CINXE.COM

Search results for: glass powder fineness

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: glass powder fineness</title> <meta name="description" content="Search results for: glass powder fineness"> <meta name="keywords" content="glass powder fineness"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="glass powder fineness" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="glass powder fineness"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1924</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: glass powder fineness</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1924</span> Production and Mechanical Properties of Alkali–Activated Inorganic Binders Made from Wastes Solids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Vanessa%20Campos%20Moreira">Sonia Vanessa Campos Moreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is the production and mechanical properties of Alkali-Activated Inorganic Binders (AAIB) made from The Basic Oxygen Furnace Slag (BOF Slag) and Thin Film Transistor Liquid Crystal Display (TFT-LCD), glass powder (waste and industrial by-products). Many factors have an influence on the production of AAIB like the glass powder finesses, the alkaline equivalent content (AE %), water binder ratios (w/b ratios) and the differences curing process. The findings show different behavior in the AAIB related to the factors mentioned, the best results are given with a glass powder fineness of 4,500 cm²/g, w/b=0.30, a curing temperature of 70 ℃, curing duration of 4 days and an aging duration of 14 days results in the highest compressive strength of 18.51 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20activators" title="alkaline activators">alkaline activators</a>, <a href="https://publications.waset.org/abstracts/search?q=BOF%20slag" title=" BOF slag"> BOF slag</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20powder%20fineness" title=" glass powder fineness"> glass powder fineness</a>, <a href="https://publications.waset.org/abstracts/search?q=TFT-LCD" title=" TFT-LCD"> TFT-LCD</a>, <a href="https://publications.waset.org/abstracts/search?q=w%2Fb%20ratios" title=" w/b ratios"> w/b ratios</a> </p> <a href="https://publications.waset.org/abstracts/90391/production-and-mechanical-properties-of-alkali-activated-inorganic-binders-made-from-wastes-solids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1923</span> The Effect of the Incorporation of Glass Powder into Cement Sorel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rim%20Zgueb">Rim Zgueb</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Yacoubi"> Noureddine Yacoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work concerns thermo-mechanical properties of cement Sorel mixed with different proportions of glass powder. Five specimens were developed. Four different glass powder mixtures were developed 5%, 10%, 15% and 20% with one control sample without glass powder. The research presented in this study focused on evaluating the effects of replacing portion of glass powder with various percentages of cement Sorel. The influence of the glass powder on the thermal conductivity, thermal diffusivity, bulk density and compressive strength of the cement Sorel at 28 days of curing were determined. The thermal property of cement was measured by using Photothermal deflection technique PTD. The results revealed that the glass powder additive affected greatly on the thermal properties of the cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20sorel" title="cement sorel">cement sorel</a>, <a href="https://publications.waset.org/abstracts/search?q=photothermal%20deflection%20technique" title=" photothermal deflection technique"> photothermal deflection technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20diffusivity" title=" thermal diffusivity"> thermal diffusivity</a> </p> <a href="https://publications.waset.org/abstracts/59649/the-effect-of-the-incorporation-of-glass-powder-into-cement-sorel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1922</span> Manufacturing Process of S-Glass Fiber Reinforced PEKK Prepregs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassier%20A.%20Nassir">Nassier A. Nassir</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Birch"> Robert Birch</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongwei%20Guan"> Zhongwei Guan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate the fundamental science/technology related to novel S-glass fiber reinforced polyether- ketone-ketone (GF/PEKK) composites and to gain insight into bonding strength and failure mechanisms. Different manufacturing techniques to make this high-temperature pre-impregnated composite (prepreg) were conducted i.e. mechanical deposition, electrostatic powder deposition, and dry powder prepregging techniques. Generally, the results of this investigation showed that it was difficult to control the distribution of the resin powder evenly on the both sides of the fibers within a specific percentage. Most successful approach was by using a dry powder prepregging where the fibers were coated evenly with an adhesive that served as a temporary binder to hold the resin powder in place onto the glass fiber fabric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sry%20powder%20technique" title="sry powder technique">sry powder technique</a>, <a href="https://publications.waset.org/abstracts/search?q=PEKK" title=" PEKK"> PEKK</a>, <a href="https://publications.waset.org/abstracts/search?q=S-glass" title=" S-glass"> S-glass</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20prepreg" title=" thermoplastic prepreg"> thermoplastic prepreg</a> </p> <a href="https://publications.waset.org/abstracts/92509/manufacturing-process-of-s-glass-fiber-reinforced-pekk-prepregs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1921</span> Investigation on the Thermal Properties of Magnesium Oxychloride Cement Prepared with Glass Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rim%20Zgueb">Rim Zgueb</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Yacoubi"> Noureddine Yacoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to investigate the thermal property of magnesium oxychloride cement (MOC) using glass powder as a substitute. Glass powder by proportion 0%, 5%, 10%, 15% and 20% of cement’s weight was added to specimens. At the end of a drying time of 28 days, thermal properties, compressive strength and bulk density of samples were determined. Thermal property is measured by Photothermal Deflection Technique by comparing the experimental of normalized amplitude and the phase curves of the photothermal signal to the corresponding theoretical ones. The findings indicate that incorporation of glass powder decreases the thermal properties of MOC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20oxychloride%20cement%20%28MOC%29" title="magnesium oxychloride cement (MOC)">magnesium oxychloride cement (MOC)</a>, <a href="https://publications.waset.org/abstracts/search?q=phototharmal%20deflection%20technique" title=" phototharmal deflection technique"> phototharmal deflection technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Ddensity" title=" Ddensity"> Ddensity</a> </p> <a href="https://publications.waset.org/abstracts/59657/investigation-on-the-thermal-properties-of-magnesium-oxychloride-cement-prepared-with-glass-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1920</span> An Investigation of Foam Glass Production from Sheet Glass Waste and SiC Foaming Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aylin%20Sahin">Aylin Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Recep%20Artir"> Recep Artir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Kara"> Mustafa Kara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foam glass is a remarkable material with having incomparable properties like low weight, rigidity, high thermal insulation capacity and porous structure. In this study, foam glass production was investigated with using glass powder from sheet glass waste and SiC powder as foaming agent. Effects of SiC powders and sintering temperatures on foaming process were examined. It was seen that volume expansions (%), cellular structures and pore diameters of obtained foam glass samples were highly depending on composition ratios and sintering temperature. The study showed that various foam glass samples having with homogenous closed porosity, low weight and low thermal conductivity were achieved by optimizing composition ratios and sintering temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foam%20glass" title="foam glass">foam glass</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming" title=" foaming"> foaming</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20glass" title=" waste glass"> waste glass</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/69062/an-investigation-of-foam-glass-production-from-sheet-glass-waste-and-sic-foaming-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1919</span> Strength Properties of Concrete Paving Blocks with Fly Ash and Glass Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joel%20Santhosh">Joel Santhosh</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bhavani%20Shankar%20Rao"> N. Bhavani Shankar Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problems associated with construction site have been known for many years. Construction industry has to support a world of continuing population growth and economic development. The rising costs of construction materials and the need to adhere to sustainability, alternative construction techniques and materials are being sought. To increase the applications of concrete paving blocks, greater understanding of products produced with locally available materials and indigenously produced mineral admixtures is essential. In the present investigation, concrete paving blocks may be produced with locally available aggregates, cement, fly ash and waste glass powder as the mineral admixture. The ultimate aim of this work is to ascertain the performance of concrete paving blocks containing fly ash and glass powder and compare it with the performance of conventional concrete paving blocks. Mix design is carried out to form M40 grade of concrete by using IS: 10262: 2009 and specification given by IRC: SP: 63: 2004. The paving blocks are tested in accordance to IS: 15658: 2006. It showed that the partial replacement of cement by fly ash and waste glass powder satisfies the minimum requirement as specified by the Indian standard IS: 15658: 2006 for concrete paving blocks to be used in non traffic, light traffic and medium-heavy traffic areas. The study indicated that fly ash and waste glass powder can effectively be used as cement replacement without substantial change in strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paving%20block" title="paving block">paving block</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20powder" title=" glass powder"> glass powder</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasion%20resistance" title=" abrasion resistance"> abrasion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/17008/strength-properties-of-concrete-paving-blocks-with-fly-ash-and-glass-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1918</span> Using Recycled Wastes (Glass Powder) as Partially Replacement for Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Passant%20Youssef">Passant Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Tair"> Ahmed El-Tair</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20El-Nemr"> Amr El-Nemr </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lately, with the environmental changes, enthusiasts trigger to stop the contamination of environment. Thus, various efforts were exerted for innovating environmental friendly concrete to sustain as a ‘Green Building’ material. Green building materials consider the cement industry as one of the most sources of air pollutant with high rate of carbon dioxide (CO₂) emissions. Several methods were developed to extensively reduce the influence of cement industry on environment. These methods such as using supplementary cementitious material or improving the cement manufacturing process are still under investigation. However, with the presence of recycled wastes from construction and finishing materials, the use of supplementary cementitious materials seems to provide an economic solution. Furthermore, it improves the mechanical properties of cement paste, in addition to; it modulates the workability and durability of concrete. In this paper, the glass powder was considered to be used as partial replacement of cement. This study provided the mechanical influence for using the glass powder as partial replacement of cement. In addition, it examines the microstructure of cement mortar using scanning electron microscope and X-ray diffraction. The cement in concrete is replaced by waste glass powder in steps of 5%, 10%, 15%, 20% and 25% by weight of cement and its effects on compressive and flexure strength were determined after 7 and 28 days. It was found that the 5% glass powder replacement increased the 7 days compressive strength by 20.5%, however, there was no increase in compressive strength after 28 days; which means that the glass powder did not react in the cement mortar due to its amorphous nature on the long run, and it can act as fine aggregate better that cement replacement. As well as, the 5% and 10% glass powder replacement increased the 28 days flexural strength by 46.9%. SEM micrographs showed very dense matrix for the optimum specimen compared to control specimen as well; some glass particles were clearly observed. High counts of silica were optimized from XRD while amorphous materials such as calcium silicate cannot be directly detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supplementary%20materials" title="supplementary materials">supplementary materials</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20powder" title=" glass powder"> glass powder</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cementitious%20materials" title=" cementitious materials"> cementitious materials</a> </p> <a href="https://publications.waset.org/abstracts/76780/using-recycled-wastes-glass-powder-as-partially-replacement-for-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1917</span> Effects of the Usage of Marble Powder as Partial Replacement of Cement on the Durability of High Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talah%20Aissa">Talah Aissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports an experimental study of the influence of marble powder used as a partial substitute for Portland cement (PC) on the mechanical properties and durability of high-performance concretes. The analysis of the experimental results on concrete at 15% content of marble powder with a fineness modulus of 11500 cm2/g, in a chloride environment, showed that it contributes positively to the perfection of its mechanical characteristics, its durability with respect to migration of chloride ions and oxygen permeability. On the basis of the experiments performed, it can be concluded that the marble powder is suitable for formulation of high performance concretes (HPC) and their properties are significantly better compared to the reference concrete (RC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marble%20powder" title="marble powder">marble powder</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a> </p> <a href="https://publications.waset.org/abstracts/34467/effects-of-the-usage-of-marble-powder-as-partial-replacement-of-cement-on-the-durability-of-high-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1916</span> Effect of Fly Ash Fineness on Sorption Properties of Geopolymers Based on Liquid Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslava%20Zelinkova">Miroslava Zelinkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcela%20Ondova"> Marcela Ondova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fly ash (FA) thanks to the significant presence of SiO2 and Al2O3 as the main components is a potential raw material for geopolymers production. Mechanical activation is a method for improving FA reactivity and also the porosity of final mixture; those parameters can be analysed through sorption properties. They have direct impact on the durability of fly ash based geopolymer mortars. In the paper, effect of FA fineness on sorption properties of geopolymers based on sodium silicate, as well as relationship between fly ash fineness and apparent density, compressive and flexural strength of geopolymers are presented. The best results in the evaluated area reached the sample H1, which contents the highest portion of particle under 20μm (100% of GFA). The interdependence of individual tested properties was confirmed for geopolymer mixtures corresponding to those in the cement based mixtures: higher is portion of fine particles < 20μm, higher is strength, density and lower are sorption properties. The compressive strength as well as sorption parameters of the geopolymer can be reasonably controlled by grinding process and also ensured by the higher share of fine particle (to 20μm) in total mass of the material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymers" title=" geopolymers"> geopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20fineness" title=" particle fineness "> particle fineness </a> </p> <a href="https://publications.waset.org/abstracts/28635/effect-of-fly-ash-fineness-on-sorption-properties-of-geopolymers-based-on-liquid-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1915</span> Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xia%20Chen">Xia Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua-Quan%20Yang"> Hua-Quan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi-Hua%20Zhou"> Shi-Hua Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 &mu;m less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 &mu;m less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C<sub>3</sub>A and C<sub>2</sub>S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20admixture" title=" mineral admixture"> mineral admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=hydration" title=" hydration"> hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/89811/feasibility-of-ground-alkali-active-sandstone-powder-for-use-in-concrete-as-mineral-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1914</span> Strength Properties of Cement Mortar with Dark Glass Waste Powder as a Partial Sand Replacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ng%20Wei%20Yan">Ng Wei Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lim%20Jee%20Hock"> Lim Jee Hock</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Foo%20Wei"> Lee Foo Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mo%20Kim%20Hung"> Mo Kim Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yip%20Chun%20Chieh"> Yip Chun Chieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The burgeoning accumulation of glass waste in Malaysia, particularly from the food and beverage industry, has become a prominent environmental concern, with disposal sites reaching saturation. This study introduces a distinct approach to addressing the twin challenges of landfill scarcity and natural resource conservation by repurposing discarded glass bottle waste into a viable construction material. The research presents a comprehensive evaluation of the strength characteristics of cement mortar when dark glass waste powder is used as a partial sand replacement. The experimental investigation probes the density, flow spread diameter, and key strength parameters—including compressive, splitting tensile, and flexural strengths—of the modified cement mortar. Remarkably, results indicate that a full replacement of sand with glass waste powder significantly improves the material's strength attributes. A specific mixture with a cement/sand/water ratio of 1:5:1.24 was found to be optimal, yielding an impressive compressive strength of 7 MPa at the 28-day mark, accompanied by a favourable 200 mm spread diameter in flow table tests. The findings of this study underscore the dual benefits of utilizing glass waste powder in cement mortar: mitigating Malaysia's glass waste dilemma and enhancing the performance of construction materials such as bricks and concrete products. Consequently, the research validates the premise that increasing the incorporation of glass waste as a sand substitute promotes not only environmental sustainability but also material innovation in the construction industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20waste" title="glass waste">glass waste</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20properties" title=" strength properties"> strength properties</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20mortar" title=" cement mortar"> cement mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20friendly" title=" environmental friendly"> environmental friendly</a> </p> <a href="https://publications.waset.org/abstracts/183247/strength-properties-of-cement-mortar-with-dark-glass-waste-powder-as-a-partial-sand-replacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1913</span> Measurement of Coal Fineness, Air Fuel Ratio, and Fuel Weight Distribution in a Vertical Spindle Mill’s Pulverized Fuel Pipes at Classifier Vane 40%</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayasiler%20Kunasagaram">Jayasiler Kunasagaram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In power generation, coal fineness is crucial to maintain flame stability, ensure combustion efficiency, and lower emissions to the environment. In order for the pulverized coal to react effectively in the boiler furnace, the size of coal particles needs to be at least 70% finer than 74 μm. This paper presents the experiment results of coal fineness, air fuel ratio and fuel weight distribution in pulverized fuel pipes at classifier vane 40%. The aim of this experiment is to extract the pulverized coal is kinetically and investigate the data accordingly. Dirty air velocity, coal sample extraction, and coal sieving experiments were performed to measure coal fineness. The experiment results show that required coal fineness can be achieved at 40 % classifier vane. However, this does not surpass the desired value by a great margin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20power" title="coal power">coal power</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=isokinetic%20sampling" title=" isokinetic sampling"> isokinetic sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20generation" title=" power generation"> power generation</a> </p> <a href="https://publications.waset.org/abstracts/33677/measurement-of-coal-fineness-air-fuel-ratio-and-fuel-weight-distribution-in-a-vertical-spindle-mills-pulverized-fuel-pipes-at-classifier-vane-40" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">608</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1912</span> Synthesis of La0.8Sr0.05Ca0.15Fe0.8Co0.2O3-δ -Ce0.9Gd0.1O1.95 Composite Cathode Material for Solid Oxide Fuel Cell with Lanthanum and Cerium Recycled from Wasted Glass Polishing Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun-Lun%20Jiang">Jun-Lun Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing-Sheng%20Yu"> Bing-Sheng Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Processing of flat-panel displays generates huge amount of wasted glass polishing powder, with high concentration of cerium and other elements such as lanthanum. According to the current statistics, consumption of polishing powder was approximately ten thousand tons per year in the world. Nevertheless, wasted polishing powder was usually buried or burned. If the lanthanum and cerium compounds in the wasted polishing powder could be recycled, that will greatly reduce enterprise cost and implement waste circulation. Cathodes of SOFCs are the principal consisting of rare earth elements such as lanthanum and cerium. In this study, we recycled the lanthanum and cerium from wasted glass polishing powder by acid-solution method, and synthesized La0.8Sr0.05Ca0.15Fe0.8Co0.8O3-δ and Gd0.1Ce0.9O2 (LSCCF-GDC) composite cathode material for SOFCs by glycinenitrate combustion (GNP) method. The results show that the recovery rates of lanthanum and cerium could accomplish up to 80% and 100% under 10N nitric acid solution within one hour. Comparing with the XRD data of the commercial LSCCF-GDC powder and the LSCCF-GDC product synthesized with chemicals, we find that the LSCCF-GDC was successfully synthesized with the recycled La & Ce solution by GNP method. The effect of adding ammonia to the product was also discussed, the grain size is finer and recovery rate of the product is higher without the addition of ammonia to the solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20polishing%20powder" title="glass polishing powder">glass polishing powder</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20solution" title=" acid solution"> acid solution</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20cathodes%20of%20solid%20oxide%20fuel" title=" composite cathodes of solid oxide fuel"> composite cathodes of solid oxide fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20%28SOFC%29" title=" cell (SOFC)"> cell (SOFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite" title=" perovskite"> perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=glycine-nitrate%20combustion%28GNP%29%20method" title=" glycine-nitrate combustion(GNP) method"> glycine-nitrate combustion(GNP) method</a> </p> <a href="https://publications.waset.org/abstracts/44834/synthesis-of-la08sr005ca015fe08co02o3-d-ce09gd01o195-composite-cathode-material-for-solid-oxide-fuel-cell-with-lanthanum-and-cerium-recycled-from-wasted-glass-polishing-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1911</span> An Investigation into Sealing Materials for Vacuum Glazing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Onyegbule">Paul Onyegbule</a>, <a href="https://publications.waset.org/abstracts/search?q=Harjit%20Singh"> Harjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum glazing is an innovative transparent thermal insulator that has application in high performance window, especially in renewable energy. Different materials as well as sealing methods have been adopted to seal windows with different temperatures. The impact of temperatures on sealing layers has been found to have significant effects on the microstructure of the seal. This paper seeks to investigate the effects of sealing materials specifically glass powder and flux compound (borax) for vacuum glazing. The findings of the experiment conducted show that the sealing material was rigid with some leakage around the edge, and we found that this could be stopped by enhancing the uniformity of the seal within the periphery. Also, we found that due to the intense tensile stress from the oven surface temperature of the seal at 200 <sup>0</sup>C, a crack was observed at the side of the glass. Based on the above findings, this study concludes that a glass powder with a lower melting temperature of below 250 <sup>0</sup>C with the addition of an adhesive (borax flux) should be used for future vacuum seals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20glazed%20windows" title="double glazed windows">double glazed windows</a>, <a href="https://publications.waset.org/abstracts/search?q=U-value" title=" U-value"> U-value</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20loss" title=" heat loss"> heat loss</a>, <a href="https://publications.waset.org/abstracts/search?q=borax%20powder" title=" borax powder"> borax powder</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20seal" title=" edge seal"> edge seal</a> </p> <a href="https://publications.waset.org/abstracts/85317/an-investigation-into-sealing-materials-for-vacuum-glazing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1910</span> Recycled Waste Glass Powder as a Partial Cement Replacement in Polymer-Modified Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikol%20%C5%BDi%C5%BEkov%C3%A1">Nikol Žižková</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to observe the behavior of&nbsp;polymer-modified cement mortars with regard to the use of&nbsp;a&nbsp;pozzolanic admixture. Polymer-modified mortars (PMMs) containing various types of waste glass (waste packing glass and fluorescent tube glass) were produced always with 20% of cement substituted with a pozzolanic-active material. Ethylene/vinyl acetate copolymer (EVA) was used for polymeric modification. The findings confirm the possibility of using the waste glass examined herein as a&nbsp;partial substitute for cement in the production of PMM, which contributes to the preservation of non-renewable raw material resources and to the efficiency of waste glass material reuse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20waste%20glass" title="recycled waste glass">recycled waste glass</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer-modified%20mortars" title=" polymer-modified mortars"> polymer-modified mortars</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic%20admixture" title=" pozzolanic admixture"> pozzolanic admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%2Fvinyl%20acetate%20copolymer" title=" ethylene/vinyl acetate copolymer"> ethylene/vinyl acetate copolymer</a> </p> <a href="https://publications.waset.org/abstracts/58596/recycled-waste-glass-powder-as-a-partial-cement-replacement-in-polymer-modified-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1909</span> Statistical Analysis Approach for the e-Glassy Mortar And Radiation Shielding Behaviors Using Anova</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abadou%20Yacine">Abadou Yacine</a>, <a href="https://publications.waset.org/abstracts/search?q=Faid%20Hayette"> Faid Hayette</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Significant investigations were performed on the use and impact on physical properties along with the mechanical strength of the recycled and reused E-glass waste powder. However, it has been modelled how recycled display e-waste glass may affect the characteristics and qualities of dune sand mortar. To be involved in this field, an investigation has been done with the substitution of dune sand for recycled E-glass waste and constant water-cement ratios. The linear relationship between the dune sand mortar and E-glass mortar mix % contributes to the model's reliability. The experimental data was exposed to regression analysis using JMP Statistics software. The regression model with one predictor presented the general form of the equation for the prediction of the five properties' characteristics of dune sand mortar from the substitution ratio of E-waste glass and curing age. The results illustrate that curing a long-term process produced an E-glass waste mortar specimen with the highest compressive strength of 68 MPa in the laboratory environment. Anova analysis indicated that the curing at long-term has the utmost importance on the sorptivity level and ultrasonic pulse velocity loss. Furthermore, the E-glass waste powder percentage has the utmost importance on the compressive strength and improvement in dynamic elasticity modulus. Besides, a significant enhancement of radiation-shielding applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANOVA%20analysis" title="ANOVA analysis">ANOVA analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=E-glass%20waste" title=" E-glass waste"> E-glass waste</a>, <a href="https://publications.waset.org/abstracts/search?q=durability%20and%20sustainability" title=" durability and sustainability"> durability and sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation-shielding" title=" radiation-shielding"> radiation-shielding</a> </p> <a href="https://publications.waset.org/abstracts/178812/statistical-analysis-approach-for-the-e-glassy-mortar-and-radiation-shielding-behaviors-using-anova" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1908</span> Effect of Pulverised Burnt Clay Waste Fineness on the Compressive Strength of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Onaivi%20Ajayi">Emmanuel Onaivi Ajayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adewumi%20John%20Babafemi"> Adewumi John Babafemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of supplementary cementitious materials as partial replacement for cement is steadily increasing in the construction industry. Concrete produced with these materials has shown significant improvement in durability compared to conventional concrete. However, blended cement concretes produced using these supplementary materials typically gain compressive strength at later ages beyond the 28-day, and this does not favour its use when early age strength is required. Improving the fineness of the supplementary materials could be a way to improving the strength performance of its blended cement concrete. In this paper, the effect of pulverised burnt clay waste fineness on the compressive strength of concrete has been investigated. Two different fineness of pulverised burnt clay waste classified as coarse and fine portions were obtained by sieving the original pulverised burnt clay waste portion through sieve sizes No. 100 (150 µm) and No. 200 (75 µm), respectively. Pulverised burnt clay waste dosages of 0% (control), 10% and 20% by weight of binder were used in producing the concrete mixtures. It is found that the compressive strength of the concrete depends on the fineness and proportion of pulverised burnt clay waste. The result shows improvement in compressive strength at all curing ages with the fine portion pulverised burnt clay waste having the highest strength and improved early age compressive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulverized%20burnt%20clay%20waste" title="pulverized burnt clay waste">pulverized burnt clay waste</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20cementitious%20materials" title=" supplementary cementitious materials"> supplementary cementitious materials</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolans" title=" pozzolans"> pozzolans</a>, <a href="https://publications.waset.org/abstracts/search?q=fineness" title=" fineness"> fineness</a> </p> <a href="https://publications.waset.org/abstracts/74375/effect-of-pulverised-burnt-clay-waste-fineness-on-the-compressive-strength-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1907</span> Utilization of Solid Waste Materials to Produce Glass-Ceramic Tiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonjida%20Mustafia">Sonjida Mustafia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass-ceramic is a material that contains both the properties of glass and ceramic within. They always contain a residual glassy phase and one or more embedded crystalline phases. Ceramic tiles are very popular in the world because of their high structural strength, low absorption, increased hygiene, and hot and cold insulation. Glass-ceramic materials are used to produce marble-like floor and wall tiles. There are a huge amount of waste materials like rice husk ash (RHA), waste iron, waste glass, and other industrial solid waste in Bangladesh, which can be used to produce glass-ceramic floor and wall tiles. The raw materials (rice husk ash, waste glass, and k-feldspar) are a mixture, and the mixture is melted to form glass frit at 1175°C. The frits are grained to require fine particle size. The powder is moistened in 7-8% water with sodium silicate. The green glass-ceramic tiles were fired at different temperatures (800–1100°C) for a soaking time of 1 hour to form glass-ceramic tiles and to study the sintering-crystallization process. The results reveal that the modulus of rupture increases with increasing sintering temperature and reaches the highest value (95.25Mpa) at 925°C. Glossiness and linear shrinkage increase with increasing temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title="rice husk ash">rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20glass" title=" waste glass"> waste glass</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-ceramic" title=" glass-ceramic"> glass-ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20rupture" title=" modulus of rupture"> modulus of rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=glossiness" title=" glossiness"> glossiness</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20shrinkage" title=" linear shrinkage"> linear shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-structure" title=" micro-structure"> micro-structure</a> </p> <a href="https://publications.waset.org/abstracts/161261/utilization-of-solid-waste-materials-to-produce-glass-ceramic-tiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1906</span> Suitability Number of Coarse-Grained Soils and Relationships among Fineness Modulus, Density and Strength Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khandaker%20Fariha%20Ahmed">Khandaker Fariha Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Noman%20Munshi"> Md. Noman Munshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarin%20Sultana"> Tarin Sultana</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Zoynul%20Abedin"> Md. Zoynul Abedin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Suitability number (SN) is perhaps one of the most important parameters of coarse-grained soil in assessing its appropriateness to use as a backfill in retaining structures, sand compaction pile, Vibro compaction, and other similar foundation and ground improvement works. Though determined in an empirical manner, it is imperative to study SN to understand its relation with other aggregate properties like fineness modulus (FM), and strength and density properties of sandy soil. The present paper reports the findings of the study on the examination of the properties of sandy soil, as mentioned. Random numbers were generated to obtain the percent fineness on various sieve sizes, and fineness modulus and suitability numbers were predicted. Sand samples were collected from the field, and test samples were prepared to determine maximum density, minimum density and shear strength parameter φ against particular fineness modulus and corresponding suitability number Five samples of SN value of excellent (0-10) and three samples of SN value fair (20-30) were taken and relevant tests were done. The data obtained from the laboratory tests were statistically analyzed. Results show that with the increase of SN, the value of FM decreases. Within the SN value rated as excellent (0-10), there is a decreasing trend of φ for a higher value of SN. It is found that SN is dependent on various combinations of grain size properties like D10, D30, and D20, D50. Strong linear relationships were obtained between SN and FM (R²=.0.93) and between SN value and φ (R²=.94). Correlation equations are proposed to define relationships among SN, φ, and FM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density" title="density">density</a>, <a href="https://publications.waset.org/abstracts/search?q=fineness%20modulus" title=" fineness modulus"> fineness modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength%20parameter" title=" shear strength parameter"> shear strength parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=suitability%20number" title=" suitability number"> suitability number</a> </p> <a href="https://publications.waset.org/abstracts/115362/suitability-number-of-coarse-grained-soils-and-relationships-among-fineness-modulus-density-and-strength-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1905</span> Performance of Self-Compacting Mortars Containing Foam Glass Granulate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Safi">Brahim Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Aboutaleb"> Djamila Aboutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Saidi"> Mohammed Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelbaki%20Benmounah"> Abdelbaki Benmounah</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahima%20Benbrahim"> Fahima Benbrahim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inorganic wastes are currently used in the manufacture of concretes as mineral additions by cement substitution or as fine/coarse aggregates by replacing traditional aggregates. In this respect, this study aims to valorize the mineral wastes in particular glass wastes to produce granulated foam glass (as fine aggregates). Granulated foam glasses (GFG) were prepared from the glass powder (glass cullet) and foaming agent (limestone) according to applied manufacturing of GFG (at a heat treatment 850 ° C for 20min). After, self-compacting mortars were elaborated with fine aggregate (sand) and other variant mortars with granulated foam glass at volume ratio (0, 30, 50 and 100 %). Rheological characterization tests (fluidity) and physic-mechanical (density, porosity /absorption of water and mechanical tests) were carried out on studied mortars. The results obtained show that a slightly decreasing of compressive strength of mortars having lightness very important for building construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20wastes" title="glass wastes">glass wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20aggregate" title=" lightweight aggregate"> lightweight aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidity" title=" fluidity"> fluidity</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a> </p> <a href="https://publications.waset.org/abstracts/40043/performance-of-self-compacting-mortars-containing-foam-glass-granulate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1904</span> Properties of Cement Pastes with Different Particle Size Fractions of Metakaolin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Boh%C3%A1%C4%8D">M. Boháč</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Novotn%C3%BD"> R. Novotný</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Frajkorov%C3%A1"> F. Frajkorová</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Yadav"> R. S. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Opravil"> T. Opravil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Palou"> M. Palou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Properties of Portland cement mixtures with various fractions of metakaolin were studied. 10 % of Portland cement CEM I 42.5 R was replaced by different fractions of high reactivity metakaolin with defined chemical and mineralogical properties. Various fractions of metakaolin were prepared by jet mill classifying system. There is a clear trend between fineness of metakaolin and hydration heat development. Due to metakaolin presence in mixtures the compressive strength development of mortars is rather slower for coarser fractions but 28-day flexural strengths are improved for all fractions of metakaoline used in mixtures compared to reference sample of pure Portland cement. Yield point, plastic viscosity and adhesion of fresh pastes are considerably influenced by fineness of metakaolin used in cement pastes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calorimetry" title="calorimetry">calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=metakaolin%20fineness" title=" metakaolin fineness"> metakaolin fineness</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/22659/properties-of-cement-pastes-with-different-particle-size-fractions-of-metakaolin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1903</span> Crystallization in the TeO2 - Ta2O5 - Bi2O3 System: From Glass to Anti-Glass to Transparent Ceramic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasnaa%20Benchorfi">Hasnaa Benchorfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Tellurite glasses exhibit interesting properties, notably their low melting point (700-900°C), high refractive index (≈2), high transparency in the infrared region (up to 5−6 μm), interesting linear and non-linear optical properties and high rare earth ions solubility. These properties give tellurite glasses a great interest in various optical applications. Transparent ceramics present advantages compared to glasses, such as improved mechanical, thermal and optical properties. But, the elaboration process of these ceramics requires complex sintering conditions. The full crystallization of glass into transparent ceramics is an alternative to circumvent the technical challenges related to the ceramics obtained by conventional processing. In this work, a crystallization study of a specific glass composition in the system TeO2-Ta2O5-Bi2O3 shows structural transitions from the glass to the stabilization of an unreported anti-glass phase to a transparent ceramic upon heating. An anti-glass is a material with a cationic long-range order and a disordered anion sublattice. Thus, the X-ray diffraction patterns show sharp peaks, while the Raman bands are broad and similar to those of the parent glass. The structure and microstructure of the anti-glass and corresponding ceramic were characterized by Powder X-Ray Diffraction, Electron Back Scattered Diffraction, Transmission Electron Microscopy and Raman spectroscopy. The optical properties of the Er3+-doped samples are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass" title="glass">glass</a>, <a href="https://publications.waset.org/abstracts/search?q=congruent%20crystallization" title=" congruent crystallization"> congruent crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-glass" title=" anti-glass"> anti-glass</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-ceramic" title=" glass-ceramic"> glass-ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=optics" title=" optics"> optics</a> </p> <a href="https://publications.waset.org/abstracts/167709/crystallization-in-the-teo2-ta2o5-bi2o3-system-from-glass-to-anti-glass-to-transparent-ceramic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1902</span> XANES Studies on the Oxidation States of Copper Ion in Silicate Glass </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Buntem">R. Buntem</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Samkongngam"> K. Samkongngam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The silicate glass was prepared using rice husk as the source of silica. The base composition of glass sample is composed of SiO2 (from rice husk ash), Na2CO3, K2CO3, ZnO, H3BO3, CaO, Al2O3 or Al, and CuO. Aluminum is used in place of Al2O3 in order to reduce Cu2+ to Cu+. The red color of Cu2O in the glass matrix was observed when the Al was added into the glass mixture. The expansion coefficients of the copper doped glass are in the range of 1.2 x 10-5-1.4x10-5 (ºC -1) which is common for the silicate glass. The finger prints of the bond vibrations were studied using IR spectroscopy. While the oxidation state and the coordination information of the copper ion in the glass matrix were investigated using X-ray absorption spectroscopy. From the data, Cu+ and Cu2+ exist in the glass matrix. The red particles of Cu2O can be formed in the glass matrix when enough aluminum was added. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20in%20glass" title="copper in glass">copper in glass</a>, <a href="https://publications.waset.org/abstracts/search?q=coordination%20information" title=" coordination information"> coordination information</a>, <a href="https://publications.waset.org/abstracts/search?q=silicate%20glass" title=" silicate glass"> silicate glass</a>, <a href="https://publications.waset.org/abstracts/search?q=XANES%20spectrum" title=" XANES spectrum"> XANES spectrum</a> </p> <a href="https://publications.waset.org/abstracts/15673/xanes-studies-on-the-oxidation-states-of-copper-ion-in-silicate-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1901</span> Production of Composite Materials by Mixing Chromium-Rich Ash and Soda-Lime Glass Powder: Mechanical Properties and Microstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savvas%20Varitis">Savvas Varitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Kavouras"> Panagiotis Kavouras</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Vourlias"> George Vourlias</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Pavlidou"> Eleni Pavlidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20Karakostas"> Theodoros Karakostas</a>, <a href="https://publications.waset.org/abstracts/search?q=Philomela%20Komninou"> Philomela Komninou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A chromium-loaded ash originating from incineration of tannery sludge under anoxic conditions was mixed with low grade soda-lime glass powder coming from commercial glass bottles. The relative weight proportions of ash over glass powder tested were 30/70, 40/60 and 50/50. The solid mixtures, formed in green state compacts, were sintered at the temperature range of 800oC up to 1200oC. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDXS) and micro-indentation. The above methods were employed to characterize the various phases, microstructure and hardness of the produced materials. Thermal treatment at 800oC and 1000oC produced opaque ceramic products composed of a variety of chromium-containing and chromium-free crystalline phases. Thermal treatment at 1200oC gave rise to composite products, where only chromium-containing crystalline phases were detected. Hardness results suggest that specific products are serious candidates for structural applications. Acknowledgement: This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALES “WasteVal”: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium-rich%20tannery%20residues" title="chromium-rich tannery residues">chromium-rich tannery residues</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-ceramic%20materials" title=" glass-ceramic materials"> glass-ceramic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/25649/production-of-composite-materials-by-mixing-chromium-rich-ash-and-soda-lime-glass-powder-mechanical-properties-and-microstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1900</span> Frictional Behavior of Glass Epoxy and Aluminium Particulate Glass Epoxy Composites Sliding against Smooth Stainless Steel Counterface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pujan%20Sarkar">Pujan Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frictional behavior of glass epoxy and Al particulate glass-epoxy composites sliding against mild steel are investigated experimentally at normal atmospheric condition. Glass epoxy (0 wt% Al) and 5, 10 and 15 wt% Al particulate filled glass-epoxy composites are fabricated in conventional hand lay-up technique followed by light compression moulding process. A pin on disc type friction apparatus is used under dry sliding conditions. Experiments are carried out at a normal load of 5-50 N, and sliding speeds of 0.5-5.0 m/s for a fixed duration. Variations of friction coefficient with sliding time at different loads and speeds for all the samples are considered. Results show that the friction coefficient is influenced by sliding time, normal loads, sliding speeds, and wt% of Al content. In general, with respect to time, friction coefficient increases initially with a lot of fluctuations for a certain duration. After that, it becomes stable for the rest of the experimental time. With the increase of normal load, friction coefficient decreases at all speed levels and for all the samples whereas, friction coefficient increases with the increase of sliding speed at all normal loads for glass epoxy and 5 wt% Al content glass-epoxy composites. But for 10 and 15 wt%, Al content composites at all loads, reverse trend of friction coefficient has been recorded. Under different tribological conditions, the suitability of composites in respect of wt% of Al content is noted, and 5 wt% Al content glass-epoxy composite reports as the lowest frictional material at all loads compared to other samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%20powder" title="Al powder">Al powder</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber" title=" glass fiber"> glass fiber</a> </p> <a href="https://publications.waset.org/abstracts/114202/frictional-behavior-of-glass-epoxy-and-aluminium-particulate-glass-epoxy-composites-sliding-against-smooth-stainless-steel-counterface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1899</span> Utilization of Waste Glass Powder in Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhaib%20Salahuddin%20Alzubair%20Suliman">Suhaib Salahuddin Alzubair Suliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the mechanical strength of different binders including pure ordinary Portland cement (OPC) and others having OPC supplemented by two maximum sizes of waste glass powder (GP) of 75-μm and 150μm. Chemical analysis of the GPs using PCEDX test analysis has revealed it silica (SiO2 ) content % is 86.883 and Calcium oxide (CaO) is 12.203%while there are traces of other impurities . Furthermore, the specific gravity of GP was measured. The experiments have been conducted on 63 specimens mortar made with standard sand with 20%,25%, and 30% of GP levels of substituting OPC. The specimens are tested at 3, 7 and 28 days for compressive strength and flexural strength. The specimens made with maximum GP size of 75-μm have outperformed the control OPC mortar at 28 days test age than size 150-μm at various replacement levels. In addition to that, the mechanical strengths were evaluated compressive strength and flexural strength tests were conducted for GPs. The findings from this study indicated that the mortars modified with GP 75μm and replacement ratio of 20% showed an improvement in compressive strength and flexural strength compared to the control mortar at the 28 days of curing with significant development between 7 and 28 days. Mortar with GP size 75-μm containing 30% & 20% replacement of cement have exhibited the highest flexural strength among all mortar mixtures. The improvement in the mechanical strength of the mortars modified with GP can be attributed to the pozzolanic property of GPs, which leads to a more densified microstructure and improved interfacial bonding between sand and cement paste matrix in mortars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20powder" title="glass powder">glass powder</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolana" title=" pozzolana"> pozzolana</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a> </p> <a href="https://publications.waset.org/abstracts/175562/utilization-of-waste-glass-powder-in-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1898</span> The Feasibility of Using Milled Glass Wastes in Concrete to Resist Freezing-Thawing Action</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raed%20Abendeh">Raed Abendeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mousa%20Bani%20Baker"> Mousa Bani Baker</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaydoun%20Abu%20Salem"> Zaydoun Abu Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Ahmad"> Hesham Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The using of waste materials in the construction industry can reduce the dependence on the natural aggregates which are going at the end to deplete. The glass waste is generated in a huge amount which can make one of its disposal in concrete industry effective not only as a green solution but also as an advantage to enhance the performance of mechanical properties and durability of concrete. This article reports the performance of concrete specimens containing different percentages of milled glass waste as a partial replacement of cement (Powder), when they are subject to cycles of freezing and thawing. The tests were conducted on 75-mm cubes and 75 x 75 x 300-mm prisms. Compressive strength based on laboratory testing and non-destructive ultrasonic pulse velocity test were performed during the action of freezing-thawing cycles (F/T). The results revealed that the incorporation of glass waste in concrete mixtures is not only feasible but also showed generally better strength and durability performance than control concrete mixture. It may be said that the recycling of waste glass in concrete mixes is not only a disposal way, but also it can be an exploitation in concrete industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durability" title="durability">durability</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20waste" title=" glass waste"> glass waste</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-thaw%20cycles" title=" freeze-thaw cycles"> freeze-thaw cycles</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20test" title=" non-destructive test"> non-destructive test</a> </p> <a href="https://publications.waset.org/abstracts/31024/the-feasibility-of-using-milled-glass-wastes-in-concrete-to-resist-freezing-thawing-action" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1897</span> Optimization of Moisture Content for Highest Tensile Strength of Instant Soluble Milk Tablet and Flowability of Milk Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Vishwakarma">Siddharth Vishwakarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Danie%20Shajie%20A."> Danie Shajie A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mishra%20H.%20N."> Mishra H. N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milk powder becomes very useful in the low milk supply area but the exact amount to add for one glass of milk and the handling is difficult. So, the idea of instant soluble milk tablet comes into existence for its high solubility and easy handling. The moisture content of milk tablets is increased by the direct addition of water with no additives for binding. The variation of the tensile strength of instant soluble milk tablets and the flowability of milk powder with the moisture content is analyzed and optimized for the highest tensile strength of instant soluble milk tablets and flowability, above a particular value of milk powder using response surface methodology. The flowability value is necessary for ease in quantifying the milk powder, as a feed, in the designed tablet making machine. The instant soluble nature of milk tablets purely depends upon the disintegration characteristic of tablets in water whose study is under progress. Conclusions: The optimization results are very useful in the commercialization of milk tablets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flowability" title="flowability">flowability</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20powder" title=" milk powder"> milk powder</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=tablet%20making%20machine" title=" tablet making machine"> tablet making machine</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/101034/optimization-of-moisture-content-for-highest-tensile-strength-of-instant-soluble-milk-tablet-and-flowability-of-milk-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1896</span> Analysis of the Recovery of Burnility Index and Reduction of CO2 for Cement Manufacturing Utilizing Waste Cementitious Powder as Alternative Raw Material of Limestone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwon%20Eunhee">Kwon Eunhee</a>, <a href="https://publications.waset.org/abstracts/search?q=Park%20Dongcheon"> Park Dongcheon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Jaemin"> Jung Jaemin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In countries around the world, environmental regulations are being strengthened, and Korea is no exception to this trend, which means that environment pollution and the environmental load have recently become a significant issue. For this reason, in this study limestone was replaced with cementitious powder to reduce the volume of construction waste as well as the emission of carbon dioxide caused by Tal-carbonate reaction. The research found that cementitious powder can be used as a substitute for limestone. However, the mix proportions of fine aggregate and powder included in the cementitious powder appear to have a great effect on substitution. Thus, future research should focus on developing a technology that can effectively separate and discharge fine aggregate and powder in the cementitious powder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20cementitious%20powder" title="waste cementitious powder">waste cementitious powder</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20aggregate%20powder" title=" fine aggregate powder"> fine aggregate powder</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonation%20reaction" title=" decarbonation reaction"> decarbonation reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=calcining%20process" title=" calcining process "> calcining process </a> </p> <a href="https://publications.waset.org/abstracts/17362/analysis-of-the-recovery-of-burnility-index-and-reduction-of-co2-for-cement-manufacturing-utilizing-waste-cementitious-powder-as-alternative-raw-material-of-limestone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1895</span> Influence of Recycled Glass Content on the Properties of Concrete and Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bourmatte%20Nadjoua">Bourmatte Nadjoua</a>, <a href="https://publications.waset.org/abstracts/search?q=Houari%20Hac%C3%A8ne"> Houari Hacène</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of replacement of fine aggregates with recycled glass on the fresh and hardened properties of concrete and mortar is studied. Percentages of replacement are 0–25% and 50% of aggregates with fine waste glass to produce concrete and percentage of replacement of 100% to produce mortar. As a result of the conducted study, the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures were decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. Mortar based on glass shows a compressive strength with 50% lower than that of control mortar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20glass" title=" recycled glass"> recycled glass</a> </p> <a href="https://publications.waset.org/abstracts/44915/influence-of-recycled-glass-content-on-the-properties-of-concrete-and-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass%20powder%20fineness&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass%20powder%20fineness&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass%20powder%20fineness&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass%20powder%20fineness&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass%20powder%20fineness&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass%20powder%20fineness&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass%20powder%20fineness&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass%20powder%20fineness&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass%20powder%20fineness&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass%20powder%20fineness&amp;page=64">64</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass%20powder%20fineness&amp;page=65">65</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glass%20powder%20fineness&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10