CINXE.COM
Search results for: compounding
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: compounding</title> <meta name="description" content="Search results for: compounding"> <meta name="keywords" content="compounding"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="compounding" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="compounding"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 54</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: compounding</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Beliefs about the Use of Extemporaneous Compounding for Paediatric Outpatients among Physicians in Yogyakarta, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chairun%20Wiedyaningsih">Chairun Wiedyaningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Suryawati"> Sri Suryawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Yati%20Soenarto"> Yati Soenarto</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hakimi"> Muhammad Hakimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Many drugs used in paediatrics are not commercially available in suitable dosage forms. Therefore, the drugs often prescribed in extemporaneous compounding dosage form. Compounding can pose health risks include poor quality and unsafe products. Studies of compounding dosage form have primarily focused on prescription profiles, reasons of prescribing never be explored. Objectives: The study was conducted to identify factors influencing physicians’ decision to prescribe extemporaneous compounding dosage form for paediatric outpatients. Setting: Daerah Istimewa Yogyakarta (DIY) province, Indonesia. Method: Qualitative semi-structured interviews were conducted with 15 general physicians and 7 paediatricians to identify the reason of prescribing extemporaneous compounding dosage form. The interviews were transcribed and analysed using thematic analysis. Results: Factors underlying prescribing of compounding could be categorized to therapy, healthcare system, patient and past experience. The primary reasons of therapy factors were limited availability of drug compositions, dosages or formulas specific for children. Beliefs in efficacy of the compounding forms were higher when the drugs used primarily to overcome complex cases. Physicians did not concern about compounding form containing several active substances because manufactured syrups may also contain several active substances. Although medicines were available in manufactured syrups, limited institutional budget was healthcare system factor of compounding prescribing. The prescribing factors related to patients include easy to use, efficient and lower price. The prescribing factors related to past experience were physicians’ beliefs to the progress of patient's health status. Conclusions: Compounding was prescribed based on therapy-related factors, healthcare system factors, patient factors and past experience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compounding%20dosage%20form" title="compounding dosage form">compounding dosage form</a>, <a href="https://publications.waset.org/abstracts/search?q=interview" title=" interview"> interview</a>, <a href="https://publications.waset.org/abstracts/search?q=physician" title=" physician"> physician</a>, <a href="https://publications.waset.org/abstracts/search?q=prescription" title=" prescription"> prescription</a> </p> <a href="https://publications.waset.org/abstracts/13937/beliefs-about-the-use-of-extemporaneous-compounding-for-paediatric-outpatients-among-physicians-in-yogyakarta-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Compounding and Blending in English and Hausa Languages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Maimota">Maryam Maimota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Words are the basic building blocks of a language. In everyday usage of a language, words are used and new words are formed and reformed in order to contain and accommodate all entities, phenomena, qualities and every aspect of the entire human life. This research study seeks to examine and compare some of the word formation processes and how they are used in forming new words in English and Hausa languages. The study focuses its main attention on blending and compounding as word formation processes and how the processes are used adequately in the formation of words in both English and Hausa languages. The research aims to find out, how compounding and blending are used, as processes of word formation in these two languages. And also, to investigate the word formation processes involved in compounding and blending in these languages, and the nature of words that are formed. Therefore, the research tries to find the answers to the following research questions; What types of compound and blended forms are found and how they are formed in the English and Hausa languages? How these compounded and blended forms functioned in both English and Hausa languages in different context such as in phrases and sentences structures? Findings of the study reveal that, there exist new kind of words formed in Hausa and English language under blending, which previous findings did not either reveal or explain in detail. Similarly, there are a lot of similarities found in the way these blends and compounds forms in the two languages, however, the data available shows that, blends in the Hausa language are more, when compared to the blends in English. The data of this study will be gathered based on discourse found in newspaper, articles, novels, and written literature of the Hausa and English languages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blending" title="blending">blending</a>, <a href="https://publications.waset.org/abstracts/search?q=compounding" title=" compounding"> compounding</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=word%20formation" title=" word formation"> word formation</a> </p> <a href="https://publications.waset.org/abstracts/52244/compounding-and-blending-in-english-and-hausa-languages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> 35 MHz Coherent Plane Wave Compounding High Frequency Ultrasound Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Chung%20Huang">Chih-Chung Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Hsun%20Peng"> Po-Hsun Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasound transient elastography has become a valuable tool for many clinical diagnoses, such as liver diseases and breast cancer. The pathological tissue can be distinguished by elastography due to its stiffness is different from surrounding normal tissues. An ultrafast frame rate of ultrasound imaging is needed for transient elastography modality. The elastography obtained in the ultrafast system suffers from a low quality for resolution, and affects the robustness of the transient elastography. In order to overcome these problems, a coherent plane wave compounding technique has been proposed for conventional ultrasound system which the operating frequency is around 3-15 MHz. The purpose of this study is to develop a novel beamforming technique for high frequency ultrasound coherent plane-wave compounding imaging and the simulated results will provide the standards for hardware developments. Plane-wave compounding imaging produces a series of low-resolution images, which fires whole elements of an array transducer in one shot with different inclination angles and receives the echoes by conventional beamforming, and compounds them coherently. Simulations of plane-wave compounding image and focused transmit image were performed using Field II. All images were produced by point spread functions (PSFs) and cyst phantoms with a 64-element linear array working at 35MHz center frequency, 55% bandwidth, and pitch of 0.05 mm. The F number is 1.55 in all the simulations. The simulated results of PSFs and cyst phantom which were obtained using single, 17, 43 angles plane wave transmission (angle of each plane wave is separated by 0.75 degree), and focused transmission. The resolution and contrast of image were improved with the number of angles of firing plane wave. The lateral resolutions for different methods were measured by -10 dB lateral beam width. Comparison of the plane-wave compounding image and focused transmit image, both images exhibited the same lateral resolution of 70 um as 37 angles were performed. The lateral resolution can reach 55 um as the plane-wave was compounded 47 angles. All the results show the potential of using high-frequency plane-wave compound imaging for realizing the elastic properties of the microstructure tissue, such as eye, skin and vessel walls in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plane%20wave%20imaging" title="plane wave imaging">plane wave imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20ultrasound" title=" high frequency ultrasound"> high frequency ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=elastography" title=" elastography"> elastography</a>, <a href="https://publications.waset.org/abstracts/search?q=beamforming" title=" beamforming"> beamforming</a> </p> <a href="https://publications.waset.org/abstracts/26703/35-mhz-coherent-plane-wave-compounding-high-frequency-ultrasound-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Evaluation of the Practice of Veterinary Pharmacy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Magdy%20Danial%20Riad">Maria Magdy Danial Riad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In the United Kingdom (UK), pharmacists' roles have expanded considerably in recent decades to encompass clinical practice through more direct patient care. However, dispensing and compounding remain core activities for pharmacists. A lack of marketed preparations for species-specific animal use results in veterinary pharmacy practice compounding, retaining its prominence. Current participation by pharmacists to support this sphere of practice would appear to be minimal. Objectives: This study was undertaken to determine the opinions and views toward the practice of veterinary pharmacy by a cross-sectional group of pharmacists. Methods: Research data were collected via a self-administered survey questionnaire distributed at the 2012 annual conference of the Royal Pharmaceutical Society. Sampling was purposive, with a random distribution of the questionnaire to pharmacists during the conference sessions. Key findings: Interaction by pharmacists with veterinary pharmacies is currently minimal, primarily due to a lack of knowledge of veterinary medicines. Respondents revealed a lack of veterinary pharmacy courses during their undergraduate studies. This has led to situations where some veterinary prescriptions are dispensed without adequate checks being performed by the pharmacist. Pharmacists, on occasion, do not dispense veterinary prescriptions presented to them due to insufficient knowledge of veterinary medicines and/or a lack of consultable reference sources. The effect on practice is that pharmacists do not always participate as fully as would seem logical. Conclusions: Pharmacists' participation in veterinary pharmacy is limited by a lack of knowledge of veterinary medicines, mostly resulting from inadequate tuition on veterinary pharmacy during their initial education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=veterinary%20pharmacy" title="veterinary pharmacy">veterinary pharmacy</a>, <a href="https://publications.waset.org/abstracts/search?q=veterinary%20medicines" title=" veterinary medicines"> veterinary medicines</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacy%20education" title=" pharmacy education"> pharmacy education</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacists%20continuing%20professional%20development" title=" pharmacists continuing professional development"> pharmacists continuing professional development</a> </p> <a href="https://publications.waset.org/abstracts/166835/evaluation-of-the-practice-of-veterinary-pharmacy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> The Effect of Ingredients Mixing Sequence in Rubber Compounding on the Formation of Bound Rubber and Cross-Link Density of Natural Rubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Hasan">Abu Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rochmadi"> Rochmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hary%20Sulistyo"> Hary Sulistyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Suharto%20Honggokusumo"> Suharto Honggokusumo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research purpose is to study the effect of Ingredients mixing sequence in rubber compounding onto the formation of bound rubber and cross link density of natural rubber and also the relationship of bound rubber and cross link density. Analysis of bound rubber formation of rubber compound and cross link density of rubber vulcanizates were carried out on a natural rubber formula having masticated and mixing, followed by curing. There were four methods of mixing and each mixing process was followed by four mixing sequence methods of carbon black into the rubber. In the first method of mixing sequence, rubber was masticated for 5 min and then rubber chemicals and carbon black N 330 were added simultaneously. In the second one, rubber was masticated for 1 min and followed by addition of rubber chemicals and carbon black N 330 simultaneously using the different method of mixing then the first one. In the third one, carbon black N 660 was used for the same mixing procedure of the second one, and in the last one, rubber was masticated for 3 min, carbon black N 330 and rubber chemicals were added subsequently. The addition of rubber chemicals and carbon black into masticated rubber was distinguished by the sequence and time allocated for each mixing process. Carbon black was added into two stages. In the first stage, 10 phr was added first and the remaining 40 phr was added later along with oil. In the second one to the fourth one, the addition of carbon black in the first and the second stage was added in the phr ratio 20:30, 30:20, and 40:10. The results showed that the ingredients mixing process influenced bound rubber formation and cross link density. In the three methods of mixing, the bound rubber formation was proportional with crosslink density. In contrast in the fourth one, bound rubber formation and cross link density had contradictive relation. Regardless of the mixing method operated, bound rubber had non linear relationship with cross link density. The high cross link density was formed when low bound rubber formation. The cross link density became constant at high bound rubber content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bound-rubber" title="bound-rubber">bound-rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-link%20density" title=" cross-link density"> cross-link density</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber" title=" natural rubber"> natural rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20mixing%20process" title=" rubber mixing process"> rubber mixing process</a> </p> <a href="https://publications.waset.org/abstracts/12954/the-effect-of-ingredients-mixing-sequence-in-rubber-compounding-on-the-formation-of-bound-rubber-and-cross-link-density-of-natural-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> X-Ray Diffraction and Crosslink Density Analysis of Starch/Natural Rubber Polymer Composites Prepared by Latex Compounding Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Dominic%20Uzoh">Raymond Dominic Uzoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starch fillers were extracted from three plant sources namely amora tuber (a wild variety of Irish potato), sweet potato and yam starch and their particle size, pH, amylose, and amylopectin percentage decomposition determined accordingly by high performance liquid chromatography (HPLC). The starch was introduced into natural rubber in liquid phase (through gelatinization) by the latex compounding method and compounded according to standard method. The prepared starch/natural rubber composites was characterized by Instron Universal testing machine (UTM) for tensile mechanical properties. The composites was further characterized by x-ray diffraction and crosslink density analysis. The particle size determination showed that amora starch granules have the highest particle size (156 × 47 μm) followed by yam starch (155× 40 μm) and then the sweet potato starch (153 × 46 μm). The pH test also revealed that amora starch has a near neutral pH of 6.9, yam 6.8, and sweet potato 5.2 respectively. Amylose and amylopectin determination showed that yam starch has a higher percentage of amylose (29.68), followed by potato (22.34) and then amora starch with the lowest value (14.86) respectively. The tensile mechanical properties testing revealed that yam starch produced the best tensile mechanical properties followed by amora starch and then sweet potato starch. The structure, crystallinity/amorphous nature of the product composite was confirmed by x-ray diffraction, while the nature of crosslinking was confirmed by swelling test in toluene solvent using the Flory-Rehner approach. This research study has rendered a workable strategy for enhancing interfacial interaction between a hydrophilic filler (starch) and hydrophobic polymeric matrix (natural rubber) yielding moderately good tensile mechanical properties for further exploitation development and application in the rubber processing industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber" title="natural rubber">natural rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=fillers" title=" fillers"> fillers</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a>, <a href="https://publications.waset.org/abstracts/search?q=amylose" title=" amylose"> amylose</a>, <a href="https://publications.waset.org/abstracts/search?q=amylopectin" title=" amylopectin"> amylopectin</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslink%20density" title=" crosslink density"> crosslink density</a> </p> <a href="https://publications.waset.org/abstracts/86093/x-ray-diffraction-and-crosslink-density-analysis-of-starchnatural-rubber-polymer-composites-prepared-by-latex-compounding-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> A Study of the Carbon Footprint from a Liquid Silicone Rubber Compounding Facility in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Q.%20R.%20Cheah">Q. R. Cheah</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20F.%20Tan"> Y. F. Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern times, the push for a low carbon footprint entails achieving carbon neutrality as a goal for future generations. One possible step towards carbon footprint reduction is the use of more durable materials with longer lifespans, for example, silicone data cableswhich show at least double the lifespan of similar plastic products. By having greater durability and longer lifespans, silicone data cables can reduce the amount of trash produced as compared to plastics. Furthermore, silicone products don’t produce micro contamination harmful to the ocean. Every year the electronics industry produces an estimated 5 billion data cables for USB type C and lightning data cables for tablets and mobile phone devices. Material usage for outer jacketing is 6 to 12 grams per meter. Tests show that the product lifespan of a silicone data cable over plastic can be doubled due to greater durability. This can save at least 40,000 tonnes of material a year just on the outer jacketing of the data cable. The facility in this study specialises in compounding of liquid silicone rubber (LSR) material for the extrusion process in jacketing for the silicone data cable. This study analyses the carbon emissions from the facility, which is presently capable of producing more than 1,000 tonnes of LSR annually. This study uses guidelines from the World Business Council for Sustainable Development (WBCSD) and World Resources Institute (WRI) to define the boundaries of the scope. The scope of emissions is defined as 1. Emissions from operations owned or controlled by the reporting company, 2. Emissions from the generation of purchased or acquired energy such as electricity, steam, heating, or cooling consumed by the reporting company, and 3. All other indirect emissions occurring in the value chain of the reporting company, including both upstream and downstream emissions. As the study is limited to the compounding facility, the system boundaries definition according to GHG protocol is cradle-to-gate instead of cradle-to-grave exercises. Malaysia’s present electricity generation scenario was also used, where natural gas and coal constitute the bulk of emissions. Calculations show the LSR produced for the silicone data cable with high fire retardant capability has scope 1 emissions of 0.82kg CO2/kg, scope 2 emissions of 0.87kg CO2/kg, and scope 3 emissions of 2.76kg CO2/kg, with a total product carbon footprint of 4.45kg CO2/kg. This total product carbon footprint (Cradle-to-gate) is comparable to the industry and to plastic materials per tonne of material. Although per tonne emission is comparable to plastic material, due to greater durability and longer lifespan, there can be significantly reduced use of LSR material. Suggestions to reduce the calculated product carbon footprint in the scope of emissions involve 1. Incorporating the recycling of factory silicone waste into operations, 2. Using green renewable energy for external electricity sources and 3. Sourcing eco-friendly raw materials with low GHG emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20footprint" title="carbon footprint">carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20silicone%20rubber" title=" liquid silicone rubber"> liquid silicone rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20data%20cable" title=" silicone data cable"> silicone data cable</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia%20facility" title=" Malaysia facility"> Malaysia facility</a> </p> <a href="https://publications.waset.org/abstracts/150583/a-study-of-the-carbon-footprint-from-a-liquid-silicone-rubber-compounding-facility-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Use of Nanoclay in Various Modified Polyolefins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Tup%C3%BD">Michael Tupý</a>, <a href="https://publications.waset.org/abstracts/search?q=Alice%20Tesa%C5%99%C3%ADkov%C3%A1-Svobodov%C3%A1"> Alice Tesaříková-Svobodová</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagmar%20M%C4%9B%C5%99%C3%ADnsk%C3%A1"> Dagmar Měřínská</a>, <a href="https://publications.waset.org/abstracts/search?q=V%C3%ADt%20Petr%C3%A1nek"> Vít Petránek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyethylene (PE), Polypropylene (PP), Polyethylene (vinyl acetate) (EVA) and Surlyn (modif-PE) nano composite samples were prepared with montmorillonite fillers Cloisite 93A and Dellite 67G. The amount of modified Na+ montmorillonite (MMT) was fixed to 5 % (w/w). For the compounding of polymer matrix and chosen nano fillers twin-screw kneader was used. The level of MMT intercalation or exfoliation in the nano composite systems was studied by transmission electron microscopy (TEM) observations. The properties of samples were evaluated by dynamical mechanical analysis (E* modulus at 30 °C) and by the measurement of tensile properties (stress and strain at break). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title="polyethylene">polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%28vinyl%20acetate%29" title=" polyethylene(vinyl acetate)"> polyethylene(vinyl acetate)</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a> </p> <a href="https://publications.waset.org/abstracts/13152/use-of-nanoclay-in-various-modified-polyolefins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Studying the Effect of Nanoclays on the Mechanical Properties of Polypropylene/Polyamide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benalia%20Kouini">Benalia Kouini</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Serier"> Aicha Serier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocomposites based on polypropylene/polyamide 66 (PP/PA66) nanoblends containing organophilic montmorillonite (OMMT) and maleic anhydride grafted polypropylene (PP-g-MAH) were prepared by melt compounding method followed by injection molding. Two different types of nanoclays were used in this work. DELLITE LVF is the untreated nanoclay and DELLITE 67G is the treated one. The morphology of the nanocomposites was studied using the XR diffraction (XRD). The results indicate that the incorporation of treated nanoclay has a significant effect on the impact strength of PP/PA66 nanocomposites. Furthermore, it was found that XRD results revealed the intercalation, exfoliation of nanaclays of nanocomposites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nNanoclay" title="nNanoclay">nNanoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanocomposites" title=" Nanocomposites"> Nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=Polypropylene" title=" Polypropylene"> Polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=Polyamide" title=" Polyamide"> Polyamide</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20processing" title=" melt processing"> melt processing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties." title=" mechanical properties."> mechanical properties.</a> </p> <a href="https://publications.waset.org/abstracts/46381/studying-the-effect-of-nanoclays-on-the-mechanical-properties-of-polypropylenepolyamide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Preparation and Properties of NR Based Ebonite Rubber Suitable for Use as Engineering Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dosu%20Malomo">Dosu Malomo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20E.%20Edeh"> O. E. Edeh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20O.%20Okolo"> P. O. Okolo</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20C.%20Ibeh"> F. C. Ibeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preparation of various samples of ebonite vulcanizates and their physico-mechanical properties have been investigated using standard methods. This work explores the production of ebonite dust, production of ebonite vulcanizates and investigation of the characterisation of the ebonite. Five different ebonite materials – labelled A, B, C, D, and E with sulphur content in parts per hundred grams of rubber (Phr) of 32, 34, 36, 38 and 40 respectively were produced. The physico-mechanical properties carried out were tensile strength, hardness and abrasion resistance. The tensile strength (MPa) for sample A, B, C, D and E were 5.6, 3.5, 4.7, 1.7 and 2.0 respectively while the abrasion(%mass loss) were 8.49, 4.24, 2.59, 1.08 and 1.05 respectively and the hardness (IRHD) being 63, 64, 65, 70 and 82. The results show that the preparation of ebonite from natural rubber as a base polymer is feasible considering the results of characterisation obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compounding" title="compounding">compounding</a>, <a href="https://publications.waset.org/abstracts/search?q=ebonite%20dust" title=" ebonite dust"> ebonite dust</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber" title=" natural rubber"> natural rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=vulcanization" title=" vulcanization"> vulcanization</a> </p> <a href="https://publications.waset.org/abstracts/56400/preparation-and-properties-of-nr-based-ebonite-rubber-suitable-for-use-as-engineering-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Influence of Nano-ATH on Electrical Performance of LSR for HVDC Insulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Na%20Hwang">Ju-Na Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Hae%20Park"> Min-Hae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee-Joe%20Lim"> Kee-Joe Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many studies have been conducted on DC transmission. Of power apparatus for DC transmission, High Voltage Direct Current (HVDC) cable systems are being evaluated because of the increase in power demand and transmission distance. Therefore, dc insulation characteristics of Liquid Silicone Rubber (LSR), which has various advantages such as short curing time and the ease of maintenance, were investigated to assess its performance as a HVDC insulation material for cable joints. The electrical performance of LSR added to Nano-Aluminum Trihydrate (ATH) was confirmed by measurements of the breakdown strength and electrical conductivity. In addition, field emission scanning electron microscope (FE-SEM) was used as a means of confirmation of nano-filler dispersion state. The LSR nano-composite was prepared by compounding LSR filled nano-sized ATH filler. The DC insulation properties of LSR added to nano-sized ATH fillers were found to be superior to those of the LSR without filler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20silicone%20rubber" title="liquid silicone rubber">liquid silicone rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-composite" title=" nano-composite"> nano-composite</a>, <a href="https://publications.waset.org/abstracts/search?q=HVDC%20insulation" title=" HVDC insulation"> HVDC insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cable%20joints" title=" cable joints"> cable joints</a> </p> <a href="https://publications.waset.org/abstracts/6214/influence-of-nano-ath-on-electrical-performance-of-lsr-for-hvdc-insulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Development, Characterization and Properties of Novel Quaternary Rubber Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Sankaran">Kumar Sankaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Chattopadhyay"> Santanu Chattopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Golok%20Behari%20Nando"> Golok Behari Nando</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujith%20Nair"> Sujith Nair</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreejesh%20Arayambath"> Sreejesh Arayambath</a>, <a href="https://publications.waset.org/abstracts/search?q=Unnikrishnan%20Govindan"> Unnikrishnan Govindan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rubber nanocomposites based on Bromobutyl rubber (BIIR), Polyepichlorohydrin rubber (CO), Carbon black (CB) and organically modified montmorillonite clay (NC) were prepared via melt compounding technique. The developed quaternary nanocomposites were characterized analytically and their properties were compared against the standard BIIR compound. BIIR-CO nanocomposites showed improved physico-mechanical properties as compared to that of the standard BIIR compound. Hybrid microstructure (NC-CB) development, clay exfoliation and better filler dispersion in the quaternary nanocomposite significantly contributed to the overall enhancement of properties. Introduction of CO in the system increased the specific gravity and hardness of the compound as compared to that of the standard compound. XRD analysis, AFM imaging and HR-TEM measurements confirmed exfoliation and a good level of dispersion of the NC in the composites. Permeability of developed BIIR-CO nanocomposites decreases significantly as compared to that of the standard BIIR compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites" title="rubber nanocomposites">rubber nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=BIIR" title=" BIIR"> BIIR</a> </p> <a href="https://publications.waset.org/abstracts/15209/development-characterization-and-properties-of-novel-quaternary-rubber-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> The Role of Secondary Filler on the Fracture Toughness of HDPE/Clay Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kamarudzaman">R. Kamarudzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kalam"> A. Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Mohd%20Fadzil"> N. A. Mohd Fadzil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil Palm Fruit Bunch Fiber (OPEFB) was used as secondary filler in HDPE/clay nanocomposites. The composites were prepared by melt compounding which contains High Density Polyethylene (HDPE), OPEFB fibers, Maleic Anhydride Graft Polyethylene (MAPE) and four different clay loading (3, 5, 7 and 10 PE nanoclay pellets per hundred of HDPE pellets). Four OPEFB sizes (180 µm, 250 µm, 300 µm and 355 µm) were added in the composites to investigate their effects on fracture toughness. Fracture toughness of the composites were determined according to ASTM D5045 and Single Edge Notch Bending (SENB) been employed during the test. The effects of alkali treatment were also investigated in this study. The results indicate that the fracture toughness slightly increased as clay loading increased. The highest value of fracture toughness was 0.47 and 1.06 MPa.m1/2 at 5 phr for both types of clay loading. The presence of filler as reinforcement with the matrix indicates the enhancement of composites compared to those without the filler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20empty%20fruit%20bunch" title="oil palm empty fruit bunch">oil palm empty fruit bunch</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite" title=" polymer nanocomposite"> polymer nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20strength" title=" impact strength"> impact strength</a> </p> <a href="https://publications.waset.org/abstracts/9134/the-role-of-secondary-filler-on-the-fracture-toughness-of-hdpeclay-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> On the Comprehension of English Compound Nouns by Arabic-Speaking EFL Learners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Rahman%20Altakhaineh">Abdel Rahman Altakhaineh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamma%20Alaghawat"> Mohamma Alaghawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiba%20Alhendi"> Hiba Alhendi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports an investigation of the comprehension of English compound nouns by sixty Arabic-speaking English Foreign Language (EFL) learners majoring in English at the University of Jordan, Amman. The investigation focused on the problems that these learners may encounter in understanding certain types of compounds and their ability to use their L1 compound noun knowledge to produce the meaning of L2 compound nouns. Participants whose English proficiency level was advanced underwent a test to identify the meaning ofan underlined compound without using a dictionary. Theresponses to the three different types of compounds were analyzed usingTwo-Way repeated measures ANOVA, and the results showed that there were different endocentric and exocentric compound responses within subordinative compounds, with a statistically significant difference between the two in favor of endocentric compounds. We argue that the endocentric, especially subordinative endocentric compounds,weremore easily understood due to its representative nature, i.e., because the head represents the meaning of the whole compound. The study concludes with pedagogical implications for teaching compound nouns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=morphology" title="morphology">morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=compounding" title=" compounding"> compounding</a>, <a href="https://publications.waset.org/abstracts/search?q=SLA" title=" SLA"> SLA</a>, <a href="https://publications.waset.org/abstracts/search?q=arabic-speaking%20EFL%20learners" title=" arabic-speaking EFL learners"> arabic-speaking EFL learners</a> </p> <a href="https://publications.waset.org/abstracts/156868/on-the-comprehension-of-english-compound-nouns-by-arabic-speaking-efl-learners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Preparation and Properties of PP/EPDM Reinforced with Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Haghnegahdar">M. Haghnegahdar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Naderi"> G. Naderi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20R.%20Ghoreishy"> M. H. R. Ghoreishy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polypropylene(PP)/Ethylene Propylene Diene Monomer (EPDM) samples (80/20) containing 0, 0.5, 1, 1.5, 2, 2.5, and 3 (expressed in mass fraction) graphene were prepared using melt compounding method to investigate microstructure, mechanical properties, and thermal stability as well as electrical resistance of samples. X-Ray diffraction data confirmed that graphene platelets are well dispersed in PP/EPDM. Mechanical properties such as tensile strength, impact strength and hardness demonstrated increasing trend by graphene loading which exemplifies substantial reinforcing nature of this kind of nano filler and it's good interaction with polymer chains. At the same time it is found that thermo-oxidative degradation of PP/EPDM nanocomposites is noticeably retarded with the increasing of graphene content. Electrical surface resistivity of the nanocomposite was dramatically changed by forming electrical percolation threshold and leads to change electrical behavior from insulator to semiconductor. Furthermore, these results were confirmed by scanning electron microscopy(SEM), dynamic mechanical thermal analysis (DMTA), and transmission electron microscopy (TEM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/21063/preparation-and-properties-of-ppepdm-reinforced-with-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Implication of Multi-Walled Carbon Nanotubes on Polymer/MXene Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Aakyiir">Mathias Aakyiir</a>, <a href="https://publications.waset.org/abstracts/search?q=Qunhui%20Zheng"> Qunhui Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Araby"> Sherif Araby</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Ma"> Jun Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MXene nanosheets stack in polymer matrices, while multi-walled carbon nanotubes (MWCNTs) entangle themselves when used to form composites. These challenges are addressed in this work by forming MXene/MWCNT hybrid nanofillers by electrostatic self-assembly and developing elastomer/MXene/MWCNTs nanocomposites using a latex compounding method. In a 3-phase nanocomposite, MWCNTs serve as bridges between MXene nanosheets, leading to nanocomposites with well-dispersed nanofillers. The high aspect ratio of MWCNTs and the interconnection role of MXene serve as a basis for forming nanocomposites of lower percolation threshold of electrical conductivity from the hybrid fillers compared with the 2-phase composites containing either MXene or MWCNTs only. This study focuses on discussing into detail the interfacial interaction of nanofillers and the elastomer matrix and the outstanding mechanical and functional properties of the resulting nanocomposites. The developed nanocomposites have potential applications in the automotive and aerospace industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastomers" title="elastomers">elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotubes" title=" multi-walled carbon nanotubes"> multi-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=MXenes" title=" MXenes"> MXenes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/116767/implication-of-multi-walled-carbon-nanotubes-on-polymermxene-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Mechanical Performances and Viscoelastic Behaviour of Starch-Grafted-Polypropylene/Kenaf Fibres Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hamma">A. Hamma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pegoretti"> A. Pegoretti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper focuses on the evaluation of mechanical performances and viscoelastic behaviour of starch-grafted-PP reinforced with kenaf fibres. Investigations were carried out on composites prepared by melt compounding and compression molding. Two aspects have been taken into account, the effects of various fibres loading rates (10, 20 and 30 wt.%) and the fibres aspect ratios (L/D=30 and 160). Good fibres/matrix interaction has been evidenced by SEM observations. However, processing induced variation of fibre length quantified by optical microscopy observations. Tensile modulus and ultimate properties, hardness and tensile impact stress, were found to remarkably increase with fibre loading. Moreover, short term tensile creep tests have proven that kenaf fibres improved considerably the creep stability. Modelling of creep behaviour by a four parameter Burger model was successfully used. An empirical equation involving Halpin-Tsai semi empirical model was also used to predict the elastic modulus of composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title="mechanical properties">mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=fibres" title=" fibres"> fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20composites" title=" thermoplastic composites"> thermoplastic composites</a>, <a href="https://publications.waset.org/abstracts/search?q=starch-grafted-PP" title=" starch-grafted-PP"> starch-grafted-PP</a> </p> <a href="https://publications.waset.org/abstracts/3620/mechanical-performances-and-viscoelastic-behaviour-of-starch-grafted-polypropylenekenaf-fibres-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> The Language of Fliptop among Filipino Youth: A Discourse Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bong%20Borero%20Lumabao">Bong Borero Lumabao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This qualitative research is a study on the lines of Fliptop talks performed by the Fliptop rappers employing Finnegan’s (2008) discourse analysis. This paper aimed to analyze the phonological, morphological, and semantic features of the fliptop talk, to explore the structures in the lines of Fliptop among Filipino youth, and to uncover the various insights that can be gained from it. The corpora of the study included all the 20 Fliptop Videos downloaded from the Youtube Channel of Fliptop. Results revealed that Fliptop contains phonological features such as assonance, consonance, deletion, lengthening, and rhyming. Morphological features include acronym, affixation, blending, borrowing, code-mixing and switching, compounding, conversion or functional shifts, and dysphemism. Semantics presented the lexical category, meaning, and words used in the fliptop talks. Structure of Fliptop revolves on the personal attack (physical attributes), attack on the bars (rapping skills), extension: family members and friends, antithesis, profane words, figurative languages, sexual undertones, anime characters, homosexuality, and famous celebrities involvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discourse%20analysis" title="discourse analysis">discourse analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fliptop%20talks" title=" fliptop talks"> fliptop talks</a>, <a href="https://publications.waset.org/abstracts/search?q=filipino%20youth" title=" filipino youth"> filipino youth</a>, <a href="https://publications.waset.org/abstracts/search?q=fliptop%20videos" title=" fliptop videos"> fliptop videos</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippines" title=" Philippines"> Philippines</a> </p> <a href="https://publications.waset.org/abstracts/120389/the-language-of-fliptop-among-filipino-youth-a-discourse-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Effect of Modified Layered Silicate Nanoclay on the Dynamic Viscoelastic Properties of Thermoplastic Polymers Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benalia%20Kouini">Benalia Kouini</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Serier"> Aicha Serier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to investigate the structure–property relationship in ternary nanocomposites consisting of polypropylene as the matrix, polyamide 66 as the minor phase and treated nanoclay DELLITE 67G as the reinforcement. All PP/PA66/Nanoclay systems with polypropylene grafted maleic anhydride PP-g-MAH as a compatibilizer were prepared via melt compounding and characterized in terms of nanoclay content. Morphological structure was investigated by scanning electron microscopy. The rheological behavior of the nanocomposites was determined by various methods, viz melt flow index (MFI) and parallel plate rheological measurements. The PP/PP-g-MAH/PA66 nanocomposites showed a homogeneous morphology supporting the compatibility improvement between PP, PA66 and nanoclay. SEM results revealed the formation of nanocomposites as the nanoclay was intercalated and exfoliated. In the ternary nanocomposites, the rheological behavior showed that, the complex viscosity is increased with increasing the nanoclay content; however, at low frequencies this increase is governed by the content of nanofiller while at high frequencies it is mainly determined by talc content. A similar trend was also observed for the variations of storage modulus (G′) and loss modulus (G″) with frequency. The results showed that the use of nanoclay considerably affects the melt elasticity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polyamide66" title=" polyamide66"> polyamide66</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20nanoclay" title=" modified nanoclay"> modified nanoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/41743/effect-of-modified-layered-silicate-nanoclay-on-the-dynamic-viscoelastic-properties-of-thermoplastic-polymers-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Filler Elastomers Abrasion at Steady State: Optimal Use Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djeridi%20Rachid">Djeridi Rachid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ould%20Ouali%20Mohand"> Ould Ouali Mohand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The search of a mechanism for the elastomer abrasive wear study is an open issue. The practice difficulties are complex due to the complexity of deformation mechanism, to the complex mechanism of the material tearing and to the marked interactions between the tribological parameters. In this work, we present an experimental technique to study the elastomers abrasive wear. The interaction 'elastomer/indenter' implicate dependant ant temporary of different tribological parameters. Consequently, the phenomenon that governs this interaction is not easy to explain. An optimal elastomers compounding and an adequate utilization conditions of these materials that define its resistance at the abrasion is discussed. The results are confronted to theoretical models: the weight loss variation in function of blade angle or in function of cycle number is in agreement with rupture models and with the mechanism of fissures propagation during the material tearing in abrasive wear of filler elastomers. The weight loss in function of the sliding velocity shows the existence of a critical velocity that corresponds to the maximal wear. The adding of silica or black carbon influences in a different manner on wear abrasive behavior of filler elastomers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrasion%20wear" title="abrasion wear">abrasion wear</a>, <a href="https://publications.waset.org/abstracts/search?q=filler%20elastomer" title=" filler elastomer"> filler elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperelastic" title=" hyperelastic"> hyperelastic</a> </p> <a href="https://publications.waset.org/abstracts/25969/filler-elastomers-abrasion-at-steady-state-optimal-use-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> High Density Polyethylene Biocomposites Reinforced with Hydroxyapatite Nanorods and Carbon Nanofibers for Joint Replacements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chengzhu%20Liao">Chengzhu Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianbo%20Zhang"> Jianbo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiou%20Wang"> Haiou Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Ming"> Jing Ming</a>, <a href="https://publications.waset.org/abstracts/search?q=Huili%20Li"> Huili Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanyan%20Li"> Yanyan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Cheng"> Hua Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Sie%20Chin%20Tjong"> Sie Chin Tjong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since Bonfield’s group’s pioneer work, there has been growing interest amongst the materials scientists, biomedical engineers and surgeons in the use of novel biomaterials for the treatment of bone defects and injuries. This study focuses on the fabrication, mechanical characterization and biocompatibility evaluation of high density polyethylene (HDPE) reinforced with hydroxyapatite nanorods (HANR) and carbon nanofibers (CNF). HANRs of 20 wt% and CNFs of 0.5-2 wt% were incorporated into HDPE to form biocomposites using traditional melt-compounding and injection molding techniques. The mechanical measurements show that CNF additions greatly improve the tensile strength and Young’s modulus of HDPE and HDPE-20% nHA composites. Meanwhile, the nHA and CNF fillers were found to be effective to improve dimensional and thermal stability of HDPE. The results of osteoblast cell cultivation and dimethyl thiazolyl diphenyl thiazolyl tetrazolium (MTT) tests showed that the HDPE/ CNF-nHA nanocomposites are biocompatible. Such HDPE/ CNF-nHA hybrids are found to be potential biomaterials for making orthopedic joint/bone replacements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title=" biocomposite"> biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber" title=" carbon nanofiber"> carbon nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density%20polyethylene" title=" high density polyethylene"> high density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a> </p> <a href="https://publications.waset.org/abstracts/61223/high-density-polyethylene-biocomposites-reinforced-with-hydroxyapatite-nanorods-and-carbon-nanofibers-for-joint-replacements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Learning Spanish as a Second Language: Using Infinitives as Verbal Complements </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiyoung%20Yoon">Jiyoung Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines Spanish textbook explanations of infinitival complements and how they can affect a learner’s second-language acquisition process. Verbs taking infinitival complements are commonly found in the mandate, volition, and emotion verbs, both for Spanish and English. However, while some English verbs take gerunds (María avoids eating/*to eat meat), in Spanish a gerund never functions as the complement of a verb (María evita comer/*comiendo carne). Because of these differences, English learners of Spanish often have difficulty acquiring infinitival complement constructions in Spanish. Specifically, they may employ English-like complement structures, producing such ungrammatical utterances as *Odio comiendo tacos ‘I hate eating tacos.' A compounding factor is that many Spanish textbooks do not emphasize the usages of infinitival complements and, when explanations are provided, they are often vague and insufficient. This study examines Spanish textbook explanations of infinitival complements (intermediate and advanced college-level Spanish textbooks and grammar reference books published in the United States) to determine areas that are problematic and insufficient and how they can affect learners’ second-language acquisition process. In this study, alternative principle-driven explanations are proposed as a replacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spanish" title="Spanish">Spanish</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching" title=" teaching"> teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20language" title=" second language"> second language</a>, <a href="https://publications.waset.org/abstracts/search?q=infinitival%20complement" title=" infinitival complement"> infinitival complement</a>, <a href="https://publications.waset.org/abstracts/search?q=textbook" title=" textbook"> textbook</a> </p> <a href="https://publications.waset.org/abstracts/61924/learning-spanish-as-a-second-language-using-infinitives-as-verbal-complements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Thermal Stability and Crystallization Behaviour of Modified ABS/PP Nanocomposites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marianna%20I.%20Triantou">Marianna I. Triantou</a>, <a href="https://publications.waset.org/abstracts/search?q=Petroula%20A.%20Tarantili"> Petroula A. Tarantili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research work, poly (acrylonitrile-butadiene-styrene)/polypropylene (ABS/PP) blends were processed by melt compounding in a twin-screw extruder. Upgrading of the thermal characteristics of the obtained materials was attempted by the incorporation of organically modified montmorillonite (OMMT), as well as, by the addition of two types of compatibilizers; polypropylene grafted with maleic anhydride (PP-g-MAH) and ABS grafted with maleic anhydride (ABS-g-MAH). The effect of the above treatments was investigated separately and in combination. Increasing the PP content in ABS matrix seems to increase the thermal stability of their blend and the glass transition temperature (Tg) of SAN phase of ABS. From the other part, the addition of ABS to PP promotes the formation of its β-phase, which is maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. In addition, it increases the crystallization rate of PP.The β-phase of PP in ABS/PP blends is reduced by the addition of compatibilizers or/and organoclay reinforcement. The incorporation of compatibilizers increases the thermal stability of PP and reduces its melting (ΔΗm) and crystallization (ΔΗc) enthalpies. Furthermore it decreases slightly the Tgs of PP and SAN phases of ABS/PP blends. Regarding the storage modulus of the ABS/PP blends, it presents a change in their behavior at about 10°C and return to their initial behavior at ~110°C. The incorporation of OMMT to no compatibilized and compatibilized ABS/PP blends enhances their storage modulus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylonitrile" title="acrylonitrile">acrylonitrile</a>, <a href="https://publications.waset.org/abstracts/search?q=butadiene" title=" butadiene"> butadiene</a>, <a href="https://publications.waset.org/abstracts/search?q=styrene%20terpolymer" title=" styrene terpolymer"> styrene terpolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibilizer" title=" compatibilizer"> compatibilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=organoclay" title=" organoclay"> organoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a> </p> <a href="https://publications.waset.org/abstracts/9473/thermal-stability-and-crystallization-behaviour-of-modified-abspp-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Investigating Anti-bacterial and Anti-Covid-19 Virus Properties and Mode of Action of Mg(Oh)₂ and Copper-Infused Mg(Oh)₂ Nanoparticles on Coated Polypropylene Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Alkarri">Saleh Alkarri</a>, <a href="https://publications.waset.org/abstracts/search?q=Melinda%20Frame"> Melinda Frame</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimple%20Sharma"> Dimple Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Cairney"> John Cairney</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Maddan"> Lee Maddan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20H.%20Kim"> Jin H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20O.%20Rayner"> Jonathan O. Rayner</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20M.%20Bergholz"> Teresa M. Bergholz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rabnawaz"> Muhammad Rabnawaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reported herein is an investigation of anti-bacterial and anti-virus properties, mode of action of Mg(OH)₂ and copper-infused Mg(OH)₂ nanoplatelets (NPs) on melt-compounded and thermally embossed polypropylene (PP) surfaces. The anti-viral activity for the NPs was studied in aqueous liquid suspensions against SARS-CoV-2, and the mode of action was investigated on neat NPs and PP samples that were thermally embossed with NPs. Anti-bacterial studies for melt-compounded NPs in PP confirmed approximately 1 log reduction of E. coli populations in 24 h, while for thermally embossed NPs, an 8 log reduction of E. coli populations was observed. In addition, the NPs exhibit anti-viral activity against SARS-CoV-2. Fluorescence microscopy revealed that reactive oxygen species (ROS) is the main mode of action through which Mg(OH)₂ and Cu-Infused Mg(OH)₂act against microbes. Plastics with anti-microbial surfaces from where biocides are non-leachable are highly desirable. This work provides a general fabrication strategy for developing anti-microbial plastic surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-microbial%20activity" title="anti-microbial activity">anti-microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli%20K-12%20MG1655" title=" E. coli K-12 MG1655"> E. coli K-12 MG1655</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-viral%20activity" title=" anti-viral activity"> anti-viral activity</a>, <a href="https://publications.waset.org/abstracts/search?q=SARS-CoV-2" title=" SARS-CoV-2"> SARS-CoV-2</a>, <a href="https://publications.waset.org/abstracts/search?q=copper-infused%20magnesium%20hydroxide" title=" copper-infused magnesium hydroxide"> copper-infused magnesium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=non-leachable" title=" non-leachable"> non-leachable</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a>, <a href="https://publications.waset.org/abstracts/search?q=compounding" title=" compounding"> compounding</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20embossing" title=" surface embossing"> surface embossing</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a> </p> <a href="https://publications.waset.org/abstracts/168967/investigating-anti-bacterial-and-anti-covid-19-virus-properties-and-mode-of-action-of-mgoh2-and-copper-infused-mgoh2-nanoparticles-on-coated-polypropylene-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Mothers' Perspective on Services for Children with Autism in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wike%20Wike">Wike Wike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate the experience of mothers of autistic children in Indonesia in raising the children and obtaining services for them through the adequate of information. The study seeks to contribute to the knowledge emerging from the women as a mother of children with autism on health and disability area. There is silence in the Indonesian literature on this perspective, especially about the parents and/or mothers of autistic children that is the focus of this analysis. Therefore, in order to capture the points of view emerging from the mothers, a qualitative study design has been applied. The main data for this qualitative study was collected from interviews (semi-structured interview and focus group discussion) with the mothers of children with autism who are member of parenting group in autistic schools and rehabilitation centers in one of Indonesian regional cities. This study reveals that the mothers’ experience in raising a child who is diagnosed with autism is rooted in limited knowledge on autism, limited knowledge on availability of services and limited knowledge on service options. Compounding this is limited availability and accessibility of the services that are important to their child's development. An important contribution of this study is to show how tapping into the experience of mothers can provide much needed information to policy making and service planners and implementers that can improve the services for children with autism and their families. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mothers" title="mothers">mothers</a>, <a href="https://publications.waset.org/abstracts/search?q=children%20with%20autism" title=" children with autism"> children with autism</a>, <a href="https://publications.waset.org/abstracts/search?q=disability%20services%20and%20policy" title=" disability services and policy"> disability services and policy</a>, <a href="https://publications.waset.org/abstracts/search?q=services" title=" services"> services</a> </p> <a href="https://publications.waset.org/abstracts/56383/mothers-perspective-on-services-for-children-with-autism-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Polymer-Ceramic Composite Film Fabrication and Characterization for Harsh Environment Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santiranjan%20Shannigrahi">Santiranjan Shannigrahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohit%20Sharma"> Mohit Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Tan%20Chee%20Kiang"> Ivan Tan Chee Kiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Anna%20Marie"> Yong Anna Marie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer-ceramics composites are gaining importance due to their high specific strength, corrosion resistance, and high mechanical properties, as well as low cost. As a result, polymer composites are suitable for various industrial applications, like automobiles, aerospace, and biomedical areas. The present work comprises the development of polymer-ceramic composite films and is tested for the harsh environment including weatherability and UV barrier property. The polymer composite films are kept in weather chamber for a fixed period of time followed by tested for their physical, mechanical and chemical properties. The composite films are fabricated using compounding followed by hot pressing. UV-visible spectroscopy results reveal that the pure polymer polyethylene (PE) films are transparent in the visible range and do not absorb UV. However, polymer ceramic composite films start absorbing UV completely even at very low filler loading amount of 5 wt.%. The changes in tensile properties of the various composite films before and after UV illuminations for 40 hrs at 60 degC are analyzed. The tensile strength of neat PE film has been observed 8% reduction, whereas the remarkable increase in tensile strength has been observed (18% improvement for 10 wt. % filled composites films). The UV exposure leads to strengthen the crosslinking among PE polymer chains in the filled composite films, which contributes towards the incremented tensile strength properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20ceramic%20composite" title="polymer ceramic composite">polymer ceramic composite</a>, <a href="https://publications.waset.org/abstracts/search?q=processing" title=" processing"> processing</a>, <a href="https://publications.waset.org/abstracts/search?q=harsh%20environment" title=" harsh environment"> harsh environment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/34302/polymer-ceramic-composite-film-fabrication-and-characterization-for-harsh-environment-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> The Conceptual Relationships in N+N Compounds in Arabic Compared to English</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Rahman%20Altakhaineh">Abdel Rahman Altakhaineh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper has analysed the conceptual relations between the elements of NN compounds in Arabic and compared them to those found in English based on the framework of Conceptual Semantics and a modified version of Parallel Architecture referred to as Relational Morphology. The analysis revealed that the repertoire of possible semantic relations between the two nouns in Arabic NN compounds reproduces that in English NN compounds and that, therefore, the main difference is in headedness (right-headed in English, left-headed in Arabic). Adopting RM allows productive and idiosyncratic elements to interweave with each other naturally. Semantically transparent compounds can be stored in memory or produced and understood online, while compounds with different degrees of semantic idiosyncrasy are stored in memory. Furthermore, the predictable parts of idiosyncratic compounds are captured by general schemas. In compounds, such schemas pick out the range of possible semantic relations between the two nouns. Finally, conducting a cross-linguistic study of the systematic patterns of possible conceptual relationships between compound elements is an area worthy of further exploration. In addition, comparing and contrasting compounding in Arabic and Hebrew, especially as they are both Semitic languages, is another area that needs to be investigated thoroughly. It will help morphologists understand the extent to which Jackendoff’s repertoire of semantic relations in compounds is universal. That is, if a language as distant from English as Arabic displays a similar range of cases, this is evidence for a (relatively) universal set of relations from which individual languages may pick and choose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conceptual%20semantics" title="conceptual semantics">conceptual semantics</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=compounds" title=" compounds"> compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=arabic" title=" arabic"> arabic</a>, <a href="https://publications.waset.org/abstracts/search?q=english" title=" english"> english</a> </p> <a href="https://publications.waset.org/abstracts/156865/the-conceptual-relationships-in-nn-compounds-in-arabic-compared-to-english" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Ferulic Acid-Grafted Chitosan: Thermal Stability and Feasibility as an Antioxidant for Active Biodegradable Packaging Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarekha%20Woranuch">Sarekha Woranuch</a>, <a href="https://publications.waset.org/abstracts/search?q=Rangrong%20Yoksan"> Rangrong Yoksan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Active packaging has been developed based on the incorporation of certain additives, in particular antimicrobial and antioxidant agents, into packaging systems to maintain or extend product quality and shelf-life. Ferulic acid is one of the most effective natural phenolic antioxidants, which has been used in food, pharmaceutical and active packaging film applications. However, most phenolic compounds are sensitive to oxygen, light and heat; its activities are thus lost during product formulation and processing. Grafting ferulic acid onto polymer is an alternative to reduce its loss under thermal processes. Therefore, the objectives of the present research were to study the thermal stability of ferulic acid after grafting onto chitosan, and to investigate the possibility of using ferulic acid-grafted chitosan (FA-g-CTS) as an antioxidant for active biodegradable packaging film. FA-g-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperature up to 150 °C followed by blown film extrusion at temperature up to 175 °C. Although incorporating FA-g-CTS with a content of 0.02–0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the films showed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of the film containing FA-g-CTS with a content of 0.04% (w/w) were higher than that of the naked film about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by adding FA-g-CTS with a content of 0.02–0.08% (w/w). The results indicated that FA-g-CTS could be potentially used as an antioxidant for active packaging film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20packaging%20film" title="active packaging film">active packaging film</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=ferulic%20acid" title=" ferulic acid "> ferulic acid </a> </p> <a href="https://publications.waset.org/abstracts/28962/ferulic-acid-grafted-chitosan-thermal-stability-and-feasibility-as-an-antioxidant-for-active-biodegradable-packaging-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Effects of Surface Insulation of Silicone Rubber Composites in HVDC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Hae%20Park">Min-Hae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Na%20Hwang"> Ju-Na Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheong-won%20Seo"> Cheong-won Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Ho%20Kim"> Ji-Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee-Joe%20Lim"> Kee-Joe Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric insulators are high hardness, corrosion resistant, lightweight and also good dielectric strength in electric equipment. For such reasons, the amount of polymeric insulators is increased consistently abroad. The current outdoor insulators are replaced by polymeric insulators. Silicone rubber of polymeric insulators is widely used in insulation materials for outdoor application since it has excellent electrical characteristics and high surface hydrophobic. However, it can be evade exposure to pollutant on surface using at outdoor. It also improve the pollution for dust and smoke due to the large are increasing, because most of the industrial area in which the electric power loads are concentrated are located at the coastal area with salt attack. Thus it is important to detect the main cause of the deterioration for outdoor insulation materials. But there has no standards for valuation to apply reliably and determine accurately deterioration under DC, still lacks DC characteristic researches in proportion to AC. In addition, a lot of ATH was added to improve tracking resistivity of silicone rubber, although the problem has been brought up about falling sharply mechanical properties. Therefore, we might compare surface resistivities of silicone rubber compounding of three kinds of filler. In this paper, specimens of silicone rubber composite usable as outdoor insulators were prepared. Micro-silica (SiO2), nano- alumina (Al2O3) and nano-ATH (Al(OH)3) were used in additives. The study aims to investigate properties of DC surface insulation on silicone rubber composite which were filled with various fillers from surface resistivity measurement and salt-fog test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20rubber" title=" silicone rubber"> silicone rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20insulation" title=" surface insulation"> surface insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=HVDC" title=" HVDC"> HVDC</a> </p> <a href="https://publications.waset.org/abstracts/6213/effects-of-surface-insulation-of-silicone-rubber-composites-in-hvdc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> The Design of Safe Spaces in Healthcare Facilities Vulnerable to Tornado Impact in Central US</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucy%20Ampaw-Asiedu">Lucy Ampaw-Asiedu</a>, <a href="https://publications.waset.org/abstracts/search?q=Terri%20R.%20Norton"> Terri R. Norton </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the wake of recent disasters happening around the world such as earthquake in Italy (January, 2017); hurricanes in the United States (US) (September 2016 and September 2017); and compounding disasters in Haiti (September 2010 and September 2016); to our best knowledge, never has the world seen the need to work on preemptive rather than reactionary measures to salvage this situation than now. Tornadoes are natural hazards that mostly affect mid-western and central states in the US. Tornadoes, like all natural hazards such as hurricanes, earthquakes, floods and others, are very destructive and result in massive destruction to homes, cause billions of dollars in damage and claims many lives. Healthcare facilities in general are vulnerable to disasters, and therefore, the safety of patients, health workers and those who come in to seek shelter should be a priority. The focus of this study is to assess disaster management measures instituted by healthcare facilities. Thus, the sole aim of the study is to examine the vulnerabilities and the design of safe spaces in healthcare facilities in Central US. Objectives that guide the study are to primarily identify the impacts of tornadoes in hospitals and to assess the structural design or specifications of safe spaces. St. John’s Regional Medical Center, now Mercy Hospital in Joplin, is used as a case study. Preliminary results show that the lateral base shear of the proposed design to be 684.24 ton (1508.49kip) for the safe space. Findings from this work will be used to make recommendations about the design of safe spaces for health care facilities in Central US. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title="disaster management">disaster management</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20spaces" title=" safe spaces"> safe spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20design" title=" structural design"> structural design</a>, <a href="https://publications.waset.org/abstracts/search?q=tornado" title=" tornado"> tornado</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/75175/the-design-of-safe-spaces-in-healthcare-facilities-vulnerable-to-tornado-impact-in-central-us" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=compounding&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=compounding&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>