CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 92 results for author: <span class="mathjax">Cordiner, M A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Cordiner, M A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Cordiner%2C+M+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Cordiner, M A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07002">arXiv:2412.07002</a> <span> [<a href="https://arxiv.org/pdf/2412.07002">pdf</a>, <a href="https://arxiv.org/format/2412.07002">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Io's SO2 and NaCl Wind Fields From ALMA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Thelen%2C+A+E">Alexander E. Thelen</a>, <a href="/search/?searchtype=author&query=de+Kleer%2C+K">Katherine de Kleer</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=de+Pater%2C+I">Imke de Pater</a>, <a href="/search/?searchtype=author&query=Moullet%2C+A">Arielle Moullet</a>, <a href="/search/?searchtype=author&query=Luszcz-Cook%2C+S">Statia Luszcz-Cook</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07002v1-abstract-short" style="display: inline;"> We present spatially resolved measurements of SO$_2$ and NaCl winds on Io at several unique points in its orbit: before and after eclipse, and at maximum eastern and western elongation. The derived wind fields represent a unique case of meteorology in a rarified, volcanic atmosphere. Through the use of Doppler shift measurements in emission spectra obtained with the Atacama Large Millimeter/submil… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07002v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07002v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07002v1-abstract-full" style="display: none;"> We present spatially resolved measurements of SO$_2$ and NaCl winds on Io at several unique points in its orbit: before and after eclipse, and at maximum eastern and western elongation. The derived wind fields represent a unique case of meteorology in a rarified, volcanic atmosphere. Through the use of Doppler shift measurements in emission spectra obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) between $\sim346$-430GHz ($\sim0.70$-0.87 mm), line-of-sight winds up to $\sim-100$ m s$^{-1}$ in the approaching direction and >250 m s$^{-1}$ in the receding direction were derived for SO$_2$ at altitudes of $\sim10$-50 km, while NaCl winds consistently reached $\sim$|150-200| m s$^{-1}$ in localized regions up to $\sim30$ km above the surface. The wind distributions measured at maximum east and west Jovian elongations, and on the subJovian hemisphere pre- and post-eclipse, were found to be significantly different and complex, corroborating the results of simulations that include surface temperature and frost distribution, volcanic activity, and interactions with the Jovian magnetosphere. Further, the wind speeds of SO$_2$ and NaCl are often inconsistent in direction and magnitude, indicating that the processes that drive the winds for the two molecular species are different and potentially uncoupled; while the SO$_2$ wind field can be explained through a combination of sublimation-driven winds, plasma torus interactions, and plume activity, the NaCl winds appear to be primarily driven by the plasma torus. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07002v1-abstract-full').style.display = 'none'; document.getElementById('2412.07002v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 Figures, 2 Tables. Accepted for publication in ApJ Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00657">arXiv:2410.00657</a> <span> [<a href="https://arxiv.org/pdf/2410.00657">pdf</a>, <a href="https://arxiv.org/format/2410.00657">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Discovery of interstellar 1-cyanopyrene: a four-ring polycyclic aromatic hydrocarbon in TMC-1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Wenzel%2C+G">Gabi Wenzel</a>, <a href="/search/?searchtype=author&query=Cooke%2C+I+R">Ilsa R. Cooke</a>, <a href="/search/?searchtype=author&query=Changala%2C+P+B">P. Bryan Changala</a>, <a href="/search/?searchtype=author&query=Bergin%2C+E+A">Edwin A. Bergin</a>, <a href="/search/?searchtype=author&query=Zhang%2C+S">Shuo Zhang</a>, <a href="/search/?searchtype=author&query=Burkhardt%2C+A+M">Andrew M. Burkhardt</a>, <a href="/search/?searchtype=author&query=Byrne%2C+A+N">Alex N. Byrne</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Duffy%2C+M">Miya Duffy</a>, <a href="/search/?searchtype=author&query=Fried%2C+Z+T+P">Zachary T. P. Fried</a>, <a href="/search/?searchtype=author&query=Gupta%2C+H">Harshal Gupta</a>, <a href="/search/?searchtype=author&query=Holdren%2C+M+S">Martin S. Holdren</a>, <a href="/search/?searchtype=author&query=Lipnicky%2C+A">Andrew Lipnicky</a>, <a href="/search/?searchtype=author&query=Loomis%2C+R+A">Ryan A. Loomis</a>, <a href="/search/?searchtype=author&query=Shay%2C+H+T">Hannah Toru Shay</a>, <a href="/search/?searchtype=author&query=Shingledecker%2C+C+N">Christopher N. Shingledecker</a>, <a href="/search/?searchtype=author&query=Siebert%2C+M+A">Mark A. Siebert</a>, <a href="/search/?searchtype=author&query=Stewart%2C+D+A">D. Archie Stewart</a>, <a href="/search/?searchtype=author&query=Willis%2C+R+H+J">Reace H. J. Willis</a>, <a href="/search/?searchtype=author&query=Xue%2C+C">Ci Xue</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">Anthony J. Remijan</a>, <a href="/search/?searchtype=author&query=Wendlandt%2C+A+E">Alison E. Wendlandt</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+M+C">Michael C. McCarthy</a>, <a href="/search/?searchtype=author&query=McGuire%2C+B+A">Brett A. McGuire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00657v2-abstract-short" style="display: inline;"> Polycyclic aromatic hydrocarbons (PAHs) are expected to be the most abundant class of organic molecules in space. Their interstellar lifecycle is not well understood, and progress is hampered by difficulties detecting individual PAH molecules. Here, we present the discovery of CN-functionalized pyrene, a 4-ring PAH, in the dense cloud TMC-1 using the 100-m Green Bank Telescope. We derive an abunda… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00657v2-abstract-full').style.display = 'inline'; document.getElementById('2410.00657v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00657v2-abstract-full" style="display: none;"> Polycyclic aromatic hydrocarbons (PAHs) are expected to be the most abundant class of organic molecules in space. Their interstellar lifecycle is not well understood, and progress is hampered by difficulties detecting individual PAH molecules. Here, we present the discovery of CN-functionalized pyrene, a 4-ring PAH, in the dense cloud TMC-1 using the 100-m Green Bank Telescope. We derive an abundance of 1-cyanopyrene of ~1.52 x $10^{12}$ cm$^{-2}$, and from this estimate that the un-substituted pyrene accounts for up to ~0.03-0.3% of the carbon budget in the dense interstellar medium which trace the birth sites of stars and planets. The presence of pyrene in this cold (~10 K) molecular cloud agrees with its recent measurement in asteroid Ryugu where isotopic clumping suggest a cold, interstellar origin. The direct link to the birth site of our solar system is strengthened when we consider the solid state pyrene content in the pre-stellar materials compared to comets, which represent the most pristine material in the solar system. We estimate that solid state pyrene can account for 1% of the carbon within comets carried by this one single organic molecule. The abundance indicates pyrene is an "island of stability" in interstellar PAH chemistry and suggests a potential cold molecular cloud origin of the carbon carried by PAHs that is supplied to forming planetary systems, including habitable worlds such as our own. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00657v2-abstract-full').style.display = 'none'; document.getElementById('2410.00657v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version of manuscript revised to comply with licensing requirements</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05711">arXiv:2409.05711</a> <span> [<a href="https://arxiv.org/pdf/2409.05711">pdf</a>, <a href="https://arxiv.org/format/2409.05711">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Evidence for Surprising Heavy Nitrogen Isotopic Enrichment in Comet 46P/Wirtanen's Hydrogen Cyanide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Darnell%2C+K">K. Darnell</a>, <a href="/search/?searchtype=author&query=Bockele%C3%A9-Morvan%2C+D">D. Bockele茅-Morvan</a>, <a href="/search/?searchtype=author&query=Roth%2C+N+X">N. X. Roth</a>, <a href="/search/?searchtype=author&query=Biver%2C+N">N. Biver</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">S. N. Milam</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a>, <a href="/search/?searchtype=author&query=Boissier%2C+J">J. Boissier</a>, <a href="/search/?searchtype=author&query=Bonev%2C+B+P">B. P. Bonev</a>, <a href="/search/?searchtype=author&query=Qi%2C+C">C. Qi</a>, <a href="/search/?searchtype=author&query=Crovisier%2C+J">J. Crovisier</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">A. J. Remijan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05711v1-abstract-short" style="display: inline;"> 46P/Wirtanen is a Jupiter-family comet, probably originating from the Solar System's Kuiper belt, that now resides on a 5.4 year elliptical orbit. During its 2018 apparition, comet 46P passed unusually close to the Earth (within 0.08 au), presenting an outstanding opportunity for close-up observations of its inner coma. Here we present observations of HCN, H$^{13}$CN and HC$^{15}$N emission from 4… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05711v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05711v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05711v1-abstract-full" style="display: none;"> 46P/Wirtanen is a Jupiter-family comet, probably originating from the Solar System's Kuiper belt, that now resides on a 5.4 year elliptical orbit. During its 2018 apparition, comet 46P passed unusually close to the Earth (within 0.08 au), presenting an outstanding opportunity for close-up observations of its inner coma. Here we present observations of HCN, H$^{13}$CN and HC$^{15}$N emission from 46P using the Atacama Compact Array (ACA). The data were analyzed using the SUBLIME non-LTE radiative transfer code to derive $^{12}$C/$^{13}$C and $^{14}$N/$^{15}$N ratios. The HCN/H$^{13}$CN ratio is found to be consistent with a lack of significant $^{13}$C fractionation, whereas the HCN/HC$^{15}$N ratio of $68\pm27$ (using our most conservative $1蟽$ uncertainties), indicates a strong enhancement in $^{15}$N compared with the solar and terrestrial values. The observed $^{14}$N/$^{15}$N ratio is also significantly lower than the values of $\sim140$ found in previous comets, implying a strong $^{15}$N enrichment in 46P's HCN. This indicates that the nitrogen in Jupiter-family comets could reach larger isotopic enrichments than previously thought, with implications for the diversity of $^{14}$N/$^{15}$N ratios imprinted into icy bodies at the birth of the Solar System. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05711v1-abstract-full').style.display = 'none'; document.getElementById('2409.05711v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PSJ, September 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09627">arXiv:2407.09627</a> <span> [<a href="https://arxiv.org/pdf/2407.09627">pdf</a>, <a href="https://arxiv.org/format/2407.09627">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450865">10.1051/0004-6361/202450865 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A JWST/MIRI analysis of the ice distribution and PAH emission in the protoplanetary disk HH 48 NE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Sturm%2C+J+A">J. A. Sturm</a>, <a href="/search/?searchtype=author&query=McClure%2C+M+K">M. K. McClure</a>, <a href="/search/?searchtype=author&query=Harsono%2C+D">D. Harsono</a>, <a href="/search/?searchtype=author&query=Bergner%2C+J+B">J. B. Bergner</a>, <a href="/search/?searchtype=author&query=Dartois%2C+E">E. Dartois</a>, <a href="/search/?searchtype=author&query=Boogert%2C+A+C+A">A. C. A. Boogert</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Drozdovskaya%2C+M+N">M. N. Drozdovskaya</a>, <a href="/search/?searchtype=author&query=Ioppolo%2C+S">S. Ioppolo</a>, <a href="/search/?searchtype=author&query=Law%2C+C+J">C. J. Law</a>, <a href="/search/?searchtype=author&query=Lis%2C+D+C">D. C. Lis</a>, <a href="/search/?searchtype=author&query=McGuire%2C+B+A">B. A. McGuire</a>, <a href="/search/?searchtype=author&query=Melnick%2C+G+J">G. J. Melnick</a>, <a href="/search/?searchtype=author&query=Noble%2C+J+A">J. A. Noble</a>, <a href="/search/?searchtype=author&query=%C3%96berg%2C+K+I">K. I. 脰berg</a>, <a href="/search/?searchtype=author&query=Palumbo%2C+M+E">M. E. Palumbo</a>, <a href="/search/?searchtype=author&query=Pendleton%2C+Y+J">Y. J. Pendleton</a>, <a href="/search/?searchtype=author&query=Perotti%2C+G">G. Perotti</a>, <a href="/search/?searchtype=author&query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/?searchtype=author&query=Urso%2C+R+G">R. G. Urso</a>, <a href="/search/?searchtype=author&query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09627v1-abstract-short" style="display: inline;"> Ice-coated dust grains provide the main reservoir of volatiles that play an important role in planet formation processes and may become incorporated into planetary atmospheres. However, due to observational challenges, the ice abundance distribution in protoplanetary disks is not well constrained. We present JWST/MIRI observations of the edge-on disk HH 48 NE carried out as part of the IRS program… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09627v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09627v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09627v1-abstract-full" style="display: none;"> Ice-coated dust grains provide the main reservoir of volatiles that play an important role in planet formation processes and may become incorporated into planetary atmospheres. However, due to observational challenges, the ice abundance distribution in protoplanetary disks is not well constrained. We present JWST/MIRI observations of the edge-on disk HH 48 NE carried out as part of the IRS program Ice Age. We detect CO$_2$, NH$_3$, H$_2$O and tentatively CH$_4$ and NH$_4^+$. Radiative transfer models suggest that ice absorption features are produced predominantly in the 50-100 au region of the disk. The CO$_2$ feature at 15 micron probes a region closer to the midplane (z/r = 0.1-0.15) than the corresponding feature at 4.3 micron (z/r = 0.2-0.6), but all observations trace regions significantly above the midplane reservoirs where we expect the bulk of the ice mass to be located. Ices must reach a high scale height (z/r ~ 0.6; corresponding to modeled dust extinction Av ~ 0.1), in order to be consistent with the observed vertical distribution of the peak ice optical depths. The weakness of the CO$_2$ feature at 15 micron relative to the 4.3 micron feature and the red emission wing of the 4.3 micron CO$_2$ feature are both consistent with ices being located at high elevation in the disk. The retrieved NH$_3$ abundance and the upper limit on the CH$_3$OH abundance relative to H$_2$O are significantly lower than those in the interstellar medium (ISM), but consistent with cometary observations. Full wavelength coverage is required to properly study the abundance distribution of ices in disks. To explain the presence of ices at high disk altitudes, we propose two possible scenarios: a disk wind that entrains sufficient amounts of dust, thus blocking part of the stellar UV radiation, or vertical mixing that cycles enough ices into the upper disk layers to balance ice photodesorption. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09627v1-abstract-full').style.display = 'none'; document.getElementById('2407.09627v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures, accepted in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 689, A92 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01413">arXiv:2407.01413</a> <span> [<a href="https://arxiv.org/pdf/2407.01413">pdf</a>, <a href="https://arxiv.org/format/2407.01413">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> AtLAST Science Overview Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Booth%2C+M">Mark Booth</a>, <a href="/search/?searchtype=author&query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/?searchtype=author&query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/?searchtype=author&query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/?searchtype=author&query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/?searchtype=author&query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/?searchtype=author&query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/?searchtype=author&query=Liu%2C+D">Daizhong Liu</a>, <a href="/search/?searchtype=author&query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/?searchtype=author&query=Saintonge%2C+A">Am茅lie Saintonge</a>, <a href="/search/?searchtype=author&query=Smith%2C+M+W+L">Matthew W. L. Smith</a>, <a href="/search/?searchtype=author&query=Thelen%2C+A">Alexander Thelen</a>, <a href="/search/?searchtype=author&query=Wedemeyer%2C+S">Sven Wedemeyer</a>, <a href="/search/?searchtype=author&query=Akiyama%2C+K">Kazunori Akiyama</a>, <a href="/search/?searchtype=author&query=Andreon%2C+S">Stefano Andreon</a>, <a href="/search/?searchtype=author&query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/?searchtype=author&query=Bakx%2C+T+J+L+C">Tom J. L. C. Bakx</a>, <a href="/search/?searchtype=author&query=Bot%2C+C">Caroline Bot</a>, <a href="/search/?searchtype=author&query=Bower%2C+G">Geoffrey Bower</a>, <a href="/search/?searchtype=author&query=Braj%C5%A1a%2C+R">Roman Braj拧a</a>, <a href="/search/?searchtype=author&query=Chen%2C+C">Chian-Chou Chen</a>, <a href="/search/?searchtype=author&query=da+Cunha%2C+E">Elisabete da Cunha</a>, <a href="/search/?searchtype=author&query=Eden%2C+D">David Eden</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01413v2-abstract-short" style="display: inline;"> Submillimeter and millimeter wavelengths provide a unique view of the Universe, from the gas and dust that fills and surrounds galaxies to the chromosphere of our own Sun. Current single-dish facilities have presented a tantalising view of the brightest (sub-)mm sources, and interferometers have provided the exquisite resolution necessary to analyse the details in small fields, but there are still… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01413v2-abstract-full').style.display = 'inline'; document.getElementById('2407.01413v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01413v2-abstract-full" style="display: none;"> Submillimeter and millimeter wavelengths provide a unique view of the Universe, from the gas and dust that fills and surrounds galaxies to the chromosphere of our own Sun. Current single-dish facilities have presented a tantalising view of the brightest (sub-)mm sources, and interferometers have provided the exquisite resolution necessary to analyse the details in small fields, but there are still many open questions that cannot be answered with current facilities. In this report we summarise the science that is guiding the design of the Atacama Large Aperture Submillimeter Telescope (AtLAST). We demonstrate how tranformational advances in topics including star formation in high redshift galaxies, the diffuse circumgalactic medium, Galactic ecology, cometary compositions and solar flares motivate the need for a 50m, single-dish telescope with a 1-2 degree field of view and a new generation of highly multiplexed continuum and spectral cameras. AtLAST will have the resolution to drastically lower the confusion limit compared to current single-dish facilities, whilst also being able to rapidly map large areas of the sky and detect extended, diffuse structures. Its high sensitivity and large field of view will open up the field of submillimeter transient science by increasing the probability of serendipitous detections. Finally, the science cases listed here motivate the need for a highly flexible operations model capable of short observations of individual targets, large surveys, monitoring programmes, target of opportunity observations and coordinated observations with other observatories. AtLAST aims to be a sustainable, upgradeable, multipurpose facility that will deliver orders of magnitude increases in sensitivity and mapping speeds over current and planned submillimeter observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01413v2-abstract-full').style.display = 'none'; document.getElementById('2407.01413v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 12 figures. For further details on AtLAST see https://atlast.uio.no</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20140">arXiv:2405.20140</a> <span> [<a href="https://arxiv.org/pdf/2405.20140">pdf</a>, <a href="https://arxiv.org/format/2405.20140">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The key science drivers for the Atacama Large Aperture Submillimeter Telescope (AtLAST) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Booth%2C+M">Mark Booth</a>, <a href="/search/?searchtype=author&query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/?searchtype=author&query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/?searchtype=author&query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/?searchtype=author&query=Wedemeyer%2C+S">Sven Wedemeyer</a>, <a href="/search/?searchtype=author&query=Akiyama%2C+K">Kazunori Akiyama</a>, <a href="/search/?searchtype=author&query=Bower%2C+G">Geoffrey Bower</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/?searchtype=author&query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/?searchtype=author&query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/?searchtype=author&query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/?searchtype=author&query=Liu%2C+D">Daizhong Liu</a>, <a href="/search/?searchtype=author&query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/?searchtype=author&query=Saintonge%2C+A">Am茅lie Saintonge</a>, <a href="/search/?searchtype=author&query=Smith%2C+M">Matthew Smith</a>, <a href="/search/?searchtype=author&query=Thelen%2C+A+E">Alexander E. Thelen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20140v1-abstract-short" style="display: inline;"> Sub-mm and mm wavelengths provide a unique view of the Universe, from the gas and dust that fills and surrounds galaxies to the chromosphere of our own Sun. Current single-dish facilities have presented a tantalising view of the brightest (sub-)mm sources, and interferometers have provided the exquisite resolution necessary to analyse the details in small fields, but there are still many open ques… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20140v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20140v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20140v1-abstract-full" style="display: none;"> Sub-mm and mm wavelengths provide a unique view of the Universe, from the gas and dust that fills and surrounds galaxies to the chromosphere of our own Sun. Current single-dish facilities have presented a tantalising view of the brightest (sub-)mm sources, and interferometers have provided the exquisite resolution necessary to analyse the details in small fields, but there are still many open questions that cannot be answered with current facilities: Where are all the baryons? How do structures interact with their environments? What does the time-varying (sub-)mm sky look like? In order to make major advances on these questions and others, what is needed now is a facility capable of rapidly mapping the sky spatially, spectrally, and temporally, which can only be done by a high throughput, single-dish observatory. An extensive design study for this new facility is currently being undertaken. In this paper, we focus on the key science drivers and the requirements they place on the observatory. As a 50m single dish telescope with a 1-2掳 field of view, the strength of the Atacama Large Aperture Submillimeter Telescope (AtLAST) is in science where a large field of view, highly multiplexed instrumentation and sensitivity to faint large-scale structure is important. AtLAST aims to be a sustainable, upgradeable, multipurpose facility that will deliver orders of magnitude increases in sensitivity and mapping speeds over current and planned telescopes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20140v1-abstract-full').style.display = 'none'; document.getElementById('2405.20140v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, Conference proceedings paper for the 2024 SPIE Astronomical Telescopes + Instrumentation meeting</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02535">arXiv:2405.02535</a> <span> [<a href="https://arxiv.org/pdf/2405.02535">pdf</a>, <a href="https://arxiv.org/format/2405.02535">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Observations of Titan's Stratosphere During Northern Summer: Temperatures, CH3CN and CH3D Abundances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Thelen%2C+A+E">Alexander E. Thelen</a>, <a href="/search/?searchtype=author&query=Nixon%2C+C+A">Conor A. Nixon</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Lellouch%2C+E">Emmanuel Lellouch</a>, <a href="/search/?searchtype=author&query=Vinatier%2C+S">Sandrine Vinatier</a>, <a href="/search/?searchtype=author&query=Teanby%2C+N+A">Nicholas A. Teanby</a>, <a href="/search/?searchtype=author&query=Butler%2C+B">Bryan Butler</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Cosentino%2C+R+G">Richard G. Cosentino</a>, <a href="/search/?searchtype=author&query=de+Kleer%2C+K">Katherine de Kleer</a>, <a href="/search/?searchtype=author&query=Irwin%2C+P+G+J">Patrick G. J. Irwin</a>, <a href="/search/?searchtype=author&query=Gurwell%2C+M+A">Mark A. Gurwell</a>, <a href="/search/?searchtype=author&query=Kisiel%2C+Z">Zbigniew Kisiel</a>, <a href="/search/?searchtype=author&query=Moreno%2C+R">Raphael Moreno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02535v1-abstract-short" style="display: inline;"> Titan's atmospheric composition and dynamical state have previously been studied over numerous epochs by both ground- and space-based facilities. However, stratospheric measurements remain sparse during Titan's northern summer and fall. The lack of seasonal symmetry in observations of Titan's temperature field and chemical abundances raises questions about the nature of the middle atmosphere's mer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02535v1-abstract-full').style.display = 'inline'; document.getElementById('2405.02535v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02535v1-abstract-full" style="display: none;"> Titan's atmospheric composition and dynamical state have previously been studied over numerous epochs by both ground- and space-based facilities. However, stratospheric measurements remain sparse during Titan's northern summer and fall. The lack of seasonal symmetry in observations of Titan's temperature field and chemical abundances raises questions about the nature of the middle atmosphere's meridional circulation and evolution over Titan's 29-yr seasonal cycle that can only be answered through long-term monitoring campaigns. Here, we present maps of Titan's stratospheric temperature, acetonitrile (or methyl cyanide; CH$_3$CN), and monodeuterated methane (CH$_3$D) abundances following Titan's northern summer solstice obtained with Band 9 ($\sim0.43$ mm) ALMA observations. We find that increasing temperatures towards high-southern latitudes, currently in winter, resemble those observed during Titan's northern winter by the Cassini mission. Acetonitrile abundances have changed significantly since previous (sub)millimeter observations, and we find that the species is now highly concentrated at high-southern latitudes. The stratospheric CH$_3$D content is found to range between 4-8 ppm in these observations, and we infer the CH$_4$ abundance to vary between $\sim0.9-1.6\%$ through conversion with previously measured D/H values. A global value of CH$_4=1.15\%$ was retrieved, lending further evidence to the temporal and spatial variability of Titan's stratospheric methane when compared with previous measurements. Additional observations are required to determine the cause and magnitude of stratospheric enhancements in methane during these poorly understood seasons on Titan. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02535v1-abstract-full').style.display = 'none'; document.getElementById('2405.02535v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Planetary Science Journal. 9 Figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13133">arXiv:2404.13133</a> <span> [<a href="https://arxiv.org/pdf/2404.13133">pdf</a>, <a href="https://arxiv.org/format/2404.13133">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope \mbox{(AtLAST)} Science: Probing the Transient and Time-variable Sky </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T+J">Thomas J. Maccarone</a>, <a href="/search/?searchtype=author&query=Bright%2C+J">Joe Bright</a>, <a href="/search/?searchtype=author&query=Kaminski%2C+T">Tomasz Kaminski</a>, <a href="/search/?searchtype=author&query=Koss%2C+M">Michael Koss</a>, <a href="/search/?searchtype=author&query=Mohan%2C+A">Atul Mohan</a>, <a href="/search/?searchtype=author&query=Montenegro-Montes%2C+F+M">Francisco Miguel Montenegro-Montes</a>, <a href="/search/?searchtype=author&query=N%C3%A6ss%2C+S+u">Sig urd N忙ss</a>, <a href="/search/?searchtype=author&query=Ricci%2C+C">Claudio Ricci</a>, <a href="/search/?searchtype=author&query=Severgnini%2C+P">Paola Severgnini</a>, <a href="/search/?searchtype=author&query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/?searchtype=author&query=Vignali%2C+C">Cristian Vignali</a>, <a href="/search/?searchtype=author&query=Wedemeyer%2C+S">Sven Wedemeyer</a>, <a href="/search/?searchtype=author&query=Booth%2C+M">Mark Booth</a>, <a href="/search/?searchtype=author&query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/?searchtype=author&query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/?searchtype=author&query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/?searchtype=author&query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Greiner%2C+J">Jochen Greiner</a>, <a href="/search/?searchtype=author&query=Hatziminaoglou%2C+E">Evanthia Hatziminaoglou</a>, <a href="/search/?searchtype=author&query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/?searchtype=author&query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/?searchtype=author&query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/?searchtype=author&query=Liu%2C+D">Daizhong Liu</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13133v1-abstract-short" style="display: inline;"> The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13133v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13133v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13133v1-abstract-full" style="display: none;"> The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which are hard to study in other wavelengths. Submillimeter observations are sensitive to a number of emission mechanisms, from the aforementioned cold dust, to hot free-free emission, and synchrotron emission from energetic particles. Study of these phenomena has been hampered by a lack of prompt, high sensitivity submillimeter follow-up, as well as by a lack of high-sky-coverage submillimeter surveys. In this paper, we describe how the proposed Atacama Large Aperture Submillimeter Telescope (AtLAST) could fill in these gaps in our understanding of the transient universe. We discuss a number of science cases that would benefit from AtLAST observations, and detail how AtLAST is uniquely suited to contributing to them. In particular, AtLAST's large field of view will enable serendipitous detections of transient events, while its anticipated ability to get on source quickly and observe simultaneously in multiple bands make it also ideally suited for transient follow-up. We make theoretical predictions for the instrumental and observatory properties required to significantly contribute to these science cases, and compare them to the projected AtLAST capabilities. Finally, we consider the unique ways in which transient science cases constrain the observational strategies of AtLAST, and make prescriptions for how AtLAST should observe in order to maximize its transient science output without impinging on other science cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13133v1-abstract-full').style.display = 'none'; document.getElementById('2404.13133v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05525">arXiv:2404.05525</a> <span> [<a href="https://arxiv.org/pdf/2404.05525">pdf</a>, <a href="https://arxiv.org/format/2404.05525">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> ALMA Spectroscopy of Europa: A Search for Active Plumes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Thelen%2C+A+E">A. E. Thelen</a>, <a href="/search/?searchtype=author&query=Lai%2C+I+-">I. -L. Lai</a>, <a href="/search/?searchtype=author&query=Tseng%2C+W+-">W. -L. Tseng</a>, <a href="/search/?searchtype=author&query=Nixon%2C+C+A">C. A. Nixon</a>, <a href="/search/?searchtype=author&query=Kuan%2C+Y+-">Y. -J. Kuan</a>, <a href="/search/?searchtype=author&query=Villanueva%2C+G+L">G. L. Villanueva</a>, <a href="/search/?searchtype=author&query=Paganini%2C+L">L. Paganini</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a>, <a href="/search/?searchtype=author&query=Retherford%2C+K+D">K. D. Retherford</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05525v1-abstract-short" style="display: inline;"> The subsurface ocean of Europa is a high priority target in the search for extraterrestrial life, but direct investigations are hindered by the presence of a thick, exterior ice shell. Here we present spectral line and continuum maps of Europa obtained over four epochs in May-June 2021 using the Atacama Large Millimeter/submillimeter Array (ALMA), to search for molecular emission from atmospheric… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05525v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05525v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05525v1-abstract-full" style="display: none;"> The subsurface ocean of Europa is a high priority target in the search for extraterrestrial life, but direct investigations are hindered by the presence of a thick, exterior ice shell. Here we present spectral line and continuum maps of Europa obtained over four epochs in May-June 2021 using the Atacama Large Millimeter/submillimeter Array (ALMA), to search for molecular emission from atmospheric plumes, with the aim of investigating subsurface processes. Using a 3D physical model, we obtained upper limits for the plume abundances of HCN, H$_2$CO, SO$_2$ and CH$_3$OH. If active plume(s) were present, they contained very low abundances of these molecules. Assuming a total gas production rate of $10^{29}$ s$^{-1}$, our H$_2$CO abundance upper limit of $<0.016$\% is more than an order of magnitude less than measured in the Enceladus plume by the Cassini spacecraft, implying a possible chemical difference between the plume source materials for these two icy moons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05525v1-abstract-full').style.display = 'none'; document.getElementById('2404.05525v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to IAU Symposium 383 conference proceedings --- Astrochemistry VIII: From the First Galaxies to the Formation of Habitable Worlds</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02806">arXiv:2403.02806</a> <span> [<a href="https://arxiv.org/pdf/2403.02806">pdf</a>, <a href="https://arxiv.org/format/2403.02806">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) Science: Surveying the distant Universe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/?searchtype=author&query=Bakx%2C+T">Tom Bakx</a>, <a href="/search/?searchtype=author&query=De+Breuck%2C+C">Carlos De Breuck</a>, <a href="/search/?searchtype=author&query=Chen%2C+C">Chian-Chou Chen</a>, <a href="/search/?searchtype=author&query=Dannerbauer%2C+H">Helmut Dannerbauer</a>, <a href="/search/?searchtype=author&query=Magnelli%2C+B">Benjamin Magnelli</a>, <a href="/search/?searchtype=author&query=Montenegro-Montes%2C+F+M">Francisco Miguel Montenegro-Montes</a>, <a href="/search/?searchtype=author&query=Okumura%2C+T">Teppei Okumura</a>, <a href="/search/?searchtype=author&query=Pu%2C+S">Sy-Yun Pu</a>, <a href="/search/?searchtype=author&query=Rybak%2C+M">Matus Rybak</a>, <a href="/search/?searchtype=author&query=Saintonge%2C+A">Amelie Saintonge</a>, <a href="/search/?searchtype=author&query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/?searchtype=author&query=Hatziminaoglou%2C+E">Evanthia Hatziminaoglou</a>, <a href="/search/?searchtype=author&query=Hilhorst%2C+J">Juliette Hilhorst</a>, <a href="/search/?searchtype=author&query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/?searchtype=author&query=Lee%2C+M">Minju Lee</a>, <a href="/search/?searchtype=author&query=Lovell%2C+C+C">Christopher C. Lovell</a>, <a href="/search/?searchtype=author&query=Lundgren%2C+A">Andreas Lundgren</a>, <a href="/search/?searchtype=author&query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/?searchtype=author&query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/?searchtype=author&query=Sommovigo%2C+L">Laura Sommovigo</a>, <a href="/search/?searchtype=author&query=Booth%2C+M">Mark Booth</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Ivison%2C+R">Rob Ivison</a>, <a href="/search/?searchtype=author&query=Johnstone%2C+D">Doug Johnstone</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02806v1-abstract-short" style="display: inline;"> During the most active period of star formation in galaxies, which occurs in the redshift range 1<z<3, strong bursts of star formation result in significant quantities of dust, which obscures new stars being formed as their UV/optical light is absorbed and then re-emitted in the infrared, which redshifts into the mm/sub-mm bands for these early times. To get a complete picture of the high-z galaxy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02806v1-abstract-full').style.display = 'inline'; document.getElementById('2403.02806v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02806v1-abstract-full" style="display: none;"> During the most active period of star formation in galaxies, which occurs in the redshift range 1<z<3, strong bursts of star formation result in significant quantities of dust, which obscures new stars being formed as their UV/optical light is absorbed and then re-emitted in the infrared, which redshifts into the mm/sub-mm bands for these early times. To get a complete picture of the high-z galaxy population, we need to survey a large patch of the sky in the sub-mm with sufficient angular resolution to resolve all galaxies, but we also need the depth to fully sample their cosmic evolution, and therefore obtain their redshifts using direct mm spectroscopy with a very wide frequency coverage. This requires a large single-dish sub-mm telescope with fast mapping speeds at high sensitivity and angular resolution, a large bandwidth with good spectral resolution and multiplex spectroscopic capabilities. The proposed 50-m Atacama Large Aperture Submillimeter Telescope (AtLAST) will deliver these specifications. We discuss how AtLAST allows us to study the whole population of high-z galaxies, including the dusty star-forming ones which can only be detected and studied in the sub-mm, and obtain a wealth of information for each of these up to z~7: gas content, cooling budget, star formation rate, dust mass, and dust temperature. We present worked examples of surveys that AtLAST can perform, both deep and wide, and also focused on galaxies in proto-clusters. In addition we show how such surveys with AtLAST can measure the growth rate and the Hubble constant with high accuracy, and demonstrate the power of the line-intensity mapping method in the mm/sub-mm wavebands to constrain the cosmic expansion history at high redshifts, as good examples of what can uniquely be done by AtLAST in this research field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02806v1-abstract-full').style.display = 'none'; document.getElementById('2403.02806v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures, submitted to Open Research Europe as part of the AtLAST collection</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02258">arXiv:2403.02258</a> <span> [<a href="https://arxiv.org/pdf/2403.02258">pdf</a>, <a href="https://arxiv.org/format/2403.02258">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) Science: Planetary and Cometary Atmospheres </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Thelen%2C+A+E">Alexander E. Thelen</a>, <a href="/search/?searchtype=author&query=Cavali%C3%A9%2C+T">Thibault Cavali茅</a>, <a href="/search/?searchtype=author&query=Cosentino%2C+R">Richard Cosentino</a>, <a href="/search/?searchtype=author&query=Fletcher%2C+L+N">Leigh N. Fletcher</a>, <a href="/search/?searchtype=author&query=Gurwell%2C+M">Mark Gurwell</a>, <a href="/search/?searchtype=author&query=de+Kleer%2C+K">Katherine de Kleer</a>, <a href="/search/?searchtype=author&query=Kuan%2C+Y">Yi-Jehng Kuan</a>, <a href="/search/?searchtype=author&query=Lellouch%2C+E">Emmanuel Lellouch</a>, <a href="/search/?searchtype=author&query=Moullet%2C+A">Arielle Moullet</a>, <a href="/search/?searchtype=author&query=Nixon%2C+C">Conor Nixon</a>, <a href="/search/?searchtype=author&query=de+Pater%2C+I">Imke de Pater</a>, <a href="/search/?searchtype=author&query=Teanby%2C+N+A">Nicholas A. Teanby</a>, <a href="/search/?searchtype=author&query=Butler%2C+B">Bryan Butler</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S">Steven Charnley</a>, <a href="/search/?searchtype=author&query=Moreno%2C+R">Raphael Moreno</a>, <a href="/search/?searchtype=author&query=Booth%2C+M">Mark Booth</a>, <a href="/search/?searchtype=author&query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/?searchtype=author&query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/?searchtype=author&query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/?searchtype=author&query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/?searchtype=author&query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/?searchtype=author&query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/?searchtype=author&query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/?searchtype=author&query=Liu%2C+D">Daizhong Liu</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02258v2-abstract-short" style="display: inline;"> The study of planets and small bodies within our Solar System is fundamental for understanding the formation and evolution the Earth and other planets. Compositional and meteorological studies of the giant planets provide a foundation for understanding the nature of the most commonly observed exoplanets, while spectroscopic observations of the atmospheres of terrestrial planets, moons, and comets… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02258v2-abstract-full').style.display = 'inline'; document.getElementById('2403.02258v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02258v2-abstract-full" style="display: none;"> The study of planets and small bodies within our Solar System is fundamental for understanding the formation and evolution the Earth and other planets. Compositional and meteorological studies of the giant planets provide a foundation for understanding the nature of the most commonly observed exoplanets, while spectroscopic observations of the atmospheres of terrestrial planets, moons, and comets provide insights into the past and present-day habitability of planetary environments, and the availability of the chemical ingredients for life. While prior and existing (sub)millimeter observations have led to major advances in these areas, progress is hindered by limitations in the dynamic range, spatial and temporal coverage, as well as sensitivity of existing telescopes and interferometers. Here, we summarize some of the key planetary science use cases that factor into the design of the Atacama Large Aperture Submillimeter Telescope (AtLAST), a proposed 50-m class single dish facility: (1) to more fully characterize planetary wind fields and atmospheric thermal structures, (2) to measure the compositions of icy moon atmospheres and plumes, (3) to obtain detections of new, astrobiologically relevant gases and perform isotopic surveys of comets, and (4) to perform synergistic, temporally-resolved measurements in support of dedicated interplanetary space missions. The improved spatial coverage (several arcminutes), resolution ($\sim1.2''-12''$), bandwidth (several tens of GHz), dynamic range ($\sim10^5$) and sensitivity ($\sim1$ mK km s$^{-1}$) required by these science cases would enable new insights into the chemistry and physics of planetary environments, the origins of prebiotic molecules and the habitability of planetary systems in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02258v2-abstract-full').style.display = 'none'; document.getElementById('2403.02258v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Open Research Europe (AtLAST collection). 19 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01202">arXiv:2403.01202</a> <span> [<a href="https://arxiv.org/pdf/2403.01202">pdf</a>, <a href="https://arxiv.org/format/2403.01202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) science: Gas and dust in nearby galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Liu%2C+D">Daizhong Liu</a>, <a href="/search/?searchtype=author&query=Saintonge%2C+A">Amelie Saintonge</a>, <a href="/search/?searchtype=author&query=Bot%2C+C">Caroline Bot</a>, <a href="/search/?searchtype=author&query=Kemper%2C+F">Francisca Kemper</a>, <a href="/search/?searchtype=author&query=Lopez-Rodriguez%2C+E">Enrique Lopez-Rodriguez</a>, <a href="/search/?searchtype=author&query=Smith%2C+M+W+L">Matthew W. L. Smith</a>, <a href="/search/?searchtype=author&query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/?searchtype=author&query=Andreani%2C+P">Paola Andreani</a>, <a href="/search/?searchtype=author&query=Boselli%2C+A">Alessandro Boselli</a>, <a href="/search/?searchtype=author&query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/?searchtype=author&query=Davis%2C+T+A">Timothy A. Davis</a>, <a href="/search/?searchtype=author&query=Hagedorn%2C+B">Bendix Hagedorn</a>, <a href="/search/?searchtype=author&query=Lasrado%2C+A">Akhil Lasrado</a>, <a href="/search/?searchtype=author&query=Mao%2C+A">Ann Mao</a>, <a href="/search/?searchtype=author&query=Viti%2C+S">Serena Viti</a>, <a href="/search/?searchtype=author&query=Booth%2C+M">Mark Booth</a>, <a href="/search/?searchtype=author&query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/?searchtype=author&query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/?searchtype=author&query=Bigiel%2C+F">Frank Bigiel</a>, <a href="/search/?searchtype=author&query=Chevance%2C+M">Melanie Chevance</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/?searchtype=author&query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/?searchtype=author&query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T">Thomas Maccarone</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01202v1-abstract-short" style="display: inline;"> Understanding the physical processes that regulate star formation and galaxy evolution are major areas of activity in modern astrophysics. Nearby galaxies offer unique opportunities to inspect interstellar medium (ISM), star formation (SF), radiative, dynamic and magnetic physics in great detail from sub-galactic (kpc) scales to sub-cloud (sub-pc) scales, from quiescent galaxies to starbursts, and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01202v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01202v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01202v1-abstract-full" style="display: none;"> Understanding the physical processes that regulate star formation and galaxy evolution are major areas of activity in modern astrophysics. Nearby galaxies offer unique opportunities to inspect interstellar medium (ISM), star formation (SF), radiative, dynamic and magnetic physics in great detail from sub-galactic (kpc) scales to sub-cloud (sub-pc) scales, from quiescent galaxies to starbursts, and from field galaxies to overdensities. In this case study, we discuss the major breakthroughs in this area of research that will be enabled by the Atacama Large Aperture Submillimeter Telescope (AtLAST), a proposed 50-m single-dish submillimeter telescope. The new discovery space of AtLAST comes from its exceptional sensitivity, in particular to extended low surface brightness emission, a very large 2 degree field of view, and correspondingly high mapping efficiency. This paper focuses on four themes which will particularly benefit from AtLAST: 1) the LMC and SMC, 2) extragalactic magnetic fields, 3) the physics and chemistry of the interstellar medium, and 4) star formation and galaxy evolution. With ~1000-2000h surveys each, AtLAST could deliver deep dust continuum maps of the entire LMC and SMC fields at parsec-scale resolution, high-resolution maps of the magnetic field structure, gas density, temperature and composition of the dense and diffuse ISM in ~100 nearby galaxies, as well as the first large-scale blind CO survey in the nearby Universe, delivering molecular gas masses for up to 10^6 galaxies (3 orders of magnitude more than current samples). Through such observing campaigns, AtLAST will have a profound impact on our understanding of the baryon cycle and star formation across a wide range of environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01202v1-abstract-full').style.display = 'none'; document.getElementById('2403.01202v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figues, submitted to Open Research Europe as part of the AtLAST collection: https://open-research-europe.ec.europa.eu/collections/atlast/about</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00924">arXiv:2403.00924</a> <span> [<a href="https://arxiv.org/pdf/2403.00924">pdf</a>, <a href="https://arxiv.org/format/2403.00924">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) Science: The hidden circumgalactic medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lee%2C+M+M">Minju M. Lee</a>, <a href="/search/?searchtype=author&query=Schimek%2C+A">Alice Schimek</a>, <a href="/search/?searchtype=author&query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/?searchtype=author&query=Andreani%2C+P">Paola Andreani</a>, <a href="/search/?searchtype=author&query=Popping%2C+G">Gerg枚 Popping</a>, <a href="/search/?searchtype=author&query=Sommovigo%2C+L">Laura Sommovigo</a>, <a href="/search/?searchtype=author&query=Appleton%2C+P+N">Philip N. Appleton</a>, <a href="/search/?searchtype=author&query=Bischetti%2C+M">Manuela Bischetti</a>, <a href="/search/?searchtype=author&query=Cantalupo%2C+S">Sebastiano Cantalupo</a>, <a href="/search/?searchtype=author&query=Chen%2C+C">Chian-Chou Chen</a>, <a href="/search/?searchtype=author&query=Dannerbauer%2C+H">Helmut Dannerbauer</a>, <a href="/search/?searchtype=author&query=De+Breuck%2C+C">Carlos De Breuck</a>, <a href="/search/?searchtype=author&query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/?searchtype=author&query=Emonts%2C+B+H+C">Bjorn H. C. Emonts</a>, <a href="/search/?searchtype=author&query=Hatziminaoglou%2C+E">Evanthia Hatziminaoglou</a>, <a href="/search/?searchtype=author&query=Pensabene%2C+A">Antonio Pensabene</a>, <a href="/search/?searchtype=author&query=Rizzo%2C+F">Francesca Rizzo</a>, <a href="/search/?searchtype=author&query=Rybak%2C+M">Matus Rybak</a>, <a href="/search/?searchtype=author&query=Shen%2C+S">Sijing Shen</a>, <a href="/search/?searchtype=author&query=Lundgren%2C+A">Andreas Lundgren</a>, <a href="/search/?searchtype=author&query=Booth%2C+M">Mark Booth</a>, <a href="/search/?searchtype=author&query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/?searchtype=author&query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Johnstone%2C+D">Doug Johnstone</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00924v1-abstract-short" style="display: inline;"> Our knowledge of galaxy formation and evolution has incredibly progressed through multi-wavelength observational constraints of the interstellar medium (ISM) of galaxies at all cosmic epochs. However, little is known about the physical properties of the more diffuse and lower surface brightness reservoir of gas and dust that extends beyond ISM scales and fills dark matter haloes of galaxies up to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00924v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00924v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00924v1-abstract-full" style="display: none;"> Our knowledge of galaxy formation and evolution has incredibly progressed through multi-wavelength observational constraints of the interstellar medium (ISM) of galaxies at all cosmic epochs. However, little is known about the physical properties of the more diffuse and lower surface brightness reservoir of gas and dust that extends beyond ISM scales and fills dark matter haloes of galaxies up to their virial radii, the circumgalactic medium (CGM). New theoretical studies increasingly stress the relevance of the latter for understanding the feedback and feeding mechanisms that shape galaxies across cosmic times, whose cumulative effects leave clear imprints into the CGM. Recent studies are showing that a -- so far unconstrained -- fraction of the CGM mass may reside in the cold (T < 1e4 K) molecular and atomic phase, especially in high-redshift dense environments. These gas phases, together with the warmer ionised phase, can be studied in galaxies from z ~ 0 to z ~ 10 through bright far-infrared and sub-millimeter emission lines such as [C II] 158$渭$m, [O III] 88 $渭$m, [C I] 609$渭$m, [C I] 370$渭$m, and the rotational transitions of CO. Imaging such hidden cold CGM can lead to a breakthrough in galaxy evolution studies but requires a new facility with the specifications of the proposed Atacama Large Aperture Submillimeter Telescope (AtLAST). In this paper, we use theoretical and empirical arguments to motivate future ambitious CGM observations with AtLAST and describe the technical requirements needed for the telescope and its instrumentation to perform such science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00924v1-abstract-full').style.display = 'none'; document.getElementById('2403.00924v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Open Research Europe as part of the AtLAST collection: https://open-research-europe.ec.europa.eu/collections/atlast/about</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00920">arXiv:2403.00920</a> <span> [<a href="https://arxiv.org/pdf/2403.00920">pdf</a>, <a href="https://arxiv.org/format/2403.00920">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) Science: Solar and stellar observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Wedemeyer%2C+S">Sven Wedemeyer</a>, <a href="/search/?searchtype=author&query=Barta%2C+M">Miroslav Barta</a>, <a href="/search/?searchtype=author&query=Brajsa%2C+R">Roman Brajsa</a>, <a href="/search/?searchtype=author&query=Chai%2C+Y">Yi Chai</a>, <a href="/search/?searchtype=author&query=Costa%2C+J">Joaquim Costa</a>, <a href="/search/?searchtype=author&query=Gary%2C+D">Dale Gary</a>, <a href="/search/?searchtype=author&query=de+Castro%2C+G+G">Guillermo Gimenez de Castro</a>, <a href="/search/?searchtype=author&query=Gunar%2C+S">Stanislav Gunar</a>, <a href="/search/?searchtype=author&query=Fleishman%2C+G">Gregory Fleishman</a>, <a href="/search/?searchtype=author&query=Hales%2C+A">Antonio Hales</a>, <a href="/search/?searchtype=author&query=Hudson%2C+H">Hugh Hudson</a>, <a href="/search/?searchtype=author&query=Kirkaune%2C+M">Mats Kirkaune</a>, <a href="/search/?searchtype=author&query=Mohan%2C+A">Atul Mohan</a>, <a href="/search/?searchtype=author&query=Motorina%2C+G">Galina Motorina</a>, <a href="/search/?searchtype=author&query=Pellizzoni%2C+A">Alberto Pellizzoni</a>, <a href="/search/?searchtype=author&query=Saberi%2C+M">Maryam Saberi</a>, <a href="/search/?searchtype=author&query=Selhorst%2C+C+L">Caius L. Selhorst</a>, <a href="/search/?searchtype=author&query=Simoes%2C+P+J+A">Paulo J. A. Simoes</a>, <a href="/search/?searchtype=author&query=Shimojo%2C+M">Masumi Shimojo</a>, <a href="/search/?searchtype=author&query=Skokic%2C+I">Ivica Skokic</a>, <a href="/search/?searchtype=author&query=Sudar%2C+D">Davor Sudar</a>, <a href="/search/?searchtype=author&query=Menezes%2C+F">Fabian Menezes</a>, <a href="/search/?searchtype=author&query=White%2C+S">Stephen White</a>, <a href="/search/?searchtype=author&query=Booth%2C+M">Mark Booth</a>, <a href="/search/?searchtype=author&query=Klaassen%2C+P">Pamela Klaassen</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00920v3-abstract-short" style="display: inline;"> Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particul… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00920v3-abstract-full').style.display = 'inline'; document.getElementById('2403.00920v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00920v3-abstract-full" style="display: none;"> Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particular, simultaneous observations of the radiation continuum across an extended frequency range would facilitate the mapping of different layers and thus ultimately the 3D structure of the solar atmosphere. Mapping large regions on the Sun or even the whole solar disk at a very high temporal cadence would be crucial for systematically detecting and following the temporal evolution of flares, while synoptic observations, i.e., daily maps, over periods of years would provide an unprecedented view of the solar activity cycle in this wavelength regime. As our Sun is a fundamental reference for studying the atmospheres of active main sequence stars, observing the Sun and other stars with the same instrument would unlock the enormous diagnostic potential for understanding stellar activity and its impact on exoplanets. The Atacama Large Aperture Submillimeter Telescope (AtLAST), a single-dish telescope with 50\,m aperture proposed to be built in the Atacama desert in Chile, would be able to provide these observational capabilities. Equipped with a large number of detector elements for probing the radiation continuum across a wide frequency range, AtLAST would address a wide range of scientific topics including the thermal structure and heating of the solar chromosphere, flares and prominences, and the solar activity cycle. In this white paper, the key science cases and their technical requirements for AtLAST are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00920v3-abstract-full').style.display = 'none'; document.getElementById('2403.00920v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures, submitted to Open Research Europe as part of a collection on the Atacama Large Aperture Submillimeter Telescope (AtLAST) -- revised version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00917">arXiv:2403.00917</a> <span> [<a href="https://arxiv.org/pdf/2403.00917">pdf</a>, <a href="https://arxiv.org/format/2403.00917">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.12688/openreseurope.17450.1">10.12688/openreseurope.17450.1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) Science: Our Galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/?searchtype=author&query=Traficante%2C+A">Alessio Traficante</a>, <a href="/search/?searchtype=author&query=Beltr%C3%A1n%2C+M+T">Maria T. Beltr谩n</a>, <a href="/search/?searchtype=author&query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/?searchtype=author&query=Booth%2C+M">Mark Booth</a>, <a href="/search/?searchtype=author&query=Lovell%2C+J+B">Joshua B. Lovell</a>, <a href="/search/?searchtype=author&query=Marshall%2C+J+P">Jonathan P. Marshall</a>, <a href="/search/?searchtype=author&query=Hacar%2C+A">Alvaro Hacar</a>, <a href="/search/?searchtype=author&query=Gaches%2C+B+A+L">Brandt A. L. Gaches</a>, <a href="/search/?searchtype=author&query=Bot%2C+C">Caroline Bot</a>, <a href="/search/?searchtype=author&query=Peretto%2C+N">Nicolas Peretto</a>, <a href="/search/?searchtype=author&query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/?searchtype=author&query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/?searchtype=author&query=Cabral%2C+A+D">Ana Duarte Cabral</a>, <a href="/search/?searchtype=author&query=Duch%C3%AAne%2C+G">Gaspard Duch锚ne</a>, <a href="/search/?searchtype=author&query=Eden%2C+D+J">David J. Eden</a>, <a href="/search/?searchtype=author&query=Hales%2C+A">Antonio Hales</a>, <a href="/search/?searchtype=author&query=Kauffmann%2C+J">Jens Kauffmann</a>, <a href="/search/?searchtype=author&query=Luppe%2C+P">Patricia Luppe</a>, <a href="/search/?searchtype=author&query=Marino%2C+S">Sebastian Marino</a>, <a href="/search/?searchtype=author&query=Redaelli%2C+E">Elena Redaelli</a>, <a href="/search/?searchtype=author&query=Rigby%2C+A+J">Andrew J. Rigby</a>, <a href="/search/?searchtype=author&query=S%C3%A1nchez-Monge%2C+%C3%81">脕lvaro S谩nchez-Monge</a>, <a href="/search/?searchtype=author&query=Schisano%2C+E">Eugenio Schisano</a>, <a href="/search/?searchtype=author&query=Semenov%2C+D+A">Dmitry A. Semenov</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00917v1-abstract-short" style="display: inline;"> As we learn more about the multi-scale interstellar medium (ISM) of our Galaxy, we develop a greater understanding for the complex relationships between the large-scale diffuse gas and dust in Giant Molecular Clouds (GMCs), how it moves, how it is affected by the nearby massive stars, and which portions of those GMCs eventually collapse into star forming regions. The complex interactions of those… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00917v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00917v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00917v1-abstract-full" style="display: none;"> As we learn more about the multi-scale interstellar medium (ISM) of our Galaxy, we develop a greater understanding for the complex relationships between the large-scale diffuse gas and dust in Giant Molecular Clouds (GMCs), how it moves, how it is affected by the nearby massive stars, and which portions of those GMCs eventually collapse into star forming regions. The complex interactions of those gas, dust and stellar populations form what has come to be known as the ecology of our Galaxy. Because we are deeply embedded in the plane of our Galaxy, it takes up a significant fraction of the sky, with complex dust lanes scattered throughout the optically recognisable bands of the Milky Way. These bands become bright at (sub-)millimetre wavelengths, where we can study dust thermal emission and the chemical and kinematic signatures of the gas. To properly study such large-scale environments, requires deep, large area surveys that are not possible with current facilities. Moreover, where stars form, so too do planetary systems, growing from the dust and gas in circumstellar discs, to planets and planetesimal belts. Understanding the evolution of these belts requires deep imaging capable of studying belts around young stellar objects to Kuiper belt analogues around the nearest stars. Here we present a plan for observing the Galactic Plane and circumstellar environments to quantify the physical structure, the magnetic fields, the dynamics, chemistry, star formation, and planetary system evolution of the galaxy in which we live with AtLAST; a concept for a new, 50m single-dish sub-mm telescope with a large field of view which is the only type of facility that will allow us to observe our Galaxy deeply and widely enough to make a leap forward in our understanding of our local ecology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00917v1-abstract-full').style.display = 'none'; document.getElementById('2403.00917v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, submitted to Open Research Europe as part of the AtLAST collection: https://open-research-europe.ec.europa.eu/collections/atlast/about</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Open Res Europe 2024, 4:112 [version 1; peer review: 2 approved] </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00909">arXiv:2403.00909</a> <span> [<a href="https://arxiv.org/pdf/2403.00909">pdf</a>, <a href="https://arxiv.org/format/2403.00909">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Atacama Large Aperture Submillimeter Telescope (AtLAST) Science: Resolving the Hot and Ionized Universe through the Sunyaev-Zeldovich effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/?searchtype=author&query=Perrott%2C+Y">Yvette Perrott</a>, <a href="/search/?searchtype=author&query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/?searchtype=author&query=Andreon%2C+S">Stefano Andreon</a>, <a href="/search/?searchtype=author&query=Ettori%2C+S">Stefano Ettori</a>, <a href="/search/?searchtype=author&query=Simionescu%2C+A">Aurora Simionescu</a>, <a href="/search/?searchtype=author&query=Raghunathan%2C+S">Srinivasan Raghunathan</a>, <a href="/search/?searchtype=author&query=van+Marrewijk%2C+J">Joshiwa van Marrewijk</a>, <a href="/search/?searchtype=author&query=Cicone%2C+C">Claudia Cicone</a>, <a href="/search/?searchtype=author&query=Lee%2C+M">Minju Lee</a>, <a href="/search/?searchtype=author&query=Nelson%2C+D">Dylan Nelson</a>, <a href="/search/?searchtype=author&query=Sommovigo%2C+L">Laura Sommovigo</a>, <a href="/search/?searchtype=author&query=Booth%2C+M">Mark Booth</a>, <a href="/search/?searchtype=author&query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/?searchtype=author&query=Andreani%2C+P">Paola Andreani</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/?searchtype=author&query=van+Kampen%2C+E">Eelco van Kampen</a>, <a href="/search/?searchtype=author&query=Liu%2C+D">Daizhong Liu</a>, <a href="/search/?searchtype=author&query=Maccarone%2C+T+J">Thomas J. Maccarone</a>, <a href="/search/?searchtype=author&query=Morris%2C+T+W">Thomas W. Morris</a>, <a href="/search/?searchtype=author&query=Saintonge%2C+A">Am茅lie Saintonge</a>, <a href="/search/?searchtype=author&query=Smith%2C+M">Matthew Smith</a>, <a href="/search/?searchtype=author&query=Thelen%2C+A+E">Alexander E. Thelen</a>, <a href="/search/?searchtype=author&query=Wedemeyer%2C+S">Sven Wedemeyer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00909v1-abstract-short" style="display: inline;"> An omnipresent feature of the multi-phase ``cosmic web'' is that warm/hot (>$10^5$ K) ionized gas pervades it. This gas constitutes a relevant contribution to the overall universal matter budget across multiple scales, from the several tens of Mpc-scale IGM filaments, to the Mpc ICM, all the way down to the CGM surrounding individual galaxies, on scales from ~1 kpc up to their respective virial ra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00909v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00909v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00909v1-abstract-full" style="display: none;"> An omnipresent feature of the multi-phase ``cosmic web'' is that warm/hot (>$10^5$ K) ionized gas pervades it. This gas constitutes a relevant contribution to the overall universal matter budget across multiple scales, from the several tens of Mpc-scale IGM filaments, to the Mpc ICM, all the way down to the CGM surrounding individual galaxies, on scales from ~1 kpc up to their respective virial radii (~100 kpc). The study of the hot baryonic component of cosmic matter density represents a powerful means for constraining the intertwined evolution of galactic populations and large-scale cosmological structures, for tracing the matter assembly in the Universe and its thermal history. To this end, the SZ effect provides the ideal observational tool for measurements out to the beginnings of structure formation. The SZ effect is caused by the scattering of the photons from the cosmic microwave background off the hot electrons embedded within cosmic structures, and provides a redshift-independent perspective on the thermal and kinematic properties of the warm/hot gas. Still, current and future (sub)mm facilities have been providing only a partial view of the SZ Universe due to any combination of: limited angular resolution, spectral coverage, field of view, spatial dynamic range, sensitivity. In this paper, we motivate the development of a wide-field, broad-band, multi-chroic continuum instrument for the Atacama Large Aperture Submillimeter Telescope (AtLAST) by identifying the scientific drivers that will deepen our understanding of the complex thermal evolution of cosmic structures. On a technical side, this will necessarily require efficient multi-wavelength mapping of the SZ signal with an unprecedented spatial dynamic range (from arcsecond to degree scales) and we employ theoretical forecasts to determine the key instrumental constraints for achieving our goals. [abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00909v1-abstract-full').style.display = 'none'; document.getElementById('2403.00909v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 17 figures, 1 table. Submitted to Open Research Europe as part of the AtLAST Design Study collection: https://open-research-europe.ec.europa.eu/collections/atlast/about. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01957">arXiv:2402.01957</a> <span> [<a href="https://arxiv.org/pdf/2402.01957">pdf</a>, <a href="https://arxiv.org/format/2402.01957">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/PSJ/ac7050">10.3847/PSJ/ac7050 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Variability in Titan's Mesospheric HCN and Temperature Structure as Observed by ALMA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Thelen%2C+A+E">A. E. Thelen</a>, <a href="/search/?searchtype=author&query=Nixon%2C+C+A">C. A. Nixon</a>, <a href="/search/?searchtype=author&query=Cosentino%2C+R">R. Cosentino</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Teanby%2C+N+A">N. A. Teanby</a>, <a href="/search/?searchtype=author&query=Newman%2C+C+E">C. E. Newman</a>, <a href="/search/?searchtype=author&query=Irwin%2C+P+G+J">P. G. J. Irwin</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01957v1-abstract-short" style="display: inline;"> The temperature structure of Titan's upper atmosphere exhibits large variability resulting from numerous spatially and temporally irregular external energy sources, seasonal changes, and the influence of molecular species produced via photochemistry. In particular, Titan's relatively abundant HCN is thought to provide substantial cooling to the upper atmosphere through rotational emission, balanci… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01957v1-abstract-full').style.display = 'inline'; document.getElementById('2402.01957v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01957v1-abstract-full" style="display: none;"> The temperature structure of Titan's upper atmosphere exhibits large variability resulting from numerous spatially and temporally irregular external energy sources, seasonal changes, and the influence of molecular species produced via photochemistry. In particular, Titan's relatively abundant HCN is thought to provide substantial cooling to the upper atmosphere through rotational emission, balancing UV/EUV heating and thermal conduction. Here, we present the analysis of ALMA observations of Titan from 2012, 2014, 2015, and 2017, corresponding to planetocentric solar longitudes of ~34-89$^{\circ}$, including vertical HCN and temperature profiles retrieved from the lower mesosphere through the thermosphere (~350-1200 km; $3\times10^{-2}$-$2\times10^{-8}$ mbar). Throughout the atmosphere, temperature profiles differ by 10 to 30 K between observations approximately one Earth year apart, particularly from 600-900 km. We find evidence for a large imbalance in Titan's upper atmospheric energy budget between 2014 and 2015, where the mesospheric thermal structure changes significantly and marks the transition between a mesopause located at ~600 km ($2\times10^{-4}$ mbar) and at ~800 km ($3\times10^{-6}$ mbar). The retrieved HCN abundances vary dramatically during the 2012 to 2017 time period as well, showing close to 2 orders of magnitude difference in abundance at 1000 km. However, the change in HCN abundance does not appear to fully account for the variation in mesospheric temperatures over the $L_S\sim$34-89$^{\circ}$ period. These measurements provide additional insight into the variability of Titan's mesospheric composition and thermal structure following its 2009 vernal equinox, and motivate continued investigation of the origins of such rapid changes in Titan's atmosphere throughout its seasonal cycle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01957v1-abstract-full').style.display = 'none'; document.getElementById('2402.01957v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in the Planetary Science Journal. 25 pages, 11 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10014">arXiv:2312.10014</a> <span> [<a href="https://arxiv.org/pdf/2312.10014">pdf</a>, <a href="https://arxiv.org/format/2312.10014">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Charting Circumstellar Chemistry of Carbon-rich AGB Stars: I. ALMA 3 mm spectral surveys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Unnikrishnan%2C+R">R. Unnikrishnan</a>, <a href="/search/?searchtype=author&query=De+Beck%2C+E">E. De Beck</a>, <a href="/search/?searchtype=author&query=Nyman%2C+L+A">L. A. Nyman</a>, <a href="/search/?searchtype=author&query=Olofsson%2C+H">H. Olofsson</a>, <a href="/search/?searchtype=author&query=Vlemmings%2C+W+H+T">W. H. T. Vlemmings</a>, <a href="/search/?searchtype=author&query=Tafoya%2C+D">D. Tafoya</a>, <a href="/search/?searchtype=author&query=Maercker%2C+M">M. Maercker</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=de+Gregorio%2C+I">I. de Gregorio</a>, <a href="/search/?searchtype=author&query=Humphreys%2C+E">E. Humphreys</a>, <a href="/search/?searchtype=author&query=Millar%2C+T+J">T. J. Millar</a>, <a href="/search/?searchtype=author&query=Rawlings%2C+M+G">M. G. Rawlings</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10014v1-abstract-short" style="display: inline;"> AGB stars are major contributors to the chemical enrichment of the ISM through nucleosynthesis and extensive mass loss. Most of our current knowledge of AGB atmospheric and circumstellar chemistry, in particular in a C-rich environment, is based on observations of the carbon star IRC+10216. We aim to obtain a more generalised understanding of the chemistry in C-rich AGB CSEs by studying a sample o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10014v1-abstract-full').style.display = 'inline'; document.getElementById('2312.10014v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10014v1-abstract-full" style="display: none;"> AGB stars are major contributors to the chemical enrichment of the ISM through nucleosynthesis and extensive mass loss. Most of our current knowledge of AGB atmospheric and circumstellar chemistry, in particular in a C-rich environment, is based on observations of the carbon star IRC+10216. We aim to obtain a more generalised understanding of the chemistry in C-rich AGB CSEs by studying a sample of three carbon stars, IRAS15194-5115, IRAS15082-4808, and IRAS07454-7112, and test the archetypal status often attributed to IRC+10216. We performed spatially resolved, unbiased spectral surveys in ALMA Band 3. We identify a total of 132 rotational transitions from 49 molecular species. There are two main morphologies of the brightness distributions: centrally-peaked (e.g. HCN) and shell-like (e.g. C$_2$H). We estimated the sizes of the molecular emitting regions using azimuthally-averaged radial profiles of the line brightness distributions, and derived abundance estimates. Of the shell distributions, the cyanopolyynes peak at slightly smaller radii than the hydrocarbons, and CN and HNC show the most extended emission. The emitting regions for each species are the smallest for IRAS07454-7112. We find that, within the uncertainties of the analysis, the three stars present similar abundances for most species, also compared to IRC+10216. We find that SiO is more abundant in our three stars compared to IRC+10216. Our estimated isotopic ratios match well the literature values for the sources. The observed circumstellar chemistry appears very similar across our sample and compared to that of IRC+10216, both in terms of the relative location of the emitting regions and molecular abundances. This implies that, to a first approximation, the chemical models tailored to IRC+10216 are able to reproduce the observed chemistry in C-rich envelopes across roughly an order of magnitude in wind density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10014v1-abstract-full').style.display = 'none'; document.getElementById('2312.10014v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages. 13 figures and 8 tables in the main text. 5 appendices contain additional figures and tables. Appendix tables are available in electronic form at the CDS, along with the reprocessed ALMA cubes and spectra, at http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/ or via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5). Accepted for publication in Astronomy & Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07817">arXiv:2309.07817</a> <span> [<a href="https://arxiv.org/pdf/2309.07817">pdf</a>, <a href="https://arxiv.org/format/2309.07817">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> A JWST inventory of protoplanetary disk ices: The edge-on protoplanetary disk HH 48 NE, seen with the Ice Age ERS program </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Sturm%2C+J+A">J. A. Sturm</a>, <a href="/search/?searchtype=author&query=McClure%2C+M+K">M. K. McClure</a>, <a href="/search/?searchtype=author&query=Beck%2C+T+L">T. L. Beck</a>, <a href="/search/?searchtype=author&query=Harsono%2C+D">D. Harsono</a>, <a href="/search/?searchtype=author&query=Bergner%2C+J+B">J. B. Bergner</a>, <a href="/search/?searchtype=author&query=Dartois%2C+E">E. Dartois</a>, <a href="/search/?searchtype=author&query=Boogert%2C+A+C+A">A. C. A. Boogert</a>, <a href="/search/?searchtype=author&query=Chiar%2C+J+E">J. E. Chiar</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Drozdovskaya%2C+M+N">M. N. Drozdovskaya</a>, <a href="/search/?searchtype=author&query=Ioppolo%2C+S">S. Ioppolo</a>, <a href="/search/?searchtype=author&query=Law%2C+C+J">C. J. Law</a>, <a href="/search/?searchtype=author&query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/?searchtype=author&query=Lis%2C+D+C">D. C. Lis</a>, <a href="/search/?searchtype=author&query=Melnick%2C+G+J">G. J. Melnick</a>, <a href="/search/?searchtype=author&query=McGuire%2C+B+A">B. A. McGuire</a>, <a href="/search/?searchtype=author&query=Noble%2C+J+A">J. A. Noble</a>, <a href="/search/?searchtype=author&query=%C3%96berg%2C+K+I">K. I. 脰berg</a>, <a href="/search/?searchtype=author&query=Palumbo%2C+M+E">M. E. Palumbo</a>, <a href="/search/?searchtype=author&query=Pendleton%2C+Y+J">Y. J. Pendleton</a>, <a href="/search/?searchtype=author&query=Perotti%2C+G">G. Perotti</a>, <a href="/search/?searchtype=author&query=Pontoppidan%2C+K+M">K. M. Pontoppidan</a>, <a href="/search/?searchtype=author&query=Qasim%2C+D">D. Qasim</a>, <a href="/search/?searchtype=author&query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/?searchtype=author&query=Terada%2C+H">H. Terada</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07817v1-abstract-short" style="display: inline;"> Ices are the main carriers of volatiles in protoplanetary disks and are crucial to our understanding of the chemistry that ultimately sets the organic composition of planets. The ERS program Ice Age on the JWST follows the ice evolution through all stages of star and planet formation. JWST/NIRSpec observations of the edge-on Class II protoplanetary disk HH~48~NE reveal spatially resolved absorptio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07817v1-abstract-full').style.display = 'inline'; document.getElementById('2309.07817v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07817v1-abstract-full" style="display: none;"> Ices are the main carriers of volatiles in protoplanetary disks and are crucial to our understanding of the chemistry that ultimately sets the organic composition of planets. The ERS program Ice Age on the JWST follows the ice evolution through all stages of star and planet formation. JWST/NIRSpec observations of the edge-on Class II protoplanetary disk HH~48~NE reveal spatially resolved absorption features of the major ice components H$_2$O, CO$_2$, CO, and multiple weaker signatures from less abundant ices NH$_3$, OCN$^-$, and OCS. Isotopologue $^{13}$CO$_2$ ice has been detected for the first time in a protoplanetary disk. Since multiple complex light paths contribute to the observed flux, the ice absorption features are filled in by ice-free scattered light. The $^{12}$CO$_2$/$^{13}$CO$_2$ ratio of 14 implies that the $^{12}$CO$_2$ feature is saturated, without the flux approaching 0, indicative of a very high CO$_2$ column density on the line of sight, and a corresponding abundance with respect to hydrogen that is higher than ISM values by a factor of at least a few. Observations of rare isotopologues are crucial, as we show that the $^{13}$CO$_2$ observation allows us to determine the column density of CO$_2$ to be at an order of magnitude higher than the lower limit directly inferred from the observed optical depth. Radial variations in ice abundance, e.g., snowlines, are significantly modified since all observed photons have passed through the full radial extent of the disk. CO ice is observed at perplexing heights in the disk, extending to the top of the CO-emitting gas layer. We argue that the most likely interpretation is that we observe some CO ice at high temperatures, trapped in less volatile ices like H$_2$O and CO$_2$. Future radiative transfer models will be required to constrain the implications on our current understanding of disk physics and chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07817v1-abstract-full').style.display = 'none'; document.getElementById('2309.07817v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures, accepted for publication in A&A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14027">arXiv:2308.14027</a> <span> [<a href="https://arxiv.org/pdf/2308.14027">pdf</a>, <a href="https://arxiv.org/ps/2308.14027">ps</a>, <a href="https://arxiv.org/format/2308.14027">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202037581">10.1051/0004-6361/202037581 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The EDIBLES survey VI. Searching for time variations of interstellar absorption features </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Farhang%2C+A">Amin Farhang</a>, <a href="/search/?searchtype=author&query=Smoker%2C+J">Jonathan Smoker</a>, <a href="/search/?searchtype=author&query=Cox%2C+N+L+J">Nick L. J. Cox</a>, <a href="/search/?searchtype=author&query=Cami%2C+J">Jan Cami</a>, <a href="/search/?searchtype=author&query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/?searchtype=author&query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Sarre%2C+P+J">Peter J. Sarre</a>, <a href="/search/?searchtype=author&query=Khosroshahi%2C+H+G">Habib G. Khosroshahi</a>, <a href="/search/?searchtype=author&query=Ehrenfreund%2C+P">Pascale Ehrenfreund</a>, <a href="/search/?searchtype=author&query=Foing%2C+B+H">Bernard H. Foing</a>, <a href="/search/?searchtype=author&query=Kaper%2C+L">Lex Kaper</a>, <a href="/search/?searchtype=author&query=Laverick%2C+M">Mike Laverick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14027v1-abstract-short" style="display: inline;"> Interstellar lines observed toward stellar targets change slowly over long timescales, mainly due to the proper motion of the background target relative to the intervening clouds. On longer timescales, the cloud's slowly changing physical and chemical conditions can also cause variation. We searched for systematic variations in the absorption profiles of the diffuse interstellar bands (DIBs) and i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14027v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14027v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14027v1-abstract-full" style="display: none;"> Interstellar lines observed toward stellar targets change slowly over long timescales, mainly due to the proper motion of the background target relative to the intervening clouds. On longer timescales, the cloud's slowly changing physical and chemical conditions can also cause variation. We searched for systematic variations in the absorption profiles of the diffuse interstellar bands (DIBs) and interstellar atomic and molecular lines by comparing the high-quality data set from the ESO diffuse interstellar bands extensive exploration survey (EDIBLES) to older archival observations, bridging typical timescales of 10 years with a maximum timescale of 22 years. We found good archival observations for 64 EDIBLES targets. Our analysis focused on 31 DIBs, 7 atomic, and 5 molecular lines. We considered various systematic effects and applied a robust Bayesian test to establish which absorption features could display significant variations. While systematic effects greatly complicate our search, we find evidence for variations in the profiles of the $位位$4727 and 5780 DIBs in a few sightlines. Toward HD~167264, we find a new \ion{Ca}{i} cloud component that appears and becomes stronger after 2008. The same sightline furthermore displays marginal but systematic changes in the column densities of the atomic lines originating from the leading cloud component in the sightline. Similar variations are seen toward HD~147933. Our high-quality spectroscopic observations and archival data show that it is possible to probe interstellar time variations on time scales of typically a decade. Even though systematic uncertainties, as well as the generally somewhat lower quality of older data, complicate matters, we can conclude that time variations can be made visible, both in atomic lines and DIB profiles for a few targets, but that generally, these features are stable along many lines of sight. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14027v1-abstract-full').style.display = 'none'; document.getElementById('2308.14027v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">180 pages, 138 figures, accepted for publication in A&A journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 678, A148 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11486">arXiv:2307.11486</a> <span> [<a href="https://arxiv.org/pdf/2307.11486">pdf</a>, <a href="https://arxiv.org/format/2307.11486">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346402">10.1051/0004-6361/202346402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low NH$_{3}$/H$_{2}$O ratio in comet C/2020 F3 (NEOWISE) at 0.7 au from the Sun </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Drozdovskaya%2C+M+N">Maria N. Drozdovskaya</a>, <a href="/search/?searchtype=author&query=Bockel%C3%A9e-Morvan%2C+D">Dominique Bockel茅e-Morvan</a>, <a href="/search/?searchtype=author&query=Crovisier%2C+J">Jacques Crovisier</a>, <a href="/search/?searchtype=author&query=McGuire%2C+B+A">Brett A. McGuire</a>, <a href="/search/?searchtype=author&query=Biver%2C+N">Nicolas Biver</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">Stefanie N. Milam</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">Anthony J. Remijan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11486v1-abstract-short" style="display: inline;"> A lower-than-solar elemental nitrogen content has been demonstrated for several comets, including 1P/Halley and 67P/C-G with independent in situ measurements of volatile and refractory budgets. The recently discovered semi-refractory ammonium salts in 67P/C-G are thought to be the missing nitrogen reservoir in comets. The thermal desorption of ammonium salts from cometary dust particles leads to t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11486v1-abstract-full').style.display = 'inline'; document.getElementById('2307.11486v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11486v1-abstract-full" style="display: none;"> A lower-than-solar elemental nitrogen content has been demonstrated for several comets, including 1P/Halley and 67P/C-G with independent in situ measurements of volatile and refractory budgets. The recently discovered semi-refractory ammonium salts in 67P/C-G are thought to be the missing nitrogen reservoir in comets. The thermal desorption of ammonium salts from cometary dust particles leads to their decomposition into ammonia and a corresponding acid. The NH$_{3}$/H$_{2}$O ratio is expected to increase with decreasing heliocentric distance with evidence for this in near-infrared observations. NH$_{3}$ has been claimed to be more extended than expected for a nuclear source. Here, the aim is to constrain the NH$_{3}$/H$_{2}$O ratio in comet C/2020 F3 (NEOWISE) during its July 2020 passage. OH emission from comet C/2020 F3 (NEOWISE) was monitored for 2 months with NRT and observed from GBT on 24 July and 11 August 2020. Contemporaneously with the 24 July 2020 OH observations, the NH$_{3}$ hyperfine lines were targeted with GBT. The concurrent GBT and NRT observations allowed the OH quenching radius to be determined at $\left(5.96\pm0.10\right)\times10^{4}$ km on 24 July 2020, which is important for accurately deriving $Q(\text{OH})$. C/2020 F3 (NEOWISE) was a highly active comet with $Q(\text{H}_{2}\text{O}) \approx 2\times10^{30}$ molec s$^{-1}$ one day before perihelion. The $3蟽$ upper limit for $Q_{\text{NH}_{3}}/Q_{\text{H}_{2}\text{O}}$ is $<0.29\%$ at $0.7$ au from the Sun. The obtained NH$_{3}$/H$_{2}$O ratio is a factor of a few lower than measurements for other comets at such heliocentric distances. The abundance of NH$_{3}$ may vary strongly with time depending on the amount of water-poor dust in the coma. Lifted dust can be heated, fragmented, and super-heated; whereby, ammonium salts, if present, can rapidly thermally disintegrate and modify the NH$_{3}$/H$_{2}$O ratio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11486v1-abstract-full').style.display = 'none'; document.getElementById('2307.11486v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&A; 18 pages, 8 figures, 6 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 677, A157 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05908">arXiv:2306.05908</a> <span> [<a href="https://arxiv.org/pdf/2306.05908">pdf</a>, <a href="https://arxiv.org/format/2306.05908">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> ALMA Observations of the DART Impact: Characterizing the Ejecta at Sub-Millimeter Wavelengths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Roth%2C+N+X">Nathan X. Roth</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">Stefanie N. Milam</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">Anthony J. Remijan</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Busch%2C+M+W">Michael W. Busch</a>, <a href="/search/?searchtype=author&query=Thomas%2C+C+A">Cristina A. Thomas</a>, <a href="/search/?searchtype=author&query=Rivkin%2C+A+S">Andrew S. Rivkin</a>, <a href="/search/?searchtype=author&query=Moullet%2C+A">Arielle Moullet</a>, <a href="/search/?searchtype=author&query=Roush%2C+T+L">Ted L. Roush</a>, <a href="/search/?searchtype=author&query=Siebert%2C+M+A">Mark A. Siebert</a>, <a href="/search/?searchtype=author&query=Li%2C+J">Jian-Yang Li</a>, <a href="/search/?searchtype=author&query=Fahnestock%2C+E+G">Eugene G. Fahnestock</a>, <a href="/search/?searchtype=author&query=Trigo-Rodriguez%2C+J+M">Josep M. Trigo-Rodriguez</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Hirabayashi%2C+M">Masatoshi Hirabayashi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05908v2-abstract-short" style="display: inline;"> We report observations of the Didymos-Dimorphos binary asteroid system using the Atacama Large Millimeter/Submillimeter Array (ALMA) and the Atacama Compact Array (ACA) in support of the Double Asteroid Redirection Test (DART) mission. Our observations on UT 2022 September 15 provided a pre-impact baseline and the first measure of Didymos-Dimorphos' spectral emissivity at $位=0.87$ mm, which was co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05908v2-abstract-full').style.display = 'inline'; document.getElementById('2306.05908v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05908v2-abstract-full" style="display: none;"> We report observations of the Didymos-Dimorphos binary asteroid system using the Atacama Large Millimeter/Submillimeter Array (ALMA) and the Atacama Compact Array (ACA) in support of the Double Asteroid Redirection Test (DART) mission. Our observations on UT 2022 September 15 provided a pre-impact baseline and the first measure of Didymos-Dimorphos' spectral emissivity at $位=0.87$ mm, which was consistent with the handful of siliceous and carbonaceous asteroids measured at millimeter wavelengths. Our post-impact observations were conducted using four consecutive executions each of ALMA and the ACA spanning from T$+$3.52 to T$+$8.60 hours post-impact, sampling thermal emission from the asteroids and the impact ejecta. We scaled our pre-impact baseline measurement and subtracted it from the post-impact observations to isolate the flux density of mm-sized grains in the ejecta. Ejecta dust masses were calculated for a range of materials that may be representative of Dimorphos' S-type asteroid material. The average ejecta mass over our observations is consistent with 1.3--6.4$\times10^7$ kg, with the lower and higher values calculated for amorphous silicates and for crystalline silicates, respectively. Owing to the likely crystalline nature of S-type asteroid material, the higher value is favored. These ejecta masses represent 0.3--1.5\% of Dimorphos' total mass and are in agreement with lower limits on the ejecta mass based on measurements at optical wavelengths. Our results provide the most sensitive measure of mm-sized material in the ejecta and demonstrate the power of ALMA for providing supporting observations to spaceflight missions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05908v2-abstract-full').style.display = 'none'; document.getElementById('2306.05908v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.04822">arXiv:2305.04822</a> <span> [<a href="https://arxiv.org/pdf/2305.04822">pdf</a>, <a href="https://arxiv.org/format/2305.04822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ace0bc">10.3847/1538-4357/ace0bc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gas Sources from the Coma and Nucleus of Comet 46P/Wirtanen Observed Using ALMA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Roth%2C+N+X">N. X. Roth</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">S. N. Milam</a>, <a href="/search/?searchtype=author&query=Villanueva%2C+G">G. Villanueva</a>, <a href="/search/?searchtype=author&query=Bockelee-Morvan%2C+D">D. Bockelee-Morvan</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">A. J. Remijan</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a>, <a href="/search/?searchtype=author&query=Biver%2C+N">N. Biver</a>, <a href="/search/?searchtype=author&query=Lis%2C+D+C">D. C. Lis</a>, <a href="/search/?searchtype=author&query=Qi%2C+C">C. Qi</a>, <a href="/search/?searchtype=author&query=Bonev%2C+B">B. Bonev</a>, <a href="/search/?searchtype=author&query=Crovisier%2C+J">J. Crovisier</a>, <a href="/search/?searchtype=author&query=Boissier%2C+J">J. Boissier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.04822v3-abstract-short" style="display: inline;"> Gas-phase molecules in cometary atmospheres (comae) originate primarily from (1) outgassing by the nucleus, (2) sublimation of icy grains in the near-nucleus coma, and (3) coma (photo-)chemical processes. However, the majority of cometary gases observed at radio wavelengths have yet to be mapped, so their production/release mechanisms remain uncertain. Here we present observations of six molecular… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04822v3-abstract-full').style.display = 'inline'; document.getElementById('2305.04822v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.04822v3-abstract-full" style="display: none;"> Gas-phase molecules in cometary atmospheres (comae) originate primarily from (1) outgassing by the nucleus, (2) sublimation of icy grains in the near-nucleus coma, and (3) coma (photo-)chemical processes. However, the majority of cometary gases observed at radio wavelengths have yet to be mapped, so their production/release mechanisms remain uncertain. Here we present observations of six molecular species towards comet 46P/Wirtanen, obtained using the Atacama Large Millimeter/submillimeter Array (ALMA) during the comet's unusually close (~0.1 au) approach to Earth in December 2018. Interferometric maps of HCN, CH3OH, CH3CN, H2CO, CS and HNC were obtained at an unprecedented sky-projected spatial resolution of up to 25 km, enabling the nucleus and coma sources of these molecules to be accurately quantified. The HCN, CH3OH and CH3CN spatial distributions are consistent with production by direct outgassing from (or very near to) the nucleus, with a significant proportion of the observed CH3OH originating from sublimation of icy grains in the near-nucleus coma (at a scale-length $L_p=36\pm7$ km). On the other hand, H2CO, CS and HNC originate primarily from distributed coma sources (with $L_p$ values in the range 550-16,000 km), the identities of which remain to be established. The HCN, CH3OH and HNC abundances in 46P are consistent with the average values previously observed in comets, whereas the H2CO, CH3CN and CS abundances are relatively low. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04822v3-abstract-full').style.display = 'none'; document.getElementById('2305.04822v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Astrophysical Journal on 2023-06-17</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14324">arXiv:2304.14324</a> <span> [<a href="https://arxiv.org/pdf/2304.14324">pdf</a>, <a href="https://arxiv.org/format/2304.14324">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Molecular Outgassing in Centaur 29P/Schwassmann-Wachmann 1 During Its Exceptional 2021 Outburst: Coordinated Multi-Wavelength Observations Using nFLASH at APEX and iSHELL at the NASA-IRTF </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Roth%2C+N+X">Nathan X. Roth</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">Stefanie N. Milam</a>, <a href="/search/?searchtype=author&query=DiSanti%2C+M+A">Michael A. DiSanti</a>, <a href="/search/?searchtype=author&query=Villanueva%2C+G+L">Geronimo L. Villanueva</a>, <a href="/search/?searchtype=author&query=Faggi%2C+S">Sara Faggi</a>, <a href="/search/?searchtype=author&query=Bonev%2C+B+P">Boncho P. Bonev</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">Anthony J. Remijan</a>, <a href="/search/?searchtype=author&query=Bockel%C3%A9e-Morvan%2C+D">Dominique Bockel茅e-Morvan</a>, <a href="/search/?searchtype=author&query=Biver%2C+N">Nicolas Biver</a>, <a href="/search/?searchtype=author&query=Crovisier%2C+J">Jacques Crovisier</a>, <a href="/search/?searchtype=author&query=Lis%2C+D+C">Dariusz C. Lis</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">Emmanuel Jehin</a>, <a href="/search/?searchtype=author&query=Wirstr%C3%B6m%2C+E+S">Eva. S. Wirstr枚m</a>, <a href="/search/?searchtype=author&query=McKay%2C+A+J">Adam J. McKay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14324v1-abstract-short" style="display: inline;"> The extraordinary 2021 September-October outburst of Centaur 29P/Schwassmann-Wachmann 1 afforded an opportunity to test the composition of primitive Kuiper disk material at high sensitivity. We conducted nearly simultaneous multi-wavelength spectroscopic observations of 29P/Schwassmann-Wachmann 1 using iSHELL at the NASA Infrared Telescope Facility and nFLASH at the Atacama Pathfinder EXperiment (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14324v1-abstract-full').style.display = 'inline'; document.getElementById('2304.14324v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14324v1-abstract-full" style="display: none;"> The extraordinary 2021 September-October outburst of Centaur 29P/Schwassmann-Wachmann 1 afforded an opportunity to test the composition of primitive Kuiper disk material at high sensitivity. We conducted nearly simultaneous multi-wavelength spectroscopic observations of 29P/Schwassmann-Wachmann 1 using iSHELL at the NASA Infrared Telescope Facility and nFLASH at the Atacama Pathfinder EXperiment (APEX) on 2021 October 6, with follow-up APEX/nFLASH observations on 2021 October 7 and 2022 April 3. This coordinated campaign between near-infrared and radio wavelengths enabled us to sample molecular emission from a wealth of coma molecules and to perform measurements that cannot be accomplished with either wavelength alone. We securely detected CO emission on all dates with both facilities, including velocity-resolved spectra of the CO (J=2-1) transition with APEX/nFLASH and multiple CO (v=1-0) rovibrational transitions with IRTF/iSHELL. We report rotational temperatures, coma kinematics, and production rates for CO and stringent (3-sigma) upper limits on abundance ratios relative to CO for CH4, C2H6, CH3OH, H2CO, CS, and OCS. Our upper limits for CS/CO and OCS/CO represent their first values in the literature for this Centaur. Upper limits for CH4, C2H6, CH3OH, and H2CO are the most stringent reported to date, and are most similar to values found in ultra CO-rich Oort cloud comet C/2016 R2 (PanSTARRS), which may have implications for how ices are preserved in cometary nuclei. We demonstrate the superb synergy of coordinated radio and near-infrared measurements, and advocate for future small body studies that jointly leverage the capabilities of each wavelength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14324v1-abstract-full').style.display = 'none'; document.getElementById('2304.14324v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07760">arXiv:2301.07760</a> <span> [<a href="https://arxiv.org/pdf/2301.07760">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acb648">10.3847/2041-8213/acb648 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Astronomical Detection of the Interstellar Anion C10H- towards TMC-1 from the GOTHAM Large Program on the GBT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Remijan%2C+A">Anthony Remijan</a>, <a href="/search/?searchtype=author&query=Scolati%2C+H+N">Haley N. Scolati</a>, <a href="/search/?searchtype=author&query=Burkhardt%2C+A+M">Andrew M. Burkhardt</a>, <a href="/search/?searchtype=author&query=Changala%2C+P+B">P. Bryan Changala</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Cooke%2C+I+R">Ilsa R. Cooke</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Gupta%2C+H">Harshal Gupta</a>, <a href="/search/?searchtype=author&query=Herbst%2C+E">Eric Herbst</a>, <a href="/search/?searchtype=author&query=Lee%2C+K+L+K">Kin Long Kelvin Lee</a>, <a href="/search/?searchtype=author&query=Loomis%2C+R">Ryan Loomis</a>, <a href="/search/?searchtype=author&query=Shingledecker%2C+C+N">Christopher N. Shingledecker</a>, <a href="/search/?searchtype=author&query=Siebert%2C+M+A">Mark A. Siebert</a>, <a href="/search/?searchtype=author&query=Xue%2C+C">Ci Xue</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+M+C">Michael C. McCarthy</a>, <a href="/search/?searchtype=author&query=McGuire%2C+B+A">Brett A. McGuire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07760v1-abstract-short" style="display: inline;"> Using data from the GOTHAM (GBT Observations of TMC-1: Hunting for Aromatic Molecules) survey, we report the first astronomical detection of the C10H- anion. The astronomical observations also provided the necessary data to refine the spectroscopic parameters of C10H-. From the velocity stacked data and the matched filter response, C10H- is detected at >9蟽 confidence level at a column density of 4… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07760v1-abstract-full').style.display = 'inline'; document.getElementById('2301.07760v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07760v1-abstract-full" style="display: none;"> Using data from the GOTHAM (GBT Observations of TMC-1: Hunting for Aromatic Molecules) survey, we report the first astronomical detection of the C10H- anion. The astronomical observations also provided the necessary data to refine the spectroscopic parameters of C10H-. From the velocity stacked data and the matched filter response, C10H- is detected at >9蟽 confidence level at a column density of 4.04e11 cm-2. A dedicated search for the C10H radical was also conducted towards TMC-1. In this case, the stacked molecular emission of C10H was detected at a ~3.2蟽 confidence interval at a column density of 2.02e11 cm-2. However, since the determined confidence level is currently <5蟽, we consider the identification of C10H as tentative. The full GOTHAM dataset was also used to better characterize the physical parameters including column density, excitation temperature, linewidth, and source size for the C4H, C6H and C8H radicals and their respective anions, and the measured column densities were compared to the predictions from a gas/grain chemical formation model and from a machine learning analysis. Given the measured values, the C10H-/C10H column density ratio is ~2.0 - the highest value measured between an anion and neutral species to date. Such a high ratio is at odds with current theories for interstellar anion chemistry. For the radical species, both models can reproduce the measured abundances found from the survey; however, the machine learning analysis matches the detected anion abundances much better than the gas/grain chemical model, suggesting that the current understanding of the formation chemistry of molecular anions is still highly uncertain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07760v1-abstract-full').style.display = 'none'; document.getElementById('2301.07760v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 Pages, 24 Figures, 12 Tables, 8 Appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 85-11 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> A.1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13519">arXiv:2210.13519</a> <span> [<a href="https://arxiv.org/pdf/2210.13519">pdf</a>, <a href="https://arxiv.org/format/2210.13519">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2022GL101055">10.1029/2022GL101055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phosphine in the Venusian Atmosphere: A Strict Upper Limit from SOFIA GREAT Observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Villanueva%2C+G+L">G. L. Villanueva</a>, <a href="/search/?searchtype=author&query=Wiesemeyer%2C+H">H. Wiesemeyer</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">S. N. Milam</a>, <a href="/search/?searchtype=author&query=de+Pater%2C+I">I. de Pater</a>, <a href="/search/?searchtype=author&query=Moullet%2C+A">A. Moullet</a>, <a href="/search/?searchtype=author&query=Aladro%2C+R">R. Aladro</a>, <a href="/search/?searchtype=author&query=Nixon%2C+C+A">C. A. Nixon</a>, <a href="/search/?searchtype=author&query=Thelen%2C+A+E">A. E. Thelen</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a>, <a href="/search/?searchtype=author&query=Stutzki%2C+J">J. Stutzki</a>, <a href="/search/?searchtype=author&query=Kofman%2C+V">V. Kofman</a>, <a href="/search/?searchtype=author&query=Faggi%2C+S">S. Faggi</a>, <a href="/search/?searchtype=author&query=Liuzzi%2C+G">G. Liuzzi</a>, <a href="/search/?searchtype=author&query=Cosentino%2C+R">R. Cosentino</a>, <a href="/search/?searchtype=author&query=McGuire%2C+B+A">B. A. McGuire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13519v1-abstract-short" style="display: inline;"> The presence of phosphine (PH$_3$) in the atmosphere of Venus was reported by Greaves et al. (2021a), based on observations of the J=1-0 transition at 267 GHz using ground-based, millimeter-wave spectroscopy. This unexpected discovery presents a challenge for our understanding of Venus's atmosphere, and has led to a reappraisal of the possible sources and sinks of atmospheric phosphorous-bearing g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13519v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13519v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13519v1-abstract-full" style="display: none;"> The presence of phosphine (PH$_3$) in the atmosphere of Venus was reported by Greaves et al. (2021a), based on observations of the J=1-0 transition at 267 GHz using ground-based, millimeter-wave spectroscopy. This unexpected discovery presents a challenge for our understanding of Venus's atmosphere, and has led to a reappraisal of the possible sources and sinks of atmospheric phosphorous-bearing gases. Here we present results from a search for PH$_3$ on Venus using the GREAT instrument aboard the SOFIA aircraft, over three flights conducted in November 2021. Multiple PH$_3$ transitions were targeted at frequencies centered on 533 GHz and 1067 GHz, but no evidence for atmospheric PH$_3$ was detected. Through radiative transfer modeling, we derived a disk-averaged upper limit on the PH$_3$ abundance of 0.8 ppb in the altitude range 75-110 km, which is more stringent than previous ground-based studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13519v1-abstract-full').style.display = 'none'; document.getElementById('2210.13519v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Geophysical Research Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02616">arXiv:2209.02616</a> <span> [<a href="https://arxiv.org/pdf/2209.02616">pdf</a>, <a href="https://arxiv.org/format/2209.02616">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Radiative processes as diagnostics of cometary atmospheres </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&query=Bonev%2C+B+P">B. P. Bonev</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Villanueva%2C+G+L">G. L. Villanueva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02616v1-abstract-short" style="display: inline;"> In this chapter, we provide a review of radiative processes in cometary atmospheres spanning a broad range of wavelengths, from radio to X-rays. We focus on spectral modeling, observational opportunities, and anticipated challenges in the interpretation of new observations, based on our current understanding of the atomic and molecular processes occurring in the atmospheres of small, icy bodies. C… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02616v1-abstract-full').style.display = 'inline'; document.getElementById('2209.02616v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02616v1-abstract-full" style="display: none;"> In this chapter, we provide a review of radiative processes in cometary atmospheres spanning a broad range of wavelengths, from radio to X-rays. We focus on spectral modeling, observational opportunities, and anticipated challenges in the interpretation of new observations, based on our current understanding of the atomic and molecular processes occurring in the atmospheres of small, icy bodies. Close to the surface, comets possess a thermalized atmosphere that traces the irregular shape of the nucleus. Gravity is too low to retain the gas, which flows out to form a large, collisionless exosphere (coma) that interacts with the heliospheric radiation environment. As such, cometary comae represent conditions that are familiar in the context of planetary atmosphere studies. However, the outer comae are tenuous, with densities lower than those found in vacuum chambers on Earth. Comets, therefore, provide us with unique natural laboratories that can be understood using state-of-the-art theoretical treatments of the relevant microphysical processes. Radiative processes offer direct diagnostics of the local physical conditions, as well as the macroscopic coma properties.These can be used to improve our understanding of comets and other astrophysical environments such as icy moons and the interstellar medium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02616v1-abstract-full').style.display = 'none'; document.getElementById('2209.02616v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Review for Comets III book</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10863">arXiv:2203.10863</a> <span> [<a href="https://arxiv.org/pdf/2203.10863">pdf</a>, <a href="https://arxiv.org/format/2203.10863">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The Isotopic Links from Planet Forming Regions to the Solar System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Nomura%2C+H">H. Nomura</a>, <a href="/search/?searchtype=author&query=Furuya%2C+K">K. Furuya</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a>, <a href="/search/?searchtype=author&query=Alexander%2C+C+M+O">C. M. O'D. Alexander</a>, <a href="/search/?searchtype=author&query=Nixon%2C+C+A">C. A. Nixon</a>, <a href="/search/?searchtype=author&query=Guzman%2C+V+V">V. V. Guzman</a>, <a href="/search/?searchtype=author&query=Yurimoto%2C+H">H. Yurimoto</a>, <a href="/search/?searchtype=author&query=Tsukagoshi%2C+T">T. Tsukagoshi</a>, <a href="/search/?searchtype=author&query=Iino%2C+T">T. Iino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10863v1-abstract-short" style="display: inline;"> Isotopic ratios provide a powerful tool for understanding the origins of materials, including the volatile and refractory matter within solar system bodies. Recent high sensitivity observations of molecular isotopologues, in particular with ALMA, have brought us new information on isotopic ratios of hydrogen, carbon, nitrogen and oxygen in star and planet forming regions as well as the solar syste… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10863v1-abstract-full').style.display = 'inline'; document.getElementById('2203.10863v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10863v1-abstract-full" style="display: none;"> Isotopic ratios provide a powerful tool for understanding the origins of materials, including the volatile and refractory matter within solar system bodies. Recent high sensitivity observations of molecular isotopologues, in particular with ALMA, have brought us new information on isotopic ratios of hydrogen, carbon, nitrogen and oxygen in star and planet forming regions as well as the solar system objects. Solar system exploration missions, such as Rosetta and Cassini, have given us further new insights. Meanwhile, the recent development of sophisticated models for isotope chemistry including detailed gas-phase and grain surface reaction network has made it possible to discuss how isotope fractionation in star and planet forming regions is imprinted into the icy mantles of dust grains, preserving a record of the initial isotopic state of solar system materials. This chapter reviews recent progress in observations of molecular isotopologues in extra-solar planet forming regions, prestellar/protostellar cores and protoplanetary disks, as well as objects in our solar system -- comets, meteorites, and planetary/satellite atmospheres -- and discusses their connection by means of isotope chemical models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10863v1-abstract-full').style.display = 'none'; document.getElementById('2203.10863v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Protostars and Planets VII, University of Arizona Press, eds. Shu-ichiro Inutsuka, Yuri Aikawa, Takayuki Muto, Kengo Tomida, and Motohide Tamura</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.01803">arXiv:2203.01803</a> <span> [<a href="https://arxiv.org/pdf/2203.01803">pdf</a>, <a href="https://arxiv.org/format/2203.01803">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202142225">10.1051/0004-6361/202142225 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The EDIBLES survey V: Line profile variations in the $位位$5797, 6379, and 6614 diffuse interstellar bands as a tool to constrain carrier sizes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=MacIsaac%2C+H">Heather MacIsaac</a>, <a href="/search/?searchtype=author&query=Cami%2C+J">Jan Cami</a>, <a href="/search/?searchtype=author&query=Cox%2C+N+L+J">Nick L. J. Cox</a>, <a href="/search/?searchtype=author&query=Farhang%2C+A">Amin Farhang</a>, <a href="/search/?searchtype=author&query=Smoker%2C+J">Jonathan Smoker</a>, <a href="/search/?searchtype=author&query=Elyajouri%2C+M">Meriem Elyajouri</a>, <a href="/search/?searchtype=author&query=Lallement%2C+R">Rosine Lallement</a>, <a href="/search/?searchtype=author&query=Sarre%2C+P+J">Peter J. Sarre</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Fan%2C+H">Haoyu Fan</a>, <a href="/search/?searchtype=author&query=Kulik%2C+K">Klay Kulik</a>, <a href="/search/?searchtype=author&query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/?searchtype=author&query=Foing%2C+B+H">Bernard H. Foing</a>, <a href="/search/?searchtype=author&query=van+Loon%2C+J+T">Jacco Th. van Loon</a>, <a href="/search/?searchtype=author&query=Mulas%2C+G">Giacomo Mulas</a>, <a href="/search/?searchtype=author&query=Smith%2C+K+T">Keith T. Smith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.01803v1-abstract-short" style="display: inline;"> Several diffuse interstellar bands (DIBs) have profiles with resolved sub-peaks that resemble rotational bands of large molecules. Analysis of these profiles can constrain the sizes and geometries of the DIB carriers, especially if the profiles exhibit clear variations along lines of sight probing different physical conditions. Using the extensive data set from the EDIBLES survey we searched for s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01803v1-abstract-full').style.display = 'inline'; document.getElementById('2203.01803v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.01803v1-abstract-full" style="display: none;"> Several diffuse interstellar bands (DIBs) have profiles with resolved sub-peaks that resemble rotational bands of large molecules. Analysis of these profiles can constrain the sizes and geometries of the DIB carriers, especially if the profiles exhibit clear variations along lines of sight probing different physical conditions. Using the extensive data set from the EDIBLES survey we searched for systematic variations in the peak-to-peak separation of these sub-peaks for the $位位$5797, 6379, and 6614 DIBs in lines of sight with a single dominant interstellar cloud. We used the spectra of twelve single-cloud sight lines to measure the peak-to-peak separation in the band profile substructures for these DIBs. We adopted the rotational contour formalism to infer the rotational constant for each DIB carrier and the rotational excitation temperature in the sight lines. We compared these to rotational constants for linear and spherical molecules to estimate the DIB carrier sizes. All three DIBs have peak separations that vary systematically between lines of sight, indicating correlated changes in the rotational excitation temperatures. We derived $B_{6614}$=$(22.2\pm8.9)\times 10^{-3}$ cm$^{-1}$, consistent with previous estimates. Assuming a similar rotational temperature for the $位$6614 DIB carrier and assuming a linear carrier, we found B$_{5797}^{\rm linear}=(5.1\pm2.0)\times10^{-3}~{\rm cm}^{-1}$ and B$_{6379}^{\rm linear} =(2.3\pm0.9)\times10^{-3}~{\rm cm}^{-1}$. If the carriers of those DIBs however are spherical species, their rotational constants are half that value, $B_{5797}^{\rm spherical} = (2.6\pm1.0)\times10^{-3}~{\rm cm}^{-1}$ and $B_{6379}^{\rm spherical} = (1.1\pm0.4)\times10^{-3}~{\rm cm}^{-1}$. We estimate molecule sizes that range from 7--9 carbon atoms ($位$6614 carrier, linear) to 77--114 carbon atoms ($位$6379, spherical). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01803v1-abstract-full').style.display = 'none'; document.getElementById('2203.01803v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 56 figures. Accepted for publication in Astronomy & Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 662, A24 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.11849">arXiv:2202.11849</a> <span> [<a href="https://arxiv.org/pdf/2202.11849">pdf</a>, <a href="https://arxiv.org/format/2202.11849">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac5893">10.3847/1538-4357/ac5893 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A SUBLIME 3D Model for Cometary Coma Emission: the Hypervolatile-Rich Comet C/2016 R2 (PanSTARRS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Coulson%2C+I+M">I. M. Coulson</a>, <a href="/search/?searchtype=author&query=Garcia-Berrios%2C+E">E. Garcia-Berrios</a>, <a href="/search/?searchtype=author&query=Qi%2C+C">C. Qi</a>, <a href="/search/?searchtype=author&query=Lique%2C+F">F. Lique</a>, <a href="/search/?searchtype=author&query=Zoltowski%2C+M">M. Zoltowski</a>, <a href="/search/?searchtype=author&query=de+Val-Borro%2C+M">M. de Val-Borro</a>, <a href="/search/?searchtype=author&query=Kuan%2C+Y+-">Y. -J. Kuan</a>, <a href="/search/?searchtype=author&query=Ip%2C+W+-">W. -H. Ip</a>, <a href="/search/?searchtype=author&query=Mairs%2C+S">S. Mairs</a>, <a href="/search/?searchtype=author&query=Roth%2C+N+X">N. X. Roth</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">S. N. Milam</a>, <a href="/search/?searchtype=author&query=Tseng%2C+W+-">W. -L Tseng</a>, <a href="/search/?searchtype=author&query=Chuang%2C+Y+-">Y. -L Chuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.11849v1-abstract-short" style="display: inline;"> The coma of comet C/2016 R2 (PanSTARRS) is one of the most chemically peculiar ever observed, in particular due to its extremely high CO/H2O and N2+/H2O ratios}, and unusual trace volatile abundances. However, the complex shape of its CO emission lines, as well as uncertainties in the coma structure and excitation, has lead to ambiguities in the total CO production rate. We performed high resoluti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11849v1-abstract-full').style.display = 'inline'; document.getElementById('2202.11849v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.11849v1-abstract-full" style="display: none;"> The coma of comet C/2016 R2 (PanSTARRS) is one of the most chemically peculiar ever observed, in particular due to its extremely high CO/H2O and N2+/H2O ratios}, and unusual trace volatile abundances. However, the complex shape of its CO emission lines, as well as uncertainties in the coma structure and excitation, has lead to ambiguities in the total CO production rate. We performed high resolution, spatially, spectrally and temporally resolved CO observations using the James Clerk Maxwell Telescope (JCMT) and Submillimeter Array (SMA) to elucidate the outgassing behaviour of C/2016 R2. Results are analyzed using a new, time-dependent, three dimensional radiative transfer code (SUBLIME), incorporating for the first time, accurate state-to-state collisional rate coefficients for the CO--CO system. The total CO production rate was found to be in the range $(3.8-7.6)\times10^{28}$ s$^{-1}$ between 2018-01-13 and 2018-02-01, with a mean value of $(5.3\pm0.6)\times10^{28}$ s$^{-1}$ at r_H = 2.8-2.9 au. The emission is concentrated in a near-sunward jet, with an outflow velocity $0.51\pm0.01$ km/s, compared to $0.25\pm0.01$ km/s in the ambient (and night-side) coma. Evidence was also found for an extended source of CO emission, possibly due to icy grain sublimation around $1.2\times10^5$ km from the nucleus. Based on the coma molecular abundances, we propose that the nucleus ices of C/2016 R2 can be divided into a rapidly sublimating apolar phase, rich in CO, CO2, N2 and CH3OH, and a predominantly frozen (or less abundant), polar phase containing more H2O, CH4, H2CO and HCN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11849v1-abstract-full').style.display = 'none'; document.getElementById('2202.11849v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.01911">arXiv:2106.01911</a> <span> [<a href="https://arxiv.org/pdf/2106.01911">pdf</a>, <a href="https://arxiv.org/format/2106.01911">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/abc688">10.3847/2041-8213/abc688 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of Dynamical Instability in Titan's Thermospheric Jet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Garcia-Berrios%2C+E">E. Garcia-Berrios</a>, <a href="/search/?searchtype=author&query=Cosentino%2C+R+G">R. G. Cosentino</a>, <a href="/search/?searchtype=author&query=Teanby%2C+N+A">N. A. Teanby</a>, <a href="/search/?searchtype=author&query=Newman%2C+C+E">C. E. Newman</a>, <a href="/search/?searchtype=author&query=Nixon%2C+C+A">C. A. Nixon</a>, <a href="/search/?searchtype=author&query=Thelen%2C+A+E">A. E. Thelen</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.01911v1-abstract-short" style="display: inline;"> Similar to Earth, Saturn's largest moon, Titan, possesses a system of high-altitude zonal winds (or jets) that encircle the globe. Using the Atacama Large Millimeter/submillimeter Array (ALMA) in August 2016, Lellouch et al. (2019) discovered an equatorial jet at much higher altitudes than previously known, with a surprisingly fast speed of up to ~340 m/s, but the origin of such high velocities is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01911v1-abstract-full').style.display = 'inline'; document.getElementById('2106.01911v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.01911v1-abstract-full" style="display: none;"> Similar to Earth, Saturn's largest moon, Titan, possesses a system of high-altitude zonal winds (or jets) that encircle the globe. Using the Atacama Large Millimeter/submillimeter Array (ALMA) in August 2016, Lellouch et al. (2019) discovered an equatorial jet at much higher altitudes than previously known, with a surprisingly fast speed of up to ~340 m/s, but the origin of such high velocities is not yet understood. We obtained spectrally and spatially resolved ALMA observations in May 2017 to map Titan's 3D global wind field and compare our results with a reanalysis of the August 2016 data. Doppler wind velocity maps were derived in the altitude range ~300-1000 km (from the upper stratosphere to the thermosphere). At the highest, thermospheric altitudes, a 47% reduction in the equatorial zonal wind speed was measured over the 9-month period (corresponding to L_s = 82-90 degrees on Titan). This is interpreted as due to a dramatic slowing and loss of confinement (broadening) of the recently-discovered thermospheric equatorial jet, as a result of dynamical instability. These unexpectedly-rapid changes in the upper-atmospheric dynamics are consistent with strong variability of the jet's primary driving mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01911v1-abstract-full').style.display = 'none'; document.getElementById('2106.01911v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophysical Journal Letters, 2020, Volume 904, id.L12 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13545">arXiv:2104.13545</a> <span> [<a href="https://arxiv.org/pdf/2104.13545">pdf</a>, <a href="https://arxiv.org/format/2104.13545">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-021-01336-w">10.1038/s41550-021-01336-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compact pebbles and the evolution of volatiles in the interstellar comet 2I/Borisov </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Yang%2C+B">Bin Yang</a>, <a href="/search/?searchtype=author&query=Li%2C+A">Aigen Li</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Chang%2C+C">Chin-Shin Chang</a>, <a href="/search/?searchtype=author&query=Hainaut%2C+O+R">Olivier R. Hainaut</a>, <a href="/search/?searchtype=author&query=Williams%2C+J+P">Jonathan P. Williams</a>, <a href="/search/?searchtype=author&query=Meech%2C+K+J">Karen J. Meech</a>, <a href="/search/?searchtype=author&query=Keane%2C+J+V">Jacqueline V. Keane</a>, <a href="/search/?searchtype=author&query=Villard%2C+E">Eric Villard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13545v1-abstract-short" style="display: inline;"> The interstellar traveler, 2I/Borisov, is the first clearly active extrasolar comet, ever detected in our Solar system. We obtained high-resolution interferometric observations of 2I/Borisov with the Atacama Large Millimeter/submillimeter Array (ALMA), and multi-color optical observations with the Very Large Telescope (VLT) to gain a comprehensive understanding of the dust properties of this comet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13545v1-abstract-full').style.display = 'inline'; document.getElementById('2104.13545v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13545v1-abstract-full" style="display: none;"> The interstellar traveler, 2I/Borisov, is the first clearly active extrasolar comet, ever detected in our Solar system. We obtained high-resolution interferometric observations of 2I/Borisov with the Atacama Large Millimeter/submillimeter Array (ALMA), and multi-color optical observations with the Very Large Telescope (VLT) to gain a comprehensive understanding of the dust properties of this comet. We found that the dust coma of 2I/Borisov consists of compact "pebbles" of radii exceeding ~1 mm, suggesting that the dust particles have experienced compaction through mutual impacts during the bouncing collision phase in the protoplanetary disk. We derived a dust mass loss rate of >= 200 kg/s and a dust-to-gas ratio >=3. Our long term monitoring of 2I/Borisov with VLT indicates a steady dust mass loss with no significant dust fragmentation and/or sublimation occurring in the coma. We also detected emissions from carbon monoxide gas (CO) with ALMA and derived the gas production rate of Q(CO) (3.3+/-0.8)x10^{26} mole/s. We found that the CO/H$_2$O mixing ratio of 2I/Borisov changed drastically before and after perihelion, indicating the heterogeneity of the cometary nucleus, with components formed at different locations beyond the volatile snow-line with different chemical abundances. Our observations suggest that 2I/Borisov's home system, much like our own system, experienced efficient radial mixing from the innermost parts of its protoplanetary disk to beyond the frost line of CO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13545v1-abstract-full').style.display = 'none'; document.getElementById('2104.13545v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Published in Nature Astronomy on March 30, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.07577">arXiv:2104.07577</a> <span> [<a href="https://arxiv.org/pdf/2104.07577">pdf</a>, <a href="https://arxiv.org/format/2104.07577">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1123">10.1093/mnras/stab1123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutral-Neutral Synthesis of Organic Molecules in Cometary Comae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A Cordiner</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.07577v1-abstract-short" style="display: inline;"> Remote and in-situ observations of cometary gases have revealed the presence of a wealth of complex organic molecules, including carbon chains, alcohols, imines and the amino acid glycine. Such chemical complexity in cometary material implies that impacts by comets could have supplied reagents for prebiotic chemistry to young planetary surfaces. However, the assumption that some of the molecules o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07577v1-abstract-full').style.display = 'inline'; document.getElementById('2104.07577v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.07577v1-abstract-full" style="display: none;"> Remote and in-situ observations of cometary gases have revealed the presence of a wealth of complex organic molecules, including carbon chains, alcohols, imines and the amino acid glycine. Such chemical complexity in cometary material implies that impacts by comets could have supplied reagents for prebiotic chemistry to young planetary surfaces. However, the assumption that some of the molecules observed in cometary comae at millimetre wavelengths originate from ices stored inside the nucleus has not yet been proven. In fact, the comae of moderately-active comets reach sufficient densities within a few thousand kilometers of the nucleus for an active (solar radiation-driven) photochemistry to ensue. Here we present results from our latest chemical-hydrodynamic models incorporating an updated reaction network, and show that the commonly-observed HC3N (cyanoacetylene) and NH2CHO (formamide) molecules can be efficiently produced in cometary comae as a result of two-body, neutral-neutral, gas-phase reactions involving well-known coma gases. In the presence of a near-nucleus distributed source of CN (similar to that observed by the Rosetta spacecraft at comet 67P), we find that sufficient HC$_3$N and NH2CHO can be synthesized to match the abundances of these molecules in previous observations of Oort Cloud comets. The precise origin of these (and other) complex organic molecules in cometary comae can be verified through interferometric mapping observations, for example, using the Atacama Large Millimeter/submillimeter Array (ALMA). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07577v1-abstract-full').style.display = 'none'; document.getElementById('2104.07577v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS, April 15th 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.03210">arXiv:2104.03210</a> <span> [<a href="https://arxiv.org/pdf/2104.03210">pdf</a>, <a href="https://arxiv.org/format/2104.03210">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac0441">10.3847/1538-4357/ac0441 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Leveraging the ALMA Atacama Compact Array for Cometary Science: An Interferometric Survey of Comet C/2015 ER61 (PanSTARRS) and Evidence for a Distributed Source of Carbon Monosulfide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Roth%2C+N+X">Nathan X. Roth</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">Stefanie N. Milam</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Bockel%C3%A9e-Morvan%2C+D">Dominique Bockel茅e-Morvan</a>, <a href="/search/?searchtype=author&query=Biver%2C+N">Nicolas Biver</a>, <a href="/search/?searchtype=author&query=Boissier%2C+J">J茅r茅mie Boissier</a>, <a href="/search/?searchtype=author&query=Lis%2C+D+C">Dariusz C. Lis</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">Anthony J. Remijan</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.03210v2-abstract-short" style="display: inline;"> We report the first survey of molecular emission from cometary volatiles using standalone Atacama Compact Array (ACA) observations of the Atacama Large Millimeter/Submillimeter Array (ALMA) toward comet C/2015 ER61 (PanSTARRS) carried out on UT 2017 April 11 and 15, shortly after its April 4 outburst. These measurements of HCN, CS, CH$_3$OH, H$_2$CO, and HNC (along with continuum emission from dus… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.03210v2-abstract-full').style.display = 'inline'; document.getElementById('2104.03210v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.03210v2-abstract-full" style="display: none;"> We report the first survey of molecular emission from cometary volatiles using standalone Atacama Compact Array (ACA) observations of the Atacama Large Millimeter/Submillimeter Array (ALMA) toward comet C/2015 ER61 (PanSTARRS) carried out on UT 2017 April 11 and 15, shortly after its April 4 outburst. These measurements of HCN, CS, CH$_3$OH, H$_2$CO, and HNC (along with continuum emission from dust) probed the inner coma of C/2015 ER61, revealing asymmetric outgassing and discerning parent from daughter/distributed source species. This work presents spectrally integrated flux maps, autocorrelation spectra, production rates, and parent scale lengths for each molecule, and a stringent upper limit for CO. HCN is consistent with direct nucleus release in C/2015 ER61, whereas CS, H$_2$CO, HNC, and potentially CH$_3$OH are associated with distributed sources in the coma. Adopting a Haser model, parent scale lengths determined for H$_2$CO (L$_p$ $\sim$ 2200 km) and HNC (L$_p$ $\sim$ 3300 km) are consistent with previous work in comets, whereas significant extended source production (L$_p$ $\sim$ 2000 km) is indicated for CS, suggesting production from an unknown parent in the coma. The continuum presents a point-source distribution, with a flux density implying an excessively large nucleus, inconsistent with other estimates of the nucleus size. It is best explained by the thermal emission of slowly-moving outburst ejectas, with total mass 5--8 $\times$ 10$^{10}$ kg. These results demonstrate the power of the ACA for revealing the abundances, spatial distributions, and locations of molecular production for volatiles in moderately bright comets such as C/2015 ER61. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.03210v2-abstract-full').style.display = 'none'; document.getElementById('2104.03210v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09984">arXiv:2103.09984</a> <span> [<a href="https://arxiv.org/pdf/2103.09984">pdf</a>, <a href="https://arxiv.org/format/2103.09984">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abb7535">10.1126/science.abb7535 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of Two Interstellar Polycyclic Aromatic Hydrocarbons via Spectral Matched Filtering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=McGuire%2C+B+A">Brett A. McGuire</a>, <a href="/search/?searchtype=author&query=Loomis%2C+R+A">Ryan A. Loomis</a>, <a href="/search/?searchtype=author&query=Burkhardt%2C+A+M">Andrew M. Burkhardt</a>, <a href="/search/?searchtype=author&query=Lee%2C+K+L+K">Kin Long Kelvin Lee</a>, <a href="/search/?searchtype=author&query=Shingledecker%2C+C+N">Christopher N. Shingledecker</a>, <a href="/search/?searchtype=author&query=Charnely%2C+S+B">Steven B. Charnely</a>, <a href="/search/?searchtype=author&query=Cooke%2C+I+R">Ilsa R. Cooke</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Herbst%2C+E">Eric Herbst</a>, <a href="/search/?searchtype=author&query=Kalenskii%2C+S">Sergei Kalenskii</a>, <a href="/search/?searchtype=author&query=Siebert%2C+M+A">Mark A. Siebert</a>, <a href="/search/?searchtype=author&query=Willis%2C+E+R">Eric R. Willis</a>, <a href="/search/?searchtype=author&query=Xue%2C+C">Ci Xue</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">Anthony J. Remijan</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+M+C">Michael C. McCarthy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09984v1-abstract-short" style="display: inline;"> Ubiquitous unidentified infrared emission bands are seen in many astronomical sources. Although these bands are widely, if not unanimously, attributed to the collective emission from polycyclic aromatic hydrocarbons, no single species from this class has been detected in space. We present the discovery of two -CN functionalized polycyclic aromatic hydrocarbons, 1- and 2-cyanonaphthalene, in the in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09984v1-abstract-full').style.display = 'inline'; document.getElementById('2103.09984v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09984v1-abstract-full" style="display: none;"> Ubiquitous unidentified infrared emission bands are seen in many astronomical sources. Although these bands are widely, if not unanimously, attributed to the collective emission from polycyclic aromatic hydrocarbons, no single species from this class has been detected in space. We present the discovery of two -CN functionalized polycyclic aromatic hydrocarbons, 1- and 2-cyanonaphthalene, in the interstellar medium aided by spectral matched filtering. Using radio observations with the Green Bank Telescope, we observe both bi-cyclic ring molecules in the molecular cloud TMC-1. We discuss potential in situ gas-phase formation pathways from smaller organic precursor molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09984v1-abstract-full').style.display = 'none'; document.getElementById('2103.09984v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science (2021) vol 371, pg 1265-1269 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.06684">arXiv:2103.06684</a> <span> [<a href="https://arxiv.org/pdf/2103.06684">pdf</a>, <a href="https://arxiv.org/format/2103.06684">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Rapidly Varying Anisotropic Methanol (CH$_3$OH) Production in the Inner Coma of Comet 46P/Wirtanen as Revealed by the ALMA Atacama Compact Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Roth%2C+N+X">Nathan X. Roth</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">Stefanie N. Milam</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Bockel%C3%A9e-Morvan%2C+D">Dominique Bockel茅e-Morvan</a>, <a href="/search/?searchtype=author&query=DiSanti%2C+M+A">Michael A. DiSanti</a>, <a href="/search/?searchtype=author&query=Boissier%2C+J">J茅r茅mie Boissier</a>, <a href="/search/?searchtype=author&query=Biver%2C+N">Nicolas Biver</a>, <a href="/search/?searchtype=author&query=Crovisier%2C+J">Jacques Crovisier</a>, <a href="/search/?searchtype=author&query=Russo%2C+N+D">Neil Dello Russo</a>, <a href="/search/?searchtype=author&query=Bonev%2C+B+P">Boncho P. Bonev</a>, <a href="/search/?searchtype=author&query=Qi%2C+C">Chunhua Qi</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">Anthony J. Remijan</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Gibb%2C+E+L">Erika L. Gibb</a>, <a href="/search/?searchtype=author&query=de+Val-Borro%2C+M">Miguel de Val-Borro</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">Emmanu毛l Jehin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.06684v1-abstract-short" style="display: inline;"> We report the detection of CH$_3$OH emission in comet 46P/Wirtanen on UT 2018 December 8 and 9 using the Atacama Compact Array (ACA), part of the Atacama Large Millimeter/Submillimeter Array (ALMA). These interferometric measurements of CH$_3$OH along with continuum emission from dust probed the inner coma ($<$2000 km from the nucleus) of 46P/Wirtanen approximately one week before its closest appr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06684v1-abstract-full').style.display = 'inline'; document.getElementById('2103.06684v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.06684v1-abstract-full" style="display: none;"> We report the detection of CH$_3$OH emission in comet 46P/Wirtanen on UT 2018 December 8 and 9 using the Atacama Compact Array (ACA), part of the Atacama Large Millimeter/Submillimeter Array (ALMA). These interferometric measurements of CH$_3$OH along with continuum emission from dust probed the inner coma ($<$2000 km from the nucleus) of 46P/Wirtanen approximately one week before its closest approach to Earth ($螖$ = 0.089 -- 0.092 au), revealing rapidly varying and anisotropic CH$_3$OH outgassing during five separate ACA executions between UT 23:57 December 7 and UT 04:55 December 9, with a clear progression in the spectral line profiles over a timescale of minutes. We present spectrally integrated flux maps, production rates, rotational temperatures, and spectral line profiles of CH$_3$OH during each ACA execution. The variations in CH$_3$OH outgassing are consistent with Wirtanen's 9 hr nucleus rotational period derived from optical and millimeter wavelength measurements and thus are likely coupled to the changing illumination of active sites on the nucleus. The consistent blue offset of the line center indicates enhanced CH$_3$OH sublimation from the sunward hemisphere of the comet, perhaps from icy grains. These results demonstrate the exceptional capabilities of the ACA for time-resolved measurements of comets such as 46P/Wirtanen. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06684v1-abstract-full').style.display = 'none'; document.getElementById('2103.06684v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.09595">arXiv:2102.09595</a> <span> [<a href="https://arxiv.org/pdf/2102.09595">pdf</a>, <a href="https://arxiv.org/format/2102.09595">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/abe764">10.3847/2041-8213/abe764 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interstellar Detection of 2-Cyanocyclopentadiene, C$_5$H$_5$CN, a Second Five-Membered Ring Toward TMC-1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lee%2C+K+L+K">Kin Long Kelvin Lee</a>, <a href="/search/?searchtype=author&query=Changala%2C+P+B">P. Bryan Changala</a>, <a href="/search/?searchtype=author&query=Loomis%2C+R+A">Ryan A. Loomis</a>, <a href="/search/?searchtype=author&query=Burkhardt%2C+A+M">Andrew M. Burkhardt</a>, <a href="/search/?searchtype=author&query=Xue%2C+C">Ci Xue</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+M+C">Michael C. McCarthy</a>, <a href="/search/?searchtype=author&query=McGuire%2C+B+A">Brett A. McGuire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.09595v1-abstract-short" style="display: inline;"> Using radio observations with the Green Bank Telescope, evidence has now been found for a second five-membered ring in the dense cloud Taurus Molecular Cloud-1 (TMC-1). Based on additional observations of an ongoing, large-scale, high-sensitivity spectral line survey (GOTHAM) at centimeter wavelengths toward this source, we have used a combination of spectral stacking, Markov chain Monte Carlo (MC… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.09595v1-abstract-full').style.display = 'inline'; document.getElementById('2102.09595v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.09595v1-abstract-full" style="display: none;"> Using radio observations with the Green Bank Telescope, evidence has now been found for a second five-membered ring in the dense cloud Taurus Molecular Cloud-1 (TMC-1). Based on additional observations of an ongoing, large-scale, high-sensitivity spectral line survey (GOTHAM) at centimeter wavelengths toward this source, we have used a combination of spectral stacking, Markov chain Monte Carlo (MCMC), and matched filtering techniques to detect 2-cyanocyclopentadiene, a low-lying isomer of 1-cyanocyclopentadiene, which was recently discovered there by the same methods. The new observational data also yields a considerably improved detection significance for the more stable isomer and evidence for several individual transitions between 23 - 32 GHz. Through our MCMC analysis, we derive total column densities of $8.3\times10^{11}$ and $1.9\times10^{11}$ cm$^{-2}$ for 1- and 2-cyanocyclopentadiene respectively, corresponding to a ratio of 4.4(6) favoring the former. The derived abundance ratios point towards a common formation pathway - most likely being cyanation of cyclopentadiene by analogy to benzonitrile. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.09595v1-abstract-full').style.display = 'none'; document.getElementById('2102.09595v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures and 1 table in the main text. 2 tables and 2 figures in the Appendix. Accepted for publication in The Astrophysical Journal Letters. Supplementary data available in the DataVerse entry provided in text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.12743">arXiv:2010.12743</a> <span> [<a href="https://arxiv.org/pdf/2010.12743">pdf</a>, <a href="https://arxiv.org/format/2010.12743">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/abb679">10.3847/1538-3881/abb679 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of Cyclopropenylidene on Titan with ALMA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Nixon%2C+C+A">Conor A. Nixon</a>, <a href="/search/?searchtype=author&query=Thelen%2C+A+E">Alexander E. Thelen</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Kisiel%2C+Z">Zbigniew Kisiel</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Molter%2C+E+M">Edward M. Molter</a>, <a href="/search/?searchtype=author&query=Serigano%2C+J">Joseph Serigano</a>, <a href="/search/?searchtype=author&query=Irwin%2C+P+G+J">Patrick G. J. Irwin</a>, <a href="/search/?searchtype=author&query=Teanby%2C+N+A">Nicholas A. Teanby</a>, <a href="/search/?searchtype=author&query=Kuan%2C+Y">Yi-Jehng Kuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.12743v1-abstract-short" style="display: inline;"> We report the first detection on Titan of the small cyclic molecule cyclopropenylidene (c-C3H2) from high sensitivity spectroscopic observations made with the Atacama Large Millimeter/sub-millimeter Array (ALMA). Multiple lines of cyclopropenylidene were detected in two separate datasets: ~251 GHz in 2016 (Band 6) and ~352 GHz in 2017 (Band 7). Modeling of these emissions indicates abundances of 0… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12743v1-abstract-full').style.display = 'inline'; document.getElementById('2010.12743v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.12743v1-abstract-full" style="display: none;"> We report the first detection on Titan of the small cyclic molecule cyclopropenylidene (c-C3H2) from high sensitivity spectroscopic observations made with the Atacama Large Millimeter/sub-millimeter Array (ALMA). Multiple lines of cyclopropenylidene were detected in two separate datasets: ~251 GHz in 2016 (Band 6) and ~352 GHz in 2017 (Band 7). Modeling of these emissions indicates abundances of 0.50 +/- 0.14 ppb (2016) and 0.28 +/- 0.08 (2017) for a 350 km step model, which may either signify a decrease in abundance, or a mean value of 0.33 +/- 0.07 ppb. Inferred column abundances are (3-5)E12 cm-2 in 2016 and (1-2)E12 cm-2 in 2017, similar to photochemical model predictions. Previously the C3H3+ ion has been measured in Titan's ionosphere by Cassini's Ion and Neutral Mass Spectrometer (INMS), but the neutral (unprotonated) species has not been detected until now, and aromatic versus aliphatic structure could not be determined by the INMS. Our work therefore represents the first unambiguous detection of cyclopropenylidene, the second known cyclic molecule in Titan's atmosphere along with benzene (C6H6) and the first time this molecule has been detected in a planetary atmosphere. We also searched for the N-heterocycle molecules pyridine and pyrimidine finding non-detections in both cases, and determining 2-蟽 upper limits of 1.15 ppb (c-C5H5N) and 0.85 ppb (c-C4H4N2) for uniform abundances above 300 km. These new results on cyclic molecules provide fresh constraints on photochemical pathways in Titan's atmosphere, and will require new modeling and experimental work to fully understand the implications for complex molecule formation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12743v1-abstract-full').style.display = 'none'; document.getElementById('2010.12743v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 13 figures. 8 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astronomical Journal, 160:205 (17pp), 2020 November </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08654">arXiv:2010.08654</a> <span> [<a href="https://arxiv.org/pdf/2010.08654">pdf</a>, <a href="https://arxiv.org/format/2010.08654">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/abc1e1">10.3847/2041-8213/abc1e1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of CH$_3$C$_3$N in Titan's Atmosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Thelen%2C+A+E">A. E. Thelen</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Nixon%2C+C+A">C. A. Nixon</a>, <a href="/search/?searchtype=author&query=Vuitton%2C+V">V. Vuitton</a>, <a href="/search/?searchtype=author&query=Kisiel%2C+Z">Z. Kisiel</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a>, <a href="/search/?searchtype=author&query=Palmer%2C+M+Y">M. Y. Palmer</a>, <a href="/search/?searchtype=author&query=Teanby%2C+N+A">N. A. Teanby</a>, <a href="/search/?searchtype=author&query=Irwin%2C+P+G+J">P. G. J. Irwin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08654v1-abstract-short" style="display: inline;"> Titan harbors a dense, organic-rich atmosphere primarily composed of N$_2$ and CH$_4$, with lesser amounts of hydrocarbons and nitrogen-bearing species. As a result of high sensitivity observations by the Atacama Large Millimeter/submillimeter Array (ALMA) in Band 6 ($\sim$230-272 GHz), we obtained the first spectroscopic detection of CH$_3$C$_3$N (methylcyanoacetylene or cyanopropyne) in Titan's… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08654v1-abstract-full').style.display = 'inline'; document.getElementById('2010.08654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08654v1-abstract-full" style="display: none;"> Titan harbors a dense, organic-rich atmosphere primarily composed of N$_2$ and CH$_4$, with lesser amounts of hydrocarbons and nitrogen-bearing species. As a result of high sensitivity observations by the Atacama Large Millimeter/submillimeter Array (ALMA) in Band 6 ($\sim$230-272 GHz), we obtained the first spectroscopic detection of CH$_3$C$_3$N (methylcyanoacetylene or cyanopropyne) in Titan's atmosphere through the observation of seven transitions in the $J = 64\rightarrow63$ and $J = 62\rightarrow61$ rotational bands. The presence of CH$_3$C$_3$N on Titan was suggested by the Cassini Ion and Neutral Mass Spectrometer detection of its protonated form: C$_4$H$_3$NH$^+$, but the atmospheric abundance of the associated (deprotonated) neutral product is not well constrained due to the lack of appropriate laboratory reaction data. Here, we derive the column density of CH$_3$C$_3$N to be (3.8-5.7)$\times10^{12}$ cm$^{-2}$ based on radiative transfer models sensitive to altitudes above 400 km Titan's middle atmosphere. When compared with laboratory and photochemical model results, the detection of methylcyanoacetylene provides important constraints for the determination of the associated production pathways (such as those involving CN, CCN, and hydrocarbons), and reaction rate coefficients. These results also further demonstrate the importance of ALMA and (sub)millimeter spectroscopy for future investigations of Titan's organic inventory and atmospheric chemistry, as CH$_3$C$_3$N marks the heaviest polar molecule detected spectroscopically in Titan's atmosphere to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08654v1-abstract-full').style.display = 'none'; document.getElementById('2010.08654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures, 2 tables. Accepted in ApJ Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.01151">arXiv:2010.01151</a> <span> [<a href="https://arxiv.org/pdf/2010.01151">pdf</a>, <a href="https://arxiv.org/format/2010.01151">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> High resolution study of outflows and chemical environment of First Hydrostatic Core candidate Chamaeleon-MMS1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Allen%2C+V">Veronica Allen</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Adande%2C+G">Gilles Adande</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Kuan%2C+Y">Yi-Jehng Kuan</a>, <a href="/search/?searchtype=author&query=Wirstrom%2C+E">Eva Wirstrom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.01151v3-abstract-short" style="display: inline;"> The earliest stages of low-mass star-formation are unclear, but it has been proposed that Chamaeleon-MMS1 is a candidate First Hydrostatic Core (FHSC), the transition stage between a prestellar and protostellar core. This work describes the local (~4000 AU) outflow activity associated with Chamaeleon-MMS1 and its effect on the surrounding material in order to determine the evolutionary state of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01151v3-abstract-full').style.display = 'inline'; document.getElementById('2010.01151v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.01151v3-abstract-full" style="display: none;"> The earliest stages of low-mass star-formation are unclear, but it has been proposed that Chamaeleon-MMS1 is a candidate First Hydrostatic Core (FHSC), the transition stage between a prestellar and protostellar core. This work describes the local (~4000 AU) outflow activity associated with Chamaeleon-MMS1 and its effect on the surrounding material in order to determine the evolutionary state of this young low-mass source. We used the Atacama Large Millimeter/sub-millimeter Array (ALMA) to observe Chamaeleon MMS1 at 220 GHz at high spatial (~75 AU) and spectral resolutions (0.1-0.3 km/s). A low energy outflow is detected through its interaction with the surrounding cloud. The outflow consists of two components, a broad spectral feature to the northeast and narrow features to both the northeast and southwest. The rotational temperature of formaldehyde (H2CO) is calculated to be 50 (+/-30) K toward the continuum source with similarly low temperatures (25-45 K) toward clumps affected by the outflow. Methanol (CH3OH) is only detected toward gas clumps located away from the continuum source, where the methanol is expected to have been released by the energy of the outflow through ice sputtering in shock waves. Chamaeleon-MMS1 shows outflow activity with the power source being either a single precessing outflow or two outflows from a binary system. While molecular emission and high outflow speeds rule it out as a FHSC, the outflow is less energetic than outflows detected from other Class 0 objects and the inferred gas temperatures toward the continuum source are relatively low, which indicates that Cha-MMS1 is one of the youngest known sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01151v3-abstract-full').style.display = 'none'; document.getElementById('2010.01151v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 16 figures. This paper was previously submitted and revised</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13546">arXiv:2009.13546</a> <span> [<a href="https://arxiv.org/pdf/2009.13546">pdf</a>, <a href="https://arxiv.org/format/2009.13546">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Interstellar Detection of the Highly Polar Five-Membered Ring Cyanocyclopentadiene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=McCarthy%2C+M+C">Michael C. McCarthy</a>, <a href="/search/?searchtype=author&query=Lee%2C+K+L+K">Kin Long Kelvin Lee</a>, <a href="/search/?searchtype=author&query=Loomis%2C+R+A">Ryan A. Loomis</a>, <a href="/search/?searchtype=author&query=Burkhardt%2C+A+M">Andrew M. Burkhardt</a>, <a href="/search/?searchtype=author&query=Shingledecker%2C+C+N">Christopher N. Shingledecker</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Herbst%2C+E">Eric Herbst</a>, <a href="/search/?searchtype=author&query=Kalenskii%2C+S">Sergei Kalenskii</a>, <a href="/search/?searchtype=author&query=Willis%2C+E+R">Eric R. Willis</a>, <a href="/search/?searchtype=author&query=Xue%2C+C">Ci Xue</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">Anthony J. Remijan</a>, <a href="/search/?searchtype=author&query=McGuire%2C+B+A">Brett A. McGuire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13546v1-abstract-short" style="display: inline;"> Much like six-membered rings, five-membered rings are ubiquitous in organic chemistry, frequently serving as the building blocks for larger molecules, including many of biochemical importance. From a combination of laboratory rotational spectroscopy and a sensitive spectral line survey in the radio band toward the starless cloud core TMC-1, we report the astronomical detection of 1-cyano-1,3-cyclo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13546v1-abstract-full').style.display = 'inline'; document.getElementById('2009.13546v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13546v1-abstract-full" style="display: none;"> Much like six-membered rings, five-membered rings are ubiquitous in organic chemistry, frequently serving as the building blocks for larger molecules, including many of biochemical importance. From a combination of laboratory rotational spectroscopy and a sensitive spectral line survey in the radio band toward the starless cloud core TMC-1, we report the astronomical detection of 1-cyano-1,3-cyclopentadiene, $c$-C$_5$H$_5$CN}, a highly polar, cyano derivative of cyclopentadiene, $c$-C$_5$H$_6$. The derived abundance of $c$-C$_5$H$_5$CN} is far greater than predicted from astrochemical models which well reproduce the abundance of many carbon chains. This finding implies either an important production mechanism or a large reservoir of aromatic material may need to be considered. The apparent absence of its closely-related isomer, 2-cyano-1,3-cyclopentadiene, may arise from its lower stability or be indicative of a more selective pathway for formation of the 1-cyano isomer, perhaps one starting from acyclic precursors. The absence of N-heterocycles such as pyrrole and pyridine is discussed in light of the astronomical finding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13546v1-abstract-full').style.display = 'none'; document.getElementById('2009.13546v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Nature Astronomy. 36 pages comprising five figures, two tables, five supplementary tables, and six supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11900">arXiv:2009.11900</a> <span> [<a href="https://arxiv.org/pdf/2009.11900">pdf</a>, <a href="https://arxiv.org/format/2009.11900">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> An Investigation of Spectral Line Stacking Techniques and Application to the Detection of HC$_{11}$N </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Loomis%2C+R+A">Ryan A. Loomis</a>, <a href="/search/?searchtype=author&query=Burkhardt%2C+A+M">Andrew M. Burkhardt</a>, <a href="/search/?searchtype=author&query=Shingledecker%2C+C+N">Christopher N. Shingledecker</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Herbst%2C+E">Eric Herbst</a>, <a href="/search/?searchtype=author&query=Kalenskii%2C+S">Sergei Kalenskii</a>, <a href="/search/?searchtype=author&query=Lee%2C+K+L+K">Kin Long Kelvin Lee</a>, <a href="/search/?searchtype=author&query=Willis%2C+E+R">Eric R. Willis</a>, <a href="/search/?searchtype=author&query=Xue%2C+C">Ci Xue</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">Anthony J. Remijan</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+M+C">Michael C. McCarthy</a>, <a href="/search/?searchtype=author&query=McGuire%2C+B+A">Brett A. McGuire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11900v1-abstract-short" style="display: inline;"> As the inventory of interstellar molecules continues to grow, the gulf between small species, whose individual rotational lines can be observed with radio telescopes, and large ones, such as polycyclic aromatic hydrocarbons (PAHs) best studied in bulk via infrared and optical observations, is slowly being bridged. Understanding the connection between these two molecular reservoirs is critical to u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11900v1-abstract-full').style.display = 'inline'; document.getElementById('2009.11900v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11900v1-abstract-full" style="display: none;"> As the inventory of interstellar molecules continues to grow, the gulf between small species, whose individual rotational lines can be observed with radio telescopes, and large ones, such as polycyclic aromatic hydrocarbons (PAHs) best studied in bulk via infrared and optical observations, is slowly being bridged. Understanding the connection between these two molecular reservoirs is critical to understanding the interstellar carbon cycle, but will require pushing the boundaries of how far we can probe molecular complexity while still retaining observational specificity. Toward this end, we present a method for detecting and characterizing new molecular species in single-dish observations toward sources with sparse line spectra. We have applied this method to data from the ongoing GOTHAM (GBT Observations of TMC-1: Hunting Aromatic Molecules) Green Bank Telescope (GBT) large program, discovering six new interstellar species. In this paper we highlight the detection of HC$_{11}$N, the largest cyanopolyyne in the interstellar medium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11900v1-abstract-full').style.display = 'none'; document.getElementById('2009.11900v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 36 figures, 9 tables, to appear in Nature Astronomy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.12349">arXiv:2008.12349</a> <span> [<a href="https://arxiv.org/pdf/2008.12349">pdf</a>, <a href="https://arxiv.org/format/2008.12349">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aba632">10.3847/2041-8213/aba632 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Early Science from GOTHAM: Project Overview, Methods, and the Detection of Interstellar Propargyl Cyanide (HCCCH$_2$CN) in TMC-1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=McGuire%2C+B+A">Brett A. McGuire</a>, <a href="/search/?searchtype=author&query=Burkhardt%2C+A+M">Andrew M. Burkhardt</a>, <a href="/search/?searchtype=author&query=Loomis%2C+R+A">Ryan A. Loomis</a>, <a href="/search/?searchtype=author&query=Shingledecker%2C+C+N">Christopher N. Shingledecker</a>, <a href="/search/?searchtype=author&query=Lee%2C+K+L+K">Kin Long Kelvin Lee</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Herbst%2C+E">Eric Herbst</a>, <a href="/search/?searchtype=author&query=Kalenskii%2C+S">Sergei Kalenskii</a>, <a href="/search/?searchtype=author&query=Momjian%2C+E">Emmanuel Momjian</a>, <a href="/search/?searchtype=author&query=Willis%2C+E+R">Eric R. Willis</a>, <a href="/search/?searchtype=author&query=Xue%2C+C">Ci Xue</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">Anthony J. Remijan</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+M+C">Michael C. McCarthy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.12349v1-abstract-short" style="display: inline;"> We present an overview of the GOTHAM (GBT Observations of TMC-1: Hunting Aromatic Molecules) Large Program on the Green Bank Telescope. This and a related program were launched to explore the depth and breadth of aromatic chemistry in the interstellar medium at the earliest stages of star formation, following our earlier detection of benzonitrile ($c$-C$_6$H$_5$CN) in TMC-1. In this work, details… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12349v1-abstract-full').style.display = 'inline'; document.getElementById('2008.12349v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.12349v1-abstract-full" style="display: none;"> We present an overview of the GOTHAM (GBT Observations of TMC-1: Hunting Aromatic Molecules) Large Program on the Green Bank Telescope. This and a related program were launched to explore the depth and breadth of aromatic chemistry in the interstellar medium at the earliest stages of star formation, following our earlier detection of benzonitrile ($c$-C$_6$H$_5$CN) in TMC-1. In this work, details of the observations, use of archival data, and data reduction strategies are provided. Using these observations, the interstellar detection of propargyl cyanide (HCCCH$_2$CN) is described, as well as the accompanying laboratory spectroscopy. We discuss these results, and the survey project as a whole, in the context of investigating a previously unexplored reservoir of complex, gas-phase molecules in pre-stellar sources. A series of companion papers describe other new astronomical detections and analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12349v1-abstract-full').style.display = 'none'; document.getElementById('2008.12349v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in the Astrophysical Journal Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.12345">arXiv:2008.12345</a> <span> [<a href="https://arxiv.org/pdf/2008.12345">pdf</a>, <a href="https://arxiv.org/format/2008.12345">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aba631">10.3847/2041-8213/aba631 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of Interstellar HC$_4$NC and an Investigation of Isocyanopolyyne Chemistry under TMC-1 Conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Xue%2C+C">Ci Xue</a>, <a href="/search/?searchtype=author&query=Willis%2C+E+R">Eric R. Willis</a>, <a href="/search/?searchtype=author&query=Loomis%2C+R+A">Ryan A. Loomis</a>, <a href="/search/?searchtype=author&query=Lee%2C+K+L+K">Kin Long Kelvin Lee</a>, <a href="/search/?searchtype=author&query=Burkhardt%2C+A+M">Andrew M. Burkhardt</a>, <a href="/search/?searchtype=author&query=Shingledecker%2C+C+N">Christopher N. Shingledecker</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Kalenskii%2C+S">Sergei Kalenskii</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+M+C">Michael C. McCarthy</a>, <a href="/search/?searchtype=author&query=Herbst%2C+E">Eric Herbst</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">Anthony J. Remijan</a>, <a href="/search/?searchtype=author&query=McGuire%2C+B+A">Brett A. McGuire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.12345v1-abstract-short" style="display: inline;"> We report an astronomical detection of HC$_4$NC for the first time in the interstellar medium with the Green Bank Telescope toward the TMC-1 molecular cloud with a minimum significance of $10.5 蟽$. The total column density and excitation temperature of HC$_4$NC are determined to be $3.29^{+8.60}_{-1.20}\times 10^{11}$ cm$^{-2}$ and $6.7^{+0.3}_{-0.3}$ K, respectively, using the MCMC analysis. In a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12345v1-abstract-full').style.display = 'inline'; document.getElementById('2008.12345v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.12345v1-abstract-full" style="display: none;"> We report an astronomical detection of HC$_4$NC for the first time in the interstellar medium with the Green Bank Telescope toward the TMC-1 molecular cloud with a minimum significance of $10.5 蟽$. The total column density and excitation temperature of HC$_4$NC are determined to be $3.29^{+8.60}_{-1.20}\times 10^{11}$ cm$^{-2}$ and $6.7^{+0.3}_{-0.3}$ K, respectively, using the MCMC analysis. In addition to HC$_4$NC, HCCNC is distinctly detected whereas no clear detection of HC$_6$NC is made. We propose that the dissociative recombination of the protonated cyanopolyyne, HC$_5$NH$^+$, and the protonated isocyanopolyyne, HC$_4$NCH$^+$, are the main formation mechanisms for HC$_4$NC while its destruction is dominated by reactions with simple ions and atomic carbon. With the proposed chemical networks, the observed abundances of HC$_4$NC and HCCNC are reproduced satisfactorily. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12345v1-abstract-full').style.display = 'none'; document.getElementById('2008.12345v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in the Astrophysical Journal Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.09586">arXiv:2004.09586</a> <span> [<a href="https://arxiv.org/pdf/2004.09586">pdf</a>, <a href="https://arxiv.org/format/2004.09586">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-020-1087-2">10.1038/s41550-020-1087-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unusually High CO Abundance of the First Active Interstellar Comet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">S. N. Milam</a>, <a href="/search/?searchtype=author&query=Biver%2C+N">N. Biver</a>, <a href="/search/?searchtype=author&query=Bockel%C3%A9e-Morvan%2C+D">D. Bockel茅e-Morvan</a>, <a href="/search/?searchtype=author&query=Roth%2C+N+X">N. X. Roth</a>, <a href="/search/?searchtype=author&query=Bergin%2C+E+A">E. A. Bergin</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">E. Jehin</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">A. J. Remijan</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a>, <a href="/search/?searchtype=author&query=Mumma%2C+M+J">M. J. Mumma</a>, <a href="/search/?searchtype=author&query=Boissier%2C+J">J. Boissier</a>, <a href="/search/?searchtype=author&query=Crovisier%2C+J">J. Crovisier</a>, <a href="/search/?searchtype=author&query=Paganini%2C+L">L. Paganini</a>, <a href="/search/?searchtype=author&query=Kuan%2C+Y+-">Y. -J. Kuan</a>, <a href="/search/?searchtype=author&query=Lis%2C+D+C">D. C Lis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.09586v2-abstract-short" style="display: inline;"> Comets spend most of their lives at large distances from any star, during which time their interior compositions remain relatively unaltered. Cometary observations can therefore provide direct insight into the chemistry that occurred during their birth at the time of planet formation. To-date, there have been no confirmed observations of parent volatiles (gases released directly from the nucleus)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09586v2-abstract-full').style.display = 'inline'; document.getElementById('2004.09586v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.09586v2-abstract-full" style="display: none;"> Comets spend most of their lives at large distances from any star, during which time their interior compositions remain relatively unaltered. Cometary observations can therefore provide direct insight into the chemistry that occurred during their birth at the time of planet formation. To-date, there have been no confirmed observations of parent volatiles (gases released directly from the nucleus) of a comet from any planetary system other than our own. Here we present high-resolution, interferometric observations of 2I/Borisov, the first confirmed interstellar comet, obtained using the Atacama Large Millimeter/submillimeter Array (ALMA) on 15th-16th December 2019. Our observations reveal emission from hydrogen cyanide (HCN), and carbon monoxide (CO), coincident with the expected position of 2I/Borisov's nucleus, with production rates Q(HCN)=$(7.0\pm1.1)\times10^{23}$ s$^{-1}$ and Q(CO)=$(4.4\pm0.7)\times10^{26}$ s$^{-1}$. While the HCN abundance relative to water (0.06-0.16%) appears similar to that of typical, previously observed comets in our Solar System, the abundance of CO (35-105%) is among the highest observed in any comet within 2 au of the Sun. This shows that 2I/Borisov must have formed in a relatively CO-rich environment - probably beyond the CO ice-line in the very cold, outer regions of a distant protoplanetary accretion disk, as part of a population of small, icy bodies analogous to our Solar System's own proto-Kuiper Belt. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09586v2-abstract-full').style.display = 'none'; document.getElementById('2004.09586v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.04374">arXiv:1907.04374</a> <span> [<a href="https://arxiv.org/pdf/1907.04374">pdf</a>, <a href="https://arxiv.org/format/1907.04374">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab2d20">10.3847/1538-3881/ab2d20 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ALMA Spectral Imaging of Titan Contemporaneous with Cassini's Grand Finale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Teanby%2C+N+A">N. A. Teanby</a>, <a href="/search/?searchtype=author&query=Nixon%2C+C+A">C. A. Nixon</a>, <a href="/search/?searchtype=author&query=Vuitton%2C+V">V. Vuitton</a>, <a href="/search/?searchtype=author&query=Thelen%2C+A+E">A. E. Thelen</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.04374v2-abstract-short" style="display: inline;"> The Cassini mission performed 127 targeted flybys of Titan during its 13-year mission to Saturn, culminating in the Grand Finale between April-September 2017. Here we demonstrate the use of the Atacama Large Millimeter/submillimeter Array (ALMA) to continue Cassini's legacy for chemical and climatological studies of Titan's atmosphere. Whole-hemisphere, interferometric spectral maps of HCN, HNC, H… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.04374v2-abstract-full').style.display = 'inline'; document.getElementById('1907.04374v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.04374v2-abstract-full" style="display: none;"> The Cassini mission performed 127 targeted flybys of Titan during its 13-year mission to Saturn, culminating in the Grand Finale between April-September 2017. Here we demonstrate the use of the Atacama Large Millimeter/submillimeter Array (ALMA) to continue Cassini's legacy for chemical and climatological studies of Titan's atmosphere. Whole-hemisphere, interferometric spectral maps of HCN, HNC, HC3N, CH3CN, C2H3CN, C2H5CN and C3H8 were obtained using ALMA in May 2017 at moderate (~0.2'', or 1300 km) spatial resolution, revealing the effects of seasonally-variable chemistry and dynamics on the distribution of each species. The ALMA sub-mm observations of HCN and HC3N are consistent with Cassini infrared data on these species, obtained in the same month. Chemical/dynamical lifetimes of a few years are inferred for C2H3CN and C2H5CN, in reasonably close agreement with the latest chemical models incorporating sticking of C2H5CN to stratospheric aerosol particles. ALMA radial limb flux profiles provide column density information as a function of altitude, revealing maximum abundances in the thermosphere (above 600 km) for HCN, HNC, HC3N and C2H5CN. This constitutes the first detailed measurement of the spatial distribution of HNC, which is found to be confined predominantly to altitudes above 730 $\pm$ 60 km. The HNC emission map shows an east-west hemispheric asymmetry of (13$\pm$3)%. These results are consistent with very rapid production (and loss) of HNC in Titan's uppermost atmosphere, making this molecule an effective probe of short-timescale (diurnal) ionospheric processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.04374v2-abstract-full').style.display = 'none'; document.getElementById('1907.04374v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">AJ; submitted March 2019; accepted for publication June 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.00576">arXiv:1905.00576</a> <span> [<a href="https://arxiv.org/pdf/1905.00576">pdf</a>, <a href="https://arxiv.org/format/1905.00576">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab19bb">10.3847/1538-3881/ab19bb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of CH$_3$D on Titan at Submillimeter Wavelengths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Thelen%2C+A+E">Alexander E. Thelen</a>, <a href="/search/?searchtype=author&query=Nixon%2C+C+A">Conor A. Nixon</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Irwin%2C+P+G+J">Patrick G. J. Irwin</a>, <a href="/search/?searchtype=author&query=Kisiel%2C+Z">Zbigniew Kisiel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.00576v1-abstract-short" style="display: inline;"> We present the first radio/submillimeter detection of monodeuterated methane (CH$_3$D) in Titan's atmosphere, using archival data from of the Atacama Large Millimeter/submillimeter Array (ALMA). The $J_K=2_1-1_1$ and $J_K=2_0-1_0$ transitions at 465.235 and 465.250 GHz ($\sim0.644$ mm) were measured at significance levels of $4.6蟽$ and $5.7蟽$, respectively. These two lines were modeled using the N… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00576v1-abstract-full').style.display = 'inline'; document.getElementById('1905.00576v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.00576v1-abstract-full" style="display: none;"> We present the first radio/submillimeter detection of monodeuterated methane (CH$_3$D) in Titan's atmosphere, using archival data from of the Atacama Large Millimeter/submillimeter Array (ALMA). The $J_K=2_1-1_1$ and $J_K=2_0-1_0$ transitions at 465.235 and 465.250 GHz ($\sim0.644$ mm) were measured at significance levels of $4.6蟽$ and $5.7蟽$, respectively. These two lines were modeled using the Non-linear optimal Estimator for MultivariatE spectral analySIS (NEMESIS) radiative transfer code to determine the disk-averaged CH$_3$D volume mixing ratio = $6.157\times10^{-6}$ in Titan's stratosphere (at altitudes $\gt130$ km). By comparison with the CH$_4$ vertical abundance profile measured by Cassini-Huygens mass spectrometry, the resulting value for D/H in CH$_4$ is $(1.033\pm0.081)\times10^{-4}$. This is consistent with previous ground-based and in-situ measurements from the Cassini-Huygens mission, though slightly lower than the average of the previous values. Additional CH$_3$D observations at higher spatial resolution will be required to determine a value truly comparable with the Cassini-Huygens CH$_4$ measurements, by measuring CH$_3$D with ALMA close to Titan's equator. In the post-Cassini era, spatially resolved observations of CH$_3$D with ALMA will enable the latitudinal distribution of methane to be determined, making this an important molecule for further studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00576v1-abstract-full').style.display = 'none'; document.getElementById('1905.00576v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.08821">arXiv:1904.08821</a> <span> [<a href="https://arxiv.org/pdf/1904.08821">pdf</a>, <a href="https://arxiv.org/format/1904.08821">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ab14e5">10.3847/2041-8213/ab14e5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Confirming interstellar C$_{60}^+$ using the Hubble Space Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Linnartz%2C+H">H. Linnartz</a>, <a href="/search/?searchtype=author&query=Cox%2C+N+L+J">N. L. J. Cox</a>, <a href="/search/?searchtype=author&query=Cami%2C+J">J. Cami</a>, <a href="/search/?searchtype=author&query=Najarro%2C+F">F. Najarro</a>, <a href="/search/?searchtype=author&query=Proffitt%2C+C+R">C. R. Proffitt</a>, <a href="/search/?searchtype=author&query=Lallement%2C+R">R. Lallement</a>, <a href="/search/?searchtype=author&query=Ehrenfreund%2C+P">P. Ehrenfreund</a>, <a href="/search/?searchtype=author&query=Foing%2C+B+H">B. H. Foing</a>, <a href="/search/?searchtype=author&query=Gull%2C+T+R">T. R. Gull</a>, <a href="/search/?searchtype=author&query=Sarre%2C+P+J">P. J. Sarre</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.08821v2-abstract-short" style="display: inline;"> Recent advances in laboratory spectroscopy lead to the claim of ionized Buckminsterfullerene (C60+) as the carrier of two diffuse interstellar bands (DIBs) in the near-infrared. However, irrefutable identification of interstellar C60+ requires a match between the wavelengths and the expected strengths of all absorption features detectable in the laboratory and in space. Here we present Hubble Spac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08821v2-abstract-full').style.display = 'inline'; document.getElementById('1904.08821v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.08821v2-abstract-full" style="display: none;"> Recent advances in laboratory spectroscopy lead to the claim of ionized Buckminsterfullerene (C60+) as the carrier of two diffuse interstellar bands (DIBs) in the near-infrared. However, irrefutable identification of interstellar C60+ requires a match between the wavelengths and the expected strengths of all absorption features detectable in the laboratory and in space. Here we present Hubble Space Telescope (HST) spectra of the region covering the C60+ 9348, 9365, 9428 and 9577 脜 absorption bands toward seven heavily-reddened stars. We focus in particular on searching for the weaker laboratory C60+ bands, the very presence of which has been a matter for recent debate. Using the novel STIS-scanning technique to obtain ultra-high signal-to-noise spectra without contamination from telluric absorption that afflicted previous ground-based observations, we obtained reliable detections of the (weak) 9365, 9428 脜 and (strong) 9577 脜 C60+ bands. The band wavelengths and strength ratios are sufficiently similar to those determined in the latest laboratory experiments that we consider this the first robust identification of the 9428 脜 band, and a conclusive confirmation of interstellar C60+. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08821v2-abstract-full').style.display = 'none'; document.getElementById('1904.08821v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in ApJ Letters, April 2019, 875, L28</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.07161">arXiv:1904.07161</a> <span> [<a href="https://arxiv.org/pdf/1904.07161">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Impacts of Quantum Chemistry Calculations on Exoplanetary Science, Planetary Astronomy, and Astrophysics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Kao%2C+D">Der-you Kao</a>, <a href="/search/?searchtype=author&query=Gacesa%2C+M">Marko Gacesa</a>, <a href="/search/?searchtype=author&query=Wentzcovitch%2C+R+M">Renata M. Wentzcovitch</a>, <a href="/search/?searchtype=author&query=Domagal-Goldman%2C+S">Shawn Domagal-Goldman</a>, <a href="/search/?searchtype=author&query=Kopparapu%2C+R+K">Ravi K. Kopparapu</a>, <a href="/search/?searchtype=author&query=Klippenstein%2C+S+J">Stephen J. Klippenstein</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Henning%2C+W+G">Wade G. Henning</a>, <a href="/search/?searchtype=author&query=Renaud%2C+J">Joe Renaud</a>, <a href="/search/?searchtype=author&query=Romani%2C+P">Paul Romani</a>, <a href="/search/?searchtype=author&query=Lee%2C+Y">Yuni Lee</a>, <a href="/search/?searchtype=author&query=Nixon%2C+C+A">Conor A. Nixon</a>, <a href="/search/?searchtype=author&query=Jackson%2C+K+A">Koblar A. Jackson</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Lombardo%2C+N+A">Nicholas A. Lombardo</a>, <a href="/search/?searchtype=author&query=Wieman%2C+S">Scott Wieman</a>, <a href="/search/?searchtype=author&query=Airapetian%2C+V">Vladimir Airapetian</a>, <a href="/search/?searchtype=author&query=Allen%2C+V">Veronica Allen</a>, <a href="/search/?searchtype=author&query=Pidhorodetska%2C+D">Daria Pidhorodetska</a>, <a href="/search/?searchtype=author&query=Kohler%2C+E">Erika Kohler</a>, <a href="/search/?searchtype=author&query=Moses%2C+J">Julianne Moses</a>, <a href="/search/?searchtype=author&query=Livengood%2C+T+A">Timothy A. Livengood</a>, <a href="/search/?searchtype=author&query=Simkus%2C+D+N">Danielle N. Simkus</a>, <a href="/search/?searchtype=author&query=Planavsky%2C+N+J">Noah J. Planavsky</a>, <a href="/search/?searchtype=author&query=Dong%2C+C">Chuanfei Dong</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.07161v1-abstract-short" style="display: inline;"> Several of NASA missions (TESS, JWST, WFIRST, etc.) and mission concepts (LUVOIR, HabEx, and OST) emphasize the exploration and characterization of exoplanets, and the study of the interstellar medium. We anticipate that a much broader set of chemical environments exists on exoplanets, necessitating data from a correspondingly broader set of chemical reactions. Similarly, the conditions that exist… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07161v1-abstract-full').style.display = 'inline'; document.getElementById('1904.07161v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.07161v1-abstract-full" style="display: none;"> Several of NASA missions (TESS, JWST, WFIRST, etc.) and mission concepts (LUVOIR, HabEx, and OST) emphasize the exploration and characterization of exoplanets, and the study of the interstellar medium. We anticipate that a much broader set of chemical environments exists on exoplanets, necessitating data from a correspondingly broader set of chemical reactions. Similarly, the conditions that exist in astrophysical environments are very different from those traditionally probed in laboratory chemical kinetics studies. These are areas where quantum mechanical theory, applied to important reactions via well-validated chemical kinetics models, can fill a critical knowledge gap. Quantum chemical calculations are also introduced to study interior of planets, photochemical escape, and many critical chemical pathways (e.g. prebiotic environments, contaminations, etc.) After years of development of the relevant quantum chemical theories and significant advances in computational power, quantum chemical simulations have currently matured enough to describe real systems with an accuracy that competes with experiments. These approaches, therefore, have become the best possible alternative in many circumstances where performing experiments is too difficult, too expensive, or too dangerous, or simply not possible. In this white paper, several existing quantum chemical studies supporting exoplanetary science, planetary astronomy, and astrophysics are described, and the potential positive impacts of improved models associated with scientific goals of missions are addressed. In the end, a few recommendations from the scientific community to strengthen related research efforts at NASA are provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07161v1-abstract-full').style.display = 'none'; document.getElementById('1904.07161v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.08676">arXiv:1901.08676</a> <span> [<a href="https://arxiv.org/pdf/1901.08676">pdf</a>, <a href="https://arxiv.org/format/1901.08676">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aafb05">10.3847/2041-8213/aafb05 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ALMA Autocorrelation Spectroscopy of Comets: The HCN/H^13CN ratio in C/2012 S1 (ISON) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">M. A. Cordiner</a>, <a href="/search/?searchtype=author&query=Palmer%2C+M+Y">M. Y. Palmer</a>, <a href="/search/?searchtype=author&query=de+Val-Borro%2C+M">M. de Val-Borro</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">S. B. Charnley</a>, <a href="/search/?searchtype=author&query=Paganini%2C+L">L. Paganini</a>, <a href="/search/?searchtype=author&query=Villanueva%2C+G">G. Villanueva</a>, <a href="/search/?searchtype=author&query=Bockel%C3%A9e-Morvan%2C+D">D. Bockel茅e-Morvan</a>, <a href="/search/?searchtype=author&query=Biver%2C+N">N. Biver</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">A. J. Remijan</a>, <a href="/search/?searchtype=author&query=Kuan%2C+Y+-">Y. -J. Kuan</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">S. N. Milam</a>, <a href="/search/?searchtype=author&query=Crovisier%2C+J">J. Crovisier</a>, <a href="/search/?searchtype=author&query=Lis%2C+D+C">D. C. Lis</a>, <a href="/search/?searchtype=author&query=Mumma%2C+M+J">M. J. Mumma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.08676v1-abstract-short" style="display: inline;"> The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful tool for high-resolution mapping of comets, but the main interferometer (comprised of 50x12-m antennas) is insensitive to the largest coma scales due to a lack of very short baselines. In this work, we present a new technique employing ALMA autocorrelation data (obtained simultaneously with the interferometric observations), eff… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08676v1-abstract-full').style.display = 'inline'; document.getElementById('1901.08676v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.08676v1-abstract-full" style="display: none;"> The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful tool for high-resolution mapping of comets, but the main interferometer (comprised of 50x12-m antennas) is insensitive to the largest coma scales due to a lack of very short baselines. In this work, we present a new technique employing ALMA autocorrelation data (obtained simultaneously with the interferometric observations), effectively treating the entire 12-m array as a collection of single-dish telescopes. Using combined autocorrelation spectra from 28 active antennas, we recovered extended HCN coma emission from comet C/2012 S1 (ISON), resulting in a fourteen-fold increase in detected line brightness compared with the interferometer. This resulted in the first detection of rotational emission from H^13CN in this comet. Using a detailed coma radiative transfer model accounting for optical depth and non-LTE excitation effects, we obtained an H^12CN/H^13CN ratio of 88+-18, which matches the terrestrial value of 89, consistent with a lack of isotopic fractionation in HCN during comet formation in the protosolar accretion disk. The possibility of future discoveries in extended sources using autocorrelation spectroscopy from the main ALMA array is thus demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08676v1-abstract-full').style.display = 'none'; document.getElementById('1901.08676v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Cordiner%2C+M+A&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>