CINXE.COM
Search results for: auxetic structures
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: auxetic structures</title> <meta name="description" content="Search results for: auxetic structures"> <meta name="keywords" content="auxetic structures"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="auxetic structures" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="auxetic structures"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4178</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: auxetic structures</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4178</span> Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Magalh%C3%A3es">Rui Magalhães</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohel%20Rana"> Sohel Rana</a>, <a href="https://publications.waset.org/abstracts/search?q=Raul%20Fangueiro"> Raul Fangueiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Clara%20Gon%C3%A7alves"> Clara Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Nunes"> Pedro Nunes</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20Dias"> Gustavo Dias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetic%20fabrics" title="auxetic fabrics">auxetic fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance" title=" high performance"> high performance</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20resistance" title=" impact resistance"> impact resistance</a> </p> <a href="https://publications.waset.org/abstracts/89742/development-and-characterization-of-re-entrant-auxetic-fibrous-structures-for-application-in-ballistic-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4177</span> Design of Hybrid Auxetic Metamaterials for Enhanced Energy Absorption under Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ercan%20Karadogan">Ercan Karadogan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Usta"> Fatih Usta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auxetic materials have a negative Poisson’s ratio (NPR), which is not often found in nature. They are metamaterials that have potential applications in many engineering fields. Mechanical metamaterials are synthetically designed structures with unusual mechanical properties. These mechanical properties are dependent on the properties of the matrix structure. They have the following special characteristics, i.e., improved shear modulus, increased energy absorption, and intensive fracture toughness. Non-auxetic materials compress transversely when they are stretched. The system naturally is inclined to keep its density constant. The transversal compression increases the density to balance the loss in the longitudinal direction. This study proposes to improve the crushing performance of hybrid auxetic materials. The re-entrant honeycomb structure has been combined with a star honeycomb, an S-shaped unit cell, a double arrowhead, and a structurally hexagonal re-entrant honeycomb by 9 X 9 cells, i.e., the number of cells is 9 in the lateral direction and 9 in the vertical direction. The Finite Element (FE) and experimental methods have been used to determine the compression behavior of the developed hybrid auxetic structures. The FE models have been developed by using Abaqus software. The specimens made of polymer plastic materials have been 3D printed and subjected to compression loading. The results are compared in terms of specific energy absorption and strength. This paper describes the quasi-static crushing behavior of two types of hybrid lattice structures (auxetic + auxetic and auxetic + non-auxetic). The results show that the developed hybrid structures can be useful to control collapse mechanisms and present larger energy absorption compared to conventional re-entrant auxetic structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetic%20materials" title="auxetic materials">auxetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20behavior" title=" compressive behavior"> compressive behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterials" title=" metamaterials"> metamaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20Poisson%E2%80%99s%20ratio" title=" negative Poisson’s ratio"> negative Poisson’s ratio</a> </p> <a href="https://publications.waset.org/abstracts/161145/design-of-hybrid-auxetic-metamaterials-for-enhanced-energy-absorption-under-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4176</span> The Road to Tunable Structures: Comparison of Experimentally Characterised and Numerical Modelled Auxetic Perforated Sheet Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arthur%20Thirion">Arthur Thirion</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auxetic geometries allow the generation of a negative Poisson ratio (NPR) in conventional materials. This behaviour allows materials to have certain improved mechanical properties, including impact resistance and altered synclastic behaviour. This means these structures have significant potential when it comes to applications as chronic wound dressings. To this end, 6 different "perforated sheet" structure types were 3D printed. These structures all had variations of key geometrical features included cell length and angle. These were tested in compression and tension to assess their Poisson ratio. Both a positive and negative Poisson ratio was generated by the structures depending on the loading. The a/b ratio followed by θ has been shown to impact the Poisson ratio significantly. There is still a significant discrepancy between modelled and observed behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetic%20materials" title="auxetic materials">auxetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20Poisson%27s%20ratio" title=" negative Poisson's ratio"> negative Poisson's ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable%20Poisson%27s%20ratio" title=" tunable Poisson's ratio"> tunable Poisson's ratio</a> </p> <a href="https://publications.waset.org/abstracts/144046/the-road-to-tunable-structures-comparison-of-experimentally-characterised-and-numerical-modelled-auxetic-perforated-sheet-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4175</span> A Modified Periodic 2D Cellular Re-Entrant Honeycomb Model to Enhance the Auxetic Elastic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sohaib%20Z.%20Khan">Sohaib Z. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Farrukh%20Mustahsan"> Farrukh Mustahsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20R.%20I.%20Mahmoud"> Essam R. I. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Masood"> S. H. Masood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Materials or structures that contract laterally on the application of a compressive load and vice versa are said to be Auxetic materials which exhibit Negative Poisson’s Ratio (NPR). Numerous auxetic structures are proposed in the literature. One of the most studied periodic auxetic structure is the re-entrant honeycomb model. In this paper, a modified re-entrant model is proposed to enhance the auxetic behavior. The paper aimed to investigate the elastic behaviour of the proposed model to improve Young’s modulus and NPR by evaluating the analytical model. Finite Element Analysis (FEA) is also conducted to support the analytical results. A significant increment in Young’s modulus and NPR can be achieved in one of the two orthogonal directions of the loading at the cost of compromising these values in other direction. The proposed modification resulted in lower relative densities when compared to the existing re-entrant honeycomb structure. A trade-off in the elastic properties in one direction at low relative density makes the proposed model suitable for uni-direction applications where higher stiffness and NPR is required, and strength to weight ratio is important. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20model" title="2D model">2D model</a>, <a href="https://publications.waset.org/abstracts/search?q=auxetic%20materials" title=" auxetic materials"> auxetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=re-entrant%20honeycomb" title=" re-entrant honeycomb"> re-entrant honeycomb</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20Poisson%27s%20ratio" title=" negative Poisson's ratio"> negative Poisson's ratio</a> </p> <a href="https://publications.waset.org/abstracts/110382/a-modified-periodic-2d-cellular-re-entrant-honeycomb-model-to-enhance-the-auxetic-elastic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4174</span> Forced Vibration of an Auxetic Cylindrical Shell Containing Fluid Under the Influence of Shock Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Korosh%20Khorshidi">Korosh Khorshidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increasing use of different materials, such as auxetic structures, it is necessary to investigate mechanical phenomena, such as vibration, in structures made of these types of materials. This paper examines the forced vibrations of a three-layer cylindrical shell containing inviscid fluid under shock load. All three layers are made of aluminum, and the central layer is made of a re-entrant honeycomb cell structure. Using high-order shear deformation theories (HSDT) and Hamilton’s principle, the governing equations of the system have been extracted and solved by the Galerkin weighted residual method. The outputs of the Abaqus finite element software are used to validate the results. The system is investigated with both simple and clamped support conditions. Finally, this study investigates the influence of the geometrical parameters of the shell and the auxetic structure, as well as the type, intensity, duration, and location of the load, and the effect of the fluid on the dynamic and time responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=force%20vibration" title="force vibration">force vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20shell" title=" cylindrical shell"> cylindrical shell</a>, <a href="https://publications.waset.org/abstracts/search?q=auxetic%20structure" title=" auxetic structure"> auxetic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=inviscid%20fluid" title=" inviscid fluid"> inviscid fluid</a> </p> <a href="https://publications.waset.org/abstracts/184704/forced-vibration-of-an-auxetic-cylindrical-shell-containing-fluid-under-the-influence-of-shock-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4173</span> Development of Stretchable Woven Fabrics with Auxetic Behaviour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeel%20Zulifqar">Adeel Zulifqar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Hu"> Hong Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auxetic fabrics are a special kind of textile materials which possess negative Poisson’s ratio. Opposite to most of the conventional fabrics, auxetic fabrics get bigger in the transversal direction when stretched or get smaller when compressed. Auxetic fabrics are superior to conventional fabrics because of their counterintuitive properties, such as enhanced porosity under the extension, excellent formability to a curved surface and high energy absorption ability. Up till today, auxetic fabrics have been produced based on two approaches. The first approach involves using auxetic fibre or yarn and weaving technology to fabricate auxetic fabrics. The other method to fabricate the auxetic fabrics is by using non-auxetic yarns. This method has gained extraordinary curiosity of researcher in recent years. This method is based on realizing auxetic geometries into the fabric structure. In the woven fabric structure auxetic geometries can be realized by creating a differential shrinkage phenomenon into the fabric structural unit cell. This phenomenon can be created by using loose and tight weave combinations within the unit cell of interlacement pattern along with elastic and non-elastic yarns. Upon relaxation, the unit cell of interlacement pattern acquires a non-uniform shrinkage profile due to different shrinkage properties of loose and tight weaves in designed pattern, and the auxetic geometry is realized. The development of uni-stretch auxetic woven fabrics and bi-stretch auxetic woven fabrics by using this method has already been reported. This study reports the development of another kind of bi-stretch auxetic woven fabric. The fabric is first designed by transforming the auxetic geometry into interlacement pattern and then fabricated, using the available conventional weaving technology and non-auxetic elastic and non-elastic yarns. The tensile tests confirmed that the developed bi-stretch auxetic woven fabrics exhibit negative Poisson’s ratio over a wide range of tensile strain. Therefore, it can be concluded that the auxetic geometry can be realized into the woven fabric structure by creating the phenomenon of differential shrinkage and bi-stretch woven fabrics made of non-auxetic yarns having auxetic behavior and stretchability are possible can be obtained. Acknowledgement: This work was supported by the Research Grants Council of Hong Kong Special Administrative Region Government (grant number 15205514). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetic" title="auxetic">auxetic</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20shrinkage" title=" differential shrinkage"> differential shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20Poisson%27s%20ratio" title=" negative Poisson's ratio"> negative Poisson's ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=weaving" title=" weaving"> weaving</a>, <a href="https://publications.waset.org/abstracts/search?q=stretchable" title=" stretchable"> stretchable</a> </p> <a href="https://publications.waset.org/abstracts/100076/development-of-stretchable-woven-fabrics-with-auxetic-behaviour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4172</span> Transformation of Hexagonal Cells into Auxetic in Core Honeycomb Furniture Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerzy%20Smardzewski">Jerzy Smardzewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structures with negative Poisson's ratios are called auxetic. They are characterized by better mechanical properties than conventional structures, especially shear strength, the ability to better absorb energy and increase strength during bending, especially in sandwich panels. Commonly used paper cores of cellular boards are made of hexagonal cells. With isotropic facings, these cells provide isotropic properties of the entire furniture board. Shelves made of such panels with a thickness similar to standard chipboards do not provide adequate stiffness and strength of the furniture. However, it is possible to transform the shape of hexagonal cells into polyhedral auxetic cells that improve the mechanical properties of the core. The work aimed to transform the hexagonal cells of the paper core into auxetic cells and determine their basic mechanical properties. Using numerical methods, it was decided to design the most favorable proportions of cells distinguished by the lowest Poisson's ratio and the highest modulus of linear elasticity. Standard cores for cellular boards commonly used to produce 34 mm thick furniture boards were used for the tests. Poisson's ratios, bending strength, and linear elasticity moduli were determined for such cores and boards. Then, the cells were transformed into auxetic structures, and analogous cellular boards were made for which mechanical properties were determined. The results of numerical simulations for which the variable parameters were the dimensions of the cell walls, wall inclination angles, and relative cell density were presented in the further part of the paper. Experimental tests and numerical simulations showed the beneficial effect of auxeticization on the mechanical quality of furniture panels. They allowed for the selection of the optimal shape of auxetic core cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetics" title="auxetics">auxetics</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb" title=" honeycomb"> honeycomb</a>, <a href="https://publications.waset.org/abstracts/search?q=panels" title=" panels"> panels</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a> </p> <a href="https://publications.waset.org/abstracts/194637/transformation-of-hexagonal-cells-into-auxetic-in-core-honeycomb-furniture-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4171</span> Characterization of 3D Printed Re-Entrant Chiral Auxetic Geometries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatheer%20Zahra">Tatheer Zahra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auxetic materials have counteractive properties due to re-entrant geometry that enables them to possess Negative Poisson’s Ratio (NPR). These materials have better energy absorbing and shock resistance capabilities as compared to conventional positive Poisson’s ratio materials. The re-entrant geometry can be created through 3D printing for convenient application of these materials. This paper investigates the mechanical properties of 3D printed chiral auxetic geometries of various sizes. Small scale samples were printed using an ordinary 3D printer and were tested under compression and tension to ascertain their strength and deformation characteristics. A maximum NPR of -9 was obtained under compression and tension. The re-entrant chiral cell size has been shown to affect the mechanical properties of the re-entrant chiral auxetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetic%20materials" title="auxetic materials">auxetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=Negative%20Poisson%E2%80%99s%20Ratio" title=" Negative Poisson’s Ratio"> Negative Poisson’s Ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=re-entrant%20chiral%20auxetics" title=" re-entrant chiral auxetics"> re-entrant chiral auxetics</a> </p> <a href="https://publications.waset.org/abstracts/135218/characterization-of-3d-printed-re-entrant-chiral-auxetic-geometries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4170</span> Static Characterization of a Bio-Based Sandwich in a Humid Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeineb%20Kesentini">Zeineb Kesentini</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahim%20El%20Mahi"> Abderrahim El Mahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Luc%20Rebiere"> Jean Luc Rebiere</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20El%20Guerjouma"> Rachid El Guerjouma</a>, <a href="https://publications.waset.org/abstracts/search?q=Moez%20Beyaoui"> Moez Beyaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Haddar"> Mohamed Haddar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industries’ attention has been drawn to green and sustainable materials as a result of the present energy deficit and environmental damage. Sandwiches formed of auxetic structures made up of periodic cells are also being investigated by industry. Several tests have emphasized the exceptional properties of these materials. In this study, the sandwich's core is a one-cell auxetic core. Among plant fibers, flax fibers are chosen because of their good mechanical properties comparable to those of glass fibers. Poly (lactic acid) (PLA), as a green material, is available from starch, and its production process requires fewer fossil resources than petroleum-based plastics. A polylactic acid (PLA) reinforced with flax fiber filament was employed in this study. The manufacturing process used to manufacture the test specimens is 3D printing. The major drawback of a 100% bio-based material is its low resistance to moisture absorption. In this study, a sandwich based on PLA / flax with an auxetic core is characterized statically for different periods of immersion in water. Bending tests are carried out on the composite sandwich for three immersion time. Results are compared to those of non immersed specimens. It is found that non aged sandwich has the ultimate bending stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetic" title="auxetic">auxetic</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20tests" title=" bending tests"> bending tests</a>, <a href="https://publications.waset.org/abstracts/search?q=biobased%20composite" title=" biobased composite"> biobased composite</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20structure" title=" sandwich structure"> sandwich structure</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a> </p> <a href="https://publications.waset.org/abstracts/143570/static-characterization-of-a-bio-based-sandwich-in-a-humid-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4169</span> A Finite Element Analysis of Hexagonal Double-Arrowhead Auxetic Structure with Enhanced Energy Absorption Characteristics and Stiffness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keda%20Li">Keda Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Hu"> Hong Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auxetic materials, as an emerging artificial designed metamaterial has attracted growing attention due to their promising negative Poisson’s ratio behaviors and tunable properties. The conventional auxetic lattice structures for which the deformation process is governed by a bending-dominated mechanism have faced the limitation of poor mechanical performance for many potential engineering applications. Recently, both load-bearing and energy absorption capabilities have become a crucial consideration in auxetic structure design. This study reports the finite element analysis of a class of hexagonal double-arrowhead auxetic structures with enhanced stiffness and energy absorption performance. The structure design was developed by extending the traditional double-arrowhead honeycomb to a hexagon frame, the stretching-dominated deformation mechanism was determined according to Maxwell’s stability criterion. The finite element (FE) models of 2D lattice structures established with stainless steel material were analyzed in ABAQUS/Standard for predicting in-plane structural deformation mechanism, failure process, and compressive elastic properties. Based on the computational simulation, the parametric analysis was studied to investigate the effect of the structural parameters on Poisson’s ratio and mechanical properties. The geometrical optimization was then implemented to achieve the optimal Poisson’s ratio for the maximum specific energy absorption. In addition, the optimized 2D lattice structure was correspondingly converted into a 3D geometry configuration by using the orthogonally splicing method. The numerical results of 2D and 3D structures under compressive quasi-static loading conditions were compared separately with the traditional double-arrowhead re-entrant honeycomb in terms of specific Young's moduli, Poisson's ratios, and specified energy absorption. As a result, the energy absorption capability and stiffness are significantly reinforced with a wide range of Poisson’s ratio compared to traditional double-arrowhead re-entrant honeycomb. The auxetic behaviors, energy absorption capability, and yield strength of the proposed structure are adjustable with different combinations of joint angle, struts thickness, and the length-width ratio of the representative unit cell. The numerical prediction in this study suggests the proposed concept of hexagonal double-arrowhead structure could be a suitable candidate for the energy absorption applications with a constant request of load-bearing capacity. For future research, experimental analysis is required for the validation of the numerical simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetic" title="auxetic">auxetic</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption%20capacity" title=" energy absorption capacity"> energy absorption capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20Poisson%27s%20ratio" title=" negative Poisson's ratio"> negative Poisson's ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=re-entrant%20hexagonal%20honeycomb" title=" re-entrant hexagonal honeycomb"> re-entrant hexagonal honeycomb</a> </p> <a href="https://publications.waset.org/abstracts/149461/a-finite-element-analysis-of-hexagonal-double-arrowhead-auxetic-structure-with-enhanced-energy-absorption-characteristics-and-stiffness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4168</span> Development of an Auxetic Tissue Implant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhwinder%20K.%20Bhullar">Sukhwinder K. Bhullar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20G.%20Jun"> M. B. G. Jun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The developments in biomedical industry have demanded the development of biocompatible, high performance materials to meet higher engineering specifications. The general requirements of such materials are to provide a combination of high stiffness and strength with significant weight savings, resistance to corrosion, chemical resistance, low maintenance, and reduced costs. Auxetic materials which come under the category of smart materials offer huge potential through measured enhancements in mechanical properties. Unique deformation mechanism, providing cushioning on indentation, automatically adjustable with its strength and thickness in response to forces and having memory returns to its neutral state on dissipation of stresses make them good candidate in biomedical industry. As simple extension and compression of tissues is of fundamental importance in biomechanics, therefore, to study the elastic behaviour of auxetic soft tissues implant is targeted in this paper. Therefore development and characterization of auxetic soft tissue implant is studied in this paper. This represents a real life configuration where soft tissue such as meniscus in knee replacement, ligaments and tendons often are taken as transversely isotropic. Further, as composition of alternating polydisperse blocks of soft and stiff segments combined with excellent biocompatibility make polyurethanes one of the most promising synthetic biomaterials. Hence selecting auxetic polyurathylene foam functional characterization is performed and compared with conventional polyurathylene foam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetic%20materials" title="auxetic materials">auxetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20mechanism" title=" deformation mechanism"> deformation mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20mechanical%20properties" title=" enhanced mechanical properties"> enhanced mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20tissues" title=" soft tissues"> soft tissues</a> </p> <a href="https://publications.waset.org/abstracts/7948/development-of-an-auxetic-tissue-implant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4167</span> Resonant Auxetic Metamaterial for Automotive Applications in Vibration Isolation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrien%20Pyskir">Adrien Pyskir</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Collet"> Manuel Collet</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoran%20Dimitrijevic"> Zoran Dimitrijevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude-Henri%20Lamarque"> Claude-Henri Lamarque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decades, great efforts have been made to reduce acoustic and vibrational disturbances in transportations, as it has become a key feature for comfort. Today, isolation and design have neutralized most of the troublesome vibrations, so that cars are quieter and more comfortable than ever. However, some problems remain unsolved, in particular concerning low-frequency isolation and the frequency-dependent stiffening of materials like rubber. To sum it up, a balance has to be found between a high static stiffness to sustain the vibration source’s mass, and low dynamic stiffness, as wideband as possible. Systems meeting these criteria are yet to be designed. We thus investigated solutions inspired by metamaterials to control efficiently low-frequency wave propagation. Structures exhibiting a negative Poisson ratio, also called auxetic structures, are known to influence the propagation of waves through beaming or damping. However, their stiffness can be quite peculiar as well, as they can present regions of zero stiffness on the stress-strain curve for compression. In addition, auxetic materials can be easily adapted in many ways, inducing great tuning potential. Using finite element software COMSOL Multiphysics, a resonant design has been tested through statics and dynamics simulations. These results are compared to experimental results. In particular, the bandgaps featured by these structures are analyzed as a function of design parameters. Great stiffness properties can be observed, including low-frequency dynamic stiffness loss and broadband transmission loss. Such features are very promising for practical isolation purpose, and we hope to adopt this kind of metamaterial into an effective industrial damper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetics" title="auxetics">auxetics</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterials" title=" metamaterials"> metamaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20dynamics" title=" structural dynamics"> structural dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20isolation" title=" vibration isolation"> vibration isolation</a> </p> <a href="https://publications.waset.org/abstracts/103967/resonant-auxetic-metamaterial-for-automotive-applications-in-vibration-isolation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4166</span> Effects of Auxetic Antibacterial Zwitterion Carboxylate and Sulfate Copolymer Hydrogels for Diabetic Wound Healing Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Udayakumar%20Vee">Udayakumar Vee</a>, <a href="https://publications.waset.org/abstracts/search?q=Franck%20Quero"> Franck Quero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zwitterionic polymers generally have been viewed as a new class of antimicrobial and non-fouling materials. They offer a broad versatility for chemical modification and hence great freedom for accurate molecular design, which bear an equimolar number of homogenously distributed anionic and cationic groups along their polymer chains. This study explores the effectiveness of the auxetic zwitterion carboxylate/sulfonate hydrogel in the diabetic-induced mouse model. A series of silver metal-doped auxetic zwitterion carboxylate/sulfonate/vinylaniline copolymer hydrogels is designed via a 3D printer. Zwitterion monomers have been characterized by FT-IR and NMR techniques. The effect of changing the monomers and different loading ratios of Ag over zwitterion on the final hydrogel materials' antimicrobial properties and biocompatibility will be investigated in detail. The synthesized auxetic hydrogel has been characterized using a wide range of techniques to help establish the relationship between molecular level and macroscopic properties of these materials, including mechanical and antibacterial and biocompatibility and wound healing ability. This work's comparative studies and results provide new insights and guide us in choosing a better auxetic structured material for a broad spectrum of wound healing applications in the animal model. We expect this approach to provide a versatile and robust platform for biomaterial design that could lead to promising treatments for wound healing applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetic" title="auxetic">auxetic</a>, <a href="https://publications.waset.org/abstracts/search?q=zwitterion" title=" zwitterion"> zwitterion</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxylate" title=" carboxylate"> carboxylate</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfonate" title=" sulfonate"> sulfonate</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a> </p> <a href="https://publications.waset.org/abstracts/143952/effects-of-auxetic-antibacterial-zwitterion-carboxylate-and-sulfate-copolymer-hydrogels-for-diabetic-wound-healing-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4165</span> Antibacterial Zwitterion Carboxylate and Sulfonate Copolymer Auxetic Hydrogels for Diabetic Wound Healing Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Udayakumar%20Veerabagu">Udayakumar Veerabagu</a>, <a href="https://publications.waset.org/abstracts/search?q=Franck%20Quero"> Franck Quero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zwitterion carboxylate and sulfonate polymers generally have been viewed as a new class of antimicrobial and non-fouling materials. They offer a broad versatility for chemical modification and hence great freedom for accurate molecular design, which bear an equimolar number of homogenously distributed anionic and cationic groups along their polymer chains. This study explores the effectiveness of the auxetic zwitterion carboxylate/sulfonate hydrogel in the diabetic-induced mouse model. A series of silver metal-doped auxetic zwitterion carboxylate/sulfonate/vinylaniline copolymer hydrogels is designed via a 3D printer. Zwitterion monomers have been characterized by FT-IR and NMR techniques. The effect of changing the monomers and different loading ratios of Ag over zwitterion on the final hydrogel materials' antimicrobial properties and biocompatibility will be investigated in detail. The synthesized auxetic hydrogel has been characterized using a wide range of techniques to help establish the relationship between molecular level and macroscopic properties of these materials, including mechanical and antibacterial and biocompatibility and wound healing ability. This work's comparative studies and results provide new insights and guide us in choosing a better auxetic structured material for a broad spectrum of wound healing applications in the animal model. We expect this approach to provide a versatile and robust platform for biomaterial design that could lead to promising treatments for wound healing applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetic" title="auxetic">auxetic</a>, <a href="https://publications.waset.org/abstracts/search?q=zwitterion" title=" zwitterion"> zwitterion</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxylate" title=" carboxylate"> carboxylate</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfonate" title=" sulfonate"> sulfonate</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a> </p> <a href="https://publications.waset.org/abstracts/144230/antibacterial-zwitterion-carboxylate-and-sulfonate-copolymer-auxetic-hydrogels-for-diabetic-wound-healing-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4164</span> Effects of Hierarchy on Poisson’s Ratio and Phononic Bandgaps of Two-Dimensional Honeycomb Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davood%20Mousanezhad">Davood Mousanezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Vaziri"> Ashkan Vaziri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a traditional cellular structure, hexagonal honeycombs are known for their high strength-to-weight ratio. Here, we introduce a class of fractal-appearing hierarchical metamaterials by replacing the vertices of the original non-hierarchical hexagonal grid with smaller hexagons and iterating this process to achieve higher levels of hierarchy. It has been recently shown that the isotropic in-plane Young's modulus of this hierarchical structure at small deformations becomes 25 times greater than its regular counterpart with the same mass. At large deformations, we find that hierarchy-dependent elastic buckling introduced at relatively early stages of deformation decreases the value of Poisson's ratio as the structure is compressed uniaxially leading to auxeticity (i.e., negative Poisson's ratio) in subsequent stages of deformation. We also show that the topological hierarchical architecture and instability-induced pattern transformations of the structure under compression can be effectively used to tune the propagation of elastic waves within the structure. We find that the hierarchy tends to shift the existing phononic bandgaps (defined as frequency ranges of strong wave attenuation) to lower frequencies while opening up new bandgaps. Deformation is also demonstrated as another mechanism for opening more bandgaps in hierarchical structures. The results provide new insights into the role of structural organization and hierarchy in regulating mechanical properties of materials at both the static and dynamic regimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20structures" title="cellular structures">cellular structures</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycombs" title=" honeycombs"> honeycombs</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20structures" title=" hierarchical structures"> hierarchical structures</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterials" title=" metamaterials"> metamaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=multifunctional%20structures" title=" multifunctional structures"> multifunctional structures</a>, <a href="https://publications.waset.org/abstracts/search?q=phononic%20crystals" title=" phononic crystals"> phononic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=auxetic%20structures" title=" auxetic structures"> auxetic structures</a> </p> <a href="https://publications.waset.org/abstracts/51508/effects-of-hierarchy-on-poissons-ratio-and-phononic-bandgaps-of-two-dimensional-honeycomb-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4163</span> Retrofitting of Historical Structures in Van City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eylem%20G%C3%BCzel">Eylem Güzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G%C3%BClen"> Mustafa Gülen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historical structures are the most important symbols of a country that link the past with the future. In order to transfer them in their present conditions to the next generations, maintaining these historical structures are one of our main tasks. Seismic performance of historical structures damaged by the earthquake effects can be enhanced by repair and retrofitting applications. However, repair and retrofitting applications of historical structures are more complicated compared with the traditional structures. For this reason, they need much more attention in repair and retrofitting applications to preserve the spirit of historical structures. In this study, the present condition of selected historical structures built up in Van city that has a very rich historical heritage is given and the necessity of repair and retrofitting applications of historical structures are debated in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=historical%20structures" title="historical structures">historical structures</a>, <a href="https://publications.waset.org/abstracts/search?q=repair" title=" repair"> repair</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofitting" title=" retrofitting"> retrofitting</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20city" title=" Van city"> Van city</a> </p> <a href="https://publications.waset.org/abstracts/43496/retrofitting-of-historical-structures-in-van-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4162</span> Sustainable Design in the Use of Deployable Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umweni%20Osahon%20Joshua">Umweni Osahon Joshua</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Ianakiev"> Anton Ianakiev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deployable structures have been used in various scenarios from moving roofs in stadia, space antennae or booms. There has been a lot of literature relating deployable structures but with main focus on space applications. The complexities in the design of deployable structures may be the reason only few have been constructed for earth based solutions. This paper intends to explore the possibilities of integrating sustainable design concepts in deployable structures. Key aspects of sustainable design of structures as applicable to deployable structures have not been explored. Sustainable design of structures have mainly been concerned with static structures in the built environment. However, very little literature, concepts or framework has been drafted as it relates to deployable structures or their integration to static structures as a model for sustainable design. This article seeks to address this flaw in sustainable design for structural engineering and to provide a framework for designing structures in a sustainable manner. This framework will apply to deployable structures for earth-based environments as a form of disaster relief measures and also as part of static structures in the built environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deployable%20structures" title="deployable structures">deployable structures</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20design" title=" sustainable design"> sustainable design</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a>, <a href="https://publications.waset.org/abstracts/search?q=earth-based%20environments" title=" earth-based environments "> earth-based environments </a> </p> <a href="https://publications.waset.org/abstracts/15693/sustainable-design-in-the-use-of-deployable-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4161</span> Effects of Coastal Structure Construction on Ecosystem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Jahangirzadeh">Afshin Jahangirzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shatirah%20Akib"> Shatirah Akib</a>, <a href="https://publications.waset.org/abstracts/search?q=Keyvan%20Kimiaei"> Keyvan Kimiaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Basser"> Hossein Basser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coastal defense structures were built to protect part of shore from beach erosion and flooding by sea water. Effects of coastal defense structures can be negative or positive. Some of the effects are beneficial in socioeconomic aspect, but environment matters should be given more concerns because it can bring bad consequences to the earth landscape and make the ecosystem be unbalanced. This study concerns on the negative impacts as they are dominant. Coastal structures can extremely impact the shoreline configuration. Artificial structures can influence sediment transport, split the coastal space, etc. This can result in habitats loss and lead to noise and visual disturbance of birds. There are two types of coastal defense structures, hard coastal structure and soft coastal structure. Both coastal structures have their own impacts. The impacts are induced during the construction, maintaining, and operation of the structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title="ecosystem">ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20coastal%20structures" title=" hard coastal structures"> hard coastal structures</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20coastal%20structures" title=" soft coastal structures"> soft coastal structures</a> </p> <a href="https://publications.waset.org/abstracts/9173/effects-of-coastal-structure-construction-on-ecosystem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4160</span> Analysis of Determinate and Indeterminate Structures: Applications of Non-Economic Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toral%20Khalpada">Toral Khalpada</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanhai%20Joshi"> Kanhai Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, constructions of structures built in India are indeterminate structures. The purpose of this study is to investigate the application of a structure that is proved to be non-economical. The testing practice involves the application of different types of loads on both, determinate and indeterminate structure by computing it on a software system named Staad and also inspecting them practically on the construction site, analyzing the most efficient structure and diagnosing the utilization of the structure which is not so beneficial as compared to other. Redundant structures (indeterminate structure) are found to be more reasonable. All types of loads were applied on the beams of both determinate and indeterminate structures parallelly on the software and the same was done on the site practically which proved that maximum stresses in statically indeterminate structures are generally lower than those in comparable determinate structures. These structures are found to have higher stiffness resulting in lesser deformations so indeterminate structures are economical and are better than determinate structures to use for construction. On the other hand, statically determinate structures have the benefit of not producing stresses because of temperature changes. Therefore, our study tells that indeterminate structure is more beneficial but determinate structure also has used as it can be used in many areas; it can be used for the construction of two hinged arch bridges where two supports are sufficient and where there is no need for expensive indeterminate structure. Further investigation is needed to contrive more implementation of the determinate structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction" title="construction">construction</a>, <a href="https://publications.waset.org/abstracts/search?q=determinate%20structure" title=" determinate structure"> determinate structure</a>, <a href="https://publications.waset.org/abstracts/search?q=indeterminate%20structure" title=" indeterminate structure"> indeterminate structure</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/95993/analysis-of-determinate-and-indeterminate-structures-applications-of-non-economic-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4159</span> Structural Rehabilitation, Retrofitting and Strengthening of Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar">Manish Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced cement concrete is getting extensively used for construction of different type of structures for the last one century. During this period, we have constructed many structures like buildings, bridges, industrial structures, pavement, water tanks etc. using this construction material. These structures have been created with huge investment of resources. It is essential to maintain those structures in functional condition. Since deterioration in RCC Structures is a common and natural phenomenon it is required to have a detailed plan, methodology for structural repair and rehabilitation shall be in place for dealing such issues. It is important to know exact reason of distress, type of distress and correct method of repair concrete structures. The different methods of repair are described in paper according to distress category which can be refereed for repair. Major finding of the study is that to protect our structure we need to have maintenance frequency and correct material to be chosen for repair. Also workmanship during repair needs to be taken utmost care for quality repair. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deterioration" title="deterioration">deterioration</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20condition" title=" functional condition"> functional condition</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20cement%20concrete" title=" reinforced cement concrete"> reinforced cement concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=resources" title=" resources"> resources</a> </p> <a href="https://publications.waset.org/abstracts/41322/structural-rehabilitation-retrofitting-and-strengthening-of-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4158</span> Nonlinear Modelling and Analysis of Piezoelectric Smart Thin-Walled Structures in Supersonic Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu-Yang%20Zhang">Shu-Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang"> Shun-Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhan-Xi%20Wang"> Zhan-Xi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xian-Sheng%20Qin"> Xian-Sheng Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin-walled structures are used more and more widely in modern aircrafts and some other structures in aerospace field nowadays. Accompanied by the wider applications, the vibration of the structures has been a bigger problem. Because of the direct and converse piezoelectric effect, piezoelectric materials combined to host thin-walled structures, named as piezoelectric smart structures, can be an effective way to suppress the vibration. So, an accurate model for piezoelectric thin-walled structures in air flow is necessary and important. In our recent work, an electromechanical coupling nonlinear aerodynamic finite element model of piezoelectric smart thin-walled structures is built based on the Reissner-Mindlin plate theory and first-order piston theory for aerodynamic pressure of supersonic flow. Von Kármán type nonlinearity is considered in the present model. Finally, the model is validated by experimental and numerical results from the literature, which can describe the vibration of the structures in supersonic flow precisely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures" title="piezoelectric smart structures">piezoelectric smart structures</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title=" aerodynamic"> aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20nonlinearity" title=" geometric nonlinearity"> geometric nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/72915/nonlinear-modelling-and-analysis-of-piezoelectric-smart-thin-walled-structures-in-supersonic-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4157</span> Multiscale Structures and Their Evolution in a Screen Cylinder Wake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azlin%20Mohd%20Azmi">Azlin Mohd Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tongming%20Zhou"> Tongming Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Akira%20Rinoshika"> Akira Rinoshika</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng"> Liang Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been reduced to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multi-resolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequency f0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d > 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses at x/d =10 before being taken over by the large-scale structures (f0) further downstream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulent%20structure" title="turbulent structure">turbulent structure</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20cylinder" title=" screen cylinder"> screen cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20multi-resolution%20analysis" title=" wavelet multi-resolution analysis"> wavelet multi-resolution analysis</a> </p> <a href="https://publications.waset.org/abstracts/2815/multiscale-structures-and-their-evolution-in-a-screen-cylinder-wake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4156</span> Health Monitoring of Concrete Assets in Refinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Girish%20M.%20Bhatia">Girish M. Bhatia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the important structures in refinery complex are RCC Structures for which in-depth structural monitoring and inspection is required for incessant service. Reinforced concrete structures can be under threat from a combination of insidious challenges due to environmental conditions, including temperature and humidity that lead to accelerated deterioration mechanisms like carbonation, as well as marine exposure, above and below ground structures can experience ingress from aggressive ground waters carrying chlorides and sulphates leading to unexpected deterioration that threaten the integrity of a vital structural asset. By application of health monitoring techniques like corrosion monitoring with help of sensor probes, visual inspection of high rise structures with help of drones, it is possible to establish an early warning at the onset of these destructive processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20structures" title="concrete structures">concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20sensors" title=" corrosion sensors"> corrosion sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=drones" title=" drones"> drones</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20monitoring" title=" health monitoring"> health monitoring</a> </p> <a href="https://publications.waset.org/abstracts/37034/health-monitoring-of-concrete-assets-in-refinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4155</span> Evaluating Alternative Structures for Prefix Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feras%20Hanandeh">Feras Hanandeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Izzat%20Alsmadi"> Izzat Alsmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20M.%20Kwafha"> Muhammad M. Kwafha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prefix trees or tries are data structures that are used to store data or index of data. The goal is to be able to store and retrieve data by executing queries in quick and reliable manners. In principle, the structure of the trie depends on having letters in nodes at the different levels to point to the actual words in the leafs. However, the exact structure of the trie may vary based on several aspects. In this paper, we evaluated different structures for building tries. Using datasets of words of different sizes, we evaluated the different forms of trie structures. Results showed that some characteristics may impact significantly, positively or negatively, the size and the performance of the trie. We investigated different forms and structures for the trie. Results showed that using an array of pointers in each level to represent the different alphabet letters is the best choice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20structures" title="data structures">data structures</a>, <a href="https://publications.waset.org/abstracts/search?q=indexing" title=" indexing"> indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20structure" title=" tree structure"> tree structure</a>, <a href="https://publications.waset.org/abstracts/search?q=trie" title=" trie"> trie</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a> </p> <a href="https://publications.waset.org/abstracts/12226/evaluating-alternative-structures-for-prefix-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4154</span> Dynamic Response of Magnetorheological Fluid Tapered Laminated Beams Reinforced with Nano-Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saman%20Momeni">Saman Momeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolghassem%20Zabihollah"> Abolghassem Zabihollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Behzad"> Mehdi Behzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-uniform laminated composite structures are being used in many engineering applications where the structures are subjected to unpredicted vibration. To mitigate the vibration response of these structures, recently, magnetorheological fluid (MR), is added to non-uniform (tapered) thickness laminated composite structures to achieve a new generation of the smart composite as MR tapered beam. However, due to the nature of MR fluid, especially the low stiffness, MR tapered beam exhibit lower stiffness and in turn, lower natural frequencies. To achieve the basic design requirements of the structure without MR fluid, one may need to apply a predefined magnetic energy to the structures, requiring a constant source of energy. In the present work, a passive initial stiffness control of MR tapered beam has been studied. The effects of adding nanoparticles on the dynamic response of MR tapered beam has been investigated. It is observed that adding nanoparticles up to 3% may significantly modify the natural frequencies of the structures and achieve dynamic behavior of the structures before addition of MR fluid. Two Models of tapered structures have been taken into consideration. It is observed that adding only 3% of nanoparticles backs the structures to its initial dynamic behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20uniform%20laminated%20structures" title="non uniform laminated structures">non uniform laminated structures</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20fluid" title=" MR fluid"> MR fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a> </p> <a href="https://publications.waset.org/abstracts/79955/dynamic-response-of-magnetorheological-fluid-tapered-laminated-beams-reinforced-with-nano-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4153</span> Preparation Non-Woven Nanofiber Structures for Uniform and Rapid Drug Releasing Applications Using an Electrospinning Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cho-Liang%20Chung">Cho-Liang Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uniform and rapid drug release are important for trauma dressing application. Low glass transition polymer system and non-woven nanofiber structures as the designs conduct rapid-release characteristics. In this study, polyvinylpyrrolidone, polysulfone, and polystyrene were dissolved in dimethylformamide to form precursor solution. These solutions were blended with vitamin C to form the electrospinning solutions. The non-woven nanofibers structures were successfully prepared using an electrospinning process. The following instruments were used to analyze the characteristics of non-woven nanofibers structures: Atomic force microscopy (AFM), Field Emission Scanning Electron Microscope (FE-SEM), and X-ray Diffraction (XRD). The AFM was used to scan the nanofibers. 3D Graphics were applied to explore the surface morphology of nanofibers. FE-SEM was used to explore the morphology of non-woven structures. XRD was used to identify crystal structures in the non-woven structures. The evolution of morphology of non-woven structures was changed dramatically in different durations, because of the moisture absorption and decreasing glass transition temperature; the non-woven nanofiber structures can be applied to uniform and rapid drug release for trauma dressing application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title="nanofibers">nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=non-woven" title=" non-woven"> non-woven</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning%20process" title=" electrospinning process"> electrospinning process</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20drug%20releasing" title=" rapid drug releasing"> rapid drug releasing</a> </p> <a href="https://publications.waset.org/abstracts/95209/preparation-non-woven-nanofiber-structures-for-uniform-and-rapid-drug-releasing-applications-using-an-electrospinning-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4152</span> Architectural Advancements: Lightweight Structures and Future Applications in Ultra-High-Performance Concrete, Fabrics, and Flexible Photovoltaics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Pankaj%20Pawar">Pratik Pankaj Pawar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightweight structures - structures with reduced weight, which otherwise retain the qualities necessary for the building performance, ensuring proper durability and strength, safety, indoor environmental quality, and energy efficiency; structures that strive for the optimization of structural systems - are in tune with current trends and socio-economic, environmental, and technological factors. The growing interest in lightweight structures design makes them an ever more significant field of research. This article focuses on the architectural aspects of lightweight structures and on their contemporary and future applications. The selected advanced building technologies - i.e., Ultra-High-Performance Concrete, fabrics, and flexible photovoltaics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20weight%20building" title="light weight building">light weight building</a>, <a href="https://publications.waset.org/abstracts/search?q=carbyne" title=" carbyne"> carbyne</a>, <a href="https://publications.waset.org/abstracts/search?q=aerographite" title=" aerographite"> aerographite</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20reinforced%20wood%20particles%20aggregate" title=" geopolymer reinforced wood particles aggregate"> geopolymer reinforced wood particles aggregate</a> </p> <a href="https://publications.waset.org/abstracts/184505/architectural-advancements-lightweight-structures-and-future-applications-in-ultra-high-performance-concrete-fabrics-and-flexible-photovoltaics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4151</span> On the Creep of Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Brahma">A. Brahma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of deferred deformations of concrete under sustained load shows that the creep has a leading role on deferred deformations of concrete structures. Knowledge of the creep characteristics of concrete is a Necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable deformation in pre-stressed concrete or reinforced and the appropriate steps can be taken in design to accommodate this movement. In this study, we propose a prediction model that involves the acting principal parameters on the deferred behaviour of concrete structures. For the estimation of the model parameters Levenberg-Marquardt method has proven very satisfactory. A confrontation between the experimental results and the predictions of models designed shows that it is well suited to describe the evolution of the creep of concrete structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20structure" title="concrete structure">concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/36257/on-the-creep-of-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4150</span> A Review of Current Knowledge on Assessment of Precast Structures Using Fragility Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Akpinar">E. Akpinar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Erol"> A. Erol</a>, <a href="https://publications.waset.org/abstracts/search?q=M.F.%20Cakir"> M.F. Cakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precast reinforced concrete (RC) structures are excellent alternatives for construction world all over the globe, thanks to their rapid erection phase, ease mounting process, better quality and reasonable prices. Such structures are rather popular for industrial buildings. For the sake of economic importance of such industrial buildings as well as significance of safety, like every other type of structures, performance assessment and structural risk analysis are important. Fragility curves are powerful tools for damage projection and assessment for any sort of building as well as precast structures. In this study, a comparative review of current knowledge on fragility analysis of industrial precast RC structures were presented and findings in previous studies were compiled. Effects of different structural variables, parameters and building geometries as well as soil conditions on fragility analysis of precast structures are reviewed. It was aimed to briefly present the information in the literature about the procedure of damage probability prediction including fragility curves for such industrial facilities. It is found that determination of the aforementioned structural parameters as well as selecting analysis procedure are critically important for damage prediction of industrial precast RC structures using fragility curves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20prediction" title="damage prediction">damage prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20curve" title=" fragility curve"> fragility curve</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20buildings" title=" industrial buildings"> industrial buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20reinforced%20concrete%20structures" title=" precast reinforced concrete structures"> precast reinforced concrete structures</a> </p> <a href="https://publications.waset.org/abstracts/100004/a-review-of-current-knowledge-on-assessment-of-precast-structures-using-fragility-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4149</span> Fabrication of Highly-Ordered Interconnected Porous Polymeric Particles and Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alroaithi">Mohammad Alroaithi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porous polymeric materials have attracted a great attention due to their distinctive porous structure within a polymer matrix. They are characterised by the presence of external pores on the surface as well as inner interconnected windows. Conventional techniques to produce porous polymeric materials encounters major challenge in controlling the properties of the resultant structures including morphology, pores, cavities size, and porosity. Herein, we present a facile and versatile microfluidics technique for the fabrication of uniform porous polymeric structures with highly ordered and well-defined interconnected windows. The shapes of the porous structures can either be a microparticles or foam. Both shapes used microfluidics platform to first produce monodisperse emulsion. The uniform emulsions, were then consolidated into porous structures through UV photopolymerisation. The morphology, pores, cavities size, and porosity of the structures can be precisely manipulated by the flowrate. The proposed strategy might provide a key advantage for fabrication of uniform porous materials over many existing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer" title="polymer">polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20particles" title=" porous particles"> porous particles</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20structures" title=" porous structures"> porous structures</a> </p> <a href="https://publications.waset.org/abstracts/84709/fabrication-of-highly-ordered-interconnected-porous-polymeric-particles-and-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=auxetic%20structures&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=auxetic%20structures&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=auxetic%20structures&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=auxetic%20structures&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=auxetic%20structures&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=auxetic%20structures&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=auxetic%20structures&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=auxetic%20structures&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=auxetic%20structures&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=auxetic%20structures&page=139">139</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=auxetic%20structures&page=140">140</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=auxetic%20structures&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>