufacturers are largely fascinated and influenced by various aerodynamic improvements made in formula cars. There is constant effort of applying these aerodynamic improvements in road vehicles. In motor racing, the key differentiating factor in a high performance car is its ability to maintain highest possible acceleration in appropriate direction. One of the main areas of concern in motor racing is balance of aerodynamic forces and stream line the flow of air across the body of the vehicle. At present, formula racing cars are regulated by stringent FIA norms, there are constrains for dimensions of the vehicle, engine capacity etc. So one of the fields in which there is a large scope of improvement is aerodynamics of the vehicle. In this project work, an attempt has been made to design a formula- student (FS) car, improve its aerodynamic characteristics through steady state CFD simulations and simultaneously calculate its lap time. Initially, a CAD model of a formula student car is made using SOLIDWORKS as per the given dimensions and a steady-state external air-flow simulation is performed on the baseline model of the formula student car without any add on device to evaluate and analyze the air-flow pattern around the car and aerodynamic forces using FLUENT Solver. A detailed survey on different add-on devices used in racing application like: - front wing, diffuser, shark pin, T- wing etc. is made and geometric model of these add-on devices are created. These add-on devices are assembled with the baseline model. Steady state CFD simulations are done on the modified car to evaluate the aerodynamic effects of these add-on devices on the car. Later comparison of lap time simulation of the formula student car with and without the add-on devices is done with the help of MATLAB. Aerodynamic performances like: - lift, drag and their coefficients are evaluated for different configuration and design of the add-on devices at different speed of the vehicle. From parametric CFD simulations on formula student car attached with add-on devices, there is a considerable amount of drag and lift force reduction besides streamlining the airflow across the car. The best possible configuration of these add-on devices is obtained from these CFD simulations and also use of these add-on devices have shown an improvement in performance of the car which can be compared by various lap time simulations of the car. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20performance" title="aerodynamic performance">aerodynamic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=front%20wing" title=" front wing"> front wing</a>, <a href="https://publications.waset.org/abstracts/search?q=laptime%20simulation" title=" laptime simulation"> laptime simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=t-wing" title=" t-wing"> t-wing</a> </p> <a href="https://publications.waset.org/abstracts/78638/formula-student-car-design-analysis-and-lap-time-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7743</span> Aerodynamic Analysis of a Frontal Deflector for Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Mal%C3%A7a">C. Malça</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Alves"> N. Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mateus"> A. Mateus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work was one of the tasks of the Manufacturing2Client project, whose objective was to develop a frontal deflector to be commercialized in the automotive industry, using new project and manufacturing methods. In this task, in particular, it was proposed to develop the ability to predict computationally the aerodynamic influence of flow in vehicles, in an effort to reduce fuel consumption in vehicles from class 3 to 8. With this aim, two deflector models were developed and their aerodynamic performance analyzed. The aerodynamic study was done using the Computational Fluid Dynamics (CFD) software Ansys CFX and allowed the calculation of the drag coefficient caused by the vehicle motion for the different configurations considered. Moreover, the reduction of diesel consumption and carbon dioxide (CO2) emissions associated with the optimized deflector geometry could be assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erodynamic%20analysis" title="erodynamic analysis">erodynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title=" CO2 emissions"> CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=frontal%20deflector" title=" frontal deflector"> frontal deflector</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a> </p> <a href="https://publications.waset.org/abstracts/17891/aerodynamic-analysis-of-a-frontal-deflector-for-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7742</span> Aerodynamic Heating and Drag Reduction of Pegasus-XL Satellite Launch Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Muhammad%20Awais%20Tahir">Syed Muhammad Awais Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Hossein%20Raza%20Hamdani"> Syed Hossein Raza Hamdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last two years, there has been a substantial increase in the rate of satellite launches. To keep up with the technology, it is imperative that the launch cost must be made affordable, especially in developing and underdeveloped countries. Launch cost is directly affected by the launch vehicle’s aerodynamic performance. Pegasus-XL SLV (Satellite Launch Vehicle) has been serving as a commercial SLV for the last 26 years, commencing its commercial flight operation from the six operational sites all around the US and Europe, and the Marshal Islands. Aerodynamic heating and drag contribute largely to Pegasus’s flight performance. The objective of this study is to reduce the aerodynamic heating and drag on Pegasus’s body significantly for supersonic and hypersonic flight regimes. Aerodynamic data for Pegasus’s first flight has been validated through CFD (Computational Fluid Dynamics), and then drag and aerodynamic heating is reduced by using a combination of a forward-facing cylindrical spike and a conical aero-disk at the actual operational flight conditions. CFD analysis using ANSYS fluent will be carried out for Mach no. ranges from 0.83 to 7.8, and AoA (Angle of Attack) ranges from -4 to +24 degrees for both simple and spiked-configuration, and then the comparison will be drawn using a variety of graphs and contours. Expected drag reduction for supersonic flight is to be around 15% to 25%, and for hypersonic flight is to be around 30% to 50%, especially for AoA < 15⁰. A 5% to 10% reduction in aerodynamic heating is expected to be achieved for hypersonic regions. In conclusion, the aerodynamic performance of air-launched Pegasus-XL SLV can be further enhanced, leading to its optimal fuel usage to achieve a more economical orbital flight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=pegasus-XL" title=" pegasus-XL"> pegasus-XL</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20reduction" title=" drag reduction"> drag reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20heating" title=" aerodynamic heating"> aerodynamic heating</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20launch%20vehicle" title=" satellite launch vehicle"> satellite launch vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=SLV" title=" SLV"> SLV</a>, <a href="https://publications.waset.org/abstracts/search?q=spike" title=" spike"> spike</a>, <a href="https://publications.waset.org/abstracts/search?q=aero-disk" title=" aero-disk"> aero-disk</a> </p> <a href="https://publications.waset.org/abstracts/150232/aerodynamic-heating-and-drag-reduction-of-pegasus-xl-satellite-launch-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7741</span> Quantification of Aerodynamic Variables Using Analytical Technique and Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adil%20Loya">Adil Loya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Maqsood"> Kamran Maqsood</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Duraid"> Muhammad Duraid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerodynamic stability coefficients are necessary to be known before any unmanned aircraft flight is performed. This requires expertise on aerodynamics and stability control of the aircraft. To enable efficacious performance of aircraft requires that a well-defined flight path and aerodynamics should be defined beforehand. This paper presents a study on the aerodynamics of an unmanned aero vehicle (UAV) during flight conditions. Current research holds comparative studies of different parameters for flight aerodynamic, measured using two different open source analytical software programs. These software packages are DATCOM and XLRF5, which help in depicting the flight aerodynamic variables. Computational fluid dynamics (CFD) was also used to perform aerodynamic analysis for which Star CCM+ was used. Output trends of the study demonstrate high accuracies between the two software programs with that of CFD. It can be seen that the Coefficient of Lift (CL) obtained from DATCOM and XFLR is similar to CL of CFD simulation. In the similar manner, other potential aerodynamic stability parameters obtained from analytical software are in good agreement with CFD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XFLR5" title="XFLR5">XFLR5</a>, <a href="https://publications.waset.org/abstracts/search?q=DATCOM" title=" DATCOM"> DATCOM</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamic" title=" computational fluid dynamic"> computational fluid dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aero%20vehicle" title=" unmanned aero vehicle"> unmanned aero vehicle</a> </p> <a href="https://publications.waset.org/abstracts/89932/quantification-of-aerodynamic-variables-using-analytical-technique-and-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7740</span> The Impact of Undisturbed Flow Speed on the Correlation of Aerodynamic Coefficients as a Function of the Angle of Attack for the Gyroplane Body</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czyz">Zbigniew Czyz</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Skiba"> Krzysztof Skiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslaw%20Wendeker"> Miroslaw Wendeker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the results of aerodynamic investigation of the Tajfun gyroplane body designed by a Polish company, Aviation Artur Trendak. This gyroplane has been studied as a 1:8 scale model. Scaling objects for aerodynamic investigation is an inherent procedure in any kind of designing. If scaling, the criteria of similarity need to be satisfied. The basic criteria of similarity are geometric, kinematic and dynamic. Despite the results of aerodynamic research are often reduced to aerodynamic coefficients, one should pay attention to how values of coefficients behave if certain criteria are to be satisfied. To satisfy the dynamic criterion, for example, the Reynolds number should be focused on. This is the correlation of inertial to viscous forces. With the multiplied flow speed by the specific dimension as a numerator (with a constant kinematic viscosity coefficient), flow speed in a wind tunnel research should be increased as many times as an object is decreased. The aerodynamic coefficients specified in this research depend on the real forces that act on an object, its specific dimension, medium speed and variations in its density. Rapid prototyping with a 3D printer was applied to create the research object. The research was performed with a T-1 low-speed wind tunnel (its diameter of the measurement volume is 1.5 m) and a six-element aerodynamic internal scales, WDP1, at the Institute of Aviation in Warsaw. This T-1 wind tunnel is low-speed continuous operation with open space measurement. The research covered a number of the selected speeds of undisturbed flow, i.e. V = 20, 30 and 40 m/s, corresponding to the Reynolds numbers (as referred to 1 m) Re = 1.31∙106, 1.96∙106, 2.62∙106 for the angles of attack ranging -15° ≤ α ≤ 20°. Our research resulted in basic aerodynamic characteristics and observing the impact of undisturbed flow speed on the correlation of aerodynamic coefficients as a function of the angle of attack of the gyroplane body. If the speed of undisturbed flow in the wind tunnel changes, the aerodynamic coefficients are significantly impacted. At speed from 20 m/s to 30 m/s, drag coefficient, Cx, changes by 2.4% up to 9.9%, whereas lift coefficient, Cz, changes by -25.5% up to 15.7% if the angle of attack of 0° excluded or by -25.5% up to 236.9% if the angle of attack of 0° included. Within the same speed range, the coefficient of a pitching moment, Cmy, changes by -21.1% up to 7.3% if the angles of attack -15° and -10° excluded or by -142.8% up to 618.4% if the angle of attack -15° and -10° included. These discrepancies in the coefficients of aerodynamic forces definitely need to consider while designing the aircraft. For example, if load of certain aircraft surfaces is calculated, additional correction factors definitely need to be applied. This study allows us to estimate the discrepancies in the aerodynamic forces while scaling the aircraft. This work has been financed by the Polish Ministry of Science and Higher Education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=criteria%20of%20similarity" title=" criteria of similarity"> criteria of similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=gyroplane" title=" gyroplane"> gyroplane</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20tunnel" title=" research tunnel"> research tunnel</a> </p> <a href="https://publications.waset.org/abstracts/50084/the-impact-of-undisturbed-flow-speed-on-the-correlation-of-aerodynamic-coefficients-as-a-function-of-the-angle-of-attack-for-the-gyroplane-body" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7739</span> Time-Domain Expressions for Bridge Self-Excited Aerodynamic Forces by Modified Particle Swarm Optimizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao-Su%20Liu">Hao-Su Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Qing%20Lei"> Jun-Qing Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduces the theory of modified particle swarm optimizer and its application in time-domain expressions for bridge self-excited aerodynamic forces. Based on the indicial function expression and the rational function expression in time-domain expression for bridge self-excited aerodynamic forces, the characteristics of the two methods, i.e. the modified particle swarm optimizer and conventional search method, are compared in flutter derivatives’ fitting process. Theoretical analysis and numerical results indicate that adopting whether the indicial function expression or the rational function expression, the fitting flutter derivatives obtained by modified particle swarm optimizer have better goodness of fit with ones obtained from experiment. As to the flutter derivatives which have higher nonlinearity, the self-excited aerodynamic forces, using the flutter derivatives obtained through modified particle swarm optimizer fitting process, are much closer to the ones simulated by the experimental. The modified particle swarm optimizer was used to recognize the parameters of time-domain expressions for flutter derivatives of an actual long-span highway-railway truss bridge with double decks at the wind attack angle of 0°, -3° and +3°. It was found that this method could solve the bounded problems of attenuation coefficient effectively in conventional search method, and had the ability of searching in unboundedly area. Accordingly, this study provides a method for engineering industry to frequently and efficiently obtain the time-domain expressions for bridge self-excited aerodynamic forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time-domain%20expressions" title="time-domain expressions">time-domain expressions</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20self-excited%20aerodynamic%20forces" title=" bridge self-excited aerodynamic forces"> bridge self-excited aerodynamic forces</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20particle%20swarm%20optimizer" title=" modified particle swarm optimizer"> modified particle swarm optimizer</a>, <a href="https://publications.waset.org/abstracts/search?q=long-span%20highway-railway%20truss%20bridge" title=" long-span highway-railway truss bridge"> long-span highway-railway truss bridge</a> </p> <a href="https://publications.waset.org/abstracts/69848/time-domain-expressions-for-bridge-self-excited-aerodynamic-forces-by-modified-particle-swarm-optimizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7738</span> Aerodynamics and Aeroelastics Studies of Hanger Bridge with H-Beam Profile Using Wind Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matza%20Gusto%20Andika">Matza Gusto Andika</a>, <a href="https://publications.waset.org/abstracts/search?q=Malinda%20Sabrina"> Malinda Sabrina</a>, <a href="https://publications.waset.org/abstracts/search?q=Syarie%20Fatunnisa"> Syarie Fatunnisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerodynamic and aeroelastics studies on the hanger bridge profile are important to analyze the aerodynamic phenomenon and Aeroelastics stability of hanger. Wind tunnel tests were conducted on a model of H-beam profile from hanger bridge. The purpose of this study is to investigate steady aerodynamic characteristics such as lift coefficient (Cl), drag coefficient (Cd), and moment coefficient (Cm) under the different angle of attack for preliminary prediction of aeroelastics stability problems. After investigation the steady aerodynamics characteristics from the model, dynamic testing is also conducted in wind tunnel to know the aeroelastics phenomenon which occurs at the H-beam hanger bridge profile. The studies show that the torsional vortex induced vibration occur when the wind speed is 7.32 m/s until 9.19 m/s with maximum amplitude occur when the wind speed is 8.41 m/s. The result of wind tunnel testing is matching to hanger vibration where occur in the field, so wind tunnel studies has successful to model the problem. In order that the H-beam profile is not good enough for the hanger bridge and need to be modified to minimize the Aeroelastics problem. The modification can be done with structure dynamics modification or aerodynamics modification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroelastic" title=" aeroelastic"> aeroelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=hanger%20bridge" title=" hanger bridge"> hanger bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=h-beam%20profile" title=" h-beam profile"> h-beam profile</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20induced%20vibration" title=" vortex induced vibration"> vortex induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/52637/aerodynamics-and-aeroelastics-studies-of-hanger-bridge-with-h-beam-profile-using-wind-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7737</span> Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tang%20Wei">Tang Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Xiaofeng"> Yang Xiaofeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Gui%20Yewei"> Gui Yewei</a>, <a href="https://publications.waset.org/abstracts/search?q=Du%20Yanxia"> Du Yanxia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mars%20entry%20capsule" title="Mars entry capsule">Mars entry capsule</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20aerodynamics" title=" static aerodynamics"> static aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=hypersonic" title=" hypersonic"> hypersonic</a> </p> <a href="https://publications.waset.org/abstracts/22909/aerodynamic-prediction-and-performance-analysis-for-mars-science-laboratory-entry-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7736</span> Design for Flight Endurance and Mapping Area Enhancement of a Fixed Wing Unmanned Air Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Krachangthong">P. Krachangthong</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Limsumalee"> N. Limsumalee</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Sawatdipon"> L. Sawatdipon</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sasipongpreecha"> A. Sasipongpreecha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pisailert"> S. Pisailert</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Thongta"> J. Thongta</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hongkarnjanakul"> N. Hongkarnjanakul</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Thipyopas"> C. Thipyopas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design and development of new UAV are detailed in this paper. The mission requirement is setup for enhancement of flight endurance of a fixed wing UAV. The goal is to achieve flight endurance more than 60 minutes. UAV must be able launched by hand and can be equipped with the Sony A6000 camera. The design of sizing and aerodynamic analysis is conducted. The XFLR5 program and wind tunnel test are used for determination and comparison of aerodynamic characteristics. Lift, drag and pitching moment characteristics are evaluated. Then Kreno-V UAV is designed and proved its better efficiency compared to the Heron UAV who is currently used for mapping mission of Geo-Informatics and Space Technology Development Agency (Public Organization), Thailand. The endurance is improved by 19%. Finally, Kreno-V UAV with a wing span of 2meters, the aspect ratio of 7, and V-tail shape is constructed and successfully test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UAV%20design" title="UAV design">UAV design</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-wing%20UAV" title=" fixed-wing UAV"> fixed-wing UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20endurance" title=" long endurance"> long endurance</a> </p> <a href="https://publications.waset.org/abstracts/39625/design-for-flight-endurance-and-mapping-area-enhancement-of-a-fixed-wing-unmanned-air-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7735</span> Application of a Hybrid Modified Blade Element Momentum Theory/Computational Fluid Dynamics Approach for Wine Turbine Aerodynamic Performances Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samah%20Laalej">Samah Laalej</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelfattah%20Bouatem"> Abdelfattah Bouatem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of wind turbine blades, it is complicated to evaluate the aerodynamic performances through experimental measurements as it requires a lot of computing time and resources. Therefore, in this paper, a hybrid BEM-CFD numerical technique is developed to predict power and aerodynamic forces acting on the blades. Computational fluid dynamics (CFD) simulation was conducted to calculate the drag and lift forces through Ansys software using the K-w model. Then an enhanced BEM code was created to predict the power outputs generated by the wind turbine using the aerodynamic properties extracted from the CFD approach. The numerical approach was compared and validated with experimental data. The power curves calculated from this hybrid method were in good agreement with experimental measurements for all velocity ranges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade%20element%20momentum" title="blade element momentum">blade element momentum</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20forces" title=" aerodynamic forces"> aerodynamic forces</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20blades" title=" wind turbine blades"> wind turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20approach" title=" computational fluid dynamics approach"> computational fluid dynamics approach</a> </p> <a href="https://publications.waset.org/abstracts/183094/application-of-a-hybrid-modified-blade-element-momentum-theorycomputational-fluid-dynamics-approach-for-wine-turbine-aerodynamic-performances-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7734</span> Experimental Studies of Dragonfly Flight Aerodynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Izmir%20Bin%20Yamin">Mohd Izmir Bin Yamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Arthur%20Ward"> Thomas Arthur Ward</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Past aerodynamic studies of flapping wing flight have shown that it has increased aerodynamic performances compared to fixed wing steady flight. One of the dominant mechanisms that is responsible for causing this phenomenon is a leading edge vortex, generated by the flapping motion of a flexible wing. Wind tunnel experiments were conducted to observe the aerodynamic profile of a flapping wing, by measuring the lift, drag and thrust. Analysis was done to explain how unsteady aerodynamics leads towards better power performances than a fixed wing flight. The information from this study can be used as a base line for designing future Bio-mimetic Micro Air Vehicles that are based on flying insect aerodynamic mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flapping%20wing%20flight" title="flapping wing flight">flapping wing flight</a>, <a href="https://publications.waset.org/abstracts/search?q=leading%20edge%20vortex" title=" leading edge vortex"> leading edge vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20performances" title=" aerodynamics performances"> aerodynamics performances</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/26556/experimental-studies-of-dragonfly-flight-aerodynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7733</span> Development of Low Noise Savonius Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanghyeon%20Kim">Sanghyeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheolung%20Cheong"> Cheolung Cheong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Savonius wind turbines are a drag-type of vertical-axis wind turbine that has been used most commonly as a small-scale wind generator. However, noise is a main hindrance to wide spreading of Savonius wind turbines, just like other wind turbines. Although noise levels radiating from Savonius wind turbines may be relatively low because of their small size, they induce relatively high annoyance due to their prolonged noise exposure to the near community. Therefore, aerodynamic noise of small vertical-axis wind turbines is one of most important design parameters. In this paper, aerodynamic noise characteristics of Savonius wind turbines are investigated using the hybrid CAA techniques, and their low noise designs are proposed based on understanding of noise generation mechanism. First, flow field around the turbine are analyzed by solving 3-D unsteady incompressible RANS equations. Then, noise radiation is predicted using the Ffowcs Williams and Hawkings equation. Two distinct harmonic noise components, the well-know BPF components and the harmonics whose fundamental frequency is much higher than the BPF are identified. On a basis of this finding, S-shaped blades are proposed as low noise designs and it can reduce the noise levels of Savonius wind turbines by up to 2.7 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20noise" title="aerodynamic noise">aerodynamic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Savonius%20wind%20turbine" title=" Savonius wind turbine"> Savonius wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical-axis%20wind%20turbine" title=" vertical-axis wind turbine"> vertical-axis wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/2482/development-of-low-noise-savonius-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7732</span> Aerodynamic Sound from a Sawtooth Plate with Different Thickness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Ruhliah%20Lizarose%20Samion">Siti Ruhliah Lizarose Samion</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sukri%20Mat%20Ali"> Mohamed Sukri Mat Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of sawtooth plate thickness on the aerodynamic noise generated in flow at a Reynolds number of 150 is numerically investigated. Two types of plate thickness (hthick=0.2D and hthin=0.02D) are proposed. Flow simulations are carried out using Direct Numerical Simulation, whereas the calculation of aerodynamic noise radiated from the flow is solved using Curle’s equation. It is found that the flow behavior of thin sawtooth plate, consisting counter-rotating-vortices, is more complex than that of the thick plate. This then explains well the generated sound in both plates cases. Sound generated from thin plat is approximately 0.5 dB lower than the thick plate. Findings from current study provide better understanding of the flow and noise behavior in edge serrations via understanding the case of a sawtooth plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20sound" title="aerodynamic sound">aerodynamic sound</a>, <a href="https://publications.waset.org/abstracts/search?q=bluff%20body" title=" bluff body"> bluff body</a>, <a href="https://publications.waset.org/abstracts/search?q=sawtooth%20plate" title=" sawtooth plate"> sawtooth plate</a>, <a href="https://publications.waset.org/abstracts/search?q=Curle%20analogy" title=" Curle analogy"> Curle analogy</a> </p> <a href="https://publications.waset.org/abstracts/62349/aerodynamic-sound-from-a-sawtooth-plate-with-different-thickness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7731</span> Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tugba%20Bayoglu">Tugba Bayoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20to%20air%20missile" title="air to air missile">air to air missile</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20loop%20simulation" title=" open loop simulation"> open loop simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20identification" title=" parameter identification"> parameter identification</a> </p> <a href="https://publications.waset.org/abstracts/72976/nonlinear-aerodynamic-parameter-estimation-of-a-supersonic-air-to-air-missile-by-using-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics&amp;page=258">258</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics&amp;page=259">259</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aerodynamic%20characteristics&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10