CINXE.COM

Search results for: pulse laser

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pulse laser</title> <meta name="description" content="Search results for: pulse laser"> <meta name="keywords" content="pulse laser"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pulse laser" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pulse laser"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1349</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pulse laser</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1349</span> Optimum Er: YAG Laser Parameters for Orthodontic Composite Debonding: An in vitro Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zamzam">Mohammad Zamzam</a>, <a href="https://publications.waset.org/abstracts/search?q=Wesam%20Bachir"> Wesam Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Imad%20Asaad"> Imad Asaad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several studies have produced estimates of Er:YAG laser parameters and specifications but there is still insufficient data for reliable selection of laser parameters. As a consequence, there is a heightened need for ideal specifications of Er:YAG laser to reduce the amount of enamel ablation. The objective of this paper is to investigate the influence of Er:YAG laser parameters, energy level and pulse duration, on orthodontic composite removal after bracket debonding. The sample consisted of 45 cuboids of orthodontic composite made by plastic moulds. The samples were divided into three groups, each was irradiated with Er:YAG laser set at different energy levels and three values for pulse durations (50 µs, 100 µs, and 300 µs). Geometrical parameters (depth and area) of cavities formed by laser irradiation were determined. ANCOVA test showed statistically significant difference (p < 0.0.5) between the groups indicating a potential effect of laser pulse duration on the geometrical parameters after controlling laser energy level. A post-hoc Bonferroni test ranked the 50µ Er:YAG laser pulse as the most influential factor for all geometrical parameters in removing remnant composite from enamel surface. Also, 300 mJ laser pulses caused the largest removal of the composite. The results of the present study demonstrated the efficacy of 50 µs and 300 mJ Er:YAG laser pulse for removal of remnant orthodontic composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enamel" title="enamel">enamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Er%3AYAG" title=" Er:YAG"> Er:YAG</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20parameters" title=" geometrical parameters"> geometrical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20composite" title=" orthodontic composite"> orthodontic composite</a>, <a href="https://publications.waset.org/abstracts/search?q=remnant%20composite" title=" remnant composite"> remnant composite</a> </p> <a href="https://publications.waset.org/abstracts/6666/optimum-er-yag-laser-parameters-for-orthodontic-composite-debonding-an-in-vitro-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1348</span> Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subhasisa%20Nath">Subhasisa Nath</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Waugh"> David Waugh</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20Ormondroyd"> Graham Ormondroyd</a>, <a href="https://publications.waset.org/abstracts/search?q=Morwenna%20Spear"> Morwenna Spear</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Pitman"> Andy Pitman</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Mason"> Paul Mason</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20Laser" title="CO2 Laser">CO2 Laser</a>, <a href="https://publications.waset.org/abstracts/search?q=Nd%3A%20YAG%20laser" title=" Nd: YAG laser"> Nd: YAG laser</a>, <a href="https://publications.waset.org/abstracts/search?q=incision" title=" incision"> incision</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a>, <a href="https://publications.waset.org/abstracts/search?q=hole%20characteristics" title=" hole characteristics"> hole characteristics</a> </p> <a href="https://publications.waset.org/abstracts/138450/hole-characteristics-of-percussion-and-single-pulse-laser-incised-radiata-pine-and-the-effects-of-wood-anatomy-on-laser-incision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1347</span> Developing Laser Spot Position Determination and PRF Code Detection with Quadrant Detector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Fathy%20Heweage">Mohamed Fathy Heweage</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Wen"> Xiao Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Mokhtar"> Ayman Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Eldamarawy"> Ahmed Eldamarawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are interested in modeling, simulation, and measurement of the laser spot position with a quadrant detector. We enhance detection and tracking of semi-laser weapon decoding system based on microcontroller. The system receives the reflected pulse through quadrant detector and processes the laser pulses through a processing circuit, a microcontroller decoding laser pulse reflected by the target. The seeker accuracy will be enhanced by the decoding system, the laser detection time based on the receiving pulses number is reduced, a gate is used to limit the laser pulse width. The model is implemented based on Pulse Repetition Frequency (PRF) technique with two microcontroller units (MCU). MCU1 generates laser pulses with different codes. MCU2 decodes the laser code and locks the system at the specific code. The codes EW selected based on the two selector switches. The system is implemented and tested in Proteus ISIS software. The implementation of the full position determination circuit with the detector is produced. General system for the spot position determination was performed with the laser PRF for incident radiation and the mechanical system for adjusting system at different angles. The system test results show that the system can detect the laser code with only three received pulses based on the narrow gate signal, and good agreement between simulation and measured system performance is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=four%20quadrant%20detector" title="four quadrant detector">four quadrant detector</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20code%20detection" title=" pulse code detection"> pulse code detection</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20guided%20weapons" title=" laser guided weapons"> laser guided weapons</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20repetition%20frequency%20%28PRF%29" title=" pulse repetition frequency (PRF)"> pulse repetition frequency (PRF)</a>, <a href="https://publications.waset.org/abstracts/search?q=Atmega%2032%20microcontrollers" title=" Atmega 32 microcontrollers"> Atmega 32 microcontrollers</a> </p> <a href="https://publications.waset.org/abstracts/66984/developing-laser-spot-position-determination-and-prf-code-detection-with-quadrant-detector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1346</span> A Tunable Long-Cavity Passive Mode-Locked Fiber Laser Based on Nonlinear Amplifier Loop Mirror</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinghe%20Wang">Pinghe Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we demonstrate a tunable long-cavity passive mode-locked fiber laser. The mode locker is a nonlinear amplifying loop mirror (NALM). The cavity frequency of the laser is 465 kHz because that 404m SMF is inserted in the cavity. A tunable bandpass filter with ~1nm 3dB bandwidth is inserted into the cavity to realize tunable mode locking. The passive mode-locked laser at a fixed wavelength is investigated in detail. The experimental results indicate that the laser operates in dissipative soliton resonance (DSR) region. When the pump power is 400mW, the laser generates the rectangular pulses with 10.58 ns pulse duration, 70.28nJ single-pulse energy. When the pump power is 400mW, the laser keeps stable mode locking status in the range from 1523.4nm to 1575nm. During the whole tuning range, the SNR, the pulse duration, the output power and single pulse energy have a little fluctuation because that the gain of the EDF changes with the wavelength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20laser" title="fiber laser">fiber laser</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20soliton%20resonance" title=" dissipative soliton resonance"> dissipative soliton resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20locking" title=" mode locking"> mode locking</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable" title=" tunable"> tunable</a> </p> <a href="https://publications.waset.org/abstracts/78191/a-tunable-long-cavity-passive-mode-locked-fiber-laser-based-on-nonlinear-amplifier-loop-mirror" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1345</span> Bright–Dark Pulses in Nonlinear Polarisation Rotation Based Erbium-Doped Fiber Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Z.%20R.%20R.%20Rosdin">R. Z. R. R. Rosdin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Ali"> N. M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Harun"> S. W. Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Arof"> H. Arof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have experimentally demonstrated bright-dark pulses in a nonlinear polarization rotation (NPR) based mode-locked Erbium-doped fiber laser (EDFL) with a long cavity configuration. Bright–dark pulses could be achieved when the laser works in the passively mode-locking regime and the net group velocity dispersion is quite anomalous. The EDFL starts to generate a bright pulse train with degenerated dark pulse at the mode-locking threshold pump power of 35.09 mW by manipulating the polarization states of the laser oscillation modes using a polarization controller (PC). A split bright–dark pulse is generated when further increasing the pump power up to 37.95 mW. Stable bright pulses with no obvious evidence of a dark pulse can also be generated when further adjusting PC and increasing the pump power up to 52.19 mW. At higher pump power of 54.96 mW, a new form of bright-dark pulse emission was successfully identified with the repetition rate of 29 kHz. The bright and dark pulses have a duration of 795.5 ns and 640 ns, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erbium-doped%20fiber%20laser" title="Erbium-doped fiber laser">Erbium-doped fiber laser</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20polarization%20rotation" title=" nonlinear polarization rotation"> nonlinear polarization rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=bright-dark%20pulse" title=" bright-dark pulse"> bright-dark pulse</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic" title=" photonic"> photonic</a> </p> <a href="https://publications.waset.org/abstracts/19127/bright-dark-pulses-in-nonlinear-polarisation-rotation-based-erbium-doped-fiber-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1344</span> Beam Spatio-Temporal Multiplexing Approach for Improving Control Accuracy of High Contrast Pulse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping%20Li">Ping Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Feng"> Bing Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Junpu%20Zhao"> Junpu Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Xie"> Xudong Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Dangpeng%20Xu"> Dangpeng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuixing%20Zheng"> Kuixing Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Qihua%20Zhu"> Qihua Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20Wei"> Xiaofeng Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In laser driven inertial confinement fusion (ICF), the control of the temporal shape of the laser pulse is a key point to ensure an optimal interaction of laser-target. One of the main difficulties in controlling the temporal shape is the foot part control accuracy of high contrast pulse. Based on the analysis of pulse perturbation in the process of amplification and frequency conversion in high power lasers, an approach of beam spatio-temporal multiplexing is proposed to improve the control precision of high contrast pulse. In the approach, the foot and peak part of high contrast pulse are controlled independently, which propagate separately in the near field, and combine together in the far field to form the required pulse shape. For high contrast pulse, the beam area ratio of the two parts is optimized, and then beam fluence and intensity of the foot part are increased, which brings great convenience to the control of pulse. Meanwhile, the near field distribution of the two parts is also carefully designed to make sure their F-numbers are the same, which is another important parameter for laser-target interaction. The integrated calculation results show that for a pulse with a contrast of up to 500, the deviation of foot part can be improved from 20% to 5% by using beam spatio-temporal multiplexing approach with beam area ratio of 1/20, which is almost the same as that of peak part. The research results are expected to bring a breakthrough in power balance of high power laser facility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20confinement%20fusion" title="inertial confinement fusion">inertial confinement fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20pulse%20control" title=" laser pulse control"> laser pulse control</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20spatio-temporal%20multiplexing" title=" beam spatio-temporal multiplexing"> beam spatio-temporal multiplexing</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20balance" title=" power balance"> power balance</a> </p> <a href="https://publications.waset.org/abstracts/103616/beam-spatio-temporal-multiplexing-approach-for-improving-control-accuracy-of-high-contrast-pulse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1343</span> Pulsed Laser Single Event Transients in 0.18 μM Partially-Depleted Silicon-On-Insulator Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=MeiBo">MeiBo</a>, <a href="https://publications.waset.org/abstracts/search?q=ZhaoXing"> ZhaoXing</a>, <a href="https://publications.waset.org/abstracts/search?q=LuoLei"> LuoLei</a>, <a href="https://publications.waset.org/abstracts/search?q=YuQingkui"> YuQingkui</a>, <a href="https://publications.waset.org/abstracts/search?q=TangMin"> TangMin</a>, <a href="https://publications.waset.org/abstracts/search?q=HanZhengsheng"> HanZhengsheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Single Event Transients (SETs) were investigated on 0.18μm PDSOI transistors and 100 series CMOS inverter chain using pulse laser. The effect of different laser energy and device bias for waveform on SET was characterized experimentally, as well as the generation and propagation of SET in inverter chain. In this paper, the effects of struck transistors type and struck locations on SETs were investigated. The results showed that when irradiate NMOSFETs from 100th to 2nd stages, the SET pulse width measured at the output terminal increased from 287.4 ps to 472.9 ps; and when irradiate PMOSFETs from 99th to 1st stages, the SET pulse width increased from 287.4 ps to 472.9 ps. When struck locations were close to the output of the chain, the SET pulse was narrow; however, when struck nodes were close to the input, the SET pulse was broadening. SET pulses were progressively broadened up when propagating along inverter chains. The SET pulse broadening is independent of the type of struck transistors. Through analysis, history effect induced threshold voltage hysteresis in PDSOI is the reason of pulse broadening. The positive pulse observed by oscilloscope, contrary to the expected results, is because of charging and discharging of capacitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20event%20transients" title="single event transients">single event transients</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20laser" title=" pulse laser"> pulse laser</a>, <a href="https://publications.waset.org/abstracts/search?q=partially-depleted%20silicon-on-insulator" title=" partially-depleted silicon-on-insulator"> partially-depleted silicon-on-insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation-induced%20pulse%20broadening%20effect" title=" propagation-induced pulse broadening effect"> propagation-induced pulse broadening effect</a> </p> <a href="https://publications.waset.org/abstracts/34850/pulsed-laser-single-event-transients-in-018-mm-partially-depleted-silicon-on-insulator-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1342</span> Powerful Laser Diode Matrixes for Active Vision Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dzmitry%20M.%20Kabanau">Dzmitry M. Kabanau</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20V.%20Kabanov"> Vladimir V. Kabanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahor%20V.%20Lebiadok"> Yahor V. Lebiadok</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20V.%20Shabrov"> Denis V. Shabrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20V.%20Shpak"> Pavel V. Shpak</a>, <a href="https://publications.waset.org/abstracts/search?q=Gevork%20T.%20Mikaelyan"> Gevork T. Mikaelyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20P.%20Bunichev"> Alexandr P. Bunichev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is deal with the experimental investigations of the laser diode matrixes (LDM) based on the AlGaAs/GaAs heterostructures (lasing wavelength 790-880 nm) to find optimal LDM parameters for active vision systems. In particular, the dependence of LDM radiation pulse power on the pulse duration and LDA active layer heating as well as the LDM radiation divergence are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20vision%20systems" title="active vision systems">active vision systems</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20diode%20matrixes" title=" laser diode matrixes"> laser diode matrixes</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20divergence" title=" radiation divergence"> radiation divergence</a> </p> <a href="https://publications.waset.org/abstracts/19451/powerful-laser-diode-matrixes-for-active-vision-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">610</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1341</span> Laser-Hole Boring into Overdense Targets: A Detailed Study on Laser and Target Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florian%20Wagner">Florian Wagner</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Schmidt"> Christoph Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Bagnoud"> Vincent Bagnoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the interaction of ultra-intense laser pulses with overcritical targets is of major interest for many applications such as laser-driven ion acceleration, fast ignition in the frame of inertial confinement fusion or high harmonic generation and the creation of attosecond pulses. One particular aspect of this interaction is the shift of the critical surface, where the laser pulse is stopped and the absorption is at maximum, due to the radiation pressure induced by the laser pulse, also referred to as laser hole boring. We investigate laser-hole boring experimentally by measuring the backscattered spectrum which is doppler-broadened because of the movement of the reflecting surface. Using the high-power, high-energy laser system PHELIX in Darmstadt, we gathered an extensive set of data for different laser intensities ranging from 10^18 W/cm2 to 10^21 W/cm2, two different levels of the nanosecond temporal contrast (10^6 vs. 10^11), elliptical and linear polarization and varying target configurations. In this contribution we discuss how the maximum velocity of the critical surface depends on these parameters. In particular we show that by increasing the temporal contrast the maximum hole boring velocity is decreased by more than a factor of three. Our experimental findings are backed by a basic analytical model based on momentum and mass conservation as well as particle in cell simulations. These results are of particular importance for fast ignition since they contribute to a better understanding of the transport of the ignitor pulse into the overdense region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser-hole%20boring" title="laser-hole boring">laser-hole boring</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20of%20ultra-intense%20lasers%20with%20overcritical%20targets" title=" interaction of ultra-intense lasers with overcritical targets"> interaction of ultra-intense lasers with overcritical targets</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20ignition" title=" fast ignition"> fast ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20laser%20motter%20interaction" title=" relativistic laser motter interaction"> relativistic laser motter interaction</a> </p> <a href="https://publications.waset.org/abstracts/45345/laser-hole-boring-into-overdense-targets-a-detailed-study-on-laser-and-target-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1340</span> Mode-Locked Fiber Laser Using Charcoal and Graphene Saturable Absorbers to Generate 20-GHz and 50-GHz Pulse Trains, Respectively</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashiq%20Rahman">Ashiq Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Thapa"> Sunil Thapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunyao%20Fan"> Shunyao Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloy%20K.%20Dutta"> Niloy K. Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 20-GHz and a 50-GHz pulse train are generated using a fiber ring laser setup that incorporates Rational Harmonic Mode Locking. Two separate experiments were carried out using charcoal nanoparticles and graphene nanoparticles acting as saturable absorbers to reduce the pulse width generated from rational harmonic mode-locking (RHML). Autocorrelator trace shows that the pulse width is reduced from 5.6-ps to 3.2-ps using charcoal at 20-GHz, and to 2.7-ps using graphene at 50-GHz repetition rates, which agrees with the simulation findings. Numerical simulations have been carried out to study the effect of varying the linear and nonlinear absorbance parameters of both absorbers on output pulse widths. Experiments closely agree with the simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20optics" title="fiber optics">fiber optics</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20lasers" title=" fiber lasers"> fiber lasers</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20locking" title=" mode locking"> mode locking</a>, <a href="https://publications.waset.org/abstracts/search?q=saturable%20absorbers" title=" saturable absorbers"> saturable absorbers</a> </p> <a href="https://publications.waset.org/abstracts/157130/mode-locked-fiber-laser-using-charcoal-and-graphene-saturable-absorbers-to-generate-20-ghz-and-50-ghz-pulse-trains-respectively" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1339</span> Electromagnetic Radiation Generation by Two-Color Sinusoidal Laser Pulses Propagating in Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20Kumar%20Verma">Nirmal Kumar Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Jha"> Pallavi Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generation of the electromagnetic radiation oscillating at the frequencies in the terahertz range by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization, and spectroscopic techniques. Due to nonionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals, when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser-plasma based THz radiation sources. The present paper is devoted to the study of the enhanced electromagnetic radiation generation by propagation of two-color, linearly polarized laser pulses through the magnetized plasma. The two lasers pulse orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through the homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-color%20laser%20pulses" title="two-color laser pulses">two-color laser pulses</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20radiation" title=" electromagnetic radiation"> electromagnetic radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetized%20plasma" title=" magnetized plasma"> magnetized plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20and%20extraordinary%20modes" title=" ordinary and extraordinary modes"> ordinary and extraordinary modes</a> </p> <a href="https://publications.waset.org/abstracts/53322/electromagnetic-radiation-generation-by-two-color-sinusoidal-laser-pulses-propagating-in-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1338</span> Wobbled Laser Beam Welding for Macro-to Micro-Fabrication Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Vakili-Farahani">Farzad Vakili-Farahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Joern%20Lungershausen"> Joern Lungershausen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kilian%20Wasmer"> Kilian Wasmer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wobbled laser beam welding, fast oscillations of a tiny laser beam within a designed path (weld geometry) during the laser pulse illumination, opens new possibilities to improve the marco-to micro-manufacturing process. The present work introduces the wobbled laser beam welding as a robust welding strategy for improving macro-to micro-fabrication process, e.g., the laser processing for gap-bridging and packaging industry. The typical requisites and relevant equipment for the development of a wobbled laser processing unit are addressed, including a suitable laser source, light delivery system, optics, proper beam deflection system and the design geometry. In addition, experiments have been carried out on titanium plate to compare the results of wobbled laser welding with conventional pulsed laser welding. As compared to the pulsed laser welding, the wobbled laser welding offers a much greater fusion area (i.e. additional molten material) while minimizing the HAZ and provides a better confinement of the material microstructural changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wobbled%20laser%20beam%20welding" title="wobbled laser beam welding">wobbled laser beam welding</a>, <a href="https://publications.waset.org/abstracts/search?q=wobbling%20function" title=" wobbling function"> wobbling function</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20oscillation" title=" beam oscillation"> beam oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20welding" title=" micro welding"> micro welding</a> </p> <a href="https://publications.waset.org/abstracts/56603/wobbled-laser-beam-welding-for-macro-to-micro-fabrication-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1337</span> Passively Q-Switched 914 nm Microchip Laser for LIDAR Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Naegele">Marco Naegele</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20Stoppel"> Klaus Stoppel</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Dekorsy"> Thomas Dekorsy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passively Q-switched microchip lasers enable the great potential for sophisticated LiDAR systems due to their compact overall system design, excellent beam quality, and scalable pulse energies. However, many near-infrared solid-state lasers show emitting wavelengths > 1000 nm, which are not compatible with state-of-the-art silicon detectors. Here we demonstrate a passively Q-switched microchip laser operating at 914 nm. The microchip laser consists of a 3 mm long Nd:YVO₄ crystal as a gain medium, while Cr⁴⁺:YAG with an initial transmission of 98% is used as a saturable absorber. Quasi-continuous pumping enables single pulse operation, and low duty cycles ensure low overall heat generation and power consumption. Thus, thermally induced instabilities are minimized, and operation without active cooling is possible while ambient temperature changes are compensated by adjustment of the pump laser current only. Single-emitter diode pumping at 808 nm leads to a compact overall system design and robust setup. Utilization of a microchip cavity approach ensures single-longitudinal mode operation with spectral bandwidths in the picometer regime and results in short laser pulses with pulse durations below 10 ns. Beam quality measurements reveal an almost diffraction-limited beam and enable conclusions concerning the thermal lens, which is essential to stabilize the plane-plane resonator. A 7% output coupler transmissivity is used to generate pulses with energies in the microjoule regime and peak powers of more than 600 W. Long-term pulse duration, pulse energy, central wavelength, and spectral bandwidth measurements emphasize the excellent system stability and facilitate the utilization of this laser in the context of a LiDAR system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diode-pumping" title="diode-pumping">diode-pumping</a>, <a href="https://publications.waset.org/abstracts/search?q=LiDAR%20system" title=" LiDAR system"> LiDAR system</a>, <a href="https://publications.waset.org/abstracts/search?q=microchip%20laser" title=" microchip laser"> microchip laser</a>, <a href="https://publications.waset.org/abstracts/search?q=Nd%3AYVO4%20laser" title=" Nd:YVO4 laser"> Nd:YVO4 laser</a>, <a href="https://publications.waset.org/abstracts/search?q=passively%20Q-switched" title=" passively Q-switched"> passively Q-switched</a> </p> <a href="https://publications.waset.org/abstracts/132506/passively-q-switched-914-nm-microchip-laser-for-lidar-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1336</span> Simulation Study of Enhanced Terahertz Radiation Generation by Two-Color Laser Plasma Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20Kumar%20Verma">Nirmal Kumar Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Jha"> Pallavi Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terahertz (THz) radiation generation by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization and spectroscopic techniques. Due to non ionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser - plasma based THz radiation sources. The present paper is devoted to the simulation study of the enhanced THz radiation generation by propagation of two-color, linearly polarized laser pulses through magnetized plasma. The two laser pulses orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-color%20laser%20pulses" title="two-color laser pulses">two-color laser pulses</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz%20radiation" title=" terahertz radiation"> terahertz radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetized%20plasma" title=" magnetized plasma"> magnetized plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20and%20extraordinary%20mode" title=" ordinary and extraordinary mode"> ordinary and extraordinary mode</a> </p> <a href="https://publications.waset.org/abstracts/53261/simulation-study-of-enhanced-terahertz-radiation-generation-by-two-color-laser-plasma-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1335</span> Production of Neutrons by High Intensity Picosecond Laser Interacting with Thick Solid Target at XingGuangIII</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xi%20Yuan">Xi Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuebin%20Zhu"> Xuebin Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojun%20Li"> Bojun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work describes the experiment to produce high-intensity pulsed neutron beams on XingGuangIII laser facility. The high-intensity laser is utilized to drive protons and deuterons, which hit a thick solid target to produce neutrons. The pulse duration of the laser used in the experiment is about 0.8 ps, and the laser energy is around 100 J. Protons and deuterons are accelerated from a 10-μm-thick deuterated polyethylene (CD₂) foil and diagnosed by a Thomson parabola ion-spectrometer. The energy spectrum of neutrons generated via ⁷Li(d,n) and ⁷Li(p,n) reaction when proton and deuteron beams hit a 5-mm-thick LiF target is measured by a scintillator-based time-of-flight spectrometer. Results from the neuron measurements show that the maximum neutron energy is about 12.5 MeV and the neutron yield is up to 2×10⁹/pulse. The high-intensity pulsed neutron beams demonstrated in this work can provide a valuable neutron source for material research, fast neutron induced fission research, and so on. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=picosecond%20laser%20driven" title="picosecond laser driven">picosecond laser driven</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20neutron" title=" fast neutron"> fast neutron</a>, <a href="https://publications.waset.org/abstracts/search?q=time-of-flight%20spectrometry" title=" time-of-flight spectrometry"> time-of-flight spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=XinggungIII" title=" XinggungIII"> XinggungIII</a> </p> <a href="https://publications.waset.org/abstracts/92159/production-of-neutrons-by-high-intensity-picosecond-laser-interacting-with-thick-solid-target-at-xingguangiii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1334</span> Phase Control in Population Inversion Using Chirped Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avijit%20Datta">Avijit Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have presented a phase control scheme in population transfer using chirped laser fields. A chirped pulse can do population transfer from one level to another level via adiabatic rapid passage accessible by one photon dipole transition. We propose to use a pair of phase-locked chirped pulses of the same frequency w(t) instead of a singly chirped-pulse frequency w(t). Simultaneous action of phase controlled interference in addition to rapid adiabatic passages due to chirped pulses lead to phase control over this population transfer dynamics. We have demonstrated the proposed phase control scheme over the population distribution from the initial level X(v=0,j=0) to C(v=2,j=1) level of hydrogen molecule using a pair of phase-locked and similarly chirped laser pulses. We have extended this two-level system to three-level 1+1 ladder system of hydrogen molecule from X level to final J(v=2,j=2) level via C intermediate level using two pairs of laser pulses having frequencies w(t) and w'(t) respectively and obtained laudable control over the population distribution among three levels. We also have presented some results of interference effects of w₁(t) and its third harmonics w₃(t). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20control" title="phase control">phase control</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20transfer" title=" population transfer"> population transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=chirped%20laser%20pulses" title=" chirped laser pulses"> chirped laser pulses</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20adiabatic%20passage" title=" rapid adiabatic passage"> rapid adiabatic passage</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-molecule%20interaction" title=" laser-molecule interaction "> laser-molecule interaction </a> </p> <a href="https://publications.waset.org/abstracts/62398/phase-control-in-population-inversion-using-chirped-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1333</span> Generation of Ultra-Broadband Supercontinuum Ultrashort Laser Pulses with High Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20Tawfik">Walid Tawfik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction of intense short nano- and picosecond laser pulses with plasma leads to reach variety of important applications, including time-resolved laser induced breakdown spectroscopy (LIBS), soft x-ray lasers, and laser-driven accelerators. The progress in generating of femtosecond down to sub-10 fs optical pulses has opened a door for scientists with an essential tool in many ultrafast phenomena, such as femto-chemistry, high field physics, and high harmonic generation (HHG). The advent of high-energy laser pulses with durations of few optical cycles provided scientists with very high electric fields, and produce coherent intense UV to NIR radiation with high energy which allows for the investigation of ultrafast molecular dynamics with femtosecond resolution. In this work, we could experimentally achieve the generation of a two-octave-wide supercontinuum ultrafast pulses extending from ultraviolet at 3.5 eV to the near-infrared at 1.3 eV in neon-filled capillary fiber. These pulses are created due to nonlinear self-phase modulation (SPM) in neon as a nonlinear medium. The measurements of the generated pulses were performed using spectral phase interferometry for direct electric-field reconstruction. A full characterization of the output pulses was studied. The output pulse characterization includes the pulse width, the beam profile, and the spectral bandwidth. Under optimization conditions, the reconstructed pulse intensity autocorrelation function was exposed for the shorts possible pulse duration to achieve transform-limited pulses with energies up to 600µJ. Furthermore, the effect of variation of neon pressure on the pulse-width was studied. The nonlinear SPM found to be increased with the neon pressure. The obtained results may give an opportunity to monitor and control ultrafast transit interaction in femtosecond chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=femtosecond%20laser" title="femtosecond laser">femtosecond laser</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafast" title=" ultrafast"> ultrafast</a>, <a href="https://publications.waset.org/abstracts/search?q=supercontinuum" title=" supercontinuum"> supercontinuum</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-broadband" title=" ultra-broadband"> ultra-broadband</a> </p> <a href="https://publications.waset.org/abstracts/79479/generation-of-ultra-broadband-supercontinuum-ultrashort-laser-pulses-with-high-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1332</span> Nonlinear Optical Properties for Three Level Atoms at Resonance and Off-Resonance with Laser Coupled Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suad%20M.%20Abuzariba">Suad M. Abuzariba</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20O.%20Mafaa"> Eman O. Mafaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For three level atom interacts with a laser beam, the effect of changing resonance and off-resonance frequencies has been studied. Furthermore, a clear distortion has been seen in both the real and imaginary parts of the electric susceptibility with increasing the frequency of the coupled laser beams so that reaching the off-resonance interaction. With increasing the Rabi frequency of the laser pulse that in resonance with the lower transition the distortion will produce a new peak in the electric susceptibility parts, in both the real and imaginary ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20susceptibility" title="electric susceptibility">electric susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance%20frequency%20off-resonance%20frequency" title=" resonance frequency off-resonance frequency"> resonance frequency off-resonance frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20level%20atom" title=" three level atom"> three level atom</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a> </p> <a href="https://publications.waset.org/abstracts/64970/nonlinear-optical-properties-for-three-level-atoms-at-resonance-and-off-resonance-with-laser-coupled-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1331</span> Pulse Generator with Constant Pulse Width</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rozita%20Borhan">Rozita Borhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanif%20Che%20Lah"> Hanif Che Lah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wee%20Leong%20Son"> Wee Leong Son</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is about method to produce a stable and accurate constant output pulse width regardless of the amplitude, period and pulse width variation of the input signal source. The pulse generated is usually being used in numerous applications as the reference input source to other circuits in the system. Therefore, it is crucial to produce a clean and constant pulse width to make sure the system is working accurately as expected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amplitude" title="amplitude">amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=Constant%20Pulse%20Width" title=" Constant Pulse Width"> Constant Pulse Width</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20divider" title=" frequency divider"> frequency divider</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20generator" title=" pulse generator"> pulse generator</a> </p> <a href="https://publications.waset.org/abstracts/12784/pulse-generator-with-constant-pulse-width" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1330</span> A Two-Dimensional Problem Micropolar Thermoelastic Medium under the Effect of Laser Irradiation and Distributed Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devinder%20Singh">Devinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajneesh%20Kumar"> Rajneesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation deals with the deformation of micropolar generalized thermoelastic solid subjected to thermo-mechanical loading due to a thermal laser pulse. Laplace transform and Fourier transform techniques are used to solve the problem. Thermo-mechanical laser interactions are taken as distributed sources to describe the application of the approach. The closed form expressions of normal stress, tangential stress, coupled stress and temperature are obtained in the domain. Numerical inversion technique of Laplace transform and Fourier transform has been implied to obtain the resulting quantities in the physical domain after developing a computer program. The normal stress, tangential stress, coupled stress and temperature are depicted graphically to show the effect of relaxation times. Some particular cases of interest are deduced from the present investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulse%20laser" title="pulse laser">pulse laser</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20transform" title=" integral transform"> integral transform</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelastic" title=" thermoelastic"> thermoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20problem" title=" boundary value problem"> boundary value problem</a> </p> <a href="https://publications.waset.org/abstracts/33535/a-two-dimensional-problem-micropolar-thermoelastic-medium-under-the-effect-of-laser-irradiation-and-distributed-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">616</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1329</span> Raman Scattering Broadband Spectrum Generation in Compact Yb-Doped Fiber Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanrong%20Song">Yanrong Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Zikai%20Dong"> Zikai Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Runqin%20Xu"> Runqin Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinrong%20Tian"> Jinrong Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Kexuan%20Li"> Kexuan Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear polarization rotation (NPR) technique has become one of the main techniques to achieve mode-locked fiber lasers for its compactness, implementation, and low cost. In this paper, we demonstrate a compact mode-locked Yb-doped fiber laser based on NPR technique in the all normal dispersion (ANDi) regime. In the laser cavity, there are no physical filter and polarization controller in laser cavity. Mode-locked pulse train is achieved in ANDi regime based on NPR technique. The fiber birefringence induced filtering effect is the mainly reason for mode-locking. After that, an extra 20 m long single-mode fiber is inserted in two different positions, dissipative soliton operation and noise like pulse operations are achieved correspondingly. The nonlinear effect is obviously enhanced in the noise like pulse regime and broadband spectrum generated owing to enhanced stimulated Raman scattering effect. When the pump power is 210 mW, the central wavelength is 1030 nm, and the corresponding 1st order Raman scattering stokes wave generates and locates at 1075 nm. When the pump power is 370 mW, the 1st and 2nd order Raman scattering stokes wave generate and locate at 1080 nm, 1126 nm respectively. When the pump power is 600 mW, the Raman continuum is generated with cascaded multi-order stokes waves, and the spectrum extends to 1188 nm. The total flat spectrum is from 1000nm to 1200nm. The maximum output average power and pulse energy are 18.0W and 14.75nJ, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20laser" title="fiber laser">fiber laser</a>, <a href="https://publications.waset.org/abstracts/search?q=mode-locking" title=" mode-locking"> mode-locking</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20polarization%20rotation" title=" nonlinear polarization rotation"> nonlinear polarization rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20scattering" title=" Raman scattering"> Raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/74790/raman-scattering-broadband-spectrum-generation-in-compact-yb-doped-fiber-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1328</span> Laser - Ultrasonic Method for the Measurement of Residual Stresses in Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.%20Karabutov">Alexander A. Karabutov</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20B.%20Podymova"> Natalia B. Podymova</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20B.%20Cherepetskaya"> Elena B. Cherepetskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The theoretical analysis is carried out to get the relation between the ultrasonic wave velocity and the value of residual stresses. The laser-ultrasonic method is developed to evaluate the residual stresses and subsurface defects in metals. The method is based on the laser thermooptical excitation of longitudinal ultrasonic wave sand their detection by a broadband piezoelectric detector. A laser pulse with the time duration of 8 ns of the full width at half of maximum and with the energy of 300 µJ is absorbed in a thin layer of the special generator that is inclined relative to the object under study. The non-uniform heating of the generator causes the formation of a broadband powerful pulse of longitudinal ultrasonic waves. It is shown that the temporal profile of this pulse is the convolution of the temporal envelope of the laser pulse and the profile of the in-depth distribution of the heat sources. The ultrasonic waves reach the surface of the object through the prism that serves as an acoustic duct. At the interface ‚laser-ultrasonic transducer-object‘ the conversion of the most part of the longitudinal wave energy takes place into the shear, subsurface longitudinal and Rayleigh waves. They spread within the subsurface layer of the studied object and are detected by the piezoelectric detector. The electrical signal that corresponds to the detected acoustic signal is acquired by an analog-to-digital converter and when is mathematically processed and visualized with a personal computer. The distance between the generator and the piezodetector as well as the spread times of acoustic waves in the acoustic ducts are the characteristic parameters of the laser-ultrasonic transducer and are determined using the calibration samples. There lative precision of the measurement of the velocity of longitudinal ultrasonic waves is 0.05% that corresponds to approximately ±3 m/s for the steels of conventional quality. This precision allows one to determine the mechanical stress in the steel samples with the minimal detection threshold of approximately 22.7 MPa. The results are presented for the measured dependencies of the velocity of longitudinal ultrasonic waves in the samples on the values of the applied compression stress in the range of 20-100 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser-ultrasonic%20method" title="laser-ultrasonic method">laser-ultrasonic method</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20ultrasonic%20waves" title=" longitudinal ultrasonic waves"> longitudinal ultrasonic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title=" residual stresses"> residual stresses</a> </p> <a href="https://publications.waset.org/abstracts/35783/laser-ultrasonic-method-for-the-measurement-of-residual-stresses-in-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1327</span> Creation of Ultrafast Ultra-Broadband High Energy Laser Pulses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20Tawfik">Walid Tawfik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction of high intensity ultrashort laser pulses with plasma generates many significant applications, including soft x-ray lasers, time-resolved laser induced plasma spectroscopy LIPS, and laser-driven accelerators. The development in producing of femtosecond down to ten femtosecond optical pulses has facilitates scientists with a vital tool in a variety of ultrashort phenomena, such as high field physics, femtochemistry and high harmonic generation HHG. In this research, we generate a two-octave-wide ultrashort supercontinuum pulses with an optical spectrum extending from 3.5 eV (ultraviolet) to 1.3 eV (near-infrared) using a capillary fiber filled with neon gas. These pulses are formed according to nonlinear self-phase modulation in the neon gas as a nonlinear medium. The investigations of the created pulses were made using spectral phase interferometry for direct electric-field reconstruction (SPIDER). A complete description of the output pulses was considered. The observed characterization of the produced pulses includes the beam profile, the pulse width, and the spectral bandwidth. After reaching optimization conditions, the intensity of the reconstructed pulse autocorrelation function was applied for the shorts pulse duration to achieve transform limited ultrashort pulses with durations below 6-fs energies up to 600μJ. Moreover, the effect of neon pressure variation on the pulse width was examined. The nonlinear self-phase modulation realized to be increased with the pressure of the neon gas. The observed results may lead to an advanced method to control and monitor ultrashort transit interaction in femtochemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supercontinuum" title="supercontinuum">supercontinuum</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafast" title=" ultrafast"> ultrafast</a>, <a href="https://publications.waset.org/abstracts/search?q=SPIDER" title=" SPIDER"> SPIDER</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-broadband" title=" ultra-broadband"> ultra-broadband</a> </p> <a href="https://publications.waset.org/abstracts/107287/creation-of-ultrafast-ultra-broadband-high-energy-laser-pulses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1326</span> Laser Induced Transient Current in Quasi-One-Dimensional Nanostructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tokuei%20Sako">Tokuei Sako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Light-induced ultrafast charge transfer in low-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to an ultrashort pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the central frequency and pulse width of the applied laser fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20field" title="pulsed laser field">pulsed laser field</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire" title=" nanowire"> nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20packet" title=" wave packet"> wave packet</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity" title=" conductivity"> conductivity</a> </p> <a href="https://publications.waset.org/abstracts/19313/laser-induced-transient-current-in-quasi-one-dimensional-nanostructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1325</span> Role of Pulsed-Dye Laser in the Treatment of Inflammatory Acne Vulgaris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shirajul%20Islam%20Khan">Shirajul Islam Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ashraful%20Alam%20Bhuiyan"> Muhammad Ashraful Alam Bhuiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Tania%20Begum"> Syeda Tania Begum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Acne vulgaris is one of the most common dermatologic conditions and affects the vast majority of people at some point during their lifetime, so effective treatment is of major importance. The failure of usual treatment modalities, teratogenic effects with some severe side effects, and resistance to P.Acne by Retinoides have been focusing on new therapeutic options for the treatment of acne. More recently, pulsed dye laser therapy has been reported to reduce acne lesion counts. The negligible morbidity of these treatment modalities and some other benefits of subsequent acne scar management lead this therapy more attractive. Objective: The objective of this study is to assess the efficacy and safety of pulsed dye laser therapy in the treatment of inflammatory acne vulgaris. Materials and Methods: A prospective clinical trial was done in the Department of Dermatology and Venereology, Combined Military Hospital (CMH), Dhaka, to find out the role of pulse dye laser in the treatment of inflammatory acne vulgaris. The study was carried out with 60 patients with mild to moderate acne vulgaris, and those were treated with pulsed dye laser therapy at baseline and after 4, 8, and 12 weeks. Results: Among 60 patients with inflammatory acne, 42(70%) were in the age group of less than 20 years, and 36(60%) were female. Regarding the number of inflammatory lesions, the baseline mean number (± SD) was 12.77 ± 4.01; after 4 weeks of treatment of inflammatory acne by pulsed dye laser was 7.80 ± 4.11; after 8 weeks of treatment, 6.10 ± 4.03 and after 12 weeks of treatment was 4.17 ± 4.02. After 4 weeks of treatment by pulse dye laser, the level of improvement was excellent at 3.3%, good at 10%, fair at 60%, and poor at 26.7%; after 8 weeks of treatment, excellent was 13.3%, good was 46.7%, the fair was 30% and poor 10% and after 12 weeks of treatment, excellent was 56.7%, good 13.3%, fair 23.3% and poor 6.7%. Regarding safety level, out of 60 patients of inflammatory acne vulgaris treated by pulsed dye laser, about 52(86.7%) patients did not observe any side effects. Conclusions: On the basis of the study results, it can be concluded that pulsed-dye laser is highly effective and well tolerated by patients in the treatment of inflammatory acne. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulsed-dye%20laser" title="pulsed-dye laser">pulsed-dye laser</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20acne" title=" inflammatory acne"> inflammatory acne</a>, <a href="https://publications.waset.org/abstracts/search?q=acne%20vulgaris" title=" acne vulgaris"> acne vulgaris</a>, <a href="https://publications.waset.org/abstracts/search?q=retinoids" title=" retinoids"> retinoids</a> </p> <a href="https://publications.waset.org/abstracts/169132/role-of-pulsed-dye-laser-in-the-treatment-of-inflammatory-acne-vulgaris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1324</span> Radiation Emission from Ultra-Relativistic Plasma Electrons in Short-Pulse Laser Light Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ondarza-Rovira">R. Ondarza-Rovira</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20M.%20Boyd"> T. J. M. Boyd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intense femtosecond laser light incident on over-critical density plasmas has shown to emit a prolific number of high-order harmonics of the driver frequency, with spectra characterized by power-law decays Pm ~ m-p, where m denotes the harmonic order and p the spectral decay index. When the laser pulse is p-polarized, plasma effects do modify the harmonic spectrum, weakening the so-called universal decay with p=8/3 to p=5/3, or below. In this work, appeal is made to a single particle radiation model in support of the predictions from particle-in-cell (PIC) simulations. Using this numerical technique we further show that the emission radiated by electrons -that are relativistically accelerated by the laser field inside the plasma, after being expelled into vacuum, the so-called Brunel electrons is characterized not only by the plasma line but also by ultraviolet harmonic orders described by the 5/3 decay index. Results obtained from these simulations suggest that for ultra-relativistic light intensities, the spectral decay index is further reduced, with p now in the range 2/3 ≤ p ≤ 4/3. This reduction is indicative of a transition from the regime where Brunel-induced plasma radiation influences the spectrum to one dominated by bremsstrahlung emission from the Brunel electrons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra-relativistic" title="ultra-relativistic">ultra-relativistic</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-plasma%20interactions" title=" laser-plasma interactions"> laser-plasma interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=high-order%20harmonic%20emission" title=" high-order harmonic emission"> high-order harmonic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum" title=" spectrum "> spectrum </a> </p> <a href="https://publications.waset.org/abstracts/27628/radiation-emission-from-ultra-relativistic-plasma-electrons-in-short-pulse-laser-light-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1323</span> A Reduced Ablation Model for Laser Cutting and Laser Drilling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Torsten%20Hermanns">Torsten Hermanns</a>, <a href="https://publications.waset.org/abstracts/search?q=Thoufik%20Al%20Khawli"> Thoufik Al Khawli</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Schulz"> Wolfgang Schulz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In laser cutting as well as in long pulsed laser drilling of metals, it can be demonstrated that the ablation shape (the shape of cut faces respectively the hole shape) that is formed approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from the ultrashort pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in laser cutting and long pulse drilling of metals is identified, its underlying mechanism numerically implemented, tested and clearly confirmed by comparison with experimental data. In detail, there now is a model that allows the simulation of the temporal (pulse-resolved) evolution of the hole shape in laser drilling as well as the final (asymptotic) shape of the cut faces in laser cutting. This simulation especially requires much less in the way of resources, such that it can even run on common desktop PCs or laptops. Individual parameters can be adjusted using sliders – the simulation result appears in an adjacent window and changes in real time. This is made possible by an application-specific reduction of the underlying ablation model. Because this reduction dramatically decreases the complexity of calculation, it produces a result much more quickly. This means that the simulation can be carried out directly at the laser machine. Time-intensive experiments can be reduced and set-up processes can be completed much faster. The high speed of simulation also opens up a range of entirely different options, such as metamodeling. Suitable for complex applications with many parameters, metamodeling involves generating high-dimensional data sets with the parameters and several evaluation criteria for process and product quality. These sets can then be used to create individual process maps that show the dependency of individual parameter pairs. This advanced simulation makes it possible to find global and local extreme values through mathematical manipulation. Such simultaneous optimization of multiple parameters is scarcely possible by experimental means. This means that new methods in manufacturing such as self-optimization can be executed much faster. However, the software’s potential does not stop there; time-intensive calculations exist in many areas of industry. In laser welding or laser additive manufacturing, for example, the simulation of thermal induced residual stresses still uses up considerable computing capacity or is even not possible. Transferring the principle of reduced models promises substantial savings there, too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20ablation%20shape" title="asymptotic ablation shape">asymptotic ablation shape</a>, <a href="https://publications.waset.org/abstracts/search?q=interactive%20process%20simulation" title=" interactive process simulation"> interactive process simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20drilling" title=" laser drilling"> laser drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20cutting" title=" laser cutting"> laser cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=metamodeling" title=" metamodeling"> metamodeling</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20modeling" title=" reduced modeling"> reduced modeling</a> </p> <a href="https://publications.waset.org/abstracts/43086/a-reduced-ablation-model-for-laser-cutting-and-laser-drilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1322</span> Nonlinear Evolution of the Pulses of Elastic Waves in Geological Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20B.%20Cherepetskaya">Elena B. Cherepetskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.%20Karabutov"> Alexander A. Karabutov</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20B.%20Podymova"> Natalia B. Podymova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Sas"> Ivan Sas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear evolution of broadband ultrasonic pulses passed through the rock specimens is studied using the apparatus ‘GEOSCAN-02M’. Ultrasonic pulses are excited by the pulses of Q-switched Nd:YAG laser with the time duration of 10 ns and with the energy of 260 mJ. This energy can be reduced to 20 mJ by some light filters. The laser beam radius did not exceed 5 mm. As a result of the absorption of the laser pulse in the special material – the optoacoustic generator–the pulses of longitudinal ultrasonic waves are excited with the time duration of 100 ns and with the maximum pressure amplitude of 10 MPa. The immersion technique is used to measure the parameters of these ultrasonic pulses passed through a specimen, the immersion liquid is distilled water. The reference pulse passed through the cell with water has the compression and the rarefaction phases. The amplitude of the rarefaction phase is five times lower than that of the compression phase. The spectral range of the reference pulse reaches 10 MHz. The cubic-shaped specimens of the Karelian gabbro are studied with the rib length 3 cm. The ultimate strength of the specimens by the uniaxial compression is (300±10) MPa. As the reference pulse passes through the area of the specimen without cracks the compression phase decreases and the rarefaction one increases due to diffraction and scattering of ultrasound, so the ratio of these phases becomes 2.3:1. After preloading some horizontal cracks appear in the specimens. Their location is found by one-sided scanning of the specimen using the backward mode detection of the ultrasonic pulses reflected from the structure defects. Using the computer processing of these signals the images are obtained of the cross-sections of the specimens with cracks. By the increase of the reference pulse amplitude from 0.1 MPa to 5 MPa the nonlinear transformation of the ultrasonic pulse passed through the specimen with horizontal cracks results in the decrease by 2.5 times of the amplitude of the rarefaction phase and in the increase of its duration by 2.1 times. By the increase of the reference pulse amplitude from 5 MPa to 10 MPa the time splitting of the phases is observed for the bipolar pulse passed through the specimen. The compression and rarefaction phases propagate with different velocities. These features of the powerful broadband ultrasonic pulses passed through the rock specimens can be described by the hysteresis model of Preisach-Mayergoyz and can be used for the location of cracks in the optically opaque materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracks" title="cracks">cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20materials" title=" geological materials"> geological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20evolution%20of%20ultrasonic%20pulses" title=" nonlinear evolution of ultrasonic pulses"> nonlinear evolution of ultrasonic pulses</a>, <a href="https://publications.waset.org/abstracts/search?q=rock" title=" rock"> rock</a> </p> <a href="https://publications.waset.org/abstracts/35779/nonlinear-evolution-of-the-pulses-of-elastic-waves-in-geological-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1321</span> Multi-Wavelength Q-Switched Erbium-Doped Fiber Laser with Photonic Crystal Fiber and Multi-Walled Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zian%20Cheak%20Tiu">Zian Cheak Tiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Harith%20Ahmad"> Harith Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Wadi%20Harun"> Sulaiman Wadi Harun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple multi-wavelength passively Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using low cost multi-walled carbon nanotubes (MWCNTs) based saturable absorber (SA), which is prepared using polyvinyl alcohol (PVA) as a host polymer. The multi-wavelength operation is achieved based on nonlinear polarization rotation (NPR) effect by incorporating 50 m long photonic crystal fiber (PCF) in the ring cavity. The EDFL produces a stable multi-wavelength comb spectrum for more than 14 lines with a fixed spacing of 0.48 nm. The laser also demonstrates a stable pulse train with the repetition rate increases from 14.9 kHz to 25.4 kHz as the pump power increases from the threshold power of 69.0 mW to the maximum pump power of 133.8 mW. The minimum pulse width of 4.4 µs was obtained at the maximum pump power of 133.8 mW while the highest energy of 0.74 nJ was obtained at pump power of 69.0 mW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-wavelength%20Q-switched" title="multi-wavelength Q-switched">multi-wavelength Q-switched</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotube" title=" multi-walled carbon nanotube"> multi-walled carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal%20fiber" title=" photonic crystal fiber"> photonic crystal fiber</a> </p> <a href="https://publications.waset.org/abstracts/8270/multi-wavelength-q-switched-erbium-doped-fiber-laser-with-photonic-crystal-fiber-and-multi-walled-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1320</span> Optimal Parameters of Two-Color Ionizing Laser Pulses for Terahertz Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20D.%20Laryushin">I. D. Laryushin</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Kostin"> V. A. Kostin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Silaev"> A. A. Silaev</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20Vvedenskii"> N. V. Vvedenskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generation of broadband intense terahertz (THz) radiation attracts reasonable interest due to various applications, such as the THz time-domain spectroscopy, the probing and control of various ultrafast processes, the THz imaging with subwavelength resolution, and many others. One of the most promising methods for generating powerful and broadband terahertz pulses is based on focusing two-color femtosecond ionizing laser pulses in gases, including ambient air. For this method, the amplitudes of terahertz pulses are determined by the free-electron current density remaining in a formed plasma after the passage of the laser pulse. The excitation of this residual current density can be treated as multi-wave mixing: Аn effective generation of terahertz radiation is possible only when the frequency ratio of one-color components in the two-color pulse is close to irreducible rational fraction a/b with small odd sum a + b. This work focuses on the optimal parameters (polarizations and intensities) of laser components for the strongest THz generation. The optimal values of parameters are found numerically and analytically with the use of semiclassical approach for calculating the residual current density. For frequency ratios close to a/(a ± 1) with natural a, the strongest THz generation is shown to take place when the both laser components have circular polarizations and equal intensities. For this optimal case, an analytical formula for the residual current density was derived. For the frequency ratios such as 2/5, the two-color ionizing pulses with circularly polarized components practically do not excite the residual current density. However, the optimal parameters correspond generally to specific elliptical (not linear) polarizations of the components and intensity ratios close to unity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broadband%20terahertz%20radiation" title="broadband terahertz radiation">broadband terahertz radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=ionization" title=" ionization"> ionization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20plasma" title=" laser plasma"> laser plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrashort%20two-color%20pulses" title=" ultrashort two-color pulses"> ultrashort two-color pulses</a> </p> <a href="https://publications.waset.org/abstracts/77086/optimal-parameters-of-two-color-ionizing-laser-pulses-for-terahertz-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulse%20laser&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulse%20laser&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulse%20laser&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulse%20laser&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulse%20laser&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulse%20laser&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulse%20laser&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulse%20laser&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulse%20laser&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulse%20laser&amp;page=44">44</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulse%20laser&amp;page=45">45</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulse%20laser&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10