CINXE.COM

Search results for: high-ground temperature

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: high-ground temperature</title> <meta name="description" content="Search results for: high-ground temperature"> <meta name="keywords" content="high-ground temperature"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="high-ground temperature" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="high-ground temperature"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7012</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: high-ground temperature</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7012</span> Effect of Microstructure on Transition Temperature of Austempered Ductile Iron (ADI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ozel">A. Ozel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this study transition temperature of as-cast and austempered unalloyed ductile iron in the temperature interval from -60 to +100 degrees C have been investigated. The microstructures of samples were examined by light microscope. The impact energy values obtained from the experiments were found to depend on the austempering time and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Austempered%20Ductile%20Iron%20%28ADI%29" title="Austempered Ductile Iron (ADI)">Austempered Ductile Iron (ADI)</a>, <a href="https://publications.waset.org/abstracts/search?q=Charpy%20test" title=" Charpy test"> Charpy test</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20temperature" title=" transition temperature "> transition temperature </a> </p> <a href="https://publications.waset.org/abstracts/28406/effect-of-microstructure-on-transition-temperature-of-austempered-ductile-iron-adi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7011</span> Temperature Profile Modelling in Flexible Pavement Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Csaba%20T%C3%B3th">Csaba Tóth</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89va%20Lakatos"> Éva Lakatos</a>, <a href="https://publications.waset.org/abstracts/search?q=L%C3%A1szl%C3%B3%20Peth%C5%91"> László Pethő</a>, <a href="https://publications.waset.org/abstracts/search?q=Seoyoung%20Cho"> Seoyoung Cho </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The temperature effect on asphalt pavement structure is a crucial factor at the design stage. In this paper, by applying the German guidelines for temperature along the asphalt depth is estimated. The aim is to consider temperature profiles in different seasons in numerical modelling. The model is built with an elastic and isotropic solid element with 19 subdivisions of asphalt layers to reflect the temperature variation. Comparison with the simple three-layer pavement system (asphalt layers, base, and subgrade layers) will be followed to see the difference in result without temperature variation along with the depth. Finally, the fatigue life calculation was checked to prove the validity of the methodology of considering the temperature in the numerical modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature%20profile" title="temperature profile">temperature profile</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20modeling" title=" flexible pavement modeling"> flexible pavement modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20modeling" title=" temperature modeling"> temperature modeling</a> </p> <a href="https://publications.waset.org/abstracts/123609/temperature-profile-modelling-in-flexible-pavement-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7010</span> An Investigation on Hot-Spot Temperature Calculation Methods of Power Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Y.%20Arabul">Ahmet Y. Arabul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Senol"> Ibrahim Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Keskin%20Arabul"> Fatma Keskin Arabul</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G.%20Aydeniz"> Mustafa G. Aydeniz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasemin%20Oner"> Yasemin Oner</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Kalkan"> Gokhan Kalkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the standards of IEC 60076-2 and IEC 60076-7, three different hot-spot temperature estimation methods are suggested. In this study, the algorithms which used in hot-spot temperature calculations are analyzed by comparing the algorithms with the results of an experimental set-up made by a Transformer Monitoring System (TMS) in use. In tested system, TMS uses only top oil temperature and load ratio for hot-spot temperature calculation. And also, it uses some constants from standards which are on agreed statements tables. During the tests, it came out that hot-spot temperature calculation method is just making a simple calculation and not uses significant all other variables that could affect the hot-spot temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hot-spot%20temperature" title="Hot-spot temperature">Hot-spot temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20system" title=" monitoring system"> monitoring system</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transformer" title=" power transformer"> power transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/33034/an-investigation-on-hot-spot-temperature-calculation-methods-of-power-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7009</span> Temperature Distribution Control for Baby Incubator System Using Arduino AT Mega 2560</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Widhiada">W. Widhiada</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20K.%20P.%20Negara"> D. N. K. P. Negara</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Suryawan"> P. A. Suryawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technological advances in the field of health to be very important, especially on the safety of the baby. In this case a lot of premature infants death caused by poorly managed health facilities. Mostly the death of premature baby caused by bacteria since the temperature around the baby is not normal. Related to this, the incubator equipment needs to be important, especially in how to control the temperature in incubator. On/Off controls is used to regulate the temperature distribution in the incubator so that the desired temperature is 36 °C to stay awake and stable. The authors have been observed and analyzed the data to determine the temperature distribution in the incubator using program of MATLAB/Simulink. The output temperature distribution is obtained at 36 °C in 400 seconds using an Arduino AT 2560. This incubator is able to maintain an ambient temperature and maintain the baby's body temperature within normal limits and keep the moisture in the air in accordance with the limit values required in infant incubator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=on%2Foff%20control" title="on/off control">on/off control</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20temperature" title=" distribution temperature"> distribution temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=Arduino%20AT%202560" title=" Arduino AT 2560"> Arduino AT 2560</a>, <a href="https://publications.waset.org/abstracts/search?q=baby%20incubator" title=" baby incubator"> baby incubator</a> </p> <a href="https://publications.waset.org/abstracts/63688/temperature-distribution-control-for-baby-incubator-system-using-arduino-at-mega-2560" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7008</span> Childhood Respiratory Diseases Related to Indoor and Outdoor Air Temperature in Shanghai, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanjuan%20Sun">Chanjuan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijie%20Hong"> Shijie Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jialing%20Zhang"> Jialing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuchao%20Guo"> Yuchao Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Zou"> Zhijun Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Huang"> Chen Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Studies on associations between air temperature and childhood respiratory diseases are lack in China. Objectives: We aim to analyze the relationship between air temperature and childhood respiratory diseases. Methods: We conducted the on-site inspection into 454 residences and questionnaires survey. Indoor air temperature were from field inspection and outdoor air temperature were from website. Multiple logistic regression analyses were used to investigate the associations. Results: Indoor extreme hot air temperature was positively correlated with duration of a common cold (>=2 weeks), and outdoor extreme hot air temperature was also positively related with pneumonia among children. Indoor and outdoor extreme cold air temperature was a risk factor for rhinitis among children. The biggest indoor air temperature difference (indoor maximum air temperature minus indoor minimum air temperature) (Imax minus Imin) (the 4th quartile, >4 oC) and outdoor air temperature difference (outdoor maximum air temperature minus outdoor minimum air temperature) (Omax minus Omin) (the 4th quartile, >8oC) were positively related to pneumonia among children. Meanwhile, indoor air temperature difference (Imax minus Imin) (the 4th quartile, >4 oC) was positively correlated with diagnosed asthma among children. Air temperature difference between indoor and outdoor was negatively related with the most childhood respiratory diseases. This may be partly related to the avoidance behavior. Conclusions: Improper air temperature may affect the respiratory diseases among children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20temperature" title="air temperature">air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature" title=" extreme air temperature"> extreme air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20temperature%20difference" title=" air temperature difference"> air temperature difference</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20diseases" title=" respiratory diseases"> respiratory diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/120913/childhood-respiratory-diseases-related-to-indoor-and-outdoor-air-temperature-in-shanghai-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7007</span> Comparison between FEM Simulation and Experiment of Temperature Rise in Power Transformer Inner Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byung%20hyun%20Bae">Byung hyun Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In power transformer, leakage magnetic flux generate temperature rise of inner steel plate. Sometimes, this temperature rise can be serious problem. If temperature of steel plate is over critical point, harmful gas will be generated in the tank. And this gas can be a reason of fire, explosion and life decrease. So, temperature rise forecasting of steel plate is very important at the design stage of power transformer. To improve accuracy of forecasting of temperature rise, comparison between simulation and experiment achieved in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20transformer" title="power transformer">power transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20plate" title=" steel plate"> steel plate</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20rise" title=" temperature rise"> temperature rise</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/12749/comparison-between-fem-simulation-and-experiment-of-temperature-rise-in-power-transformer-inner-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7006</span> A Statistical Analysis on Relationship between Temperature Variations with Latitude and Altitude regarding Total Amount of Atmospheric Carbon Dioxide in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Moghbel">Masoumeh Moghbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, carbon dioxide which is produced by human activities is considered as the main effective factor in the global warming occurrence. Regarding to the role of CO2 and its ability in trapping the heat, the main objective of this research is study the effect of atmospheric CO2 (which is recorded in Manaloa) on variations of temperature parameters (daily mean temperature, minimum temperature and maximum temperature) in 5 meteorological stations in Iran which were selected according to the latitude and altitude in 40 years statistical period. Firstly, the trend of temperature parameters was studied by Regression and none-graphical Man-Kendal methods. Then, relation between temperature variations and CO2 were studied by Correlation technique. Also, the impact of CO2 amount on temperature in different atmospheric levels (850 and 500 hpa) was analyzed. The results illustrated that correlation coefficient between temperature variations and CO2 in low latitudes and high altitudes is more significant rather than other regions. it is important to note that altitude as the one of the main geographic factor has limitation in affecting the temperature variations, so that correlation coefficient between these two parameters in 850 hpa (r=0.86) is more significant than 500 hpa (r = 0.62). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=altitude" title="altitude">altitude</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20carbon%20dioxide" title=" atmospheric carbon dioxide"> atmospheric carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=latitude" title=" latitude"> latitude</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20variations" title=" temperature variations"> temperature variations</a> </p> <a href="https://publications.waset.org/abstracts/34560/a-statistical-analysis-on-relationship-between-temperature-variations-with-latitude-and-altitude-regarding-total-amount-of-atmospheric-carbon-dioxide-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7005</span> Influence of Temperature on Properties of MOSFETs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azizi%20Cherifa">Azizi Cherifa</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Benzaoui"> O. Benzaoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal aspects in the design of power circuits often deserve as much attention as pure electric components aspects as the operating temperature has a direct influence on their static and dynamic characteristics. MOSFET is fundamental in the circuits, it is the most widely used device in the current production of semiconductor components using their honorable performance. The aim of this contribution is devoted to the effect of the temperature on the properties of MOSFETs. The study enables us to calculate the drain current as function of bias in both linear and saturated modes. The effect of temperature is evaluated using a numerical simulation, using the laws of mobility and saturation velocity of carriers as a function of temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature" title="temperature">temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=MOSFET" title=" MOSFET"> MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=transistor" title=" transistor"> transistor</a> </p> <a href="https://publications.waset.org/abstracts/42385/influence-of-temperature-on-properties-of-mosfets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7004</span> Discussion on Microstructural Changes Caused by Deposition Temperature of LZO Doped Mg Piezoelectric Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng-Ying%20Li">Cheng-Ying Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Yuan%20Chu"> Sheng-Yuan Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article deposited LZO-doped Mg piezoelectric thin films via RF sputtering and observed microstructure and electrical characteristics by varying the deposition temperature. The XRD analysis results indicate that LZO-doped Mg exhibits excellent (002) orientation, and there is no presence of ZnO(100), Influenced by the temperature's effect on the lattice constant, the (002) peak intensity increases with rising temperature. Finally, we conducted deformation intensity analysis on the films, revealing an over fourfold increase in deformation at a processing temperature of 500°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RF%20sputtering" title="RF sputtering">RF sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectricity" title=" piezoelectricity"> piezoelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg" title=" Mg"> Mg</a> </p> <a href="https://publications.waset.org/abstracts/186346/discussion-on-microstructural-changes-caused-by-deposition-temperature-of-lzo-doped-mg-piezoelectric-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7003</span> Evaluation of Mechanical Behavior of Gas Turbine Blade at High Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Uk%20Wee">Sung-Uk Wee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sung%20Seok"> Chang-Sung Seok</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Mean%20Koo"> Jae-Mean Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Min%20Lee"> Jeong-Min Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas turbine blade is important part of power plant, so it is necessary to evaluate gas turbine reliability. For better heat efficiency, inlet temperature of gas turbine has been elevated more and more so gas turbine blade is exposed to high-temperature environment. Then, higher inlet temperature affects mechanical behavior of the gas turbine blade, so it is necessary that evaluation of mechanical property of gas turbine blade at high-temperature environment. In this study, tensile test and fatigue test were performed at various high temperature, and fatigue life was predicted by Coffin-Manson equation at each temperature. The experimental results showed that gas turbine blade has a lower elastic modulus and shorter fatigue life at higher temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20blade" title="gas turbine blade">gas turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain" title=" stress-strain"> stress-strain</a> </p> <a href="https://publications.waset.org/abstracts/52129/evaluation-of-mechanical-behavior-of-gas-turbine-blade-at-high-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7002</span> Centrifuge Testing to Determine the Effect of Temperature on the Adhesion Strength of Ice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaid%20A.%20Janjua">Zaid A. Janjua</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Turnbull"> Barbara Turnbull</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwing-So%20Choi"> Kwing-So Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adhesion of glaze ice on power infrastructure, ships and aerofoils cause monetary and structural damage. Here we investigate the influence of temperature as an important parameter affecting adhesion strength of ice. Two terms are defined to investigate this: 'freezing temperature', the temperature at which glaze ice forms; and 'ambient temperature', the temperature of the surrounding during the test. Using three metal surfaces, the adhesion strength of ice has been calculated as a value of shear stress at the point of detachment on a spinning centrifuge. Findings show that the ambient temperature has a greater influence than the freezing temperature on the adhesion strength of ice. This is because there exists an amorphous liquid-like layer at the ice-surface interface, whose bond with the surface increases in strength at lower ambient temperatures when the substrate conducts heat much faster than the ice and acts as a heat sink. The results will help us to measure the actual adhesion strength of ice to metal surfaces based on data from weather monitoring devices. Future tests envisaged focus on thermally non-conducting substrates and their influence on adhesion strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20adhesion" title="ice adhesion">ice adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifuge" title=" centrifuge"> centrifuge</a>, <a href="https://publications.waset.org/abstracts/search?q=glaze%20ice" title=" glaze ice"> glaze ice</a>, <a href="https://publications.waset.org/abstracts/search?q=freezing%20temperature" title=" freezing temperature"> freezing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient%20temperature" title=" ambient temperature"> ambient temperature</a> </p> <a href="https://publications.waset.org/abstracts/60459/centrifuge-testing-to-determine-the-effect-of-temperature-on-the-adhesion-strength-of-ice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7001</span> A Method for Calculating Dew Point Temperature in the Humidity Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Sa">Wu Sa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Qian"> Zhang Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Qi"> Li Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Ye"> Wang Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently in humidity tests having not put the Dew point temperature as a control parameter, this paper selects wet and dry bulb thermometer to measure the vapor pressure, and introduces several the saturation vapor pressure formulas easily calculated on the controller. Then establish the Dew point temperature calculation model to obtain the relationship between the Dew point temperature and vapor pressure. Finally check through the 100 groups of sample in the range of 0-100 ℃ from "Psychrometric handbook", find that the average error is small. This formula can be applied to calculate the Dew point temperature in the humidity test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dew%20point%20temperature" title="dew point temperature">dew point temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=psychrometric%20handbook" title=" psychrometric handbook"> psychrometric handbook</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20vapor%20pressure" title=" saturation vapor pressure"> saturation vapor pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20and%20dry%20bulb%20thermometer" title=" wet and dry bulb thermometer"> wet and dry bulb thermometer</a> </p> <a href="https://publications.waset.org/abstracts/30022/a-method-for-calculating-dew-point-temperature-in-the-humidity-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7000</span> Vortex Separator for More Accurate Air Dry-Bulb Temperature Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20N.%20Shmroukh">Ahmed N. Shmroukh</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20S.%20Taha"> I. M. S. Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Abdel-Ghany"> A. M. Abdel-Ghany</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Attalla"> M. Attalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fog systems application for cooling and humidification is still limited, although these systems require less initial cost compared with that of other cooling systems such as pad-and-fan systems. The undesirable relative humidity and air temperature inside the space which have been cooled or humidified are the main reasons for its limited use, which results from the poor control of fog systems. Any accurate control system essentially needs air dry bulb temperature as an input parameter. Therefore, the air dry-bulb temperature in the space needs to be measured accurately. The Scope of the present work is the separation of the fog droplets from the air in a fogged space to measure the air dry bulb temperature accurately. The separation is to be done in a small device inside which the sensor of the temperature measuring instrument is positioned. Vortex separator will be designed and used. Another reference device will be used for measuring the air temperature without separation. A comparative study will be performed to reach at the best device which leads to the most accurate measurement of air dry bulb temperature. The results showed that the proposed devices improved the measured air dry bulb temperature toward the correct direction over that of the free junction. Vortex device was the best. It respectively increased the temperature measured by the free junction in the range from around 2 to around 6°C for different fog on-off duration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fog%20systems" title="fog systems">fog systems</a>, <a href="https://publications.waset.org/abstracts/search?q=measuring%20air%20dry%20bulb%20temperature" title=" measuring air dry bulb temperature"> measuring air dry bulb temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20measurement" title=" temperature measurement"> temperature measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20separator" title=" vortex separator"> vortex separator</a> </p> <a href="https://publications.waset.org/abstracts/58889/vortex-separator-for-more-accurate-air-dry-bulb-temperature-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6999</span> Comparison of Mean Monthly Soil Temperature at (5 and 30 cm) Depths at Compton Experimental Site, West Midlands (UK), between 1976-2008</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aminu%20Mansur">Aminu Mansur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparison of soil temperature at (5 and 30 cm) depths at a research site over the period (1976-2008) was analyzed. Based on the statistical analysis of the database of (12,045) days of individual soil temperature measurements in sandy-loam of the (salwick series) soils, the mean soil temperature revealed a statistically significant increase of about -1.1 to 10.9°C at 5 cm depth in 1976 compared to 2008. Similarly, soil temperature at 30 cm depth increased by -0.1 to 2.1°C in 2008 compared to 1976. Although, rapid increase in soil temperature at all depths was observed during that period, but a thorough assessment of these conditions suggested that the soil temperature at 5 cm depth are progressively increasing over time. A typical example of those increases in soil temperature was provided for agriculture where Miscanthus (elephant) plant that grows within the study area is adversely affected by the mean soil temperature increase. The study concluded that these observations contribute to the growing mass of evidence of global warming and knowledge on secular trends. Therefore, there was statistically significant increase in soil temperature at Compton Experimental Site between 1976-2008. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20temperature" title="soil temperature">soil temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=warming%20trend" title=" warming trend"> warming trend</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20science" title=" environment science"> environment science</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20and%20atmospheric%20sciences" title=" climate and atmospheric sciences"> climate and atmospheric sciences</a> </p> <a href="https://publications.waset.org/abstracts/26304/comparison-of-mean-monthly-soil-temperature-at-5-and-30-cm-depths-at-compton-experimental-site-west-midlands-uk-between-1976-2008" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6998</span> Oil Recovery Study by Low Temperature Carbon Dioxide Injection in High-Pressure High-Temperature Micromodels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20Hamdi">Zakaria Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariyamni%20Awang"> Mariyamni Awang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the past decades, CO<sub>2</sub> flooding has been used as a successful method for enhanced oil recovery (EOR). However, high mobility ratio and fingering effect are considered as important drawbacka of this process. Low temperature injection of CO<sub>2</sub> into high temperature reservoirs may improve the oil recovery, but simulating multiphase flow in the non-isothermal medium is difficult, and commercial simulators are very unstable in these conditions. Furthermore, to best of authors&rsquo; knowledge, no experimental work was done to verify the results of the simulations and to understand the pore-scale process. In this paper, we present results of investigations on injection of low temperature CO<sub>2</sub> into a high-pressure high-temperature micromodel with injection temperature range from 34 to 75 &deg;F. Effect of temperature and saturation changes of different fluids are measured in each case. The results prove the proposed method. The injection of CO<sub>2</sub> at low temperatures increased the oil recovery in high temperature reservoirs significantly. Also, CO<sub>2</sub> rich phases available in the high temperature system can affect the oil recovery through the better sweep of the oil which is initially caused by penetration of LCO<sub>2</sub> inside the system. Furthermore, no unfavorable effect was detected using this method. Low temperature CO<sub>2</sub> is proposed to be used as early as secondary recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title="enhanced oil recovery">enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20flooding" title=" CO₂ flooding"> CO₂ flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=micromodel%20studies" title=" micromodel studies"> micromodel studies</a>, <a href="https://publications.waset.org/abstracts/search?q=miscible%20flooding" title=" miscible flooding"> miscible flooding</a> </p> <a href="https://publications.waset.org/abstracts/71727/oil-recovery-study-by-low-temperature-carbon-dioxide-injection-in-high-pressure-high-temperature-micromodels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6997</span> Study on the Heat Transfer Performance of the Annular Fin under Condensing Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdenour%20Bourabaa">Abdenour Bourabaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Malika%20Fekih"> Malika Fekih</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Saighi"> Mohamed Saighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical investigation of the fin efficiency and temperature distribution of an annular fin under dehumidification has been presented in this paper. The non-homogeneous second order differential equation that describes the temperature distribution from the fin base to the fin tip has been solved using the central finite difference method. The effects of variations in parameters including relative humidity, air temperature, air face velocity on temperature distribution and fin efficiency are investigated and compared with those under fully dry fin conditions. Also, the effect of fin pitch on the dimensionless temperature has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annular%20fin" title="annular fin">annular fin</a>, <a href="https://publications.waset.org/abstracts/search?q=dehumidification" title=" dehumidification"> dehumidification</a>, <a href="https://publications.waset.org/abstracts/search?q=fin%20efficiency" title=" fin efficiency"> fin efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20fin" title=" wet fin"> wet fin</a> </p> <a href="https://publications.waset.org/abstracts/1939/study-on-the-heat-transfer-performance-of-the-annular-fin-under-condensing-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6996</span> Simulation of Uniaxial Ratcheting Behaviors of SA508-3 Steel at Elevated Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Tian">Jun Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Yang"> Yu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liping%20Zhang"> Liping Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qianhua%20Kan"> Qianhua Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental results show that SA 508-3 steel exhibits temperature dependent cyclic softening characteristic and obvious ratcheting behaviors, and dynamic strain age was observed at temperature range of 200 ºC to 350 ºC. Based on these observations, a temperature dependent cyclic plastic constitutive model was proposed by introducing the nonlinear cyclic softening and kinematic hardening rules, and the dynamic strain age was also considered into the constitutive model. Comparisons between experiments and simulations were carried out to validate the proposed model at elevated temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constitutive%20model" title="constitutive model">constitutive model</a>, <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperature" title=" elevated temperature"> elevated temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ratcheting" title=" ratcheting"> ratcheting</a>, <a href="https://publications.waset.org/abstracts/search?q=SA%20508-3" title=" SA 508-3"> SA 508-3</a> </p> <a href="https://publications.waset.org/abstracts/53469/simulation-of-uniaxial-ratcheting-behaviors-of-sa508-3-steel-at-elevated-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6995</span> Influence and Interaction of Temperature, H2S and pH on Concrete Sewer Pipe Corrosion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Romanova">Anna Romanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Mahmoodian"> Mojtaba Mahmoodian</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20A.%20Alani"> Morteza A. Alani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete sewer pipes are known to suffer from a process of hydrogen sulfide gas induced sulfuric acid corrosion. This leads to premature pipe degradation, performance failure and collapses which in turn may lead to property and health damage. The above work reports on a field study undertaken in working sewer manholes where the parameters of effluent temperature and pH as well as ambient temperature and concentration of hydrogen sulfide were continuously measured over a period of two months. Early results suggest that effluent pH has no direct effect on hydrogen sulfide build up; on average the effluent temperature is 3.5°C greater than the ambient temperature inside the manhole and also it was observed that hydrogen sulfate concentration increases with increasing temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20corrosion" title="concrete corrosion">concrete corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sulfide%20gas" title=" hydrogen sulfide gas"> hydrogen sulfide gas</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=sewer%20pipe" title=" sewer pipe"> sewer pipe</a> </p> <a href="https://publications.waset.org/abstracts/10077/influence-and-interaction-of-temperature-h2s-and-ph-on-concrete-sewer-pipe-corrosion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6994</span> A Second Law Assessment of Organic Rankine Cycle Depending on Source Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyoung%20Hoon%20Kim">Kyoung Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic Rankine Cycle (ORC) has potential in reducing fossil fuels and relaxing environmental problems. In this work performance analysis of ORC is conducted based on the second law of thermodynamics for recovery of low temperature heat source from 100°C to 140°C using R134a as the working fluid. Effects of system parameters such as turbine inlet pressure or source temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as net work production or exergy efficiency. Results show that the net work or exergy efficiency has a peak with respect to the turbine inlet pressure when the source temperature is low, however, increases monotonically with increasing turbine inlet pressure when the source temperature is high. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Organic%20Rankine%20Cycle%20%28ORC%29" title="Organic Rankine Cycle (ORC)">Organic Rankine Cycle (ORC)</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20heat%20source" title=" low temperature heat source"> low temperature heat source</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20temperature" title=" source temperature "> source temperature </a> </p> <a href="https://publications.waset.org/abstracts/8156/a-second-law-assessment-of-organic-rankine-cycle-depending-on-source-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6993</span> Movement of Metallic Inclusions in the Volume of Synthetic Diamonds at High Pressure and High Temperature in the Temperature Gradient Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20I.%20Yachevskaya">P. I. Yachevskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Terentiev"> S. A. Terentiev</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Kuznetsov"> M. S. Kuznetsov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several synthetic HPHT diamonds with metal inclusions have been studied. To have possibility of investigate the movement and transformation of the inclusions in the volume of the diamond the samples parallele-piped like shape has been made out of diamond crystals. The calculated value of temperature gradient in the samples of diamond which was placed in high-pressure cell was about 5-10 grad/mm. Duration of the experiments was in range 2-16 hours. All samples were treated several times. It has been found that the volume (dimensions) of inclusions, temperature, temperature gradient and the crystallographic orientation of the samples in the temperature field affects the movement speed of inclusions. Maximum speed of inclusions’ movement reached a value 150 µm/h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diamond" title="diamond">diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusions" title=" inclusions"> inclusions</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20gradient" title=" temperature gradient"> temperature gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=HPHT" title=" HPHT"> HPHT</a> </p> <a href="https://publications.waset.org/abstracts/19108/movement-of-metallic-inclusions-in-the-volume-of-synthetic-diamonds-at-high-pressure-and-high-temperature-in-the-temperature-gradient-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6992</span> Effect of Process Parameters on Tensile Strength of Aluminum Alloy ADC 10 Produced through Ceramic Shell Investment Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Singh">Balwinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Castings are produced by using aluminum alloy ADC 10 through the process of Ceramic Shell Investment Casting. Experiments are conducted as per the Taguchi L9 orthogonal array. In order to evaluate the effect of process parameters such as mould preheat temperature, preheat time, firing temperature and pouring temperature on surface roughness of ceramic shell investment castings, the Taguchi parameter design and optimization approach is used. Plots of means of significant factors and S/N ratios have been used to determine the best relationship between the responses and model parameters. It is found that the pouring temperature is the most significant factor. The best tensile strength of aluminum alloy ADC 10 is given by 150 ºC shell preheat temperature, 45 minutes preheat time, 900 ºC firing temperature, 650 ºC pouring temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=investment%20casting" title="investment casting">investment casting</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20preheat%20temperature" title=" shell preheat temperature"> shell preheat temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=firing%20temperature" title=" firing temperature"> firing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/94264/effect-of-process-parameters-on-tensile-strength-of-aluminum-alloy-adc-10-produced-through-ceramic-shell-investment-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6991</span> Different Ergonomic Exposures and Infrared Thermal Temperature on Low Back</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sihao%20Lin">Sihao Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Infrared thermography (IRT) has been little documented in the objective measurement of ergonomic exposure. We aimed to examine the association between different ergonomic exposures and low back skin temperature measured by IRT. Methods: A total of 114 subjects among sedentary students, sports students and cleaning workers were selected as different ergonomic exposure levels. Low back skin temperature was measured by infrared thermography before and post ergonomic exposure. Ergonomic exposure was assessed by Quick Exposure Check (QEC) and quantitative scores were calculated on the low back. Multiple regressions were constructed to examine the possible associations between ergonomic risk exposures and the skin temperature over the low back. Results: Compared to the two student groups, clean workers had significantly higher ergonomic exposure scores on the low back. The low back temperature variations were different among the three groups. The temperature decreased significantly among students with ergonomic exposure (P < 0.01), while it increased among cleaning workers. With adjustment of confounding, the post-exposure temperature and the temperature changes after exposure showed a significantly negative association with ergonomic exposure scores. For maximum temperature, one increasing ergonomic score decreased -0.23◦C (95% CI -0.37, -0.10) of temperature after ergonomic exposure over the low back. Conclusion: There was a significant association between ergonomic exposures and infrared thermal temperature over low back. IRT could be used as an objective assessment of ergonomic exposure on the low back. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ergonomic%20exposure" title="ergonomic exposure">ergonomic exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=musculoskeletal%20disorders" title=" musculoskeletal disorders"> musculoskeletal disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20temperature" title=" skin temperature"> skin temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20back" title=" low back"> low back</a> </p> <a href="https://publications.waset.org/abstracts/168788/different-ergonomic-exposures-and-infrared-thermal-temperature-on-low-back" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6990</span> The Influence of Air Temperature Controls in Estimation of Air Temperature over Homogeneous Terrain </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariza%20Yunus">Fariza Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmee%20Jaafar"> Jasmee Jaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zamalia%20Mahmud"> Zamalia Mahmud</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Nisa%E2%80%99%20Khairul%20Azmi"> Nurul Nisa’ Khairul Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nursalleh%20K.%20Chang"> Nursalleh K. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nursalleh%20K.%20Chang"> Nursalleh K. Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Variation of air temperature from one place to another is cause by air temperature controls. In general, the most important control of air temperature is elevation. Another significant independent variable in estimating air temperature is the location of meteorological stations. Distances to coastline and land use type are also contributed to significant variations in the air temperature. On the other hand, in homogeneous terrain direct interpolation of discrete points of air temperature work well to estimate air temperature values in un-sampled area. In this process the estimation is solely based on discrete points of air temperature. However, this study presents that air temperature controls also play significant roles in estimating air temperature over homogenous terrain of Peninsular Malaysia. An Inverse Distance Weighting (IDW) interpolation technique was adopted to generate continuous data of air temperature. This study compared two different datasets, observed mean monthly data of T, and estimation error of T–T’, where T’ estimated value from a multiple regression model. The multiple regression model considered eight independent variables of elevation, latitude, longitude, coastline, and four land use types of water bodies, forest, agriculture and build up areas, to represent the role of air temperature controls. Cross validation analysis was conducted to review accuracy of the estimation values. Final results show, estimation values of T–T’ produced lower errors for mean monthly mean air temperature over homogeneous terrain in Peninsular Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20temperature%20control" title="air temperature control">air temperature control</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation%20analysis" title=" interpolation analysis"> interpolation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=peninsular%20Malaysia" title=" peninsular Malaysia"> peninsular Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20temperature" title=" air temperature "> air temperature </a> </p> <a href="https://publications.waset.org/abstracts/12799/the-influence-of-air-temperature-controls-in-estimation-of-air-temperature-over-homogeneous-terrain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6989</span> Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon">Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gon%20Yoon"> Myung-Gon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200°C. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200°C. Tensile strength of cast 310S stainless steel was 9 MPa at 1200°C, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900°C. Elongation also increased with temperature decreased. Microstructure observation revealed that σ phase was precipitated along the grain boundary and within the matrix over 1200°C, which is detrimental to high temperature elongation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title="stainless steel">stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=STS%20310S" title=" STS 310S"> STS 310S</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20deformation" title=" high temperature deformation"> high temperature deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/11151/microstructure-and-high-temperature-deformation-behavior-of-cast-310s-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6988</span> Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abir%20Yahya">Abir Yahya</a>, <a href="https://publications.waset.org/abstracts/search?q=Hacen%20Dhahri"> Hacen Dhahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalifa%20Slimi"> Khalifa Slimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20sources" title="heat sources">heat sources</a>, <a href="https://publications.waset.org/abstracts/search?q=Lattice%20Boltzmann%20method" title=" Lattice Boltzmann method"> Lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide%20fuel%20cell" title=" solid oxide fuel cell"> solid oxide fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/71281/parametric-analysis-of-solid-oxide-fuel-cell-using-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6987</span> Comparative Study of the Earth Land Surface Temperature Signatures over Ota, South-West Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses%20E.%20Emetere">Moses E. Emetere</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Akinyemi"> M. L. Akinyemi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural activities in the South–West Nigeria are mitigated by the global increase in temperature. The unpredictive surface temperature of the area had increased health challenges amongst other social influence. The satellite data of surface temperatures were compared with the ground station Davis weather station. The differential heating of the lower atmosphere were represented mathematically. A numerical predictive model was propounded to forecast future surface temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20predictive%20model" title="numerical predictive model">numerical predictive model</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20temperature" title=" surface temperature"> surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20date" title=" satellite date"> satellite date</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20data" title=" ground data"> ground data</a> </p> <a href="https://publications.waset.org/abstracts/10356/comparative-study-of-the-earth-land-surface-temperature-signatures-over-ota-south-west-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6986</span> Contact Temperature of Sliding Surfaces in AISI 316 Austenitic Stainless Steel During PIN on Disk Dry Wear Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dler%20Abdullah%20Ahmed">Dler Abdullah Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zozan%20Ahmed%20Mohammed"> Zozan Ahmed Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study looked into contact surface temperature during a pin-on-disk test. Friction and wear between sliding surfaces raised the temperature differential between the contact surface and ambient temperatures Tdiff. Tdiff was significantly influenced by wear test variables. Tdiff rose with the increase of sliding speed and applied load while dropped with the increase in ambient temperature. The highest Tdiff was 289°C during the tests at room temperature and 2.5 m/s sliding speed, while the minimum was only 24 °C during the tests at 400°C and 0.5 m/s. However, the maximum contact temperature Tmax was found during tests conducted at high ambient temperatures. The Tmax was estimated based on the theoretical equation. The comparison of experimental and theoretical Tmax data revealed good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pin%20on%20disk%20test" title="pin on disk test">pin on disk test</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20temperature" title=" contact temperature"> contact temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20surface" title=" sliding surface"> sliding surface</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient%20temperature" title=" ambient temperature"> ambient temperature</a> </p> <a href="https://publications.waset.org/abstracts/185244/contact-temperature-of-sliding-surfaces-in-aisi-316-austenitic-stainless-steel-during-pin-on-disk-dry-wear-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6985</span> Controlling of Water Temperature during the Electrocoagulation Process Using an Innovative Flow Columns -Electrocoagulation Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20S.%20Hashim">Khalid S. Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Shaw"> Andy Shaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafid%20Alkhaddar"> Rafid Alkhaddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Montserrat%20Ortoneda%20Pedrola"> Montserrat Ortoneda Pedrola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A flow column has been innovatively used in the design of a new electrocoagulation reactor (ECR1) that will reduce the temperature of water being treated; where the flow columns work as a radiator for the water being treated. In order to investigate the performance of ECR1 and compare it to that of traditional reactors; 600 mL water samples with an initial temperature of 35 0C were pumped continuously through these reactors for 30 min at current density of 1 mA/cm2. The temperature of water being treated was measured at 5 minutes intervals over a 30 minutes period using a thermometer. Additional experiments were commenced to investigate the effects of initial temperature (15-35 0C), water conductivity (0.15 – 1.2 S) and current density (0.5 -3 mA/cm2) on the performance of ECR1. The results obtained demonstrated that the ECR1, at a current density of 1 mA/cm2 and continuous flow model, reduced water temperature from 35 0C to the vicinity of 28 0C during the first 15 minutes and kept the same level till the end of the treatment time. While, the temperature increased from 28.1 to 29.8 0C and from 29.8 to 31.9 0C in the batch and the traditional continuous flow models respectively. In term of initial temperature, ECR1 maintained the temperature of water being treated within the range of 22 to 28 0C without the need for external cooling system even when the initial temperatures varied over a wide range (15 to 35 0C). The influent water conductivity was found to be a significant variable that affect the temperature. The desirable value of water conductivity is 0.6 S. However, it was found that the water temperature increased rapidly with a higher current density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20temperature" title="water temperature">water temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20column" title=" flow column"> flow column</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a> </p> <a href="https://publications.waset.org/abstracts/32976/controlling-of-water-temperature-during-the-electrocoagulation-process-using-an-innovative-flow-columns-electrocoagulation-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6984</span> A Numerical Investigation of Total Temperature Probes Measurement Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erdem%20Meri%C3%A7">Erdem Meriç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measuring total temperature of air flow accurately is a very important requirement in the development phases of many industrial products, including gas turbines and rockets. Thermocouples are very practical devices to measure temperature in such cases, but in high speed and high temperature flows, the temperature of thermocouple junction may deviate considerably from real flow total temperature due to the effects of heat transfer mechanisms of convection, conduction, and radiation. To avoid errors in total temperature measurement, special probe designs which are experimentally characterized are used. In this study, a validation case which is an experimental characterization of a specific class of total temperature probes is selected from the literature to develop a numerical conjugate heat transfer analysis methodology to study the total temperature probe flow field and solid temperature distribution. Validated conjugate heat transfer methodology is used to investigate flow structures inside and around the probe and effects of probe design parameters like the ratio between inlet and outlet hole areas and prob tip geometry on measurement accuracy. Lastly, a thermal model is constructed to account for errors in total temperature measurement for a specific class of probes in different operating conditions. Outcomes of this work can guide experimentalists to design a very accurate total temperature probe and quantify the possible error for their specific case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjugate%20heat%20transfer" title="conjugate heat transfer">conjugate heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20factor" title=" recovery factor"> recovery factor</a>, <a href="https://publications.waset.org/abstracts/search?q=thermocouples" title=" thermocouples"> thermocouples</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20temperature%20probes" title=" total temperature probes"> total temperature probes</a> </p> <a href="https://publications.waset.org/abstracts/159224/a-numerical-investigation-of-total-temperature-probes-measurement-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6983</span> Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharminder%20Singh">Dharminder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Yadav"> Sanjeev Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravakar%20Mohanty"> Pravakar Mohanty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20bubbling%20fluidized%20bed%20gasifier" title="air bubbling fluidized bed gasifier">air bubbling fluidized bed gasifier</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20temperature" title=" bed temperature"> bed temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal%20heating" title=" charcoal heating"> charcoal heating</a>, <a href="https://publications.waset.org/abstracts/search?q=dolomite" title=" dolomite"> dolomite</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20temperature" title=" flame temperature"> flame temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a> </p> <a href="https://publications.waset.org/abstracts/61151/effect-of-different-factors-on-temperature-profile-and-performance-of-an-air-bubbling-fluidized-bed-gasifier-for-rice-husk-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-ground%20temperature&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-ground%20temperature&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-ground%20temperature&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-ground%20temperature&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-ground%20temperature&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-ground%20temperature&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-ground%20temperature&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-ground%20temperature&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-ground%20temperature&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-ground%20temperature&amp;page=233">233</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-ground%20temperature&amp;page=234">234</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high-ground%20temperature&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10