CINXE.COM

Poisson distribution - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Poisson distribution - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"29a62324-5fd7-4fc5-a847-d1e4c92bbcc9","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Poisson_distribution","wgTitle":"Poisson distribution","wgCurRevisionId":1271823617,"wgRevisionId":1271823617,"wgArticleId":23009144,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 French-language sources (fr)","CS1 Latin-language sources (la)","CS1 German-language sources (de)","CS1 maint: location missing publisher","CS1: long volume value","CS1 Danish-language sources (da)","Articles with short description","Short description matches Wikidata","Wikipedia pages semi-protected against vandalism","Use dmy dates from October 2023","All articles with failed verification","Articles with failed verification from January 2024", "All articles with unsourced statements","Articles with unsourced statements from May 2012","Articles needing additional references from December 2019","All articles needing additional references","Articles with unsourced statements from April 2012","Articles with unsourced statements from February 2024","Articles with unsourced statements from March 2019","Articles with example pseudocode","1711 introductions","Poisson distribution","Conjugate prior distributions","Factorial and binomial topics","Infinitely divisible probability distributions","Abraham de Moivre"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Poisson_distribution","wgRelevantArticleId":23009144,"wgIsProbablyEditable":false,"wgRelevantPageIsProbablyEditable":false,"wgRestrictionEdit":["autoconfirmed"],"wgRestrictionMove":["autoconfirmed"],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1} }},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":80000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q205692","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user": "ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns", "ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.17"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/16/Poisson_pmf.svg/1200px-Poisson_pmf.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="927"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/16/Poisson_pmf.svg/800px-Poisson_pmf.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="618"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/16/Poisson_pmf.svg/640px-Poisson_pmf.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="495"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Poisson distribution - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Poisson_distribution"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Poisson_distribution"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject page-Poisson_distribution rootpage-Poisson_distribution skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Poisson+distribution" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Poisson+distribution" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Poisson+distribution" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Poisson+distribution" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definitions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definitions</span> </div> </a> <button aria-controls="toc-Definitions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definitions subsection</span> </button> <ul id="toc-Definitions-sublist" class="vector-toc-list"> <li id="toc-Probability_mass_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_mass_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Probability mass function</span> </div> </a> <ul id="toc-Probability_mass_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Assumptions_and_validity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Assumptions_and_validity"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Assumptions and validity</span> </div> </a> <ul id="toc-Assumptions_and_validity-sublist" class="vector-toc-list"> <li id="toc-Examples_of_probability_for_Poisson_distributions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Examples_of_probability_for_Poisson_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.1</span> <span>Examples of probability for Poisson distributions</span> </div> </a> <ul id="toc-Examples_of_probability_for_Poisson_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Once_in_an_interval_events:_The_special_case_of_λ_=_1_and_k_=_0" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Once_in_an_interval_events:_The_special_case_of_λ_=_1_and_k_=_0"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.2</span> <span>Once in an interval events: The special case of <span>λ</span> = 1 and <span>k</span> = 0</span> </div> </a> <ul id="toc-Once_in_an_interval_events:_The_special_case_of_λ_=_1_and_k_=_0-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Examples_that_violate_the_Poisson_assumptions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples_that_violate_the_Poisson_assumptions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Examples that violate the Poisson assumptions</span> </div> </a> <ul id="toc-Examples_that_violate_the_Poisson_assumptions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Descriptive_statistics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Descriptive_statistics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Descriptive statistics</span> </div> </a> <ul id="toc-Descriptive_statistics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Median" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Median"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Median</span> </div> </a> <ul id="toc-Median-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Higher_moments" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Higher_moments"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Higher moments</span> </div> </a> <ul id="toc-Higher_moments-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sums_of_Poisson-distributed_random_variables" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sums_of_Poisson-distributed_random_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Sums of Poisson-distributed random variables</span> </div> </a> <ul id="toc-Sums_of_Poisson-distributed_random_variables-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Maximum_entropy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Maximum_entropy"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Maximum entropy</span> </div> </a> <ul id="toc-Maximum_entropy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Other properties</span> </div> </a> <ul id="toc-Other_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poisson_races" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Poisson_races"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7</span> <span>Poisson races</span> </div> </a> <ul id="toc-Poisson_races-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Related_distributions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Related_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Related distributions</span> </div> </a> <button aria-controls="toc-Related_distributions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Related distributions subsection</span> </button> <ul id="toc-Related_distributions-sublist" class="vector-toc-list"> <li id="toc-As_a_Binomial_distribution_with_infinitesimal_time-steps" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#As_a_Binomial_distribution_with_infinitesimal_time-steps"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>As a Binomial distribution with infinitesimal time-steps</span> </div> </a> <ul id="toc-As_a_Binomial_distribution_with_infinitesimal_time-steps-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-General" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#General"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>General</span> </div> </a> <ul id="toc-General-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poisson_approximation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Poisson_approximation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Poisson approximation</span> </div> </a> <ul id="toc-Poisson_approximation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bivariate_Poisson_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bivariate_Poisson_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Bivariate Poisson distribution</span> </div> </a> <ul id="toc-Bivariate_Poisson_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Free_Poisson_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Free_Poisson_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Free Poisson distribution</span> </div> </a> <ul id="toc-Free_Poisson_distribution-sublist" class="vector-toc-list"> <li id="toc-Some_transforms_of_this_law" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Some_transforms_of_this_law"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5.1</span> <span>Some transforms of this law</span> </div> </a> <ul id="toc-Some_transforms_of_this_law-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Weibull_and_stable_count" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Weibull_and_stable_count"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Weibull and stable count</span> </div> </a> <ul id="toc-Weibull_and_stable_count-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Statistical_inference" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Statistical_inference"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Statistical inference</span> </div> </a> <button aria-controls="toc-Statistical_inference-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Statistical inference subsection</span> </button> <ul id="toc-Statistical_inference-sublist" class="vector-toc-list"> <li id="toc-Parameter_estimation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Parameter_estimation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Parameter estimation</span> </div> </a> <ul id="toc-Parameter_estimation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Confidence_interval" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Confidence_interval"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Confidence interval</span> </div> </a> <ul id="toc-Confidence_interval-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bayesian_inference" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bayesian_inference"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Bayesian inference</span> </div> </a> <ul id="toc-Bayesian_inference-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Simultaneous_estimation_of_multiple_Poisson_means" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Simultaneous_estimation_of_multiple_Poisson_means"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Simultaneous estimation of multiple Poisson means</span> </div> </a> <ul id="toc-Simultaneous_estimation_of_multiple_Poisson_means-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Occurrence_and_applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Occurrence_and_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Occurrence and applications</span> </div> </a> <button aria-controls="toc-Occurrence_and_applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Occurrence and applications subsection</span> </button> <ul id="toc-Occurrence_and_applications-sublist" class="vector-toc-list"> <li id="toc-Law_of_rare_events" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Law_of_rare_events"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Law of rare events</span> </div> </a> <ul id="toc-Law_of_rare_events-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poisson_point_process" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Poisson_point_process"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Poisson point process</span> </div> </a> <ul id="toc-Poisson_point_process-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poisson_regression_and_negative_binomial_regression" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Poisson_regression_and_negative_binomial_regression"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Poisson regression and negative binomial regression</span> </div> </a> <ul id="toc-Poisson_regression_and_negative_binomial_regression-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Biology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Biology"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Biology</span> </div> </a> <ul id="toc-Biology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_applications_in_science" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_applications_in_science"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Other applications in science</span> </div> </a> <ul id="toc-Other_applications_in_science-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Computational_methods" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Computational_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Computational methods</span> </div> </a> <button aria-controls="toc-Computational_methods-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Computational methods subsection</span> </button> <ul id="toc-Computational_methods-sublist" class="vector-toc-list"> <li id="toc-Evaluating_the_Poisson_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Evaluating_the_Poisson_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Evaluating the Poisson distribution</span> </div> </a> <ul id="toc-Evaluating_the_Poisson_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Random_variate_generation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Random_variate_generation"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Random variate generation</span> </div> </a> <ul id="toc-Random_variate_generation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Poisson distribution</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 51 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-51" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">51 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%D9%8A%D8%B9_%D8%A8%D9%88%D8%A7%D8%B3%D9%88%D9%86" title="توزيع بواسون – Arabic" lang="ar" hreflang="ar" data-title="توزيع بواسون" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Distribuci%C3%B3n_de_Poisson" title="Distribución de Poisson – Asturian" lang="ast" hreflang="ast" data-title="Distribución de Poisson" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D9%BE%D9%88%D8%A7%D8%B3%D9%88%D9%86_%D8%AF%D8%A7%D8%BA%DB%8C%D9%84%DB%8C%D9%85%DB%8C" title="پواسون داغیلیمی – South Azerbaijani" lang="azb" hreflang="azb" data-title="پواسون داغیلیمی" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AA%E0%A6%AF%E0%A6%BC%E0%A6%B8%E0%A7%8B%E0%A6%81_%E0%A6%AC%E0%A6%BF%E0%A6%A8%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%B8" title="পয়সোঁ বিন্যাস – Bangla" lang="bn" hreflang="bn" data-title="পয়সোঁ বিন্যাস" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B7%D0%BC%D0%B5%D1%80%D0%BA%D0%B0%D0%B2%D0%B0%D0%BD%D0%BD%D0%B5_%D0%9F%D1%83%D0%B0%D1%81%D0%BE%D0%BD%D0%B0" title="Размеркаванне Пуасона – Belarusian" lang="be" hreflang="be" data-title="Размеркаванне Пуасона" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B7%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BD%D0%B0_%D0%9F%D0%BE%D0%B0%D1%81%D0%BE%D0%BD" title="Разпределение на Поасон – Bulgarian" lang="bg" hreflang="bg" data-title="Разпределение на Поасон" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Distribuci%C3%B3_de_Poisson" title="Distribució de Poisson – Catalan" lang="ca" hreflang="ca" data-title="Distribució de Poisson" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Poissonovo_rozd%C4%9Blen%C3%AD" title="Poissonovo rozdělení – Czech" lang="cs" hreflang="cs" data-title="Poissonovo rozdělení" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Poissonfordeling" title="Poissonfordeling – Danish" lang="da" hreflang="da" data-title="Poissonfordeling" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Poisson-Verteilung" title="Poisson-Verteilung – German" lang="de" hreflang="de" data-title="Poisson-Verteilung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Poissoni_jaotus" title="Poissoni jaotus – Estonian" lang="et" hreflang="et" data-title="Poissoni jaotus" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9A%CE%B1%CF%84%CE%B1%CE%BD%CE%BF%CE%BC%CE%AE_%CE%A0%CE%BF%CF%85%CE%B1%CF%83%CF%83%CF%8C%CE%BD" title="Κατανομή Πουασσόν – Greek" lang="el" hreflang="el" data-title="Κατανομή Πουασσόν" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Distribuci%C3%B3n_de_Poisson" title="Distribución de Poisson – Spanish" lang="es" hreflang="es" data-title="Distribución de Poisson" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Poissonen_banaketa" title="Poissonen banaketa – Basque" lang="eu" hreflang="eu" data-title="Poissonen banaketa" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%DB%8C%D8%B9_%D9%BE%D9%88%D8%A7%D8%B3%D9%88%D9%86" title="توزیع پواسون – Persian" lang="fa" hreflang="fa" data-title="توزیع پواسون" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Loi_de_Poisson" title="Loi de Poisson – French" lang="fr" hreflang="fr" data-title="Loi de Poisson" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Distribuci%C3%B3n_de_Poisson" title="Distribución de Poisson – Galician" lang="gl" hreflang="gl" data-title="Distribución de Poisson" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%91%B8%EC%95%84%EC%86%A1_%EB%B6%84%ED%8F%AC" title="푸아송 분포 – Korean" lang="ko" hreflang="ko" data-title="푸아송 분포" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8A%D5%B8%D6%82%D5%A1%D5%BD%D5%B8%D5%B6%D5%AB_%D5%A2%D5%A1%D5%B7%D5%AD%D5%B8%D6%82%D5%B4" title="Պուասոնի բաշխում – Armenian" lang="hy" hreflang="hy" data-title="Պուասոնի բաշխում" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Distribusi_Poisson" title="Distribusi Poisson – Indonesian" lang="id" hreflang="id" data-title="Distribusi Poisson" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Poisson-dreifing" title="Poisson-dreifing – Icelandic" lang="is" hreflang="is" data-title="Poisson-dreifing" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Distribuzione_di_Poisson" title="Distribuzione di Poisson – Italian" lang="it" hreflang="it" data-title="Distribuzione di Poisson" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%AA%D7%A4%D7%9C%D7%92%D7%95%D7%AA_%D7%A4%D7%95%D7%90%D7%A1%D7%95%D7%9F" title="התפלגות פואסון – Hebrew" lang="he" hreflang="he" data-title="התפלגות פואסון" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9E%E1%83%A3%E1%83%90%E1%83%A1%E1%83%9D%E1%83%9C%E1%83%98%E1%83%A1_%E1%83%92%E1%83%90%E1%83%9C%E1%83%90%E1%83%AC%E1%83%98%E1%83%9A%E1%83%94%E1%83%91%E1%83%90" title="პუასონის განაწილება – Georgian" lang="ka" hreflang="ka" data-title="პუასონის განაწილება" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Puasona_sadal%C4%ABjums" title="Puasona sadalījums – Latvian" lang="lv" hreflang="lv" data-title="Puasona sadalījums" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Puasono_skirstinys" title="Puasono skirstinys – Lithuanian" lang="lt" hreflang="lt" data-title="Puasono skirstinys" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Poisson-eloszl%C3%A1s" title="Poisson-eloszlás – Hungarian" lang="hu" hreflang="hu" data-title="Poisson-eloszlás" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B0%D1%81%D0%BE%D0%BD%D0%BE%D0%B2%D0%B0_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B1%D0%B0" title="Поасонова распределба – Macedonian" lang="mk" hreflang="mk" data-title="Поасонова распределба" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Taburan_Poisson" title="Taburan Poisson – Malay" lang="ms" hreflang="ms" data-title="Taburan Poisson" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Poissonverdeling" title="Poissonverdeling – Dutch" lang="nl" hreflang="nl" data-title="Poissonverdeling" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%9D%E3%82%A2%E3%82%BD%E3%83%B3%E5%88%86%E5%B8%83" title="ポアソン分布 – Japanese" lang="ja" hreflang="ja" data-title="ポアソン分布" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Poisson-fordeling" title="Poisson-fordeling – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Poisson-fordeling" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona" title="Rozkład Poissona – Polish" lang="pl" hreflang="pl" data-title="Rozkład Poissona" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Distribui%C3%A7%C3%A3o_de_Poisson" title="Distribuição de Poisson – Portuguese" lang="pt" hreflang="pt" data-title="Distribuição de Poisson" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%9F%D1%83%D0%B0%D1%81%D1%81%D0%BE%D0%BD%D0%B0" title="Распределение Пуассона – Russian" lang="ru" hreflang="ru" data-title="Распределение Пуассона" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Shp%C3%ABrndarja_Poisson" title="Shpërndarja Poisson – Albanian" lang="sq" hreflang="sq" data-title="Shpërndarja Poisson" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Poisson_distribution" title="Poisson distribution – Simple English" lang="en-simple" hreflang="en-simple" data-title="Poisson distribution" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Poissonovo_rozdelenie" title="Poissonovo rozdelenie – Slovak" lang="sk" hreflang="sk" data-title="Poissonovo rozdelenie" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Poissonova_porazdelitev" title="Poissonova porazdelitev – Slovenian" lang="sl" hreflang="sl" data-title="Poissonova porazdelitev" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Poasonova_raspodela" title="Poasonova raspodela – Serbian" lang="sr" hreflang="sr" data-title="Poasonova raspodela" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Sebaran_Poisson" title="Sebaran Poisson – Sundanese" lang="su" hreflang="su" data-title="Sebaran Poisson" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Poissonin_jakauma" title="Poissonin jakauma – Finnish" lang="fi" hreflang="fi" data-title="Poissonin jakauma" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Poissonf%C3%B6rdelning" title="Poissonfördelning – Swedish" lang="sv" hreflang="sv" data-title="Poissonfördelning" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%9F%D1%83%D0%B0%D1%81%D1%81%D0%BE%D0%BD_%D0%B1%D2%AF%D0%BB%D0%B5%D0%BD%D0%B5%D1%88%D0%B5" title="Пуассон бүленеше – Tatar" lang="tt" hreflang="tt" data-title="Пуассон бүленеше" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Poisson_da%C4%9F%C4%B1l%C4%B1m%C4%B1" title="Poisson dağılımı – Turkish" lang="tr" hreflang="tr" data-title="Poisson dağılımı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D0%BE%D0%B7%D0%BF%D0%BE%D0%B4%D1%96%D0%BB_%D0%9F%D1%83%D0%B0%D1%81%D1%81%D0%BE%D0%BD%D0%B0" title="Розподіл Пуассона – Ukrainian" lang="uk" hreflang="uk" data-title="Розподіл Пуассона" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%BE%D9%88%D8%A6%DB%8C%D8%B3%D9%86_%D8%AA%D9%88%D8%B2%DB%8C%D8%B9" title="پوئیسن توزیع – Urdu" lang="ur" hreflang="ur" data-title="پوئیسن توزیع" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C3%A2n_ph%E1%BB%91i_Poisson" title="Phân phối Poisson – Vietnamese" lang="vi" hreflang="vi" data-title="Phân phối Poisson" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%B3%8A%E6%9D%BE%E5%88%86%E5%B8%83" title="泊松分布 – Wu" lang="wuu" hreflang="wuu" data-title="泊松分布" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%B3%8A%E6%B7%9E%E5%88%86%E4%BD%88" title="泊淞分佈 – Cantonese" lang="yue" hreflang="yue" data-title="泊淞分佈" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8D%9C%E7%93%A6%E6%9D%BE%E5%88%86%E5%B8%83" title="卜瓦松分布 – Chinese" lang="zh" hreflang="zh" data-title="卜瓦松分布" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q205692#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Poisson_distribution" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Poisson_distribution" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Poisson_distribution"><span>Read</span></a></li><li id="ca-viewsource" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Poisson_distribution&amp;action=edit" title="This page is protected.&#10;You can view its source [e]" accesskey="e"><span>View source</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Poisson_distribution&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Poisson_distribution"><span>Read</span></a></li><li id="ca-more-viewsource" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Poisson_distribution&amp;action=edit"><span>View source</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Poisson_distribution&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Poisson_distribution" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Poisson_distribution" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Poisson_distribution&amp;oldid=1271823617" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Poisson_distribution&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Poisson_distribution&amp;id=1271823617&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPoisson_distribution"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPoisson_distribution"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Poisson_distribution&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Poisson_distribution&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Poisson_distribution" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q205692" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-pp-default" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Protection_policy#semi" title="This article is semi-protected until May 6, 2026 at 11:57 UTC, due to vandalism"><img alt="Page semi-protected" src="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/20px-Semi-protection-shackle.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/30px-Semi-protection-shackle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/40px-Semi-protection-shackle.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Discrete probability distribution</div> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><style data-mw-deduplicate="TemplateStyles:r1259743904">.mw-parser-output .ib-prob-dist{border-collapse:collapse;width:20em}.mw-parser-output .ib-prob-dist td,.mw-parser-output .ib-prob-dist th{border:1px solid var(--border-color-base,#a2a9b1);padding:0.3em 0.4em}.mw-parser-output .ib-prob-dist .infobox-subheader{text-align:left}.mw-parser-output .ib-prob-dist-image{background:var(--background-color-neutral,#eaecf0);font-weight:bold;text-align:center}</style><table class="infobox infobox-table ib-prob-dist"><caption class="infobox-title">Poisson distribution</caption><tbody><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Probability mass function</div><span typeof="mw:File"><a href="/wiki/File:Poisson_pmf.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/16/Poisson_pmf.svg/325px-Poisson_pmf.svg.png" decoding="async" width="325" height="251" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/16/Poisson_pmf.svg/488px-Poisson_pmf.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/16/Poisson_pmf.svg/650px-Poisson_pmf.svg.png 2x" data-file-width="330" data-file-height="255" /></a></span><div class="infobox-caption">The horizontal axis is the index <span class="texhtml mvar" style="font-style:italic;">k</span>, the number of occurrences. <span class="texhtml mvar" style="font-style:italic;">λ</span> is the expected rate of occurrences. The vertical axis is the probability of <span class="texhtml mvar" style="font-style:italic;">k</span> occurrences given <span class="texhtml mvar" style="font-style:italic;">λ</span>. The function is defined only at integer values of <span class="texhtml mvar" style="font-style:italic;">k</span>; the connecting lines are only guides for the eye.</div></td></tr><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Cumulative distribution function</div><span typeof="mw:File"><a href="/wiki/File:Poisson_cdf.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Poisson_cdf.svg/325px-Poisson_cdf.svg.png" decoding="async" width="325" height="258" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Poisson_cdf.svg/488px-Poisson_cdf.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Poisson_cdf.svg/650px-Poisson_cdf.svg.png 2x" data-file-width="327" data-file-height="260" /></a></span><div class="infobox-caption">The horizontal axis is the index <span class="texhtml mvar" style="font-style:italic;">k</span>, the number of occurrences. The CDF is discontinuous at the integers of <span class="texhtml mvar" style="font-style:italic;">k</span> and flat everywhere else because a variable that is Poisson distributed takes on only integer values.</div></td></tr><tr><th scope="row" class="infobox-label">Notation</th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Pois} (\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Pois} (\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2171745e86cc9d5c28f0e2595db6b5532fe8bb47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.473ex; height:2.843ex;" alt="{\displaystyle \operatorname {Pois} (\lambda )}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Statistical_parameter" title="Statistical parameter">Parameters</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \in (0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \in (0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66704521911e7bce5122e668683005f6d22207ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.525ex; height:2.843ex;" alt="{\displaystyle \lambda \in (0,\infty )}"></span> (rate)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Support_(mathematics)" title="Support (mathematics)">Support</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \mathbb {N} _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \mathbb {N} _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97bceb13f72e37bcd50b60e5fb2fa05bcf15c265" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.784ex; height:2.509ex;" alt="{\displaystyle k\in \mathbb {N} _{0}}"></span> (<a href="/wiki/Natural_numbers" class="mw-redirect" title="Natural numbers">Natural numbers</a> starting from&#160;0)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Probability_mass_function" title="Probability mass function">PMF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\lambda ^{k}e^{-\lambda }}{k!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\lambda ^{k}e^{-\lambda }}{k!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75b15a85051528f8722d2b676a557f6c22bf85c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:6.833ex; height:5.843ex;" alt="{\displaystyle {\frac {\lambda ^{k}e^{-\lambda }}{k!}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">CDF</a></th><td colspan="3" class="infobox-data"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Gamma (\lfloor k+1\rfloor ,\lambda )}{\lfloor k\rfloor !}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> <mo>,</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>k</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Gamma (\lfloor k+1\rfloor ,\lambda )}{\lfloor k\rfloor !}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b44c577126e6cab854deb2586eea897e7e1380d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.413ex; height:6.509ex;" alt="{\displaystyle {\frac {\Gamma (\lfloor k+1\rfloor ,\lambda )}{\lfloor k\rfloor !}},}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\lambda }\sum _{j=0}^{\lfloor k\rfloor }{\frac {\lambda ^{j}}{j!}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>k</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mrow> <mi>j</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\lambda }\sum _{j=0}^{\lfloor k\rfloor }{\frac {\lambda ^{j}}{j!}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42278d90b362f7bd56a5bdd4b726b03a2300ffc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:11.43ex; height:8.009ex;" alt="{\displaystyle e^{-\lambda }\sum _{j=0}^{\lfloor k\rfloor }{\frac {\lambda ^{j}}{j!}},}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(\lfloor k+1\rfloor ,\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> <mo>,</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(\lfloor k+1\rfloor ,\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb7bb45bf477cfc1deaf939b475b03c0f6b02342" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.316ex; height:2.843ex;" alt="{\displaystyle Q(\lfloor k+1\rfloor ,\lambda )}"></span> </p> (for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\geq 0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\geq 0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c10f12b66e1ef733d7d4a58e6ac0dc86550bf94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.119ex; height:2.509ex;" alt="{\displaystyle k\geq 0,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89a26a2719b58c1e3dc41c04ae1f927fc00e2891" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.781ex; height:2.843ex;" alt="{\displaystyle \Gamma (x,y)}"></span> is the <a href="/wiki/Upper_incomplete_gamma_function" class="mw-redirect" title="Upper incomplete gamma function">upper incomplete gamma function</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor k\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>k</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor k\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a64054ec38bec048113dd328cf867e9e62b581d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.276ex; height:2.843ex;" alt="{\displaystyle \lfloor k\rfloor }"></span> is the <a href="/wiki/Floor_function" class="mw-redirect" title="Floor function">floor function</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> is the <a href="/wiki/Regularized_gamma_function" class="mw-redirect" title="Regularized gamma function">regularized gamma function</a>)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Expected_value" title="Expected value">Mean</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Median" title="Median">Median</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \approx \left\lfloor \lambda +{\frac {1}{3}}-{\frac {1}{50\lambda }}\right\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2248;<!-- ≈ --></mo> <mrow> <mo>&#x230A;</mo> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>50</mn> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>&#x230B;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \approx \left\lfloor \lambda +{\frac {1}{3}}-{\frac {1}{50\lambda }}\right\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7096e049b66dc970bb7ad4f95bd95fe410d56608" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.715ex; height:6.176ex;" alt="{\displaystyle \approx \left\lfloor \lambda +{\frac {1}{3}}-{\frac {1}{50\lambda }}\right\rfloor }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Mode_(statistics)" title="Mode (statistics)">Mode</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\lceil \lambda \right\rceil -1,\left\lfloor \lambda \right\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>&#x2308;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2309;</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mrow> <mo>&#x230A;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x230B;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\lceil \lambda \right\rceil -1,\left\lfloor \lambda \right\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39855377f4991452ccf691ed5c80b9615ca28b8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.877ex; height:2.843ex;" alt="{\displaystyle \left\lceil \lambda \right\rceil -1,\left\lfloor \lambda \right\rfloor }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Variance" title="Variance">Variance</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Skewness" title="Skewness">Skewness</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {\lambda }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>&#x03BB;<!-- λ --></mi> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {\lambda }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89acf6db1533e1d7afef03d16012dbe8eddb0b91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:4.127ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{\sqrt {\lambda }}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">Excess kurtosis</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\lambda }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03BB;<!-- λ --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\lambda }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d496a9397007733fdbbb2f98433e7aab4e51ff4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:2.191ex; height:5.343ex;" alt="{\displaystyle {\frac {1}{\lambda }}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">Entropy</a></th><td colspan="3" class="infobox-data"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda {\Bigl [}1-\log(\lambda ){\Bigr ]}+e^{-\lambda }\sum _{k=0}^{\infty }{\frac {\lambda ^{k}\log(k!)}{k!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.623em" minsize="1.623em">[</mo> </mrow> </mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.623em" minsize="1.623em">]</mo> </mrow> </mrow> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>!</mo> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda {\Bigl [}1-\log(\lambda ){\Bigr ]}+e^{-\lambda }\sum _{k=0}^{\infty }{\frac {\lambda ^{k}\log(k!)}{k!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64c5bb5a142a1b60e4a04c725d686557fdb238bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:34.518ex; height:7.176ex;" alt="{\displaystyle \lambda {\Bigl [}1-\log(\lambda ){\Bigr ]}+e^{-\lambda }\sum _{k=0}^{\infty }{\frac {\lambda ^{k}\log(k!)}{k!}}}"></span> &#8195; or for large <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> &#8195; </p> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\approx {\frac {1}{2}}\log \left(2\pi e\lambda \right)-{\frac {1}{12\lambda }}-{\frac {1}{24\lambda ^{2}}}\\-{\frac {19}{360\lambda ^{3}}}+{\mathcal {O}}\left({\frac {1}{\lambda ^{4}}}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>e</mi> <mi>&#x03BB;<!-- λ --></mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>12</mn> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>24</mn> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>19</mn> <mrow> <mn>360</mn> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\approx {\frac {1}{2}}\log \left(2\pi e\lambda \right)-{\frac {1}{12\lambda }}-{\frac {1}{24\lambda ^{2}}}\\-{\frac {19}{360\lambda ^{3}}}+{\mathcal {O}}\left({\frac {1}{\lambda ^{4}}}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fec5ecd1664d2bbc5ba8db81ed452e1f72773a67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.037ex; margin-bottom: -0.301ex; width:31.072ex; height:11.843ex;" alt="{\displaystyle {\begin{aligned}\approx {\frac {1}{2}}\log \left(2\pi e\lambda \right)-{\frac {1}{12\lambda }}-{\frac {1}{24\lambda ^{2}}}\\-{\frac {19}{360\lambda ^{3}}}+{\mathcal {O}}\left({\frac {1}{\lambda ^{4}}}\right)\end{aligned}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Moment-generating_function" title="Moment-generating function">MGF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp \left[\lambda \left(e^{t}-1\right)\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp \left[\lambda \left(e^{t}-1\right)\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72c1560d02e57d6d1f2a6223fa16061ad399bb3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.276ex; height:3.176ex;" alt="{\displaystyle \exp \left[\lambda \left(e^{t}-1\right)\right]}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">CF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp \left[\lambda \left(e^{it}-1\right)\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>t</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp \left[\lambda \left(e^{it}-1\right)\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2d912f7d931127ba7a6d044105a647ea4590b40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.844ex; height:3.343ex;" alt="{\displaystyle \exp \left[\lambda \left(e^{it}-1\right)\right]}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Probability-generating_function" title="Probability-generating function">PGF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp \left[\lambda \left(z-1\right)\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mrow> <mo>(</mo> <mrow> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp \left[\lambda \left(z-1\right)\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b112607a91ffced05b02706979ee6651a6db3c84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.489ex; height:2.843ex;" alt="{\displaystyle \exp \left[\lambda \left(z-1\right)\right]}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Fisher_information" title="Fisher information">Fisher information</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\lambda }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03BB;<!-- λ --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\lambda }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d496a9397007733fdbbb2f98433e7aab4e51ff4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:2.191ex; height:5.343ex;" alt="{\displaystyle {\frac {1}{\lambda }}}"></span></td></tr></tbody></table> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, the <b>Poisson distribution</b> (<span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="/ˈ/: primary stress follows">ˈ</span><span title="&#39;p&#39; in &#39;pie&#39;">p</span><span title="&#39;w&#39; in &#39;wind&#39;">w</span><span title="/ɑː/: &#39;a&#39; in &#39;father&#39;">ɑː</span><span title="&#39;s&#39; in &#39;sigh&#39;">s</span><span title="/ɒ/: &#39;o&#39; in &#39;body&#39;">ɒ</span><span title="&#39;n&#39; in &#39;nigh&#39;">n</span></span>/</a></span></span>) is a <a href="/wiki/Discrete_probability_distribution" class="mw-redirect" title="Discrete probability distribution">discrete probability distribution</a> that expresses the probability of a given number of <a href="/wiki/Event_(probability_theory)" title="Event (probability theory)">events</a> occurring in a fixed interval of time if these events occur with a known constant mean rate and <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">independently</a> of the time since the last event.<sup id="cite_ref-Haight1967_1-0" class="reference"><a href="#cite_note-Haight1967-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1 (e.g., number of events in a given area or volume). </p><p>The Poisson distribution is named after <a href="/wiki/France" title="France">French</a> mathematician <a href="/wiki/Sim%C3%A9on_Denis_Poisson" title="Siméon Denis Poisson">Siméon Denis Poisson</a>. It plays an important role for <a href="/wiki/Discrete-stable_distribution" title="Discrete-stable distribution">discrete-stable distributions</a>. </p><p>Under a Poisson distribution with the <a href="/wiki/Expected_value" title="Expected value">expectation</a> of <i>λ</i> events in a given interval, the probability of <i>k</i> events in the same interval is:<sup id="cite_ref-Yates2014_2-0" class="reference"><a href="#cite_note-Yates2014-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 60">&#58;&#8202;60&#8202;</span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\lambda ^{k}e^{-\lambda }}{k!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\lambda ^{k}e^{-\lambda }}{k!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adc22b6080eef83a193028baca6189ccd675b61c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.48ex; height:5.843ex;" alt="{\displaystyle {\frac {\lambda ^{k}e^{-\lambda }}{k!}}.}"></span></dd></dl> <p>For instance, consider a call center which receives an average of <i>λ =</i> 3 calls per minute at all times of day. If the calls are independent, receiving one does not change the probability of when the next one will arrive. Under these assumptions, the number <i>k</i> of calls received during any minute has a Poisson probability distribution. Receiving <i>k =</i> 1 to 4 calls then has a probability of about 0.77, while receiving 0 or at least 5 calls has a probability of about 0.23. </p><p>A classic example used to motivate the Poisson distribution is the number of <a href="/wiki/Radioactive_decay" title="Radioactive decay">radioactive decay</a> events during a fixed observation period.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2></div> <p>The distribution was first introduced by <a href="/wiki/Sim%C3%A9on_Denis_Poisson" title="Siméon Denis Poisson">Siméon Denis Poisson</a> (1781–1840) and published together with his probability theory in his work <i>Recherches sur la probabilité des jugements en matière criminelle et en matière civile</i> (1837).<sup id="cite_ref-Poisson1837_4-0" class="reference"><a href="#cite_note-Poisson1837-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 205-207">&#58;&#8202;205-207&#8202;</span></sup> The work theorized about the number of wrongful convictions in a given country by focusing on certain <a href="/wiki/Random_variable" title="Random variable">random variables</a> <span class="texhtml mvar" style="font-style:italic;">N</span> that count, among other things, the number of discrete occurrences (sometimes called "events" or "arrivals") that take place during a <a href="/wiki/Time" title="Time">time</a>-interval of given length. The result had already been given in 1711 by <a href="/wiki/Abraham_de_Moivre" title="Abraham de Moivre">Abraham de Moivre</a> in <i>De Mensura Sortis seu; de Probabilitate Eventuum in Ludis a Casu Fortuito Pendentibus</i> .<sup id="cite_ref-deMoivre1711_5-0" class="reference"><a href="#cite_note-deMoivre1711-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 219">&#58;&#8202;219&#8202;</span></sup><sup id="cite_ref-deMoivre1718_6-0" class="reference"><a href="#cite_note-deMoivre1718-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 14-15">&#58;&#8202;14-15&#8202;</span></sup><sup id="cite_ref-deMoivre1721_7-0" class="reference"><a href="#cite_note-deMoivre1721-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 193">&#58;&#8202;193&#8202;</span></sup><sup id="cite_ref-Johnson2005_8-0" class="reference"><a href="#cite_note-Johnson2005-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 157">&#58;&#8202;157&#8202;</span></sup> This makes it an example of <a href="/wiki/Stigler%27s_law" class="mw-redirect" title="Stigler&#39;s law">Stigler's law</a> and it has prompted some authors to argue that the Poisson distribution should bear the name of de Moivre.<sup id="cite_ref-Stigler1982_9-0" class="reference"><a href="#cite_note-Stigler1982-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Hald1984_10-0" class="reference"><a href="#cite_note-Hald1984-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1860, <a href="/wiki/Simon_Newcomb" title="Simon Newcomb">Simon Newcomb</a> fitted the Poisson distribution to the number of stars found in a unit of space.<sup id="cite_ref-Newcomb1860_11-0" class="reference"><a href="#cite_note-Newcomb1860-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> A further practical application was made by <a href="/wiki/Ladislaus_Bortkiewicz" title="Ladislaus Bortkiewicz">Ladislaus Bortkiewicz</a> in 1898. Bortkiewicz showed that the frequency with which soldiers in the Prussian army were accidentally killed by horse kicks could be well modeled by a Poisson distribution.<sup id="cite_ref-vonBortkiewitsch1898_12-0" class="reference"><a href="#cite_note-vonBortkiewitsch1898-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 23-25">&#58;&#8202;23-25&#8202;</span></sup>. </p> <div class="mw-heading mw-heading2"><h2 id="Definitions">Definitions</h2></div> <div class="mw-heading mw-heading3"><h3 id="Probability_mass_function">Probability mass function</h3></div> <p>A discrete <a href="/wiki/Random_variable" title="Random variable">random variable</a> <span class="texhtml mvar" style="font-style:italic;">X</span> is said to have a Poisson distribution with parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda &gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda &gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eea25afc0351140f919cf791c49c1964b8b081de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.616ex; height:2.176ex;" alt="{\displaystyle \lambda &gt;0}"></span> if it has a <a href="/wiki/Probability_mass_function" title="Probability mass function">probability mass function</a> given by:<sup id="cite_ref-Yates2014_2-1" class="reference"><a href="#cite_note-Yates2014-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 60">&#58;&#8202;60&#8202;</span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(k;\lambda )=\Pr(X{=}k)={\frac {\lambda ^{k}e^{-\lambda }}{k!}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>=</mo> </mrow> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(k;\lambda )=\Pr(X{=}k)={\frac {\lambda ^{k}e^{-\lambda }}{k!}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a0693ecaa606e3878dfa9a85552d357c690ffb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:29.668ex; height:5.843ex;" alt="{\displaystyle f(k;\lambda )=\Pr(X{=}k)={\frac {\lambda ^{k}e^{-\lambda }}{k!}},}"></span></dd></dl> <p>where </p> <ul><li><span class="texhtml mvar" style="font-style:italic;">k</span> is the number of occurrences (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=0,1,2,\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=0,1,2,\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6d4b81efe1ce928c56c7b143cb2591f2100246c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.622ex; height:2.509ex;" alt="{\displaystyle k=0,1,2,\ldots }"></span>)</li> <li><span class="texhtml mvar" style="font-style:italic;">e</span> is <a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)">Euler's number</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=2.71828\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mn>2.71828</mn> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=2.71828\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d66c92b4dba5b8d590a9e2b01c854ca16f06927a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.914ex; height:2.176ex;" alt="{\displaystyle e=2.71828\ldots }"></span>)</li> <li><i>k</i>! = <i>k</i>(<i>k–</i>1) ··· (3)(2)(1) is the <a href="/wiki/Factorial" title="Factorial">factorial</a>.</li></ul> <p>The positive <a href="/wiki/Real_number" title="Real number">real number</a> <span class="texhtml mvar" style="font-style:italic;">λ</span> is equal to the <a href="/wiki/Expected_value" title="Expected value">expected value</a> of <span class="texhtml mvar" style="font-style:italic;">X</span> and also to its <a href="/wiki/Variance" title="Variance">variance</a>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda =\operatorname {E} (X)=\operatorname {Var} (X).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda =\operatorname {E} (X)=\operatorname {Var} (X).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2debd3f9adf97c8af4919aa69ed4a7121b47a737" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.178ex; height:2.843ex;" alt="{\displaystyle \lambda =\operatorname {E} (X)=\operatorname {Var} (X).}"></span></dd></dl> <p>The Poisson distribution can be applied to systems with a <a href="/wiki/Large_number_of_rare_events" title="Large number of rare events">large number of possible events, each of which is rare</a>. The number of such events that occur during a fixed time interval is, under the right circumstances, a random number with a Poisson distribution. </p><p>The equation can be adapted if, instead of the average number of events <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00aebb041f4a569408e310294efcc29e0eded7dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.002ex; height:2.509ex;" alt="{\displaystyle \lambda ,}"></span> we are given the average rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> at which events occur. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda =rt,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mi>r</mi> <mi>t</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda =rt,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55b61e1785da67e0020862cf83133fbb3f6a7d52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.989ex; height:2.509ex;" alt="{\displaystyle \lambda =rt,}"></span> and:<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k{\text{ events in interval }}t)={\frac {(rt)^{k}e^{-rt}}{k!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;events in interval&#xA0;</mtext> </mrow> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>r</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mi>t</mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k{\text{ events in interval }}t)={\frac {(rt)^{k}e^{-rt}}{k!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d52913ad3c9d45138ab03c8df7fe9f82728b1f98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:37.395ex; height:6.009ex;" alt="{\displaystyle P(k{\text{ events in interval }}t)={\frac {(rt)^{k}e^{-rt}}{k!}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Examples">Examples</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Chewing_gum_on_a_sidewalk_in_Reykjav%C3%ADk.JPG" class="mw-file-description"><img alt="Chewing gum on a sidewalk in Reykjavík." src="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/Chewing_gum_on_a_sidewalk_in_Reykjav%C3%ADk.JPG/220px-Chewing_gum_on_a_sidewalk_in_Reykjav%C3%ADk.JPG" decoding="async" width="220" height="293" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/Chewing_gum_on_a_sidewalk_in_Reykjav%C3%ADk.JPG/330px-Chewing_gum_on_a_sidewalk_in_Reykjav%C3%ADk.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/09/Chewing_gum_on_a_sidewalk_in_Reykjav%C3%ADk.JPG/440px-Chewing_gum_on_a_sidewalk_in_Reykjav%C3%ADk.JPG 2x" data-file-width="2472" data-file-height="3296" /></a><figcaption>Chewing gum on a sidewalk. The number of pieces on a single tile is approximately Poisson distributed.</figcaption></figure> <p>The Poisson distribution may be useful to model events such as: </p> <ul><li>the number of meteorites greater than 1-meter diameter that strike Earth in a year;</li> <li>the number of laser photons hitting a detector in a particular time interval;</li> <li>the number of students achieving a low and high mark in an exam; and</li> <li>locations of defects and dislocations in materials.</li></ul> <p>Examples of the occurrence of random points in space are: the locations of asteroid impacts with earth (2-dimensional), the locations of imperfections in a material (3-dimensional), and the locations of trees in a forest (2-dimensional).<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Assumptions_and_validity">Assumptions and validity</h3></div> <p>The Poisson distribution is an appropriate model if the following assumptions are true: </p> <ul><li><span class="texhtml mvar" style="font-style:italic;">k</span>, a nonnegative integer, is the number of times an event occurs in an interval.</li> <li>The occurrence of one event <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">does not affect the probability</a> of a second event.</li> <li>The average rate at which events occur is independent of any occurrences.</li> <li>Two events cannot occur at exactly the same instant.</li></ul> <p>If these conditions are true, then <span class="texhtml mvar" style="font-style:italic;">k</span> is a Poisson random variable; the distribution of <span class="texhtml mvar" style="font-style:italic;">k</span> is a Poisson distribution. </p><p>The Poisson distribution is also the <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limit</a> of a <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a>, for which the probability of success for each trial equals <span class="texhtml mvar" style="font-style:italic;">λ</span> divided by the number of trials, as the number of trials approaches infinity (see <a href="#Related_distributions">Related distributions</a>). </p> <div class="mw-heading mw-heading4"><h4 id="Examples_of_probability_for_Poisson_distributions">Examples of probability for Poisson distributions</h4></div> <style data-mw-deduplicate="TemplateStyles:r1216972533">.mw-parser-output .col-begin{border-collapse:collapse;padding:0;color:inherit;width:100%;border:0;margin:0}.mw-parser-output .col-begin-small{font-size:90%}.mw-parser-output .col-break{vertical-align:top;text-align:left}.mw-parser-output .col-break-2{width:50%}.mw-parser-output .col-break-3{width:33.3%}.mw-parser-output .col-break-4{width:25%}.mw-parser-output .col-break-5{width:20%}@media(max-width:720px){.mw-parser-output .col-begin,.mw-parser-output .col-begin>tbody,.mw-parser-output .col-begin>tbody>tr,.mw-parser-output .col-begin>tbody>tr>td{display:block!important;width:100%!important}.mw-parser-output .col-break{padding-left:0!important}}</style><div> <table class="col-begin" role="presentation"> <tbody><tr> <td class="col-break"> <p>On a particular river, overflow floods occur once every 100&#160;years on average. Calculate the probability of <span class="texhtml mvar" style="font-style:italic;">k</span> = 0, 1, 2, 3, 4, 5, or 6 overflow floods in a 100-year interval, assuming the Poisson model is appropriate. </p><p>Because the average event rate is one overflow flood per 100&#160;years, <span class="texhtml mvar" style="font-style:italic;">λ</span> = 1 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k{\text{ overflow floods in 100 years}})={\frac {\lambda ^{k}e^{-\lambda }}{k!}}={\frac {1^{k}e^{-1}}{k!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;overflow floods in 100 years</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k{\text{ overflow floods in 100 years}})={\frac {\lambda ^{k}e^{-\lambda }}{k!}}={\frac {1^{k}e^{-1}}{k!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3aa61d2a6d2e549fba969b4cfb923e5f612356a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:52.305ex; height:5.843ex;" alt="{\displaystyle P(k{\text{ overflow floods in 100 years}})={\frac {\lambda ^{k}e^{-\lambda }}{k!}}={\frac {1^{k}e^{-1}}{k!}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k=0{\text{ overflow floods in 100 years}})={\frac {1^{0}e^{-1}}{0!}}={\frac {e^{-1}}{1}}\approx 0.368}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;overflow floods in 100 years</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mn>0</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mn>1</mn> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>0.368</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k=0{\text{ overflow floods in 100 years}})={\frac {1^{0}e^{-1}}{0!}}={\frac {e^{-1}}{1}}\approx 0.368}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/539604237097b4b7eaf1304d9eb28c2e8b241051" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:62.346ex; height:5.843ex;" alt="{\displaystyle P(k=0{\text{ overflow floods in 100 years}})={\frac {1^{0}e^{-1}}{0!}}={\frac {e^{-1}}{1}}\approx 0.368}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k=1{\text{ overflow flood in 100 years}})={\frac {1^{1}e^{-1}}{1!}}={\frac {e^{-1}}{1}}\approx 0.368}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;overflow flood in 100 years</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mn>1</mn> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>0.368</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k=1{\text{ overflow flood in 100 years}})={\frac {1^{1}e^{-1}}{1!}}={\frac {e^{-1}}{1}}\approx 0.368}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56ecb437f5dc2d6fdd04104dd682909feab34802" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:61.43ex; height:5.843ex;" alt="{\displaystyle P(k=1{\text{ overflow flood in 100 years}})={\frac {1^{1}e^{-1}}{1!}}={\frac {e^{-1}}{1}}\approx 0.368}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k=2{\text{ overflow floods in 100 years}})={\frac {1^{2}e^{-1}}{2!}}={\frac {e^{-1}}{2}}\approx 0.184}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;overflow floods in 100 years</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>0.184</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k=2{\text{ overflow floods in 100 years}})={\frac {1^{2}e^{-1}}{2!}}={\frac {e^{-1}}{2}}\approx 0.184}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d018cf11ae3ada2c025c25c784b893ad4b057bdf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:62.346ex; height:5.843ex;" alt="{\displaystyle P(k=2{\text{ overflow floods in 100 years}})={\frac {1^{2}e^{-1}}{2!}}={\frac {e^{-1}}{2}}\approx 0.184}"></span></dd></dl> <p><br /> </p> </td> <td class="col-break" style="padding-left: 5em;"> <dl><dd><table class="wikitable"> <tbody><tr> <th><span class="texhtml mvar" style="font-style:italic;">k</span></th> <th><span class="texhtml mvar" style="font-style:italic;">P</span>(<span class="texhtml mvar" style="font-style:italic;">k</span> overflow floods in 100&#160;years) </th></tr> <tr> <td>0</td> <td>0.368 </td></tr> <tr> <td>1</td> <td>0.368 </td></tr> <tr> <td>2</td> <td>0.184 </td></tr> <tr> <td>3</td> <td>0.061 </td></tr> <tr> <td>4</td> <td>0.015 </td></tr> <tr> <td>5</td> <td>0.003 </td></tr> <tr> <td>6</td> <td>0.0005 </td></tr></tbody></table></dd></dl> <p>The probability for 0 to 6 overflow floods in a 100-year period. &#32; </p> </td></tr></tbody></table></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1216972533"><div> <table class="col-begin" role="presentation"> <tbody><tr> <td class="col-break"> <p>It has been reported that the average number of goals in a World Cup soccer match is approximately 2.5 and the Poisson model is appropriate.<sup id="cite_ref-Ugarte2016_16-0" class="reference"><a href="#cite_note-Ugarte2016-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> Because the average event rate is 2.5&#160;goals per match, <span class="texhtml mvar" style="font-style:italic;">λ</span> = 2.5&#160;. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k{\text{ goals in a match}})={\frac {2.5^{k}e^{-2.5}}{k!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;goals in a match</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>2.5</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2.5</mn> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k{\text{ goals in a match}})={\frac {2.5^{k}e^{-2.5}}{k!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/284f2ea7482e5f7296cbe1d57a0fdfe67666dca6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:34.259ex; height:5.843ex;" alt="{\displaystyle P(k{\text{ goals in a match}})={\frac {2.5^{k}e^{-2.5}}{k!}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k=0{\text{ goals in a match}})={\frac {2.5^{0}e^{-2.5}}{0!}}={\frac {e^{-2.5}}{1}}\approx 0.082}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;goals in a match</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>2.5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2.5</mn> </mrow> </msup> </mrow> <mrow> <mn>0</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2.5</mn> </mrow> </msup> <mn>1</mn> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>0.082</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k=0{\text{ goals in a match}})={\frac {2.5^{0}e^{-2.5}}{0!}}={\frac {e^{-2.5}}{1}}\approx 0.082}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83b9f5b04a762af5cf6db5639f7c6203526379d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:55.511ex; height:5.843ex;" alt="{\displaystyle P(k=0{\text{ goals in a match}})={\frac {2.5^{0}e^{-2.5}}{0!}}={\frac {e^{-2.5}}{1}}\approx 0.082}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k=1{\text{ goal in a match}})={\frac {2.5^{1}e^{-2.5}}{1!}}={\frac {2.5e^{-2.5}}{1}}\approx 0.205}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;goal in a match</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>2.5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2.5</mn> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2.5</mn> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2.5</mn> </mrow> </msup> </mrow> <mn>1</mn> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>0.205</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k=1{\text{ goal in a match}})={\frac {2.5^{1}e^{-2.5}}{1!}}={\frac {2.5e^{-2.5}}{1}}\approx 0.205}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f8d3b627a69fcb05a0e3202cd4cd03e22cb4dde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:57.567ex; height:5.843ex;" alt="{\displaystyle P(k=1{\text{ goal in a match}})={\frac {2.5^{1}e^{-2.5}}{1!}}={\frac {2.5e^{-2.5}}{1}}\approx 0.205}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k=2{\text{ goals in a match}})={\frac {2.5^{2}e^{-2.5}}{2!}}={\frac {6.25e^{-2.5}}{2}}\approx 0.257}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;goals in a match</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>2.5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2.5</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>6.25</mn> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2.5</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>0.257</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k=2{\text{ goals in a match}})={\frac {2.5^{2}e^{-2.5}}{2!}}={\frac {6.25e^{-2.5}}{2}}\approx 0.257}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66ffb7f0c13f51b960d1580e5cac1d4365ef4166" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:59.645ex; height:5.843ex;" alt="{\displaystyle P(k=2{\text{ goals in a match}})={\frac {2.5^{2}e^{-2.5}}{2!}}={\frac {6.25e^{-2.5}}{2}}\approx 0.257}"></span></dd></dl> <p><br /> </p> </td> <td class="col-break"> <dl><dd><table class="wikitable"> <tbody><tr> <th><span class="texhtml mvar" style="font-style:italic;">k</span></th> <th><span class="texhtml mvar" style="font-style:italic;">P</span>(<span class="texhtml mvar" style="font-style:italic;">k</span> goals in a World Cup soccer match) </th></tr> <tr> <td>0</td> <td>0.082 </td></tr> <tr> <td>1</td> <td>0.205 </td></tr> <tr> <td>2</td> <td>0.257 </td></tr> <tr> <td>3</td> <td>0.213 </td></tr> <tr> <td>4</td> <td>0.133 </td></tr> <tr> <td>5</td> <td>0.067 </td></tr> <tr> <td>6</td> <td>0.028 </td></tr> <tr> <td>7</td> <td>0.010 </td></tr></tbody></table></dd></dl> <p>The probability for 0 to 7 goals in a match. &#32; </p> </td></tr></tbody></table></div> <div class="mw-heading mw-heading4"><h4 id="Once_in_an_interval_events:_The_special_case_of_λ_=_1_and_k_=_0"><span id="Once_in_an_interval_events:_The_special_case_of_.CE.BB_.3D_1_and_k_.3D_0"></span>Once in an interval events: The special case of <span class="texhtml mvar" style="font-style:italic;">λ</span> = 1 and <span class="texhtml mvar" style="font-style:italic;">k</span> = 0</h4></div> <p>Suppose that astronomers estimate that large meteorites (above a certain size) hit the earth on average once every 100&#160;years (<span class="nowrap"> <span class="texhtml mvar" style="font-style:italic;">λ</span> = 1 </span> event per 100&#160;years), and that the number of meteorite hits follows a Poisson distribution. What is the probability of <span class="nowrap"> <span class="texhtml mvar" style="font-style:italic;">k</span> = 0 </span> meteorite hits in the next 100&#160;years? </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k={\text{0 meteorites hit in next 100 years}})={\frac {1^{0}e^{-1}}{0!}}={\frac {1}{e}}\approx 0.37.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>0 meteorites hit in next 100 years</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mn>0</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>e</mi> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mn>0.37.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k={\text{0 meteorites hit in next 100 years}})={\frac {1^{0}e^{-1}}{0!}}={\frac {1}{e}}\approx 0.37.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ab82295afc6daa62eb2556d4931889793826c11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:63.512ex; height:5.843ex;" alt="{\displaystyle P(k={\text{0 meteorites hit in next 100 years}})={\frac {1^{0}e^{-1}}{0!}}={\frac {1}{e}}\approx 0.37.}"></span></dd></dl> <p>Under these assumptions, the probability that no large meteorites hit the earth in the next 100&#160;years is roughly 0.37. The remaining <span class="nowrap">1 − 0.37 = 0.63</span> is the probability of 1, 2, 3, or more large meteorite hits in the next 100&#160;years. In an example above, an overflow flood occurred once every 100&#160;years <span class="nowrap">(<span class="texhtml mvar" style="font-style:italic;">λ</span> = 1).</span> The probability of no overflow floods in 100&#160;years was roughly 0.37, by the same calculation. </p><p>In general, if an event occurs on average once per interval (<span class="texhtml mvar" style="font-style:italic;">λ</span>&#160;=&#160;1), and the events follow a Poisson distribution, then <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">P</span>(0 events in next interval) = 0.37.</span> In addition, <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">P</span>(exactly one event in next interval) = 0.37,</span> as shown in the table for overflow floods. </p> <div class="mw-heading mw-heading3"><h3 id="Examples_that_violate_the_Poisson_assumptions">Examples that violate the Poisson assumptions</h3></div> <p>The number of students who arrive at the <a href="/wiki/Student_center" title="Student center">student union</a> per minute will likely not follow a Poisson distribution, because the rate is not constant (low rate during class time, high rate between class times) and the arrivals of individual students are not independent (students tend to come in groups). The non-constant arrival rate may be modeled as a <a href="/wiki/Mixed_Poisson_distribution" title="Mixed Poisson distribution">mixed Poisson distribution</a>, and the arrival of groups rather than individual students as a <a href="/wiki/Compound_Poisson_process" title="Compound Poisson process">compound Poisson process</a>. </p><p>The number of magnitude&#160;5 earthquakes per year in a country may not follow a Poisson distribution, if one large earthquake increases the probability of aftershocks of similar magnitude. </p><p>Examples in which at least one event is guaranteed are not Poisson distributed; but may be modeled using a <a href="/wiki/Zero-truncated_Poisson_distribution" title="Zero-truncated Poisson distribution">zero-truncated Poisson distribution</a>. </p><p>Count distributions in which the number of intervals with zero events is higher than predicted by a Poisson model may be modeled using a <a href="/wiki/Zero-inflated_model" title="Zero-inflated model">zero-inflated model</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2></div> <div class="mw-heading mw-heading3"><h3 id="Descriptive_statistics">Descriptive statistics</h3></div> <ul><li>The <a href="/wiki/Expected_value" title="Expected value">expected value</a> of a Poisson random variable is <span class="texhtml mvar" style="font-style:italic;">λ</span>.</li> <li>The <a href="/wiki/Variance" title="Variance">variance</a> of a Poisson random variable is also <span class="texhtml mvar" style="font-style:italic;">λ</span>.</li> <li>The <a href="/wiki/Coefficient_of_variation" title="Coefficient of variation">coefficient of variation</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda ^{-1/2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda ^{-1/2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d86abd02434f5828f44e3363096013ead691cf3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.979ex; height:3.009ex;" alt="{\textstyle \lambda ^{-1/2},}"></span> while the <a href="/wiki/Index_of_dispersion" title="Index of dispersion">index of dispersion</a> is 1.<sup id="cite_ref-Johnson2005_8-1" class="reference"><a href="#cite_note-Johnson2005-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 163">&#58;&#8202;163&#8202;</span></sup></li> <li>The <a href="/wiki/Mean_absolute_deviation" class="mw-redirect" title="Mean absolute deviation">mean absolute deviation</a> about the mean is<sup id="cite_ref-Johnson2005_8-2" class="reference"><a href="#cite_note-Johnson2005-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 163">&#58;&#8202;163&#8202;</span></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [\ |X-\lambda |\ ]={\frac {2\lambda ^{\lfloor \lambda \rfloor +1}e^{-\lambda }}{\lfloor \lambda \rfloor !}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext>&#xA0;</mtext> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> </mrow> <mrow> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [\ |X-\lambda |\ ]={\frac {2\lambda ^{\lfloor \lambda \rfloor +1}e^{-\lambda }}{\lfloor \lambda \rfloor !}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f38314ac3cdef3237f4321117fbf030a1115f6b9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.91ex; height:6.509ex;" alt="{\displaystyle \operatorname {E} [\ |X-\lambda |\ ]={\frac {2\lambda ^{\lfloor \lambda \rfloor +1}e^{-\lambda }}{\lfloor \lambda \rfloor !}}.}"></span></li> <li>The <a href="/wiki/Mode_(statistics)" title="Mode (statistics)">mode</a> of a Poisson-distributed random variable with non-integer <span class="texhtml mvar" style="font-style:italic;">λ</span> is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor \lambda \rfloor ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor \lambda \rfloor ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c849ab92d3ad00c65efed52698719af80cb4d8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.067ex; height:2.843ex;" alt="{\displaystyle \lfloor \lambda \rfloor ,}"></span> which is the largest integer less than or equal to&#160;<span class="texhtml mvar" style="font-style:italic;">λ</span>. This is also written as <a href="/wiki/Floor_function" class="mw-redirect" title="Floor function">floor</a>(<span class="texhtml mvar" style="font-style:italic;">λ</span>). When <span class="texhtml mvar" style="font-style:italic;">λ</span> is a positive integer, the modes are <span class="texhtml mvar" style="font-style:italic;">λ</span> and <span class="texhtml mvar" style="font-style:italic;">λ</span>&#160;−&#160;1.</li> <li>All of the <a href="/wiki/Cumulant" title="Cumulant">cumulants</a> of the Poisson distribution are equal to the expected value&#160;<span class="texhtml mvar" style="font-style:italic;">λ</span>. The <span class="texhtml mvar" style="font-style:italic;">n</span>&#160;th <a href="/wiki/Factorial_moment" title="Factorial moment">factorial moment</a> of the Poisson distribution is <span class="texhtml mvar" style="font-style:italic;">λ</span><sup> <span class="texhtml mvar" style="font-style:italic;">n</span> </sup>&#160;.</li> <li>The <a href="/wiki/Expected_value" title="Expected value">expected value</a> of a <a href="/wiki/Poisson_process" class="mw-redirect" title="Poisson process">Poisson process</a> is sometimes decomposed into the product of <i>intensity</i> and <i>exposure</i> (or more generally expressed as the integral of an "intensity function" over time or space, sometimes described as "exposure").<sup id="cite_ref-Helske2017_17-0" class="reference"><a href="#cite_note-Helske2017-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Median">Median</h3></div> <p>Bounds for the median (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c15bbbb971240cf328aba572178f091684585468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.232ex; height:1.676ex;" alt="{\displaystyle \nu }"></span>) of the distribution are known and are <a href="/wiki/Mathematical_jargon#sharp" class="mw-redirect" title="Mathematical jargon">sharp</a>:<sup id="cite_ref-Choi1994_18-0" class="reference"><a href="#cite_note-Choi1994-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda -\ln 2\leq \nu &lt;\lambda +{\frac {1}{3}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03BD;<!-- ν --></mi> <mo>&lt;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda -\ln 2\leq \nu &lt;\lambda +{\frac {1}{3}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9ea94f8222d30fd83d8811640620cda70d67532" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.955ex; height:5.176ex;" alt="{\displaystyle \lambda -\ln 2\leq \nu &lt;\lambda +{\frac {1}{3}}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Higher_moments">Higher moments</h3></div> <p>The higher non-centered <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">moments</a> <span class="texhtml mvar" style="font-style:italic;">m</span><sub><span class="texhtml mvar" style="font-style:italic;">k</span></sub> of the Poisson distribution are <a href="/wiki/Touchard_polynomials" title="Touchard polynomials">Touchard polynomials</a> in <span class="texhtml mvar" style="font-style:italic;">λ</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{k}=\sum _{i=0}^{k}\lambda ^{i}{\begin{Bmatrix}k\\i\end{Bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>k</mi> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> </mtr> </mtable> <mo>}</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{k}=\sum _{i=0}^{k}\lambda ^{i}{\begin{Bmatrix}k\\i\end{Bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/407a05be1700329aa6b29dc7add0bdbd6e0cdeae" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.22ex; height:7.343ex;" alt="{\displaystyle m_{k}=\sum _{i=0}^{k}\lambda ^{i}{\begin{Bmatrix}k\\i\end{Bmatrix}},}"></span> where the braces { } denote <a href="/wiki/Stirling_numbers_of_the_second_kind" title="Stirling numbers of the second kind">Stirling numbers of the second kind</a>.<sup id="cite_ref-Riordan1937_19-0" class="reference"><a href="#cite_note-Riordan1937-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Haight1967_1-1" class="reference"><a href="#cite_note-Haight1967-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 6">&#58;&#8202;6&#8202;</span></sup> In other words,<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E[X]=\lambda ,\quad E[X(X-1)]=\lambda ^{2},\quad E[X(X-1)(X-2)]=\lambda ^{3},\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <mspace width="1em" /> <mi>E</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <mi>E</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E[X]=\lambda ,\quad E[X(X-1)]=\lambda ^{2},\quad E[X(X-1)(X-2)]=\lambda ^{3},\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f27f18d1393a99b37c525e21e568f340cf27889d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:64.464ex; height:3.176ex;" alt="{\displaystyle E[X]=\lambda ,\quad E[X(X-1)]=\lambda ^{2},\quad E[X(X-1)(X-2)]=\lambda ^{3},\cdots }"></span>When the expected value is set to <i>λ =</i> 1, <a href="/wiki/Dobinski%27s_formula" class="mw-redirect" title="Dobinski&#39;s formula">Dobinski's formula</a> implies that the <span class="texhtml mvar" style="font-style:italic;">n</span>‑th moment is equal to the number of <a href="/wiki/Partition_of_a_set" title="Partition of a set">partitions of a set</a> of size <span class="texhtml mvar" style="font-style:italic;">n</span>. </p><p>A simple upper bound is:<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{k}=E[X^{k}]\leq \left({\frac {k}{\log(k/\lambda +1)}}\right)^{k}\leq \lambda ^{k}\exp \left({\frac {k^{2}}{2\lambda }}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>E</mi> <mo stretchy="false">[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mrow> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{k}=E[X^{k}]\leq \left({\frac {k}{\log(k/\lambda +1)}}\right)^{k}\leq \lambda ^{k}\exp \left({\frac {k^{2}}{2\lambda }}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18d2997208e48609996f73dc03db70e997b01b29" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:50.244ex; height:6.843ex;" alt="{\displaystyle m_{k}=E[X^{k}]\leq \left({\frac {k}{\log(k/\lambda +1)}}\right)^{k}\leq \lambda ^{k}\exp \left({\frac {k^{2}}{2\lambda }}\right).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Sums_of_Poisson-distributed_random_variables">Sums of Poisson-distributed random variables</h3></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{i}\sim \operatorname {Pois} (\lambda _{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{i}\sim \operatorname {Pois} (\lambda _{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57094fb3ef6d2a578bb7d80a681849e56cffae13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.095ex; height:2.843ex;" alt="{\displaystyle X_{i}\sim \operatorname {Pois} (\lambda _{i})}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i=1,\dotsc ,n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i=1,\dotsc ,n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7f2132430a61b900cf2c4380774394ca9f09c8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.636ex; height:2.509ex;" alt="{\displaystyle i=1,\dotsc ,n}"></span> are <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">independent</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum _{i=1}^{n}X_{i}\sim \operatorname {Pois} \left(\sum _{i=1}^{n}\lambda _{i}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum _{i=1}^{n}X_{i}\sim \operatorname {Pois} \left(\sum _{i=1}^{n}\lambda _{i}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc45fecdb579f6f3fc2668ca72f6e5bd13f3ac02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.224ex; height:3.176ex;" alt="{\textstyle \sum _{i=1}^{n}X_{i}\sim \operatorname {Pois} \left(\sum _{i=1}^{n}\lambda _{i}\right).}"></span><sup id="cite_ref-Lehmann1986_21-0" class="reference"><a href="#cite_note-Lehmann1986-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 65">&#58;&#8202;65&#8202;</span></sup> A converse is <a href="/wiki/Raikov%27s_theorem" title="Raikov&#39;s theorem">Raikov's theorem</a>, which says that if the sum of two independent random variables is Poisson-distributed, then so are each of those two independent random variables.<sup id="cite_ref-Raikov1937_22-0" class="reference"><a href="#cite_note-Raikov1937-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-vonMises1964_23-0" class="reference"><a href="#cite_note-vonMises1964-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Maximum_entropy">Maximum entropy</h3></div> <p>It is a <a href="/wiki/Maximum_entropy_probability_distribution" title="Maximum entropy probability distribution">maximum-entropy distribution</a> among the set of generalized binomial distributions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}(\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}(\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/700c8c6b217dd619c9d04d59d6dd891f0195a619" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.147ex; height:2.843ex;" alt="{\displaystyle B_{n}(\lambda )}"></span> with mean <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\rightarrow \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\rightarrow \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9702f04f2d0e5b887b99faeeffb0c4cfd8263eee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.333ex; height:1.843ex;" alt="{\displaystyle n\rightarrow \infty }"></span>,<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> where a generalized binomial distribution is defined as a distribution of the sum of N independent but not identically distributed Bernoulli variables. </p> <div class="mw-heading mw-heading3"><h3 id="Other_properties">Other properties</h3></div> <ul><li>The Poisson distributions are <a href="/wiki/Infinite_divisibility_(probability)" title="Infinite divisibility (probability)">infinitely divisible</a> probability distributions.<sup id="cite_ref-Laha1979_25-0" class="reference"><a href="#cite_note-Laha1979-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 233">&#58;&#8202;233&#8202;</span></sup><sup id="cite_ref-Johnson2005_8-3" class="reference"><a href="#cite_note-Johnson2005-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 164">&#58;&#8202;164&#8202;</span></sup></li> <li>The directed <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="Kullback–Leibler divergence">Kullback–Leibler divergence</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=\operatorname {Pois} (\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=\operatorname {Pois} (\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/475e008e214bee8d96d3f528d07bf3dffae9bd29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.317ex; height:2.843ex;" alt="{\displaystyle P=\operatorname {Pois} (\lambda )}"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{0}=\operatorname {Pois} (\lambda _{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{0}=\operatorname {Pois} (\lambda _{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36995280929cd439a91c5c05ac56230c1ded708b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.172ex; height:2.843ex;" alt="{\displaystyle P_{0}=\operatorname {Pois} (\lambda _{0})}"></span> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {D} _{\text{KL}}(P\parallel P_{0})=\lambda _{0}-\lambda +\lambda \log {\frac {\lambda }{\lambda _{0}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>KL</mtext> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2225;<!-- ∥ --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {D} _{\text{KL}}(P\parallel P_{0})=\lambda _{0}-\lambda +\lambda \log {\frac {\lambda }{\lambda _{0}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d28957e0866ada1c7781ed5f9af0b120d5e1fada" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:34.405ex; height:5.843ex;" alt="{\displaystyle \operatorname {D} _{\text{KL}}(P\parallel P_{0})=\lambda _{0}-\lambda +\lambda \log {\frac {\lambda }{\lambda _{0}}}.}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a37870accb1d7cb8912fd80b53a7e4c9bc61e4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.616ex; height:2.343ex;" alt="{\displaystyle \lambda \geq 1}"></span> is an integer, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim \operatorname {Pois} (\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\sim \operatorname {Pois} (\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65a75008c5e80fc6c742fc674dbcbcf9548917b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.345ex; height:2.843ex;" alt="{\displaystyle Y\sim \operatorname {Pois} (\lambda )}"></span> satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(Y\geq E[Y])\geq {\frac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>E</mi> <mo stretchy="false">[</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(Y\geq E[Y])\geq {\frac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5b13690a640b1826b92b683358e58098f957138" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.115ex; height:5.176ex;" alt="{\displaystyle \Pr(Y\geq E[Y])\geq {\frac {1}{2}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(Y\leq E[Y])\geq {\frac {1}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>E</mi> <mo stretchy="false">[</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(Y\leq E[Y])\geq {\frac {1}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14e3c38659a011ac0e4b6dd42cc920e61e92b936" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.762ex; height:5.176ex;" alt="{\displaystyle \Pr(Y\leq E[Y])\geq {\frac {1}{2}}.}"></span><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability"><span title="The material near this tag failed verification of its source citation(s). (January 2024)">failed verification</span></a>&#32;– <a href="/wiki/Talk:Poisson_distribution#Other_Properties_-_Mitzenmacher" title="Talk:Poisson distribution">see discussion</a></i>&#93;</sup></li> <li>Bounds for the tail probabilities of a Poisson random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Pois} (\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Pois} (\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83722493a50f90c09c96abb65364b7605ab55469" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.551ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Pois} (\lambda )}"></span> can be derived using a <a href="/wiki/Chernoff_bound" title="Chernoff bound">Chernoff bound</a> argument.<sup id="cite_ref-Mitzenmacher2005_27-0" class="reference"><a href="#cite_note-Mitzenmacher2005-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 97-98">&#58;&#8202;97-98&#8202;</span></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X\geq x)\leq {\frac {(e\lambda )^{x}e^{-\lambda }}{x^{x}}},{\text{ for }}x&gt;\lambda ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>e</mi> <mi>&#x03BB;<!-- λ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>x</mi> <mo>&gt;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X\geq x)\leq {\frac {(e\lambda )^{x}e^{-\lambda }}{x^{x}}},{\text{ for }}x&gt;\lambda ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9dbce798aa0c81ae4d37d2b507555564b39c74f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.282ex; height:5.843ex;" alt="{\displaystyle P(X\geq x)\leq {\frac {(e\lambda )^{x}e^{-\lambda }}{x^{x}}},{\text{ for }}x&gt;\lambda ,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X\leq x)\leq {\frac {(e\lambda )^{x}e^{-\lambda }}{x^{x}}},{\text{ for }}x&lt;\lambda .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>e</mi> <mi>&#x03BB;<!-- λ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>x</mi> <mo>&lt;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X\leq x)\leq {\frac {(e\lambda )^{x}e^{-\lambda }}{x^{x}}},{\text{ for }}x&lt;\lambda .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5abdcf3977c0fc3686907d0fbefa0ad20d5a4061" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.282ex; height:5.843ex;" alt="{\displaystyle P(X\leq x)\leq {\frac {(e\lambda )^{x}e^{-\lambda }}{x^{x}}},{\text{ for }}x&lt;\lambda .}"></span></li> <li>The upper tail probability can be tightened (by a factor of at least two) as follows:<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X\geq x)\leq {\frac {e^{-\operatorname {D} _{\text{KL}}(Q\parallel P)}}{\max {(2,{\sqrt {4\pi \operatorname {D} _{\text{KL}}(Q\parallel P)}}})}},{\text{ for }}x&gt;\lambda ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>KL</mtext> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2225;<!-- ∥ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mrow> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi mathvariant="normal">D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>KL</mtext> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2225;<!-- ∥ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>x</mi> <mo>&gt;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X\geq x)\leq {\frac {e^{-\operatorname {D} _{\text{KL}}(Q\parallel P)}}{\max {(2,{\sqrt {4\pi \operatorname {D} _{\text{KL}}(Q\parallel P)}}})}},{\text{ for }}x&gt;\lambda ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5288c3fe36c7e33ba8b384b16b93d549ef72a745" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:51.392ex; height:7.009ex;" alt="{\displaystyle P(X\geq x)\leq {\frac {e^{-\operatorname {D} _{\text{KL}}(Q\parallel P)}}{\max {(2,{\sqrt {4\pi \operatorname {D} _{\text{KL}}(Q\parallel P)}}})}},{\text{ for }}x&gt;\lambda ,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {D} _{\text{KL}}(Q\parallel P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>KL</mtext> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2225;<!-- ∥ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {D} _{\text{KL}}(Q\parallel P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/963891e9c244ce24baa845ef4239bfc21f0c910f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.16ex; height:2.843ex;" alt="{\displaystyle \operatorname {D} _{\text{KL}}(Q\parallel P)}"></span> is the Kullback–Leibler divergence of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q=\operatorname {Pois} (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>=</mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q=\operatorname {Pois} (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e075409d68cf73d611c649825f8ca7c4be6f85d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.384ex; height:2.843ex;" alt="{\displaystyle Q=\operatorname {Pois} (x)}"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=\operatorname {Pois} (\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=\operatorname {Pois} (\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/475e008e214bee8d96d3f528d07bf3dffae9bd29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.317ex; height:2.843ex;" alt="{\displaystyle P=\operatorname {Pois} (\lambda )}"></span>. </p> <ul><li>Inequalities that relate the distribution function of a Poisson random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Pois} (\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Pois} (\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83722493a50f90c09c96abb65364b7605ab55469" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.551ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Pois} (\lambda )}"></span> to the <a href="/wiki/Standard_normal_distribution" class="mw-redirect" title="Standard normal distribution">Standard normal distribution</a> function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79e4f01c93494fbb5dcd75761f4468121b00b294" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.817ex; height:2.843ex;" alt="{\displaystyle \Phi (x)}"></span> are as follows:<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi \left(\operatorname {sign} (k-\lambda ){\sqrt {2\operatorname {D} _{\text{KL}}(Q_{-}\parallel P)}}\right)&lt;P(X\leq k)&lt;\Phi \left(\operatorname {sign} (k+1-\lambda ){\sqrt {2\operatorname {D} _{\text{KL}}(Q_{+}\parallel P)}}\right),{\text{ for }}k&gt;0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow> <mo>(</mo> <mrow> <mi>sign</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <msub> <mi mathvariant="normal">D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>KL</mtext> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>&#x2225;<!-- ∥ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&lt;</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow> <mo>(</mo> <mrow> <mi>sign</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <msub> <mi mathvariant="normal">D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>KL</mtext> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>&#x2225;<!-- ∥ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>k</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi \left(\operatorname {sign} (k-\lambda ){\sqrt {2\operatorname {D} _{\text{KL}}(Q_{-}\parallel P)}}\right)&lt;P(X\leq k)&lt;\Phi \left(\operatorname {sign} (k+1-\lambda ){\sqrt {2\operatorname {D} _{\text{KL}}(Q_{+}\parallel P)}}\right),{\text{ for }}k&gt;0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d508dff09baa73d69dcc23890be3009d2ce0201" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:98.769ex; height:4.843ex;" alt="{\displaystyle \Phi \left(\operatorname {sign} (k-\lambda ){\sqrt {2\operatorname {D} _{\text{KL}}(Q_{-}\parallel P)}}\right)&lt;P(X\leq k)&lt;\Phi \left(\operatorname {sign} (k+1-\lambda ){\sqrt {2\operatorname {D} _{\text{KL}}(Q_{+}\parallel P)}}\right),{\text{ for }}k&gt;0,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {D} _{\text{KL}}(Q_{-}\parallel P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>KL</mtext> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>&#x2225;<!-- ∥ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {D} _{\text{KL}}(Q_{-}\parallel P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03fb2deee9168d32f4fcf89ead75b9c7cf0dfe24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.67ex; height:2.843ex;" alt="{\displaystyle \operatorname {D} _{\text{KL}}(Q_{-}\parallel P)}"></span> is the Kullback–Leibler divergence of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{-}=\operatorname {Pois} (k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>=</mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{-}=\operatorname {Pois} (k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3936299a039702e3f36292e7bbe7b4df1d934f69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.777ex; height:2.843ex;" alt="{\displaystyle Q_{-}=\operatorname {Pois} (k)}"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=\operatorname {Pois} (\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=\operatorname {Pois} (\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/475e008e214bee8d96d3f528d07bf3dffae9bd29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.317ex; height:2.843ex;" alt="{\displaystyle P=\operatorname {Pois} (\lambda )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {D} _{\text{KL}}(Q_{+}\parallel P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">D</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>KL</mtext> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>&#x2225;<!-- ∥ --></mo> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {D} _{\text{KL}}(Q_{+}\parallel P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ee367cb9e271a607be983341a7e4784ea593adf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.67ex; height:2.843ex;" alt="{\displaystyle \operatorname {D} _{\text{KL}}(Q_{+}\parallel P)}"></span> is the Kullback–Leibler divergence of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{+}=\operatorname {Pois} (k+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>=</mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q_{+}=\operatorname {Pois} (k+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b01f8a926dc19d8c84fec740eb863736a9ec517" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.779ex; height:2.843ex;" alt="{\displaystyle Q_{+}=\operatorname {Pois} (k+1)}"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Poisson_races">Poisson races</h3></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Pois} (\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Pois} (\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83722493a50f90c09c96abb65364b7605ab55469" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.551ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Pois} (\lambda )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim \operatorname {Pois} (\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\sim \operatorname {Pois} (\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43c17e18a900ce05dae1e372f8ee84cca95658e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.391ex; height:2.843ex;" alt="{\displaystyle Y\sim \operatorname {Pois} (\mu )}"></span> be independent random variables, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda &lt;\mu ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&lt;</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda &lt;\mu ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0c39745dc3c331494d2e3cf15cd5bc9f335e03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.502ex; height:2.676ex;" alt="{\displaystyle \lambda &lt;\mu ,}"></span> then we have that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {e^{-({\sqrt {\mu }}-{\sqrt {\lambda }})^{2}}}{(\lambda +\mu )^{2}}}-{\frac {e^{-(\lambda +\mu )}}{2{\sqrt {\lambda \mu }}}}-{\frac {e^{-(\lambda +\mu )}}{4\lambda \mu }}\leq P(X-Y\geq 0)\leq e^{-({\sqrt {\mu }}-{\sqrt {\lambda }})^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03BC;<!-- μ --></mi> </msqrt> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03BB;<!-- λ --></mi> </msqrt> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>&#x03BC;<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> </mrow> </msup> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03BC;<!-- μ --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03BC;<!-- μ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mi>Y</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03BC;<!-- μ --></mi> </msqrt> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03BB;<!-- λ --></mi> </msqrt> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {e^{-({\sqrt {\mu }}-{\sqrt {\lambda }})^{2}}}{(\lambda +\mu )^{2}}}-{\frac {e^{-(\lambda +\mu )}}{2{\sqrt {\lambda \mu }}}}-{\frac {e^{-(\lambda +\mu )}}{4\lambda \mu }}\leq P(X-Y\geq 0)\leq e^{-({\sqrt {\mu }}-{\sqrt {\lambda }})^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/511aa4ec49b20e83b83bcc2a24bef763dabe1d90" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:64.341ex; height:7.509ex;" alt="{\displaystyle {\frac {e^{-({\sqrt {\mu }}-{\sqrt {\lambda }})^{2}}}{(\lambda +\mu )^{2}}}-{\frac {e^{-(\lambda +\mu )}}{2{\sqrt {\lambda \mu }}}}-{\frac {e^{-(\lambda +\mu )}}{4\lambda \mu }}\leq P(X-Y\geq 0)\leq e^{-({\sqrt {\mu }}-{\sqrt {\lambda }})^{2}}}"></span> </p><p>The upper bound is proved using a standard Chernoff bound. </p><p>The lower bound can be proved by noting that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X-Y\geq 0\mid X+Y=i)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mi>Y</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>=</mo> <mi>i</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X-Y\geq 0\mid X+Y=i)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61d8a24c0406c0b31012b78f0522864108c355b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.841ex; height:2.843ex;" alt="{\displaystyle P(X-Y\geq 0\mid X+Y=i)}"></span> is the probability that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle Z\geq {\frac {i}{2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>Z</mi> <mo>&#x2265;<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle Z\geq {\frac {i}{2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/514fc71347875ec4954d207a57d64ed7f3731687" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.084ex; height:3.509ex;" alt="{\textstyle Z\geq {\frac {i}{2}},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle Z\sim \operatorname {Bin} \left(i,{\frac {\lambda }{\lambda +\mu }}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>Z</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Bin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle Z\sim \operatorname {Bin} \left(i,{\frac {\lambda }{\lambda +\mu }}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89453934127eadfc8418406e3724e9264c5e60c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.687ex; height:4.843ex;" alt="{\textstyle Z\sim \operatorname {Bin} \left(i,{\frac {\lambda }{\lambda +\mu }}\right),}"></span> which is bounded below by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {1}{(i+1)^{2}}}e^{-iD\left(0.5\|{\frac {\lambda }{\lambda +\mu }}\right)},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>D</mi> <mrow> <mo>(</mo> <mrow> <mn>0.5</mn> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {1}{(i+1)^{2}}}e^{-iD\left(0.5\|{\frac {\lambda }{\lambda +\mu }}\right)},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b50e47160cf654b9dea04b316a10efd0cc3e206" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:19.583ex; height:6.676ex;" alt="{\textstyle {\frac {1}{(i+1)^{2}}}e^{-iD\left(0.5\|{\frac {\lambda }{\lambda +\mu }}\right)},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> is <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="Kullback–Leibler divergence">relative entropy</a> (See the entry on <a href="/wiki/Binomial_distribution#Tail_bounds" title="Binomial distribution">bounds on tails of binomial distributions</a> for details). Further noting that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X+Y\sim \operatorname {Pois} (\lambda +\mu ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X+Y\sim \operatorname {Pois} (\lambda +\mu ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60ef4f27c243ff74934b3a02bb29348c83941c4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.054ex; height:2.843ex;" alt="{\displaystyle X+Y\sim \operatorname {Pois} (\lambda +\mu ),}"></span> and computing a lower bound on the unconditional probability gives the result. More details can be found in the appendix of Kamath et al.<sup id="cite_ref-Kamath2015_30-0" class="reference"><a href="#cite_note-Kamath2015-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Related_distributions">Related distributions</h2></div> <div class="mw-heading mw-heading3"><h3 id="As_a_Binomial_distribution_with_infinitesimal_time-steps">As a Binomial distribution with infinitesimal time-steps</h3></div><p> The Poisson distribution can be derived as a limiting case to the <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a> as the number of trials goes to infinity and the <a href="/wiki/Expected_value" title="Expected value">expected</a> number of successes remains fixed — see <a href="#law_of_rare_events">law of rare events</a> below. Therefore, it can be used as an approximation of the binomial distribution if <span class="texhtml mvar" style="font-style:italic;">n</span> is sufficiently large and <i>p</i> is sufficiently small. The Poisson distribution is a good approximation of the binomial distribution if <span class="texhtml mvar" style="font-style:italic;">n</span> is at least 20 and <i>p</i> is smaller than or equal to 0.05, and an excellent approximation if <span class="texhtml mvar" style="font-style:italic;">n</span>&#160;≥&#160;100 and <span class="texhtml mvar" style="font-style:italic;">n p</span>&#160;≤&#160;10.<sup id="cite_ref-NIST2006_31-0" class="reference"><a href="#cite_note-NIST2006-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> Letting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{\mathrm {B} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">B</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{\mathrm {B} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e64491e3f1723572954668fdd637c03106b30bb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.89ex; height:2.509ex;" alt="{\displaystyle F_{\mathrm {B} }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{\mathrm {P} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{\mathrm {P} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d64a355eb5f1217b4f12b7f27230b2ff31b2e92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.846ex; height:2.509ex;" alt="{\displaystyle F_{\mathrm {P} }}"></span> be the respective <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative density functions</a> of the binomial and Poisson distributions, one has: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{\mathrm {B} }(k;n,p)\ \approx \ F_{\mathrm {P} }(k;\lambda =np).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">B</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>&#x2248;<!-- ≈ --></mo> <mtext>&#xA0;</mtext> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{\mathrm {B} }(k;n,p)\ \approx \ F_{\mathrm {P} }(k;\lambda =np).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75e9f3365dbaa79aea54e1122722b66c6198237a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.368ex; height:2.843ex;" alt="{\displaystyle F_{\mathrm {B} }(k;n,p)\ \approx \ F_{\mathrm {P} }(k;\lambda =np).}"></span>One derivation of this uses <a href="/wiki/Probability-generating_function" title="Probability-generating function">probability-generating functions</a>.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> Consider a <a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trial</a> (coin-flip) whose probability of one success (or expected number of successes) is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \leq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \leq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9556892967123042718936f92d8bd5762e6c0c2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.616ex; height:2.343ex;" alt="{\displaystyle \lambda \leq 1}"></span> within a given interval. Split the interval into <i>n</i> parts, and perform a trial in each subinterval with probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda }{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mi>n</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda }{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a950558663bc182414afa929ad713a28632abd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.822ex; height:3.509ex;" alt="{\displaystyle {\tfrac {\lambda }{n}}}"></span>. The probability of <i>k</i> successes out of <i>n</i> trials over the entire interval is then given by the binomial distribution</p><blockquote><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{k}^{(n)}={\binom {n}{k}}\left({\frac {\lambda }{n}}\right)^{\!k}\left(1{-}{\frac {\lambda }{n}}\right)^{\!n-k},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mi>n</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mi>k</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mi>n</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="negativethinmathspace" /> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{k}^{(n)}={\binom {n}{k}}\left({\frac {\lambda }{n}}\right)^{\!k}\left(1{-}{\frac {\lambda }{n}}\right)^{\!n-k},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b4de733b4d846dc074b8bf5812f270c374644ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; margin-left: -0.089ex; width:30.261ex; height:6.676ex;" alt="{\displaystyle p_{k}^{(n)}={\binom {n}{k}}\left({\frac {\lambda }{n}}\right)^{\!k}\left(1{-}{\frac {\lambda }{n}}\right)^{\!n-k},}"></span> </p></blockquote><p>whose generating function is:</p><blockquote><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{(n)}(x)=\sum _{k=0}^{n}p_{k}^{(n)}x^{k}=\left(1-{\frac {\lambda }{n}}+{\frac {\lambda }{n}}x\right)^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mi>n</mi> </mfrac> </mrow> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{(n)}(x)=\sum _{k=0}^{n}p_{k}^{(n)}x^{k}=\left(1-{\frac {\lambda }{n}}+{\frac {\lambda }{n}}x\right)^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f44d186774f4fb931e12cc1d9dbdb9dfb9d359c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:41.404ex; height:7.009ex;" alt="{\displaystyle P^{(n)}(x)=\sum _{k=0}^{n}p_{k}^{(n)}x^{k}=\left(1-{\frac {\lambda }{n}}+{\frac {\lambda }{n}}x\right)^{n}.}"></span></p></blockquote><p>Taking the limit as <i>n</i> increases to infinity (with <i>x</i> fixed) and applying the product limit definition of the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a>, this reduces to the generating function of the Poisson distribution:</p><blockquote><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }P^{(n)}(x)=\lim _{n\to \infty }\left(1{+}{\tfrac {\lambda (x-1)}{n}}\right)^{n}=e^{\lambda (x-1)}=\sum _{k=0}^{\infty }e^{-\lambda }{\frac {\lambda ^{k}}{k!}}x^{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }P^{(n)}(x)=\lim _{n\to \infty }\left(1{+}{\tfrac {\lambda (x-1)}{n}}\right)^{n}=e^{\lambda (x-1)}=\sum _{k=0}^{\infty }e^{-\lambda }{\frac {\lambda ^{k}}{k!}}x^{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1c19b12a85cbf115d837d9dda86721eae1a4068" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:59.386ex; height:7.009ex;" alt="{\displaystyle \lim _{n\to \infty }P^{(n)}(x)=\lim _{n\to \infty }\left(1{+}{\tfrac {\lambda (x-1)}{n}}\right)^{n}=e^{\lambda (x-1)}=\sum _{k=0}^{\infty }e^{-\lambda }{\frac {\lambda ^{k}}{k!}}x^{k}.}"></span></p></blockquote> <div class="mw-heading mw-heading3"><h3 id="General">General</h3></div> <ul><li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}\sim \mathrm {Pois} (\lambda _{1})\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}\sim \mathrm {Pois} (\lambda _{1})\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b15d0eb82dbe950fd9a69fd735a9eb5854bb1516" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.991ex; height:2.843ex;" alt="{\displaystyle X_{1}\sim \mathrm {Pois} (\lambda _{1})\,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{2}\sim \mathrm {Pois} (\lambda _{2})\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{2}\sim \mathrm {Pois} (\lambda _{2})\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92230875c7140dbb0b8c9c4949fc710c330bdda8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.991ex; height:2.843ex;" alt="{\displaystyle X_{2}\sim \mathrm {Pois} (\lambda _{2})\,}"></span> are independent, then the difference <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=X_{1}-X_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=X_{1}-X_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6627abb84b192e001722eb79e17a0489e26adbcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.669ex; height:2.509ex;" alt="{\displaystyle Y=X_{1}-X_{2}}"></span> follows a <a href="/wiki/Skellam_distribution" title="Skellam distribution">Skellam distribution</a>.</li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}\sim \mathrm {Pois} (\lambda _{1})\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}\sim \mathrm {Pois} (\lambda _{1})\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b15d0eb82dbe950fd9a69fd735a9eb5854bb1516" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.991ex; height:2.843ex;" alt="{\displaystyle X_{1}\sim \mathrm {Pois} (\lambda _{1})\,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{2}\sim \mathrm {Pois} (\lambda _{2})\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{2}\sim \mathrm {Pois} (\lambda _{2})\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92230875c7140dbb0b8c9c4949fc710c330bdda8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.991ex; height:2.843ex;" alt="{\displaystyle X_{2}\sim \mathrm {Pois} (\lambda _{2})\,}"></span> are independent, then the distribution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70b2694445a5901b24338a2e7a7e58f02a72a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{1}}"></span> conditional on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}+X_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}+X_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f96d604ba472d9c8d3964bfb198de16b68e5f8a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.797ex; height:2.509ex;" alt="{\displaystyle X_{1}+X_{2}}"></span> is a <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a>. <div class="paragraphbreak" style="margin-top:0.5em"></div> Specifically, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}+X_{2}=k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}+X_{2}=k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5518d7a389f305366c8d983ca3f0ad18ba925a3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.754ex; height:2.509ex;" alt="{\displaystyle X_{1}+X_{2}=k,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}|X_{1}+X_{2}=k\sim \mathrm {Binom} (k,\lambda _{1}/(\lambda _{1}+\lambda _{2})).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>k</mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">B</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}|X_{1}+X_{2}=k\sim \mathrm {Binom} (k,\lambda _{1}/(\lambda _{1}+\lambda _{2})).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/596d3a787cb1f14db2692e0d74292a73fb6bad54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.256ex; height:2.843ex;" alt="{\displaystyle X_{1}|X_{1}+X_{2}=k\sim \mathrm {Binom} (k,\lambda _{1}/(\lambda _{1}+\lambda _{2})).}"></span> <div class="paragraphbreak" style="margin-top:0.5em"></div> More generally, if <i>X</i><sub>1</sub>, <i>X</i><sub>2</sub>, ..., <i>X</i><sub><span class="texhtml mvar" style="font-style:italic;">n</span></sub> are independent Poisson random variables with parameters <span class="texhtml mvar" style="font-style:italic;">λ</span><sub>1</sub>, <span class="texhtml mvar" style="font-style:italic;">λ</span><sub>2</sub>, ..., <span class="texhtml mvar" style="font-style:italic;">λ</span><sub><span class="texhtml mvar" style="font-style:italic;">n</span></sub> then <dl><dd>given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{j=1}^{n}X_{j}=k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{j=1}^{n}X_{j}=k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc0ed7c42d244e0ad66477b8276e926216da4819" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:11.533ex; height:7.176ex;" alt="{\displaystyle \sum _{j=1}^{n}X_{j}=k,}"></span> it follows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{i}{\Big |}\sum _{j=1}^{n}X_{j}=k\sim \mathrm {Binom} \left(k,{\frac {\lambda _{i}}{\sum _{j=1}^{n}\lambda _{j}}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">|</mo> </mrow> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>k</mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">B</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">m</mi> </mrow> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{i}{\Big |}\sum _{j=1}^{n}X_{j}=k\sim \mathrm {Binom} \left(k,{\frac {\lambda _{i}}{\sum _{j=1}^{n}\lambda _{j}}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/861dd5b85ea53c65668200ee34c63949f3a811f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:40.725ex; height:7.676ex;" alt="{\displaystyle X_{i}{\Big |}\sum _{j=1}^{n}X_{j}=k\sim \mathrm {Binom} \left(k,{\frac {\lambda _{i}}{\sum _{j=1}^{n}\lambda _{j}}}\right).}"></span> In fact, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X_{i}\}\sim \mathrm {Multinom} \left(k,\left\{{\frac {\lambda _{i}}{\sum _{j=1}^{n}\lambda _{j}}}\right\}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">u</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">m</mi> </mrow> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>,</mo> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>}</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X_{i}\}\sim \mathrm {Multinom} \left(k,\left\{{\frac {\lambda _{i}}{\sum _{j=1}^{n}\lambda _{j}}}\right\}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/255ff85774dccd7aa239bacebe1b3c25fe46f3ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:38.206ex; height:7.509ex;" alt="{\displaystyle \{X_{i}\}\sim \mathrm {Multinom} \left(k,\left\{{\frac {\lambda _{i}}{\sum _{j=1}^{n}\lambda _{j}}}\right\}\right).}"></span></dd></dl></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \mathrm {Pois} (\lambda )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \mathrm {Pois} (\lambda )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0823122073f11c547d1e8fcbd3d76415110ba320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.938ex; height:2.843ex;" alt="{\displaystyle X\sim \mathrm {Pois} (\lambda )\,}"></span> and the distribution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> conditional on <i>X</i>&#160;=&#160;<span class="texhtml mvar" style="font-style:italic;">k</span> is a <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\mid (X=k)\sim \mathrm {Binom} (k,p),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>&#x2223;<!-- ∣ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">B</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">m</mi> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\mid (X=k)\sim \mathrm {Binom} (k,p),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ef553b99963ef62014dee3714a938fa13037e30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.462ex; height:2.843ex;" alt="{\displaystyle Y\mid (X=k)\sim \mathrm {Binom} (k,p),}"></span> then the distribution of Y follows a Poisson distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim \mathrm {Pois} (\lambda \cdot p).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\sim \mathrm {Pois} (\lambda \cdot p).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c4cdebce8ebc73815fd41d64470af1da7c28358" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.84ex; height:2.843ex;" alt="{\displaystyle Y\sim \mathrm {Pois} (\lambda \cdot p).}"></span> In fact, if, conditional on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X=k\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>X</mi> <mo>=</mo> <mi>k</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X=k\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17be57fc8b36992200d2ccf2550315e033d18bb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.261ex; height:2.843ex;" alt="{\displaystyle \{X=k\},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{Y_{i}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{Y_{i}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6e92004a07c56dd2b161c0647531c2893103b34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.475ex; height:2.843ex;" alt="{\displaystyle \{Y_{i}\}}"></span> follows a <a href="/wiki/Multinomial_distribution" title="Multinomial distribution">multinomial distribution</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{Y_{i}\}\mid (X=k)\sim \mathrm {Multinom} \left(k,p_{i}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>&#x2223;<!-- ∣ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">u</mi> <mi mathvariant="normal">l</mi> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">m</mi> </mrow> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{Y_{i}\}\mid (X=k)\sim \mathrm {Multinom} \left(k,p_{i}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dc9796a889849a05d0ae236237823ccee6c4eff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.067ex; height:2.843ex;" alt="{\displaystyle \{Y_{i}\}\mid (X=k)\sim \mathrm {Multinom} \left(k,p_{i}\right),}"></span> then each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d57be496fff95ee2a97ee43c7f7fe244b4dbf8ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.15ex; height:2.509ex;" alt="{\displaystyle Y_{i}}"></span> follows an independent Poisson distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{i}\sim \mathrm {Pois} (\lambda \cdot p_{i}),\rho (Y_{i},Y_{j})=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">(</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{i}\sim \mathrm {Pois} (\lambda \cdot p_{i}),\rho (Y_{i},Y_{j})=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfe251c0f62960e8d27c54fd1154174fdf8b34b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:30.767ex; height:3.009ex;" alt="{\displaystyle Y_{i}\sim \mathrm {Pois} (\lambda \cdot p_{i}),\rho (Y_{i},Y_{j})=0.}"></span></li> <li>The Poisson distribution is a <a href="/wiki/Special_case" title="Special case">special case</a> of the discrete compound Poisson distribution (or stuttering Poisson distribution) with only a parameter.<sup id="cite_ref-Zhang2013_33-0" class="reference"><a href="#cite_note-Zhang2013-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Zhang2016_34-0" class="reference"><a href="#cite_note-Zhang2016-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> The discrete compound Poisson distribution can be deduced from the limiting distribution of univariate multinomial distribution. It is also a <a href="/wiki/Compound_Poisson_distribution#Special_cases" title="Compound Poisson distribution">special case</a> of a <a href="/wiki/Compound_Poisson_distribution" title="Compound Poisson distribution">compound Poisson distribution</a>.</li> <li>For sufficiently large values of <span class="texhtml mvar" style="font-style:italic;">λ</span>, (say <span class="texhtml mvar" style="font-style:italic;">λ</span>&gt;1000), the <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a> with mean <span class="texhtml mvar" style="font-style:italic;">λ</span> and variance <span class="texhtml mvar" style="font-style:italic;">λ</span> (standard deviation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\lambda }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03BB;<!-- λ --></mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\lambda }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d95574539cdee5bead1cb65a182d4effd2800937" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.291ex; height:3.009ex;" alt="{\displaystyle {\sqrt {\lambda }}}"></span>) is an excellent approximation to the Poisson distribution. If <span class="texhtml mvar" style="font-style:italic;">λ</span> is greater than about 10, then the normal distribution is a good approximation if an appropriate <a href="/wiki/Continuity_correction" title="Continuity correction">continuity correction</a> is performed, i.e., if <span class="texhtml">P(<i>X</i> ≤ <i>x</i>)</span>, where <i>x</i> is a non-negative integer, is replaced by <span class="texhtml">P(<i>X</i> ≤ <i>x</i> + 0.5)</span>. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{\mathrm {Poisson} }(x;\lambda )\approx F_{\mathrm {normal} }(x;\mu =\lambda ,\sigma ^{2}=\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">n</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>&#x2248;<!-- ≈ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">l</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{\mathrm {Poisson} }(x;\lambda )\approx F_{\mathrm {normal} }(x;\mu =\lambda ,\sigma ^{2}=\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2081e807e7da69a44d326395c39a1668a3f7fda3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.44ex; height:3.176ex;" alt="{\displaystyle F_{\mathrm {Poisson} }(x;\lambda )\approx F_{\mathrm {normal} }(x;\mu =\lambda ,\sigma ^{2}=\lambda )}"></span></li> <li><a href="/wiki/Variance-stabilizing_transformation" title="Variance-stabilizing transformation">Variance-stabilizing transformation</a>: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \mathrm {Pois} (\lambda ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \mathrm {Pois} (\lambda ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b515db49fba626cb9a58a3903002bcca7ed9f35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.198ex; height:2.843ex;" alt="{\displaystyle X\sim \mathrm {Pois} (\lambda ),}"></span> then<sup id="cite_ref-Johnson2005_8-4" class="reference"><a href="#cite_note-Johnson2005-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 168">&#58;&#8202;168&#8202;</span></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=2{\sqrt {X}}\approx {\mathcal {N}}(2{\sqrt {\lambda }};1),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>X</mi> </msqrt> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03BB;<!-- λ --></mi> </msqrt> </mrow> <mo>;</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=2{\sqrt {X}}\approx {\mathcal {N}}(2{\sqrt {\lambda }};1),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c733320f48ae2c177634a84d833578d27bfc4f8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.43ex; height:3.176ex;" alt="{\displaystyle Y=2{\sqrt {X}}\approx {\mathcal {N}}(2{\sqrt {\lambda }};1),}"></span> and<sup id="cite_ref-McCullagh1989_35-0" class="reference"><a href="#cite_note-McCullagh1989-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 196">&#58;&#8202;196&#8202;</span></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y={\sqrt {X}}\approx {\mathcal {N}}({\sqrt {\lambda }};1/4).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>X</mi> </msqrt> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03BB;<!-- λ --></mi> </msqrt> </mrow> <mo>;</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y={\sqrt {X}}\approx {\mathcal {N}}({\sqrt {\lambda }};1/4).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dd4704720188a745950690ed57b972446012d35" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.43ex; height:3.176ex;" alt="{\displaystyle Y={\sqrt {X}}\approx {\mathcal {N}}({\sqrt {\lambda }};1/4).}"></span> Under this transformation, the convergence to normality (as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> increases) is far faster than the untransformed variable.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2012)">citation needed</span></a></i>&#93;</sup> Other, slightly more complicated, variance stabilizing transformations are available,<sup id="cite_ref-Johnson2005_8-5" class="reference"><a href="#cite_note-Johnson2005-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 168">&#58;&#8202;168&#8202;</span></sup> one of which is <a href="/wiki/Anscombe_transform" title="Anscombe transform">Anscombe transform</a>.<sup id="cite_ref-Anscombe1948_36-0" class="reference"><a href="#cite_note-Anscombe1948-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> See <a href="/wiki/Data_transformation_(statistics)" title="Data transformation (statistics)">Data transformation (statistics)</a> for more general uses of transformations.</li> <li>If for every <i>t</i>&#160;&gt;&#160;0 the number of arrivals in the time interval <span class="texhtml">&#91;0, <i>t</i>&#93;</span> follows the Poisson distribution with mean <i>λt</i>, then the sequence of inter-arrival times are independent and identically distributed <a href="/wiki/Exponential_distribution" title="Exponential distribution">exponential</a> random variables having mean&#160;1/<span class="texhtml mvar" style="font-style:italic;">λ</span>.<sup id="cite_ref-Ross2010_37-0" class="reference"><a href="#cite_note-Ross2010-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 317–319">&#58;&#8202;317–319&#8202;</span></sup></li> <li>The <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution functions</a> of the Poisson and <a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">chi-squared distributions</a> are related in the following ways:<sup id="cite_ref-Johnson2005_8-6" class="reference"><a href="#cite_note-Johnson2005-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 167">&#58;&#8202;167&#8202;</span></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{\text{Poisson}}(k;\lambda )=1-F_{\chi ^{2}}(2\lambda ;2(k+1))\quad \quad {\text{ integer }}k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Poisson</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03BB;<!-- λ --></mi> <mo>;</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="1em" /> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;integer&#xA0;</mtext> </mrow> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{\text{Poisson}}(k;\lambda )=1-F_{\chi ^{2}}(2\lambda ;2(k+1))\quad \quad {\text{ integer }}k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7df4d319ceaf2cac7a2ef625ae5ffd2c5fa9cdc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:51.45ex; height:3.176ex;" alt="{\displaystyle F_{\text{Poisson}}(k;\lambda )=1-F_{\chi ^{2}}(2\lambda ;2(k+1))\quad \quad {\text{ integer }}k,}"></span> and<sup id="cite_ref-Johnson2005_8-7" class="reference"><a href="#cite_note-Johnson2005-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 158">&#58;&#8202;158&#8202;</span></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X=k)=F_{\chi ^{2}}(2\lambda ;2(k+1))-F_{\chi ^{2}}(2\lambda ;2k).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03BB;<!-- λ --></mi> <mo>;</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03BB;<!-- λ --></mi> <mo>;</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X=k)=F_{\chi ^{2}}(2\lambda ;2(k+1))-F_{\chi ^{2}}(2\lambda ;2k).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5afa8a79672290e8714ff5292485ab07267bc94e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:44.886ex; height:3.176ex;" alt="{\displaystyle P(X=k)=F_{\chi ^{2}}(2\lambda ;2(k+1))-F_{\chi ^{2}}(2\lambda ;2k).}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Poisson_approximation">Poisson approximation</h3></div> <p>Assume <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}\sim \operatorname {Pois} (\lambda _{1}),X_{2}\sim \operatorname {Pois} (\lambda _{2}),\dots ,X_{n}\sim \operatorname {Pois} (\lambda _{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}\sim \operatorname {Pois} (\lambda _{1}),X_{2}\sim \operatorname {Pois} (\lambda _{2}),\dots ,X_{n}\sim \operatorname {Pois} (\lambda _{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fc5feeea5be9edb9e578edc20b16e8ec84b8721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.353ex; height:2.843ex;" alt="{\displaystyle X_{1}\sim \operatorname {Pois} (\lambda _{1}),X_{2}\sim \operatorname {Pois} (\lambda _{2}),\dots ,X_{n}\sim \operatorname {Pois} (\lambda _{n})}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{1}+\lambda _{2}+\dots +\lambda _{n}=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{1}+\lambda _{2}+\dots +\lambda _{n}=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b44d5d58dee88c3f8ad224d8d0e04a880b4f8b66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.545ex; height:2.509ex;" alt="{\displaystyle \lambda _{1}+\lambda _{2}+\dots +\lambda _{n}=1,}"></span> then<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X_{1},X_{2},\dots ,X_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X_{1},X_{2},\dots ,X_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab6e1cb7ae1719556a29f9dc023666490c5a29cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.121ex; height:2.843ex;" alt="{\displaystyle (X_{1},X_{2},\dots ,X_{n})}"></span> is <a href="/wiki/Multinomial_distribution" title="Multinomial distribution">multinomially distributed</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X_{1},X_{2},\dots ,X_{n})\sim \operatorname {Mult} (N,\lambda _{1},\lambda _{2},\dots ,\lambda _{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x223C;<!-- ∼ --></mo> <mi>Mult</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>N</mi> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X_{1},X_{2},\dots ,X_{n})\sim \operatorname {Mult} (N,\lambda _{1},\lambda _{2},\dots ,\lambda _{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46baab90dfd7fd4c25a179f4f4e453b4a5e0d1b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.706ex; height:2.843ex;" alt="{\displaystyle (X_{1},X_{2},\dots ,X_{n})\sim \operatorname {Mult} (N,\lambda _{1},\lambda _{2},\dots ,\lambda _{n})}"></span> conditioned on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=X_{1}+X_{2}+\dots X_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x2026;<!-- … --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=X_{1}+X_{2}+\dots X_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85f48f264ff52d5db4884b2b4e8e34814920cf37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.7ex; height:2.509ex;" alt="{\displaystyle N=X_{1}+X_{2}+\dots X_{n}.}"></span> </p><p>This means<sup id="cite_ref-Mitzenmacher2005_27-1" class="reference"><a href="#cite_note-Mitzenmacher2005-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 101-102">&#58;&#8202;101-102&#8202;</span></sup>, among other things, that for any nonnegative function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{1},x_{2},\dots ,x_{n}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{1},x_{2},\dots ,x_{n}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da01e9b5b86096828bfbaa50301c203194310223" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.263ex; height:2.843ex;" alt="{\displaystyle f(x_{1},x_{2},\dots ,x_{n}),}"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (Y_{1},Y_{2},\dots ,Y_{n})\sim \operatorname {Mult} (m,\mathbf {p} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x223C;<!-- ∼ --></mo> <mi>Mult</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (Y_{1},Y_{2},\dots ,Y_{n})\sim \operatorname {Mult} (m,\mathbf {p} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd3b622ac92d19286cb8d573e25a819d50e1d1c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.843ex; height:2.843ex;" alt="{\displaystyle (Y_{1},Y_{2},\dots ,Y_{n})\sim \operatorname {Mult} (m,\mathbf {p} )}"></span> is multinomially distributed, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [f(Y_{1},Y_{2},\dots ,Y_{n})]\leq e{\sqrt {m}}\operatorname {E} [f(X_{1},X_{2},\dots ,X_{n})]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>m</mi> </msqrt> </mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [f(Y_{1},Y_{2},\dots ,Y_{n})]\leq e{\sqrt {m}}\operatorname {E} [f(X_{1},X_{2},\dots ,X_{n})]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d196f4817af3673334cad96f9aa090d2ae3cb7e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:49.377ex; height:3.009ex;" alt="{\displaystyle \operatorname {E} [f(Y_{1},Y_{2},\dots ,Y_{n})]\leq e{\sqrt {m}}\operatorname {E} [f(X_{1},X_{2},\dots ,X_{n})]}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X_{1},X_{2},\dots ,X_{n})\sim \operatorname {Pois} (\mathbf {p} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x223C;<!-- ∼ --></mo> <mi>Pois</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X_{1},X_{2},\dots ,X_{n})\sim \operatorname {Pois} (\mathbf {p} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0672e887adf63853e4828e901e15aaf2c7dd9882" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.469ex; height:2.843ex;" alt="{\displaystyle (X_{1},X_{2},\dots ,X_{n})\sim \operatorname {Pois} (\mathbf {p} ).}"></span> </p><p>The factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e{\sqrt {m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>m</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e{\sqrt {m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7e2f9d15ce82286860f087bfff8be600abdd707" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.06ex; height:3.009ex;" alt="{\displaystyle e{\sqrt {m}}}"></span> can be replaced by 2 if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is further assumed to be monotonically increasing or decreasing. </p> <div class="mw-heading mw-heading3"><h3 id="Bivariate_Poisson_distribution">Bivariate Poisson distribution</h3></div> <p>This distribution has been extended to the <a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">bivariate</a> case.<sup id="cite_ref-Loukas1986_39-0" class="reference"><a href="#cite_note-Loukas1986-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Generating_function" title="Generating function">generating function</a> for this distribution is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(u,v)=\exp[(\theta _{1}-\theta _{12})(u-1)+(\theta _{2}-\theta _{12})(v-1)+\theta _{12}(uv-1)]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>v</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mi>v</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(u,v)=\exp[(\theta _{1}-\theta _{12})(u-1)+(\theta _{2}-\theta _{12})(v-1)+\theta _{12}(uv-1)]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d994b2c4f3b36c80cfd0b97ed72fe289c0855d4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:64.882ex; height:2.843ex;" alt="{\displaystyle g(u,v)=\exp[(\theta _{1}-\theta _{12})(u-1)+(\theta _{2}-\theta _{12})(v-1)+\theta _{12}(uv-1)]}"></span> </p><p>with <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta _{1},\theta _{2}&gt;\theta _{12}&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&gt;</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta _{1},\theta _{2}&gt;\theta _{12}&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59173fc2edd20c7435e8352e8a027320c586d1f6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.649ex; height:2.509ex;" alt="{\displaystyle \theta _{1},\theta _{2}&gt;\theta _{12}&gt;0}"></span> </p><p>The marginal distributions are Poisson(<i>θ</i><sub>1</sub>) and Poisson(<i>θ</i><sub>2</sub>) and the correlation coefficient is limited to the range <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq \rho \leq \min \left\{{\sqrt {\frac {\theta _{1}}{\theta _{2}}}},{\sqrt {\frac {\theta _{2}}{\theta _{1}}}}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mo movablelimits="true" form="prefix">min</mo> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </msqrt> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </msqrt> </mrow> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq \rho \leq \min \left\{{\sqrt {\frac {\theta _{1}}{\theta _{2}}}},{\sqrt {\frac {\theta _{2}}{\theta _{1}}}}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25a96cf8c37ebcf307871a8c94ef332df613bbb4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.213ex; height:7.509ex;" alt="{\displaystyle 0\leq \rho \leq \min \left\{{\sqrt {\frac {\theta _{1}}{\theta _{2}}}},{\sqrt {\frac {\theta _{2}}{\theta _{1}}}}\right\}}"></span> </p><p>A simple way to generate a bivariate Poisson distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},X_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},X_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d6099d6fb3c34ad5e22fad9c79c40c4ebfee1ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.991ex; height:2.509ex;" alt="{\displaystyle X_{1},X_{2}}"></span> is to take three independent Poisson distributions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{1},Y_{2},Y_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{1},Y_{2},Y_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db225a2d7020b587c310f70d465d81a5ff666ce5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.282ex; height:2.509ex;" alt="{\displaystyle Y_{1},Y_{2},Y_{3}}"></span> with means <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{1},\lambda _{2},\lambda _{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{1},\lambda _{2},\lambda _{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2b8c04bd1b2d2ea63bf44bf3ef1712baa2e7248" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.296ex; height:2.509ex;" alt="{\displaystyle \lambda _{1},\lambda _{2},\lambda _{3}}"></span> and then set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}=Y_{1}+Y_{3},X_{2}=Y_{2}+Y_{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}=Y_{1}+Y_{3},X_{2}=Y_{2}+Y_{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2edfaef32686a54ff3d93cc8ddf1cbd1cebde812" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:29.135ex; height:2.509ex;" alt="{\displaystyle X_{1}=Y_{1}+Y_{3},X_{2}=Y_{2}+Y_{3}.}"></span> The probability function of the bivariate Poisson distribution is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(X_{1}=k_{1},X_{2}=k_{2})=\exp \left(-\lambda _{1}-\lambda _{2}-\lambda _{3}\right){\frac {\lambda _{1}^{k_{1}}}{k_{1}!}}{\frac {\lambda _{2}^{k_{2}}}{k_{2}!}}\sum _{k=0}^{\min(k_{1},k_{2})}{\binom {k_{1}}{k}}{\binom {k_{2}}{k}}k!\left({\frac {\lambda _{3}}{\lambda _{1}\lambda _{2}}}\right)^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> <mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>!</mo> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mi>k</mi> <mo>!</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(X_{1}=k_{1},X_{2}=k_{2})=\exp \left(-\lambda _{1}-\lambda _{2}-\lambda _{3}\right){\frac {\lambda _{1}^{k_{1}}}{k_{1}!}}{\frac {\lambda _{2}^{k_{2}}}{k_{2}!}}\sum _{k=0}^{\min(k_{1},k_{2})}{\binom {k_{1}}{k}}{\binom {k_{2}}{k}}k!\left({\frac {\lambda _{3}}{\lambda _{1}\lambda _{2}}}\right)^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3b00b19d41813c00b3f18480f2b375e0c3b96b4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:85.447ex; height:7.843ex;" alt="{\displaystyle \Pr(X_{1}=k_{1},X_{2}=k_{2})=\exp \left(-\lambda _{1}-\lambda _{2}-\lambda _{3}\right){\frac {\lambda _{1}^{k_{1}}}{k_{1}!}}{\frac {\lambda _{2}^{k_{2}}}{k_{2}!}}\sum _{k=0}^{\min(k_{1},k_{2})}{\binom {k_{1}}{k}}{\binom {k_{2}}{k}}k!\left({\frac {\lambda _{3}}{\lambda _{1}\lambda _{2}}}\right)^{k}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Free_Poisson_distribution">Free Poisson distribution</h3></div> <p>The free Poisson distribution<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> with jump size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> and rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> arises in <a href="/wiki/Free_probability" title="Free probability">free probability</a> theory as the limit of repeated <a href="/wiki/Free_convolution" title="Free convolution">free convolution</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\left(1-{\frac {\lambda }{N}}\right)\delta _{0}+{\frac {\lambda }{N}}\delta _{\alpha }\right)^{\boxplus N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mi>N</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mi>N</mi> </mfrac> </mrow> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x229E;<!-- ⊞ --></mo> <mi>N</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\left(1-{\frac {\lambda }{N}}\right)\delta _{0}+{\frac {\lambda }{N}}\delta _{\alpha }\right)^{\boxplus N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/347f43443ec8f033d16f84eebd4b79fdfa12a591" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.245ex; height:6.676ex;" alt="{\displaystyle \left(\left(1-{\frac {\lambda }{N}}\right)\delta _{0}+{\frac {\lambda }{N}}\delta _{\alpha }\right)^{\boxplus N}}"></span> as <span class="texhtml"><i>N</i> → ∞</span>. </p><p>In other words, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90b8110b9148fb2ec3c86f96e3b72bf2b095ce81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.616ex; height:2.509ex;" alt="{\displaystyle X_{N}}"></span> be random variables so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90b8110b9148fb2ec3c86f96e3b72bf2b095ce81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.616ex; height:2.509ex;" alt="{\displaystyle X_{N}}"></span> has value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> with probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {\lambda }{N}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mi>N</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {\lambda }{N}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb8c6dd7c0dd3faa1d620596f105d0f77b84dda6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:2.295ex; height:3.676ex;" alt="{\textstyle {\frac {\lambda }{N}}}"></span> and value 0 with the remaining probability. Assume also that the family <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},X_{2},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},X_{2},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/869cccabc3ea7b90d40e40158d740fc88e07889a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.748ex; height:2.509ex;" alt="{\displaystyle X_{1},X_{2},\ldots }"></span> are <a href="/wiki/Free_independence" title="Free independence">freely independent</a>. Then the limit as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e23159ea0d291e21c5709a6dd7486bed7f18febe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.001ex; height:2.176ex;" alt="{\displaystyle N\to \infty }"></span> of the law of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}+\cdots +X_{N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}+\cdots +X_{N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9197405e63e2962856f275d4e008a079cc153507" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.998ex; height:2.509ex;" alt="{\displaystyle X_{1}+\cdots +X_{N}}"></span> is given by the Free Poisson law with parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ,\alpha .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <mi>&#x03B1;<!-- α --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ,\alpha .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/566a4f5b368707891c0532108f72d7a2b077e8d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.524ex; height:2.509ex;" alt="{\displaystyle \lambda ,\alpha .}"></span> </p><p>This definition is analogous to one of the ways in which the classical Poisson distribution is obtained from a (classical) Poisson process. </p><p>The measure associated to the free Poisson law is given by<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu ={\begin{cases}(1-\lambda )\delta _{0}+\nu ,&amp;{\text{if }}0\leq \lambda \leq 1\\\nu ,&amp;{\text{if }}\lambda &gt;1,\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>&#x03BD;<!-- ν --></mi> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>&#x03BB;<!-- λ --></mi> <mo>&gt;</mo> <mn>1</mn> <mo>,</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu ={\begin{cases}(1-\lambda )\delta _{0}+\nu ,&amp;{\text{if }}0\leq \lambda \leq 1\\\nu ,&amp;{\text{if }}\lambda &gt;1,\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6ede5882d0f32fa5d0ddb7080d12312a755132d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.107ex; height:6.176ex;" alt="{\displaystyle \mu ={\begin{cases}(1-\lambda )\delta _{0}+\nu ,&amp;{\text{if }}0\leq \lambda \leq 1\\\nu ,&amp;{\text{if }}\lambda &gt;1,\end{cases}}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu ={\frac {1}{2\pi \alpha t}}{\sqrt {4\lambda \alpha ^{2}-(t-\alpha (1+\lambda ))^{2}}}\,dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>&#x03B1;<!-- α --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>4</mn> <mi>&#x03BB;<!-- λ --></mi> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu ={\frac {1}{2\pi \alpha t}}{\sqrt {4\lambda \alpha ^{2}-(t-\alpha (1+\lambda ))^{2}}}\,dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6efca6804113d51fd4d767acd0e9b69f4af5955c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.853ex; height:5.176ex;" alt="{\displaystyle \nu ={\frac {1}{2\pi \alpha t}}{\sqrt {4\lambda \alpha ^{2}-(t-\alpha (1+\lambda ))^{2}}}\,dt}"></span> and has support <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\alpha (1-{\sqrt {\lambda }})^{2},\alpha (1+{\sqrt {\lambda }})^{2}].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03BB;<!-- λ --></mi> </msqrt> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03BB;<!-- λ --></mi> </msqrt> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\alpha (1-{\sqrt {\lambda }})^{2},\alpha (1+{\sqrt {\lambda }})^{2}].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e632a5959c5dd7a328d80a02e2d9134178a173e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.265ex; height:3.176ex;" alt="{\displaystyle [\alpha (1-{\sqrt {\lambda }})^{2},\alpha (1+{\sqrt {\lambda }})^{2}].}"></span> </p><p>This law also arises in <a href="/wiki/Random_matrix" title="Random matrix">random matrix</a> theory as the <a href="/wiki/Marchenko%E2%80%93Pastur_law" class="mw-redirect" title="Marchenko–Pastur law">Marchenko–Pastur law</a>. Its <a href="/wiki/Cumulant#Free_cumulants" title="Cumulant">free cumulants</a> are equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{n}=\lambda \alpha ^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>&#x03BB;<!-- λ --></mi> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{n}=\lambda \alpha ^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b422dcc3a689aa0100f254a5cafda73542e2709" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.364ex; height:2.676ex;" alt="{\displaystyle \kappa _{n}=\lambda \alpha ^{n}.}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Some_transforms_of_this_law">Some transforms of this law</h4></div> <p>We give values of some important transforms of the free Poisson law; the computation can be found in e.g. in the book <i>Lectures on the Combinatorics of Free Probability</i> by A. Nica and R. Speicher<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p><p>The R-transform of the free Poisson law is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(z)={\frac {\lambda \alpha }{1-\alpha z}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03B1;<!-- α --></mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(z)={\frac {\lambda \alpha }{1-\alpha z}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2538f0ee816527e86beff9fa47634e9db8e68e0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.821ex; height:5.509ex;" alt="{\displaystyle R(z)={\frac {\lambda \alpha }{1-\alpha z}}.}"></span> </p><p>The Cauchy transform (which is the negative of the <a href="/wiki/Stieltjes_transformation" title="Stieltjes transformation">Stieltjes transformation</a>) is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(z)={\frac {z+\alpha -\lambda \alpha -{\sqrt {(z-\alpha (1+\lambda ))^{2}-4\lambda \alpha ^{2}}}}{2\alpha z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>z</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mi>&#x03BB;<!-- λ --></mi> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> <mrow> <mn>2</mn> <mi>&#x03B1;<!-- α --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(z)={\frac {z+\alpha -\lambda \alpha -{\sqrt {(z-\alpha (1+\lambda ))^{2}-4\lambda \alpha ^{2}}}}{2\alpha z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eddab052ca3fa8b01262cb9072033c37e8217873" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:48.269ex; height:6.176ex;" alt="{\displaystyle G(z)={\frac {z+\alpha -\lambda \alpha -{\sqrt {(z-\alpha (1+\lambda ))^{2}-4\lambda \alpha ^{2}}}}{2\alpha z}}}"></span> </p><p>The S-transform is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(z)={\frac {1}{z+\lambda }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>z</mi> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(z)={\frac {1}{z+\lambda }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a31ba028fa580921b77ba78f25fda1fd553564b5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:13.615ex; height:5.509ex;" alt="{\displaystyle S(z)={\frac {1}{z+\lambda }}}"></span> in the case that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add6db39940aae24215bb0437f5bb12d63fcbfec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.395ex; height:2.176ex;" alt="{\displaystyle \alpha =1.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Weibull_and_stable_count">Weibull and stable count</h3></div> <p>Poisson's probability mass function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(k;\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(k;\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/814f588da9821bfdc85e401bdd842df42e71599b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.688ex; height:2.843ex;" alt="{\displaystyle f(k;\lambda )}"></span> can be expressed in a form similar to the product distribution of a <a href="/wiki/Weibull_distribution" title="Weibull distribution">Weibull distribution</a> and a variant form of the <a href="/wiki/Stable_count_distribution" title="Stable count distribution">stable count distribution</a>. The variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (k+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (k+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f9f13644a6be482d7ddb19a6e0c706564773085" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.023ex; height:2.843ex;" alt="{\displaystyle (k+1)}"></span> can be regarded as inverse of Lévy's stability parameter in the stable count distribution: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(k;\lambda )=\int _{0}^{\infty }{\frac {1}{u}}\,W_{k+1}\left({\frac {\lambda }{u}}\right)\left[(k+1)u^{k}\,{\mathfrak {N}}_{\frac {1}{k+1}}(u^{k+1})\right]\,du,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>u</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mi>u</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">N</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>u</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(k;\lambda )=\int _{0}^{\infty }{\frac {1}{u}}\,W_{k+1}\left({\frac {\lambda }{u}}\right)\left[(k+1)u^{k}\,{\mathfrak {N}}_{\frac {1}{k+1}}(u^{k+1})\right]\,du,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2646e3d03684519bf4726333b17d41b116396efa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:56.817ex; height:6.176ex;" alt="{\displaystyle f(k;\lambda )=\int _{0}^{\infty }{\frac {1}{u}}\,W_{k+1}\left({\frac {\lambda }{u}}\right)\left[(k+1)u^{k}\,{\mathfrak {N}}_{\frac {1}{k+1}}(u^{k+1})\right]\,du,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {N}}_{\alpha }(\nu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">N</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {N}}_{\alpha }(\nu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16503339cce78afe1b7b86dcf6d064fb7f34b979" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.259ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {N}}_{\alpha }(\nu )}"></span> is a standard stable count distribution of shape <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =1/(k+1),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =1/(k+1),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f1c3ebaf0f78bc957548104915203bcb8835b85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.581ex; height:2.843ex;" alt="{\displaystyle \alpha =1/(k+1),}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W_{k+1}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W_{k+1}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c02ff89392318889f448267367c534b517bba472" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.522ex; height:2.843ex;" alt="{\displaystyle W_{k+1}(x)}"></span> is a standard Weibull distribution of shape <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k+1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>+</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k+1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd5b9a64aeb4f9176797360fce8f523764ac79e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.861ex; height:2.343ex;" alt="{\displaystyle k+1.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Statistical_inference">Statistical inference</h2></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Poisson_regression" title="Poisson regression">Poisson regression</a></div> <div class="mw-heading mw-heading3"><h3 id="Parameter_estimation">Parameter estimation</h3></div> <p>Given a sample of <span class="texhtml mvar" style="font-style:italic;">n</span> measured values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{i}\in \{0,1,\dots \},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{i}\in \{0,1,\dots \},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d99452d212e85d679221bbd9768c0ac42ea84366" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.939ex; height:2.843ex;" alt="{\displaystyle k_{i}\in \{0,1,\dots \},}"></span> for <span class="nowrap"> <span class="texhtml"><i>i</i> = 1, ..., <i>n</i></span>,</span> we wish to estimate the value of the parameter <span class="texhtml mvar" style="font-style:italic;">λ</span> of the Poisson population from which the sample was drawn. The <a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">maximum likelihood</a> estimate is<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\lambda }}_{\mathrm {MLE} }={\frac {1}{n}}\sum _{i=1}^{n}k_{i}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">E</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\lambda }}_{\mathrm {MLE} }={\frac {1}{n}}\sum _{i=1}^{n}k_{i}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c2d34749b1c93976303296e6b87b64740d69f4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.938ex; height:6.843ex;" alt="{\displaystyle {\widehat {\lambda }}_{\mathrm {MLE} }={\frac {1}{n}}\sum _{i=1}^{n}k_{i}\ .}"></span></dd></dl> <p>Since each observation has expectation <span class="texhtml mvar" style="font-style:italic;">λ</span> so does the sample mean. Therefore, the maximum likelihood estimate is an <a href="/wiki/Unbiased_estimator" class="mw-redirect" title="Unbiased estimator">unbiased estimator</a> of <span class="texhtml mvar" style="font-style:italic;">λ</span>. It is also an efficient estimator since its variance achieves the <a href="/wiki/Cram%C3%A9r%E2%80%93Rao_lower_bound" class="mw-redirect" title="Cramér–Rao lower bound">Cramér–Rao lower bound</a> (CRLB).<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> Hence it is <a href="/wiki/Minimum-variance_unbiased_estimator" title="Minimum-variance unbiased estimator">minimum-variance unbiased</a>. Also it can be proven that the sum (and hence the sample mean as it is a one-to-one function of the sum) is a complete and sufficient statistic for <span class="texhtml mvar" style="font-style:italic;">λ</span>. </p><p>To prove sufficiency we may use the <a href="/wiki/Sufficient_statistic" title="Sufficient statistic">factorization theorem</a>. Consider partitioning the probability mass function of the joint Poisson distribution for the sample into two parts: one that depends solely on the sample <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span>, called <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(\mathbf {x} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(\mathbf {x} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ade5d2635b53f734929e6ad7f25bfcf1437c0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.559ex; height:2.843ex;" alt="{\displaystyle h(\mathbf {x} )}"></span>, and one that depends on the parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> and the sample <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span> only through the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(\mathbf {x} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(\mathbf {x} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9eca30ed81563926023bc46e53f5a624207ba0e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.503ex; height:2.843ex;" alt="{\displaystyle T(\mathbf {x} ).}"></span> Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(\mathbf {x} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(\mathbf {x} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90a3259cedd58b92e1140db52ab63ae096baa16d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.857ex; height:2.843ex;" alt="{\displaystyle T(\mathbf {x} )}"></span> is a sufficient statistic for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bb9c58e3f6b2de892e10ef516f96f07da0423e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.002ex; height:2.176ex;" alt="{\displaystyle \lambda .}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(\mathbf {x} )=\prod _{i=1}^{n}{\frac {\lambda ^{x_{i}}e^{-\lambda }}{x_{i}!}}={\frac {1}{\prod _{i=1}^{n}x_{i}!}}\times \lambda ^{\sum _{i=1}^{n}x_{i}}e^{-n\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> </mrow> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x00D7;<!-- × --></mo> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(\mathbf {x} )=\prod _{i=1}^{n}{\frac {\lambda ^{x_{i}}e^{-\lambda }}{x_{i}!}}={\frac {1}{\prod _{i=1}^{n}x_{i}!}}\times \lambda ^{\sum _{i=1}^{n}x_{i}}e^{-n\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/935b182bf975ed1c368e4fc741d515f297ce66ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:46.138ex; height:6.843ex;" alt="{\displaystyle P(\mathbf {x} )=\prod _{i=1}^{n}{\frac {\lambda ^{x_{i}}e^{-\lambda }}{x_{i}!}}={\frac {1}{\prod _{i=1}^{n}x_{i}!}}\times \lambda ^{\sum _{i=1}^{n}x_{i}}e^{-n\lambda }}"></span></dd></dl> <p>The first term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(\mathbf {x} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(\mathbf {x} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ade5d2635b53f734929e6ad7f25bfcf1437c0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.559ex; height:2.843ex;" alt="{\displaystyle h(\mathbf {x} )}"></span> depends only on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"></span>. The second term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(T(\mathbf {x} )|\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(T(\mathbf {x} )|\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e569d1063c1dc4b137dfe9d9f6e6c14a3de12e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.784ex; height:2.843ex;" alt="{\displaystyle g(T(\mathbf {x} )|\lambda )}"></span> depends on the sample only through <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle T(\mathbf {x} )=\sum _{i=1}^{n}x_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle T(\mathbf {x} )=\sum _{i=1}^{n}x_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbbbe249485e9a50ad73da79e651548b90b05f87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.472ex; height:3.176ex;" alt="{\textstyle T(\mathbf {x} )=\sum _{i=1}^{n}x_{i}.}"></span> Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(\mathbf {x} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(\mathbf {x} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90a3259cedd58b92e1140db52ab63ae096baa16d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.857ex; height:2.843ex;" alt="{\displaystyle T(\mathbf {x} )}"></span> is sufficient. </p><p>To find the parameter <span class="texhtml mvar" style="font-style:italic;">λ</span> that maximizes the probability function for the Poisson population, we can use the logarithm of the likelihood function: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\ell (\lambda )&amp;=\ln \prod _{i=1}^{n}f(k_{i}\mid \lambda )\\&amp;=\sum _{i=1}^{n}\ln \!\left({\frac {e^{-\lambda }\lambda ^{k_{i}}}{k_{i}!}}\right)\\&amp;=-n\lambda +\left(\sum _{i=1}^{n}k_{i}\right)\ln(\lambda )-\sum _{i=1}^{n}\ln(k_{i}!).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x2113;<!-- ℓ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>ln</mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> </mrow> <mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>!</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\ell (\lambda )&amp;=\ln \prod _{i=1}^{n}f(k_{i}\mid \lambda )\\&amp;=\sum _{i=1}^{n}\ln \!\left({\frac {e^{-\lambda }\lambda ^{k_{i}}}{k_{i}!}}\right)\\&amp;=-n\lambda +\left(\sum _{i=1}^{n}k_{i}\right)\ln(\lambda )-\sum _{i=1}^{n}\ln(k_{i}!).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff7dd9f64c691cf995378c5076ef2ee1fc40d824" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.338ex; width:43.944ex; height:21.843ex;" alt="{\displaystyle {\begin{aligned}\ell (\lambda )&amp;=\ln \prod _{i=1}^{n}f(k_{i}\mid \lambda )\\&amp;=\sum _{i=1}^{n}\ln \!\left({\frac {e^{-\lambda }\lambda ^{k_{i}}}{k_{i}!}}\right)\\&amp;=-n\lambda +\left(\sum _{i=1}^{n}k_{i}\right)\ln(\lambda )-\sum _{i=1}^{n}\ln(k_{i}!).\end{aligned}}}"></span></dd></dl> <p>We take the derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span> with respect to <span class="texhtml mvar" style="font-style:italic;">λ</span> and compare it to zero: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \lambda }}\ell (\lambda )=0\iff -n+\left(\sum _{i=1}^{n}k_{i}\right){\frac {1}{\lambda }}=0.\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mrow> <mi>&#x2113;<!-- ℓ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03BB;<!-- λ --></mi> </mfrac> </mrow> <mo>=</mo> <mn>0.</mn> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \lambda }}\ell (\lambda )=0\iff -n+\left(\sum _{i=1}^{n}k_{i}\right){\frac {1}{\lambda }}=0.\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6330dd6ba39f01a7d9496099abadca2afaa244ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; margin-right: -0.204ex; width:41.556ex; height:7.509ex;" alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \lambda }}\ell (\lambda )=0\iff -n+\left(\sum _{i=1}^{n}k_{i}\right){\frac {1}{\lambda }}=0.\!}"></span></dd></dl> <p>Solving for <span class="texhtml mvar" style="font-style:italic;">λ</span> gives a stationary point. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ={\frac {\sum _{i=1}^{n}k_{i}}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ={\frac {\sum _{i=1}^{n}k_{i}}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1112ab9fcb4209853c6d052470a90f943a9966e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.042ex; height:5.843ex;" alt="{\displaystyle \lambda ={\frac {\sum _{i=1}^{n}k_{i}}{n}}}"></span></dd></dl> <p>So <span class="texhtml mvar" style="font-style:italic;">λ</span> is the average of the <span class="texhtml mvar" style="font-style:italic;">k</span><sub><i>i</i></sub> values. Obtaining the sign of the second derivative of <i>L</i> at the stationary point will determine what kind of extreme value <span class="texhtml mvar" style="font-style:italic;">λ</span> is. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{2}\ell }{\partial \lambda ^{2}}}=-\lambda ^{-2}\sum _{i=1}^{n}k_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x2113;<!-- ℓ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{2}\ell }{\partial \lambda ^{2}}}=-\lambda ^{-2}\sum _{i=1}^{n}k_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/654ea47fda7c1ad93809d44e976db5c35194d54e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.298ex; height:6.843ex;" alt="{\displaystyle {\frac {\partial ^{2}\ell }{\partial \lambda ^{2}}}=-\lambda ^{-2}\sum _{i=1}^{n}k_{i}}"></span></dd></dl> <p>Evaluating the second derivative <i>at the stationary point</i> gives: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{2}\ell }{\partial \lambda ^{2}}}=-{\frac {n^{2}}{\sum _{i=1}^{n}k_{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x2113;<!-- ℓ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{2}\ell }{\partial \lambda ^{2}}}=-{\frac {n^{2}}{\sum _{i=1}^{n}k_{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b8b29d81a13cf3d78f6a1bc3cc471b8901b014e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:18.058ex; height:6.676ex;" alt="{\displaystyle {\frac {\partial ^{2}\ell }{\partial \lambda ^{2}}}=-{\frac {n^{2}}{\sum _{i=1}^{n}k_{i}}}}"></span></dd></dl> <p>which is the negative of <span class="texhtml mvar" style="font-style:italic;">n</span> times the reciprocal of the average of the k<sub>i</sub>. This expression is negative when the average is positive. If this is satisfied, then the stationary point maximizes the probability function. </p><p>For <a href="/wiki/Completeness_(statistics)" title="Completeness (statistics)">completeness</a>, a family of distributions is said to be complete if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E(g(T))=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E(g(T))=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91c6007bca4ce4b24cf02815548f1e055ad72f7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.407ex; height:2.843ex;" alt="{\displaystyle E(g(T))=0}"></span> implies that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{\lambda }(g(T)=0)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{\lambda }(g(T)=0)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10615fff67b9f789f12132b9a9f484a150f0347d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.576ex; height:2.843ex;" alt="{\displaystyle P_{\lambda }(g(T)=0)=1}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bb9c58e3f6b2de892e10ef516f96f07da0423e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.002ex; height:2.176ex;" alt="{\displaystyle \lambda .}"></span> If the individual <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af4a0955af42beb5f85aa05fb8c07abedc13990d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.724ex; height:2.509ex;" alt="{\displaystyle X_{i}}"></span> are iid <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Po} (\lambda ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">o</mi> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Po} (\lambda ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5a250ddea76d3c64a0b6620d448d7a2defc7606" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.557ex; height:2.843ex;" alt="{\displaystyle \mathrm {Po} (\lambda ),}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle T(\mathbf {x} )=\sum _{i=1}^{n}X_{i}\sim \mathrm {Po} (n\lambda ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">o</mi> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle T(\mathbf {x} )=\sum _{i=1}^{n}X_{i}\sim \mathrm {Po} (n\lambda ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0340a1347b82398d5a884332b50cc040aead69e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.47ex; height:3.176ex;" alt="{\textstyle T(\mathbf {x} )=\sum _{i=1}^{n}X_{i}\sim \mathrm {Po} (n\lambda ).}"></span> Knowing the distribution we want to investigate, it is easy to see that the statistic is complete. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E(g(T))=\sum _{t=0}^{\infty }g(t){\frac {(n\lambda )^{t}e^{-n\lambda }}{t!}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mi>&#x03BB;<!-- λ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> </mrow> <mrow> <mi>t</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E(g(T))=\sum _{t=0}^{\infty }g(t){\frac {(n\lambda )^{t}e^{-n\lambda }}{t!}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4684b4947377fcbaeda1a4e5d70d3c67ea456ffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:33.773ex; height:7.009ex;" alt="{\displaystyle E(g(T))=\sum _{t=0}^{\infty }g(t){\frac {(n\lambda )^{t}e^{-n\lambda }}{t!}}=0}"></span></dd></dl> <p>For this equality to hold, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b84f700860ee7af27797d11ddfad3d185eb7af0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.765ex; height:2.843ex;" alt="{\displaystyle g(t)}"></span> must be 0. This follows from the fact that none of the other terms will be 0 for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> in the sum and for all possible values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bb9c58e3f6b2de892e10ef516f96f07da0423e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.002ex; height:2.176ex;" alt="{\displaystyle \lambda .}"></span> Hence, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E(g(T))=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E(g(T))=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91c6007bca4ce4b24cf02815548f1e055ad72f7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.407ex; height:2.843ex;" alt="{\displaystyle E(g(T))=0}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> implies that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{\lambda }(g(T)=0)=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{\lambda }(g(T)=0)=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2735b990a3da082f7e8fe46a09bfc9386bac4a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.222ex; height:2.843ex;" alt="{\displaystyle P_{\lambda }(g(T)=0)=1,}"></span> and the statistic has been shown to be complete. </p> <div class="mw-heading mw-heading3"><h3 id="Confidence_interval">Confidence interval</h3></div> <p>The <a href="/wiki/Confidence_interval" title="Confidence interval">confidence interval</a> for the mean of a Poisson distribution can be expressed using the relationship between the cumulative distribution functions of the Poisson and <a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">chi-squared distributions</a>. The chi-squared distribution is itself closely related to the <a href="/wiki/Gamma_distribution" title="Gamma distribution">gamma distribution</a>, and this leads to an alternative expression. Given an observation <span class="texhtml mvar" style="font-style:italic;">k</span> from a Poisson distribution with mean <i>μ</i>, a confidence interval for <i>μ</i> with confidence level <span class="texhtml">1 – <i>α</i></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}\chi ^{2}(\alpha /2;2k)\leq \mu \leq {\tfrac {1}{2}}\chi ^{2}(1-\alpha /2;2k+2),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>;</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>;</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}\chi ^{2}(\alpha /2;2k)\leq \mu \leq {\tfrac {1}{2}}\chi ^{2}(1-\alpha /2;2k+2),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/476c9f37c5d5609256cc62365f918d8ff05f0af0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:42.645ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}\chi ^{2}(\alpha /2;2k)\leq \mu \leq {\tfrac {1}{2}}\chi ^{2}(1-\alpha /2;2k+2),}"></span></dd></dl> <p>or equivalently, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{-1}(\alpha /2;k,1)\leq \mu \leq F^{-1}(1-\alpha /2;k+1,1),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>;</mo> <mi>k</mi> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>;</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{-1}(\alpha /2;k,1)\leq \mu \leq F^{-1}(1-\alpha /2;k+1,1),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24d082f70606fe3e7eb468e0747fc4f68e3d4645" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.673ex; height:3.176ex;" alt="{\displaystyle F^{-1}(\alpha /2;k,1)\leq \mu \leq F^{-1}(1-\alpha /2;k+1,1),}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi ^{2}(p;n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>;</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi ^{2}(p;n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4acf3cab1e0b39e1ab70dae512aba74f84bf9793" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.917ex; height:3.176ex;" alt="{\displaystyle \chi ^{2}(p;n)}"></span> is the <a href="/wiki/Quantile_function" title="Quantile function">quantile function</a> (corresponding to a lower tail area <i>p</i>) of the chi-squared distribution with <span class="texhtml mvar" style="font-style:italic;">n</span> degrees of freedom and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{-1}(p;n,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>;</mo> <mi>n</mi> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{-1}(p;n,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1decb5d0b1ee42a9fb4f495e03a8df1bfe2fc659" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.751ex; height:3.176ex;" alt="{\displaystyle F^{-1}(p;n,1)}"></span> is the quantile function of a <a href="/wiki/Gamma_distribution" title="Gamma distribution">gamma distribution</a> with shape parameter n and scale parameter 1.<sup id="cite_ref-Johnson2005_8-8" class="reference"><a href="#cite_note-Johnson2005-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 176-178">&#58;&#8202;176-178&#8202;</span></sup><sup id="cite_ref-Garwood1936_45-0" class="reference"><a href="#cite_note-Garwood1936-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> This interval is '<a href="/wiki/Exact_statistics" title="Exact statistics">exact</a>' in the sense that its <a href="/wiki/Coverage_probability" title="Coverage probability">coverage probability</a> is never less than the nominal <span class="texhtml">1 – <i>α</i></span>. </p><p>When quantiles of the gamma distribution are not available, an accurate approximation to this exact interval has been proposed (based on the <a href="/wiki/Wilson%E2%80%93Hilferty_transformation" class="mw-redirect" title="Wilson–Hilferty transformation">Wilson–Hilferty transformation</a>):<sup id="cite_ref-Breslow1987_46-0" class="reference"><a href="#cite_note-Breslow1987-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\left(1-{\frac {1}{9k}}-{\frac {z_{\alpha /2}}{3{\sqrt {k}}}}\right)^{3}\leq \mu \leq (k+1)\left(1-{\frac {1}{9(k+1)}}+{\frac {z_{\alpha /2}}{3{\sqrt {k+1}}}}\right)^{3},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>9</mn> <mi>k</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msub> <mrow> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>k</mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>9</mn> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msub> <mrow> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>k</mi> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\left(1-{\frac {1}{9k}}-{\frac {z_{\alpha /2}}{3{\sqrt {k}}}}\right)^{3}\leq \mu \leq (k+1)\left(1-{\frac {1}{9(k+1)}}+{\frac {z_{\alpha /2}}{3{\sqrt {k+1}}}}\right)^{3},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43e11987e9faefbe440c6466ae8bb785b24284d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:65.643ex; height:6.843ex;" alt="{\displaystyle k\left(1-{\frac {1}{9k}}-{\frac {z_{\alpha /2}}{3{\sqrt {k}}}}\right)^{3}\leq \mu \leq (k+1)\left(1-{\frac {1}{9(k+1)}}+{\frac {z_{\alpha /2}}{3{\sqrt {k+1}}}}\right)^{3},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{\alpha /2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{\alpha /2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d12f94696aa58f31c6fd0149affc0ccd8271442" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.009ex; height:2.509ex;" alt="{\displaystyle z_{\alpha /2}}"></span> denotes the <a href="/wiki/Standard_normal_deviate" title="Standard normal deviate">standard normal deviate</a> with upper tail area <span class="texhtml">α / 2</span>. </p><p>For application of these formulae in the same context as above (given a sample of <span class="texhtml mvar" style="font-style:italic;">n</span> measured values <span class="texhtml mvar" style="font-style:italic;">k</span><sub><i>i</i></sub> each drawn from a Poisson distribution with mean <span class="texhtml mvar" style="font-style:italic;">λ</span>), one would set </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=\sum _{i=1}^{n}k_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=\sum _{i=1}^{n}k_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9280aa512dedfbdc5c9e230b3f391a2cb8a13641" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:10.71ex; height:6.843ex;" alt="{\displaystyle k=\sum _{i=1}^{n}k_{i},}"></span></dd></dl> <p>calculate an interval for <span class="nowrap"> <span class="texhtml mvar" style="font-style:italic;">μ</span> = <span class="texhtml mvar" style="font-style:italic;">n λ</span> ,</span> and then derive the interval for <span class="texhtml mvar" style="font-style:italic;">λ</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Bayesian_inference">Bayesian inference</h3></div> <p>In <a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a>, the <a href="/wiki/Conjugate_prior" title="Conjugate prior">conjugate prior</a> for the rate parameter <span class="texhtml mvar" style="font-style:italic;">λ</span> of the Poisson distribution is the <a href="/wiki/Gamma_distribution" title="Gamma distribution">gamma distribution</a>.<sup id="cite_ref-Fink1976_47-0" class="reference"><a href="#cite_note-Fink1976-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> Let </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \sim \mathrm {Gamma} (\alpha ,\beta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">G</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \sim \mathrm {Gamma} (\alpha ,\beta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6269ce405144ac3c4624d83be0468bfce0a5b8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.138ex; height:2.843ex;" alt="{\displaystyle \lambda \sim \mathrm {Gamma} (\alpha ,\beta )}"></span></dd></dl> <p>denote that <span class="texhtml mvar" style="font-style:italic;">λ</span> is distributed according to the gamma <a href="/wiki/Probability_density_function" title="Probability density function">density</a> <i>g</i> parameterized in terms of a <a href="/wiki/Shape_parameter" title="Shape parameter">shape parameter</a> <i>α</i> and an inverse <a href="/wiki/Scale_parameter" title="Scale parameter">scale parameter</a> <i>β</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(\lambda \mid \alpha ,\beta )={\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}\;\lambda ^{\alpha -1}\;e^{-\beta \,\lambda }\qquad {\text{ for }}\lambda &gt;0\,\!.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thickmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mspace width="thinmathspace" /> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>&#x03BB;<!-- λ --></mi> <mo>&gt;</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(\lambda \mid \alpha ,\beta )={\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}\;\lambda ^{\alpha -1}\;e^{-\beta \,\lambda }\qquad {\text{ for }}\lambda &gt;0\,\!.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/122e1dcf0a3b4dd6b4789bac2c3c53b3e7cf651f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:44.523ex; height:6.176ex;" alt="{\displaystyle g(\lambda \mid \alpha ,\beta )={\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}\;\lambda ^{\alpha -1}\;e^{-\beta \,\lambda }\qquad {\text{ for }}\lambda &gt;0\,\!.}"></span></dd></dl> <p>Then, given the same sample of <span class="texhtml mvar" style="font-style:italic;">n</span> measured values <span class="texhtml mvar" style="font-style:italic;">k</span><sub><i>i</i></sub> <a href="#Maximum_likelihood">as before</a>, and a prior of Gamma(<i>α</i>, <i>β</i>), the posterior distribution is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \sim \mathrm {Gamma} \left(\alpha +\sum _{i=1}^{n}k_{i},\beta +n\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">G</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> </mrow> <mrow> <mo>(</mo> <mrow> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo>+</mo> <mi>n</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \sim \mathrm {Gamma} \left(\alpha +\sum _{i=1}^{n}k_{i},\beta +n\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8559dea969ec3ef330ffbcf7b6a5122b402500a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:34.259ex; height:7.509ex;" alt="{\displaystyle \lambda \sim \mathrm {Gamma} \left(\alpha +\sum _{i=1}^{n}k_{i},\beta +n\right).}"></span></dd></dl> <p>Note that the posterior mean is linear and is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E[\lambda \mid k_{1},\ldots ,k_{n}]={\frac {\alpha +\sum _{i=1}^{n}k_{i}}{\beta +n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">[</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi>&#x03B2;<!-- β --></mi> <mo>+</mo> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E[\lambda \mid k_{1},\ldots ,k_{n}]={\frac {\alpha +\sum _{i=1}^{n}k_{i}}{\beta +n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00dc8f117cfc4b31656f10b620be9392cfe96f47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:32.897ex; height:6.343ex;" alt="{\displaystyle E[\lambda \mid k_{1},\ldots ,k_{n}]={\frac {\alpha +\sum _{i=1}^{n}k_{i}}{\beta +n}}.}"></span></dd></dl> <p>It can be shown that gamma distribution is the only prior that induces linearity of the conditional mean. Moreover, a converse result exists which states that if the conditional mean is close to a linear function in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6a952cfe42c86b7741f55a817da0e251793a358" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.637ex; height:2.509ex;" alt="{\displaystyle L_{2}}"></span> distance than the prior distribution of <span class="texhtml mvar" style="font-style:italic;">λ</span> must be close to gamma distribution in <a href="/wiki/L%C3%A9vy_metric" title="Lévy metric">Levy distance</a>.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p><p>The posterior mean E[<span class="texhtml mvar" style="font-style:italic;">λ</span>] approaches the maximum likelihood estimate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\lambda }}_{\mathrm {MLE} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">E</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\lambda }}_{\mathrm {MLE} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f567cbf61632b01e5a165312085022841b84ceab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.241ex; height:3.176ex;" alt="{\displaystyle {\widehat {\lambda }}_{\mathrm {MLE} }}"></span> in the limit as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \to 0,\beta \to 0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \to 0,\beta \to 0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad2a49af16aacf6c1547a3cf5d152b4bace20eed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.053ex; height:2.509ex;" alt="{\displaystyle \alpha \to 0,\beta \to 0,}"></span> which follows immediately from the general expression of the mean of the <a href="/wiki/Gamma_distribution" title="Gamma distribution">gamma distribution</a>. </p><p>The <a href="/wiki/Posterior_predictive_distribution" title="Posterior predictive distribution">posterior predictive distribution</a> for a single additional observation is a <a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">negative binomial distribution</a>,<sup id="cite_ref-Gelman2003_49-0" class="reference"><a href="#cite_note-Gelman2003-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 53">&#58;&#8202;53&#8202;</span></sup> sometimes called a gamma–Poisson distribution. </p> <div class="mw-heading mw-heading3"><h3 id="Simultaneous_estimation_of_multiple_Poisson_means">Simultaneous estimation of multiple Poisson means</h3></div> <p>Suppose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},X_{2},\dots ,X_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},X_{2},\dots ,X_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ada35ba220996e5473a2cdba9cf268c39622a52a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.153ex; height:2.843ex;" alt="{\displaystyle X_{1},X_{2},\dots ,X_{p}}"></span> is a set of independent random variables from a set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> Poisson distributions, each with a parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a04732c5e1c10d90f7b95c9f06e461f2f5d797f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.802ex; height:2.509ex;" alt="{\displaystyle \lambda _{i},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i=1,\dots ,p,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>p</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i=1,\dots ,p,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3b674d21e32f8698da555e2c3df44e423e71e97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.058ex; height:2.509ex;" alt="{\displaystyle i=1,\dots ,p,}"></span> and we would like to estimate these parameters. Then, Clevenson and Zidek show that under the normalized squared error loss <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L(\lambda ,{\hat {\lambda }})=\sum _{i=1}^{p}\lambda _{i}^{-1}({\hat {\lambda }}_{i}-\lambda _{i})^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </munderover> <msubsup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L(\lambda ,{\hat {\lambda }})=\sum _{i=1}^{p}\lambda _{i}^{-1}({\hat {\lambda }}_{i}-\lambda _{i})^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ac90ce6d5cc2924dc5ce689f4a435c4d31275ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:30.325ex; height:3.509ex;" alt="{\textstyle L(\lambda ,{\hat {\lambda }})=\sum _{i=1}^{p}\lambda _{i}^{-1}({\hat {\lambda }}_{i}-\lambda _{i})^{2},}"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p&gt;1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&gt;</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p&gt;1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b18ad57c656bab68c7bd45e2bf4596d09de7c0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.167ex; height:2.509ex;" alt="{\displaystyle p&gt;1,}"></span> then, similar as in <a href="/wiki/Stein%27s_example" title="Stein&#39;s example">Stein's example</a> for the Normal means, the MLE estimator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\lambda }}_{i}=X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\lambda }}_{i}=X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9002c76d7a2565ccbb29f606e857a7ef4739616e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.977ex; height:3.176ex;" alt="{\displaystyle {\hat {\lambda }}_{i}=X_{i}}"></span> is <a href="/wiki/Admissible_decision_rule" title="Admissible decision rule">inadmissible</a>. <sup id="cite_ref-Clevenson1975_50-0" class="reference"><a href="#cite_note-Clevenson1975-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p><p>In this case, a family of <a href="/wiki/Minimax_estimator" title="Minimax estimator">minimax estimators</a> is given for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;c\leq 2(p-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>c</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;c\leq 2(p-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/708c4212d5b7e46eacc6dfcc02598f33417c9367" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.51ex; height:2.843ex;" alt="{\displaystyle 0&lt;c\leq 2(p-1)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\geq (p-2+p^{-1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&#x2265;<!-- ≥ --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>+</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\geq (p-2+p^{-1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/539b782a1c3d2eee117b40d94d8f861d564cf7de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.42ex; height:3.176ex;" alt="{\displaystyle b\geq (p-2+p^{-1})}"></span> as<sup id="cite_ref-Berger1985_51-0" class="reference"><a href="#cite_note-Berger1985-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\lambda }}_{i}=\left(1-{\frac {c}{b+\sum _{i=1}^{p}X_{i}}}\right)X_{i},\qquad i=1,\dots ,p.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mrow> <mi>b</mi> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mspace width="2em" /> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\lambda }}_{i}=\left(1-{\frac {c}{b+\sum _{i=1}^{p}X_{i}}}\right)X_{i},\qquad i=1,\dots ,p.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2819abefca0978a228d37a2a0ede6457eaf51ffb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:46.925ex; height:7.509ex;" alt="{\displaystyle {\hat {\lambda }}_{i}=\left(1-{\frac {c}{b+\sum _{i=1}^{p}X_{i}}}\right)X_{i},\qquad i=1,\dots ,p.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Occurrence_and_applications">Occurrence and applications</h2></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Poisson_distribution" title="Special:EditPage/Poisson distribution">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i>&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&amp;q=%22Poisson+distribution%22">"Poisson distribution"</a>&#160;–&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&amp;q=%22Poisson+distribution%22+-wikipedia&amp;tbs=ar:1">news</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&amp;q=%22Poisson+distribution%22&amp;tbs=bkt:s&amp;tbm=bks">newspapers</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&amp;q=%22Poisson+distribution%22+-wikipedia">books</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Poisson+distribution%22">scholar</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Poisson+distribution%22&amp;acc=on&amp;wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">December 2019</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>Some applications of the Poisson distribution to <a href="/wiki/Count_data" title="Count data">count data</a> (number of events):<sup id="cite_ref-Rasch1963_52-0" class="reference"><a href="#cite_note-Rasch1963-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><a href="/wiki/Telecommunication" class="mw-redirect" title="Telecommunication">telecommunication</a>: telephone calls arriving in a system,</li> <li><a href="/wiki/Astronomy" title="Astronomy">astronomy</a>: photons arriving at a telescope,</li> <li><a href="/wiki/Chemistry" title="Chemistry">chemistry</a>: the <a href="/wiki/Molar_mass_distribution" title="Molar mass distribution">molar mass distribution</a> of a <a href="/wiki/Living_polymerization" title="Living polymerization">living polymerization</a>,<sup id="cite_ref-Flory1940_53-0" class="reference"><a href="#cite_note-Flory1940-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Biology" title="Biology">biology</a>: the number of mutations on a strand of <a href="/wiki/DNA" title="DNA">DNA</a> per unit length,</li> <li><a href="/wiki/Management" title="Management">management</a>: customers arriving at a counter or call centre,</li> <li><a href="/wiki/Finance_and_insurance" class="mw-redirect" title="Finance and insurance">finance and insurance</a>: number of losses or claims occurring in a given period of time,</li> <li><a href="/wiki/Earthquake_seismology" class="mw-redirect" title="Earthquake seismology">seismology</a>: asymptotic Poisson model of risk for large earthquakes,<sup id="cite_ref-Lomnitz1994_54-0" class="reference"><a href="#cite_note-Lomnitz1994-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Radioactivity" class="mw-redirect" title="Radioactivity">radioactivity</a>: decays in a given time interval in a radioactive sample,</li> <li><a href="/wiki/Optics" title="Optics">optics</a>: number of photons emitted in a single laser pulse (a major vulnerability of <a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">quantum key distribution</a> protocols, known as photon number splitting).</li></ul> <p>More examples of counting events that may be modelled as Poisson processes include: </p> <ul><li>soldiers killed by horse-kicks each year in each corps in the <a href="/wiki/Prussia" title="Prussia">Prussian</a> cavalry. This example was used in a book by <a href="/wiki/Ladislaus_Bortkiewicz" title="Ladislaus Bortkiewicz">Ladislaus Bortkiewicz</a> (1868–1931),<sup id="cite_ref-vonBortkiewitsch1898_12-1" class="reference"><a href="#cite_note-vonBortkiewitsch1898-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 23-25">&#58;&#8202;23-25&#8202;</span></sup></li> <li>yeast cells used when brewing <a href="/wiki/Guinness" title="Guinness">Guinness</a> beer. This example was used by <a href="/wiki/William_Sealy_Gosset" title="William Sealy Gosset">William Sealy Gosset</a> (1876–1937),<sup id="cite_ref-Student1907_55-0" class="reference"><a href="#cite_note-Student1907-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Boland1984_56-0" class="reference"><a href="#cite_note-Boland1984-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup></li> <li>phone calls arriving at a <a href="/wiki/Call_centre" title="Call centre">call centre</a> within a minute. This example was described by <a href="/wiki/Agner_Krarup_Erlang" title="Agner Krarup Erlang">A.K. Erlang</a> (1878–1929),<sup id="cite_ref-Erlang1909_57-0" class="reference"><a href="#cite_note-Erlang1909-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup></li> <li>goals in sports involving two competing teams,<sup id="cite_ref-Hornby2014_58-0" class="reference"><a href="#cite_note-Hornby2014-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup></li> <li>deaths per year in a given age group,</li> <li>jumps in a stock price in a given time interval,</li> <li>times a <a href="/wiki/Web_server" title="Web server">web server</a> is accessed per minute (under an assumption of <a href="/wiki/Poisson_process#Homogeneous" class="mw-redirect" title="Poisson process">homogeneity</a>),</li> <li><a href="/wiki/Mutation" title="Mutation">mutations</a> in a given stretch of <a href="/wiki/DNA" title="DNA">DNA</a> after a certain amount of radiation,</li> <li><a href="/wiki/Cells_(biology)" class="mw-redirect" title="Cells (biology)">cells</a> infected at a given <a href="/wiki/Multiplicity_of_infection" title="Multiplicity of infection">multiplicity of infection</a>,</li> <li>bacteria in a certain amount of liquid,<sup id="cite_ref-Koyama2016_59-0" class="reference"><a href="#cite_note-Koyama2016-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Photons" class="mw-redirect" title="Photons">photons</a> arriving on a pixel circuit at a given illumination over a given time period,</li> <li>landing of <a href="/wiki/V-1_flying_bomb" title="V-1 flying bomb">V-1 flying bombs</a> on London during World War II, investigated by R. D. Clarke in 1946.<sup id="cite_ref-Clarke1946_60-0" class="reference"><a href="#cite_note-Clarke1946-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>In <a href="/wiki/Probabilistic_number_theory" title="Probabilistic number theory">probabilistic number theory</a>, <a href="/wiki/Patrick_X._Gallagher" title="Patrick X. Gallagher">Gallagher</a> showed in 1976 that, if a certain version of the unproved <a href="/wiki/Second_Hardy%E2%80%93Littlewood_conjecture" title="Second Hardy–Littlewood conjecture">prime r-tuple conjecture</a> holds,<sup id="cite_ref-Hardy1923_61-0" class="reference"><a href="#cite_note-Hardy1923-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> then the counts of <a href="/wiki/Prime_number" title="Prime number">prime numbers</a> in short intervals would obey a Poisson distribution.<sup id="cite_ref-Gallagher1976_62-0" class="reference"><a href="#cite_note-Gallagher1976-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="anchor" id="law_of_rare_events"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Law_of_rare_events">Law of rare events</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Poisson_limit_theorem" title="Poisson limit theorem">Poisson limit theorem</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Binomial_versus_poisson.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Binomial_versus_poisson.svg/330px-Binomial_versus_poisson.svg.png" decoding="async" width="330" height="330" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Binomial_versus_poisson.svg/495px-Binomial_versus_poisson.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Binomial_versus_poisson.svg/660px-Binomial_versus_poisson.svg.png 2x" data-file-width="360" data-file-height="360" /></a><figcaption>Comparison of the Poisson distribution (black lines) and the <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a> with <span class="nowrap"> <span class="texhtml mvar" style="font-style:italic;">n</span> = 10 </span> (red circles), <span class="nowrap"> <span class="texhtml mvar" style="font-style:italic;">n</span> = 20 </span> (blue circles), <span class="nowrap"> <span class="texhtml mvar" style="font-style:italic;">n</span> = 1000 </span> (green circles). All distributions have a mean of&#160;5. The horizontal axis shows the number of events&#160;<span class="texhtml mvar" style="font-style:italic;">k</span>. As <span class="texhtml mvar" style="font-style:italic;">n</span> gets larger, the Poisson distribution becomes an increasingly better approximation for the binomial distribution with the same mean.</figcaption></figure> <p>The rate of an event is related to the probability of an event occurring in some small subinterval (of time, space or otherwise). In the case of the Poisson distribution, one assumes that there exists a small enough subinterval for which the probability of an event occurring twice is "negligible". With this assumption one can derive the Poisson distribution from the binomial one, given only the information of expected number of total events in the whole interval. </p><p>Let the total number of events in the whole interval be denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bb9c58e3f6b2de892e10ef516f96f07da0423e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.002ex; height:2.176ex;" alt="{\displaystyle \lambda .}"></span> Divide the whole interval into <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> subintervals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{1},\dots ,I_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{1},\dots ,I_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/900ddceee4944ca19a2d730f7dc5b38ca0ff3b66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.497ex; height:2.509ex;" alt="{\displaystyle I_{1},\dots ,I_{n}}"></span> of equal size, such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;\lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;\lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68b423624ae8ae4ef73b6146e2b2ad520253a079" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle n&gt;\lambda }"></span> (since we are interested in only very small portions of the interval this assumption is meaningful). This means that the expected number of events in each of the <span class="texhtml mvar" style="font-style:italic;">n</span> subintervals is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda /n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda /n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05745c37bfaf2b7dbe0e4e2b917a3de82da969a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.559ex; height:2.843ex;" alt="{\displaystyle \lambda /n.}"></span> </p><p>Now we assume that the occurrence of an event in the whole interval can be seen as a sequence of <span class="texhtml mvar" style="font-style:italic;">n</span> <a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trials</a>, where the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>-th <a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trial</a> corresponds to looking whether an event happens at the subinterval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d896cad5ad71ce7719175ca29d4d109333d4c320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.823ex; height:2.509ex;" alt="{\displaystyle I_{i}}"></span> with probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda /n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda /n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05745c37bfaf2b7dbe0e4e2b917a3de82da969a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.559ex; height:2.843ex;" alt="{\displaystyle \lambda /n.}"></span> The expected number of total events in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> such trials would be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00aebb041f4a569408e310294efcc29e0eded7dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.002ex; height:2.509ex;" alt="{\displaystyle \lambda ,}"></span> the expected number of total events in the whole interval. Hence for each subdivision of the interval we have approximated the occurrence of the event as a Bernoulli process of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textrm {B}}(n,\lambda /n).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>B</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textrm {B}}(n,\lambda /n).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/071c92f12249a65f6db4ee6171b7594d67618f67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.443ex; height:2.843ex;" alt="{\displaystyle {\textrm {B}}(n,\lambda /n).}"></span> As we have noted before we want to consider only very small subintervals. Therefore, we take the limit as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> goes to infinity. </p><p>In this case the <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a> converges to what is known as the Poisson distribution by the <a href="/wiki/Poisson_limit_theorem" title="Poisson limit theorem">Poisson limit theorem</a>. </p><p>In several of the above examples — such as, the number of mutations in a given sequence of DNA—the events being counted are actually the outcomes of discrete trials, and would more precisely be modelled using the <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a>, that is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim {\textrm {B}}(n,p).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>B</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim {\textrm {B}}(n,p).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/268f66779d5b1b445f9be227b268f01cc8810376" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.778ex; height:2.843ex;" alt="{\displaystyle X\sim {\textrm {B}}(n,p).}"></span> </p><p>In such cases <span class="texhtml mvar" style="font-style:italic;">n</span> is very large and <span class="texhtml mvar" style="font-style:italic;">p</span> is very small (and so the expectation <span class="texhtml mvar" style="font-style:italic;">n p</span> is of intermediate magnitude). Then the distribution may be approximated by the less cumbersome Poisson distribution <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim {\textrm {Pois}}(np).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Pois</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mi>p</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim {\textrm {Pois}}(np).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0ade4f98ec7a470e3712bf22be9029eafea52a5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.407ex; height:2.843ex;" alt="{\displaystyle X\sim {\textrm {Pois}}(np).}"></span> </p><p>This approximation is sometimes known as the <i>law of rare events</i>,<sup id="cite_ref-Cameron1998_63-0" class="reference"><a href="#cite_note-Cameron1998-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 5">&#58;&#8202;5&#8202;</span></sup> since each of the <span class="texhtml mvar" style="font-style:italic;">n</span> individual <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli events</a> rarely occurs. </p><p>The name "law of rare events" may be misleading because the total count of success events in a Poisson process need not be rare if the parameter <span class="texhtml mvar" style="font-style:italic;">n p</span> is not small. For example, the number of telephone calls to a busy switchboard in one hour follows a Poisson distribution with the events appearing frequent to the operator, but they are rare from the point of view of the average member of the population who is very unlikely to make a call to that switchboard in that hour. </p><p>The variance of the binomial distribution is 1 − <i>p</i> times that of the Poisson distribution, so almost equal when <i>p</i> is very small. </p><p>The word <i>law</i> is sometimes used as a synonym of <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a>, and <i>convergence in law</i> means <i>convergence in distribution</i>. Accordingly, the Poisson distribution is sometimes called the "law of small numbers" because it is the probability distribution of the number of occurrences of an event that happens rarely but has very many opportunities to happen. <i>The Law of Small Numbers</i> is a book by Ladislaus Bortkiewicz about the Poisson distribution, published in 1898.<sup id="cite_ref-vonBortkiewitsch1898_12-2" class="reference"><a href="#cite_note-vonBortkiewitsch1898-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Edgeworth1913_64-0" class="reference"><a href="#cite_note-Edgeworth1913-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Poisson_point_process">Poisson point process</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Poisson_point_process" title="Poisson point process">Poisson point process</a></div> <p>The Poisson distribution arises as the number of points of a <a href="/wiki/Poisson_point_process" title="Poisson point process">Poisson point process</a> located in some finite region. More specifically, if <i>D</i> is some region space, for example Euclidean space <b>R</b><sup><i>d</i></sup>, for which |<i>D</i>|, the area, volume or, more generally, the Lebesgue measure of the region is finite, and if <span class="nowrap"> <span class="texhtml"><i>N</i>(<i>D</i>)</span> </span> denotes the number of points in <i>D</i>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(N(D)=k)={\frac {(\lambda |D|)^{k}e^{-\lambda |D|}}{k!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(N(D)=k)={\frac {(\lambda |D|)^{k}e^{-\lambda |D|}}{k!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa1f8614f8f1be080a93b37789b1c1cf7b3d55c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:31.542ex; height:6.176ex;" alt="{\displaystyle P(N(D)=k)={\frac {(\lambda |D|)^{k}e^{-\lambda |D|}}{k!}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Poisson_regression_and_negative_binomial_regression">Poisson regression and negative binomial regression</h3></div> <p><a href="/wiki/Poisson_regression" title="Poisson regression">Poisson regression</a> and <a href="/wiki/Negative_binomial" class="mw-redirect" title="Negative binomial">negative binomial</a> regression are useful for analyses where the dependent (response) variable is the count <span class="nowrap"> (0, 1, 2, ... ) </span> of the number of events or occurrences in an interval. </p> <div class="mw-heading mw-heading3"><h3 id="Biology">Biology</h3></div> <p>The <a href="/wiki/Luria%E2%80%93Delbr%C3%BCck_experiment" title="Luria–Delbrück experiment">Luria–Delbrück experiment</a> tested against the hypothesis of Lamarckian evolution, which should result in a Poisson distribution. </p><p>Katz and Miledi measured the <a href="/wiki/Membrane_potential" title="Membrane potential">membrane potential</a> with and without the presence of <a href="/wiki/Acetylcholine" title="Acetylcholine">acetylcholine</a> (ACh).<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> When ACh is present, <a href="/wiki/Ion_channel" title="Ion channel">ion channels</a> on the membrane would be open randomly at a small fraction of the time. As there are a large number of ion channels each open for a small fraction of the time, the total number of ion channels open at any moment is Poisson distributed. When ACh is not present, effectively no ion channels are open. The membrane potential is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V=N_{\text{open}}V_{\text{ion}}+V_{0}+V_{\text{noise}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>open</mtext> </mrow> </msub> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>ion</mtext> </mrow> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>noise</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V=N_{\text{open}}V_{\text{ion}}+V_{0}+V_{\text{noise}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a8b1ef4733f61005ad220b73eb5d24888937a92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.394ex; height:2.843ex;" alt="{\displaystyle V=N_{\text{open}}V_{\text{ion}}+V_{0}+V_{\text{noise}}}"></span>. Subtracting the effect of noise, Katz and Miledi found the mean and variance of membrane potential to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 8.5\times 10^{-3}\;\mathrm {V} ,(29.2\times 10^{-6}\;\mathrm {V} )^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>8.5</mn> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">V</mi> </mrow> <mo>,</mo> <mo stretchy="false">(</mo> <mn>29.2</mn> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">V</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 8.5\times 10^{-3}\;\mathrm {V} ,(29.2\times 10^{-6}\;\mathrm {V} )^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e79e5d856fdc389dcd6aed1df4ce84f76d36f41a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.776ex; height:3.176ex;" alt="{\displaystyle 8.5\times 10^{-3}\;\mathrm {V} ,(29.2\times 10^{-6}\;\mathrm {V} )^{2}}"></span>, giving <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{ion}}=10^{-7}\;\mathrm {V} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>ion</mtext> </mrow> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>7</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">V</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{ion}}=10^{-7}\;\mathrm {V} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b90da5a36afc87e92f7fa59bf2267d0fb01e329e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.925ex; height:3.009ex;" alt="{\displaystyle V_{\text{ion}}=10^{-7}\;\mathrm {V} }"></span>. (pp. 94-95 <sup id="cite_ref-:0_66-0" class="reference"><a href="#cite_note-:0-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup>) </p><p>During each cellular replication event, the number of mutations is roughly Poisson distributed.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> For example, the HIV virus has 10,000 base pairs, and has a mutation rate of about 1 per 30,000 base pairs, meaning the number of mutations per replication event is distributed as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Pois} (1/3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">s</mi> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Pois} (1/3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f2d7c79e179b1e533463faf0764ab89b3f64dfa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.605ex; height:2.843ex;" alt="{\displaystyle \mathrm {Pois} (1/3)}"></span>. (p. 64 <sup id="cite_ref-:0_66-1" class="reference"><a href="#cite_note-:0-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup>) </p> <div class="mw-heading mw-heading3"><h3 id="Other_applications_in_science">Other applications in science</h3></div> <p>In a Poisson process, the number of observed occurrences fluctuates about its mean <span class="texhtml mvar" style="font-style:italic;">λ</span> with a <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{k}={\sqrt {\lambda }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03BB;<!-- λ --></mi> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{k}={\sqrt {\lambda }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/912807fd1b959cacf647a52a0438b99e8dbcb2be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.453ex; height:3.009ex;" alt="{\displaystyle \sigma _{k}={\sqrt {\lambda }}.}"></span> These fluctuations are denoted as <i>Poisson noise</i> or (particularly in electronics) as <i><a href="/wiki/Shot_noise" title="Shot noise">shot noise</a></i>. </p><p>The correlation of the mean and standard deviation in counting independent discrete occurrences is useful scientifically. By monitoring how the fluctuations vary with the mean signal, one can estimate the contribution of a single occurrence, <i>even if that contribution is too small to be detected directly</i>. For example, the charge <i>e</i> on an electron can be estimated by correlating the magnitude of an <a href="/wiki/Electric_current" title="Electric current">electric current</a> with its <a href="/wiki/Shot_noise" title="Shot noise">shot noise</a>. If <i>N</i> electrons pass a point in a given time <i>t</i> on the average, the <a href="/wiki/Mean" title="Mean">mean</a> <a href="/wiki/Electric_current" title="Electric current">current</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=eN/t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mi>e</mi> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=eN/t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aecab312802db893e6116bf164aeaee799ca0a2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.419ex; height:2.843ex;" alt="{\displaystyle I=eN/t}"></span>; since the current fluctuations should be of the order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{I}=e{\sqrt {N}}/t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> <mo>=</mo> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>N</mi> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{I}=e{\sqrt {N}}/t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c13f1b2bab7890e46bbe7c0d7f33335a13bf2e8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.572ex; height:3.176ex;" alt="{\displaystyle \sigma _{I}=e{\sqrt {N}}/t}"></span> (i.e., the standard deviation of the <a href="/wiki/Poisson_process" class="mw-redirect" title="Poisson process">Poisson process</a>), the charge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd253103f0876afc68ebead27a5aa9867d927467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle e}"></span> can be estimated from the ratio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\sigma _{I}^{2}/I.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>I</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\sigma _{I}^{2}/I.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/335820841eea0aec675990249b61cc6f2502e064" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.209ex; height:3.176ex;" alt="{\displaystyle t\sigma _{I}^{2}/I.}"></span><sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2012)">citation needed</span></a></i>&#93;</sup> </p><p>An everyday example is the graininess that appears as photographs are enlarged; the graininess is due to Poisson fluctuations in the number of reduced <a href="/wiki/Silver" title="Silver">silver</a> grains, not to the individual grains themselves. By <a href="/wiki/Correlation" title="Correlation">correlating</a> the graininess with the degree of enlargement, one can estimate the contribution of an individual grain (which is otherwise too small to be seen unaided).<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2024)">citation needed</span></a></i>&#93;</sup> </p><p>In <a href="/wiki/Causal_set" class="mw-redirect" title="Causal set">causal set</a> theory the discrete elements of spacetime follow a Poisson distribution in the volume. </p><p>The Poisson distribution also appears in <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, especially <a href="/wiki/Quantum_optics" title="Quantum optics">quantum optics</a>. Namely, for a <a href="/wiki/Quantum_harmonic_oscillator" title="Quantum harmonic oscillator">quantum harmonic oscillator</a> system in a <a href="/wiki/Coherent_state" title="Coherent state">coherent state</a>, the probability of measuring a particular energy level has a Poisson distribution. </p> <div class="mw-heading mw-heading2"><h2 id="Computational_methods">Computational methods</h2></div> <p>The Poisson distribution poses two different tasks for dedicated software libraries: <i>evaluating</i> the distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k;\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k;\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df5cf99bf30825eb98616f88bdc970f476290a77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.155ex; height:2.843ex;" alt="{\displaystyle P(k;\lambda )}"></span>, and <i>drawing random numbers</i> according to that distribution. </p> <div class="mw-heading mw-heading3"><h3 id="Evaluating_the_Poisson_distribution">Evaluating the Poisson distribution</h3></div> <p>Computing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k;\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k;\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df5cf99bf30825eb98616f88bdc970f476290a77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.155ex; height:2.843ex;" alt="{\displaystyle P(k;\lambda )}"></span> for given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> is a trivial task that can be accomplished by using the standard definition of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(k;\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(k;\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df5cf99bf30825eb98616f88bdc970f476290a77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.155ex; height:2.843ex;" alt="{\displaystyle P(k;\lambda )}"></span> in terms of exponential, power, and factorial functions. However, the conventional definition of the Poisson distribution contains two terms that can easily overflow on computers: <span class="texhtml mvar" style="font-style:italic;">λ</span><sup><span class="texhtml mvar" style="font-style:italic;">k</span></sup> and <span class="texhtml"><i>k</i>!</span>. The fraction of <span class="texhtml mvar" style="font-style:italic;">λ</span><sup><span class="texhtml mvar" style="font-style:italic;">k</span></sup> to <span class="texhtml mvar" style="font-style:italic;">k</span>! can also produce a rounding error that is very large compared to <i>e</i><sup>−<span class="texhtml mvar" style="font-style:italic;">λ</span></sup>, and therefore give an erroneous result. For numerical stability the Poisson probability mass function should therefore be evaluated as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \!f(k;\lambda )=\exp \left[k\ln \lambda -\lambda -\ln \Gamma (k+1)\right],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="negativethinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>k</mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \!f(k;\lambda )=\exp \left[k\ln \lambda -\lambda -\ln \Gamma (k+1)\right],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83a8a374612dfba5c3e699450970a5b2330925c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.387ex; width:38.398ex; height:2.843ex;" alt="{\displaystyle \!f(k;\lambda )=\exp \left[k\ln \lambda -\lambda -\ln \Gamma (k+1)\right],}"></span></dd></dl> <p>which is mathematically equivalent but numerically stable. The natural logarithm of the <a href="/wiki/Gamma_function" title="Gamma function">Gamma function</a> can be obtained using the <code>lgamma</code> function in the <a href="/wiki/C_(programming_language)" title="C (programming language)">C</a> standard library (C99 version) or <a href="/wiki/R_(programming_language)" title="R (programming language)">R</a>, the <code>gammaln</code> function in <a href="/wiki/MATLAB" title="MATLAB">MATLAB</a> or <a href="/wiki/SciPy" title="SciPy">SciPy</a>, or the <code>log_gamma</code> function in <a href="/wiki/Fortran" title="Fortran">Fortran</a> 2008 and later. </p><p>Some computing languages provide built-in functions to evaluate the Poisson distribution, namely </p> <ul><li><a href="/wiki/R_(programming_language)" title="R (programming language)">R</a>: function <code>dpois(x, lambda)</code>;</li> <li><a href="/wiki/Microsoft_Excel" title="Microsoft Excel">Excel</a>: function <code>POISSON( x, mean, cumulative)</code>, with a flag to specify the cumulative distribution;</li> <li><a href="/wiki/Mathematica" class="mw-redirect" title="Mathematica">Mathematica</a>: univariate Poisson distribution as <code>PoissonDistribution[<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span>]</code>,<sup id="cite_ref-WLPoissonRefPage_68-0" class="reference"><a href="#cite_note-WLPoissonRefPage-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> bivariate Poisson distribution as <code>MultivariatePoissonDistribution[<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta _{12},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta _{12},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f26a79fe87c901c3bb88846895b3599960cbb777" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.614ex; height:2.509ex;" alt="{\displaystyle \theta _{12},}"></span>{ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta _{1}-\theta _{12},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta _{1}-\theta _{12},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff99713bc6dc41d48bd97c5df8289b6395eef474" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.599ex; height:2.509ex;" alt="{\displaystyle \theta _{1}-\theta _{12},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta _{2}-\theta _{12}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta _{2}-\theta _{12}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c483cd5cb89c4f51726b45ce6f01b5f3eb256df9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.952ex; height:2.509ex;" alt="{\displaystyle \theta _{2}-\theta _{12}}"></span>}]</code>,.<sup id="cite_ref-WLMvPoissonRefPage_69-0" class="reference"><a href="#cite_note-WLMvPoissonRefPage-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Random_variate_generation">Random variate generation</h3></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Non-uniform_random_variate_generation" title="Non-uniform random variate generation">Non-uniform random variate generation</a></div> <p>The less trivial task is to draw integer <a href="/wiki/Random_variate" title="Random variate">random variate</a> from the Poisson distribution with given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bb9c58e3f6b2de892e10ef516f96f07da0423e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.002ex; height:2.176ex;" alt="{\displaystyle \lambda .}"></span> </p><p>Solutions are provided by: </p> <ul><li><a href="/wiki/R_(programming_language)" title="R (programming language)">R</a>: function <code>rpois(n, lambda)</code>;</li> <li><a href="/wiki/GNU_Scientific_Library" title="GNU Scientific Library">GNU Scientific Library</a> (GSL): function <a rel="nofollow" class="external text" href="https://www.gnu.org/software/gsl/doc/html/randist.html#the-poisson-distribution">gsl_ran_poisson</a></li></ul> <p>A simple algorithm to generate random Poisson-distributed numbers (<a href="/wiki/Pseudo-random_number_sampling" class="mw-redirect" title="Pseudo-random number sampling">pseudo-random number sampling</a>) has been given by <a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth</a>:<sup id="cite_ref-Knuth1997_70-0" class="reference"><a href="#cite_note-Knuth1997-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 137-138">&#58;&#8202;137-138&#8202;</span></sup> </p> <pre><b>algorithm</b> <i>poisson random number (Knuth)</i>: <b>init</b>: <b>Let</b> L ← <i>e</i><sup>−λ</sup>, k ← 0 and p ← 1. <b>do</b>: k ← k + 1. Generate uniform random number u in [0,1] and <b>let</b> p ← p × u. <b>while</b> p &gt; L. <b>return</b> k − 1. </pre> <p>The complexity is linear in the returned value <span class="texhtml mvar" style="font-style:italic;">k</span>, which is <span class="texhtml mvar" style="font-style:italic;">λ</span> on average. There are many other algorithms to improve this. Some are given in Ahrens &amp; Dieter, see <a href="#References">§&#160;References</a> below. </p><p>For large values of <span class="texhtml mvar" style="font-style:italic;">λ</span>, the value of <span class="texhtml mvar" style="font-style:italic;">L</span> = <i>e</i><sup>−<span class="texhtml mvar" style="font-style:italic;">λ</span></sup> may be so small that it is hard to represent. This can be solved by a change to the algorithm which uses an additional parameter STEP such that <i>e</i><sup>−STEP</sup> does not underflow: <sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="Original source is missing (March 2019)">citation needed</span></a></i>&#93;</sup> </p> <pre><b>algorithm</b> <i>poisson random number (Junhao, based on Knuth)</i>: <b>init</b>: <b>Let</b> <span class="texhtml mvar" style="font-style:italic;">λ</span>Left ← <span class="texhtml mvar" style="font-style:italic;">λ</span>, k ← 0 and p ← 1. <b>do</b>: k ← k + 1. Generate uniform random number u in (0,1) and <b>let</b> p ← p × u. <b>while</b> p &lt; 1 and <span class="texhtml mvar" style="font-style:italic;">λ</span>Left &gt; 0: <b>if</b> <span class="texhtml mvar" style="font-style:italic;">λ</span>Left &gt; STEP: p ← p × <i>e</i><sup>STEP</sup> <span class="texhtml mvar" style="font-style:italic;">λ</span>Left ← <span class="texhtml mvar" style="font-style:italic;">λ</span>Left − STEP <b>else</b>: p ← p × <i>e</i><sup><span class="texhtml mvar" style="font-style:italic;">λ</span>Left</sup> <span class="texhtml mvar" style="font-style:italic;">λ</span>Left ← 0 <b>while</b> p &gt; 1. <b>return</b> k − 1. </pre> <p>The choice of STEP depends on the threshold of overflow. For double precision floating point format the threshold is near <i>e</i><sup>700</sup>, so 500 should be a safe <i>STEP</i>. </p><p>Other solutions for large values of <span class="texhtml mvar" style="font-style:italic;">λ</span> include <a href="/wiki/Rejection_sampling" title="Rejection sampling">rejection sampling</a> and using Gaussian approximation. </p><p><a href="/wiki/Inverse_transform_sampling" title="Inverse transform sampling">Inverse transform sampling</a> is simple and efficient for small values of <span class="texhtml mvar" style="font-style:italic;">λ</span>, and requires only one uniform random number <i>u</i> per sample. Cumulative probabilities are examined in turn until one exceeds <i>u</i>. </p> <pre><b>algorithm</b> <i>Poisson generator based upon the inversion by sequential search</i>:<sup id="cite_ref-Devroye1986_71-0" class="reference"><a href="#cite_note-Devroye1986-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 505">&#58;&#8202;505&#8202;</span></sup> <b>init</b>: <b>Let</b> x ← 0, p ← <i>e</i><sup>−λ</sup>, s ← p. Generate uniform random number u in [0,1]. <b>while</b> u &gt; s <b>do</b>: x ← x + 1. p ← p × <span class="texhtml mvar" style="font-style:italic;">λ</span> / x. s ← s + p. <b>return</b> x. </pre> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 15em;"> <ul><li><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial distribution</a></li> <li><a href="/wiki/Compound_Poisson_distribution" title="Compound Poisson distribution">Compound Poisson distribution</a></li> <li><a href="/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution" title="Conway–Maxwell–Poisson distribution">Conway–Maxwell–Poisson distribution</a></li> <li><a href="/wiki/Erlang_distribution" title="Erlang distribution">Erlang distribution</a></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential distribution</a></li> <li><a href="/wiki/Gamma_distribution" title="Gamma distribution">Gamma distribution</a></li> <li><a href="/wiki/Hermite_distribution" title="Hermite distribution">Hermite distribution</a></li> <li><a href="/wiki/Index_of_dispersion" title="Index of dispersion">Index of dispersion</a></li> <li><a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">Negative binomial distribution</a></li> <li><a href="/wiki/Poisson_clumping" title="Poisson clumping">Poisson clumping</a></li> <li><a href="/wiki/Poisson_point_process" title="Poisson point process">Poisson point process</a></li> <li><a href="/wiki/Poisson_regression" title="Poisson regression">Poisson regression</a></li> <li><a href="/wiki/Poisson_sampling" title="Poisson sampling">Poisson sampling</a></li> <li><a href="/wiki/Poisson_wavelet" title="Poisson wavelet">Poisson wavelet</a></li> <li><a href="/wiki/Queueing_theory" title="Queueing theory">Queueing theory</a></li> <li><a href="/wiki/Renewal_theory" title="Renewal theory">Renewal theory</a></li> <li><a href="/wiki/Robbins_lemma" title="Robbins lemma">Robbins lemma</a></li> <li><a href="/wiki/Skellam_distribution" title="Skellam distribution">Skellam distribution</a></li> <li><a href="/wiki/Tweedie_distribution" title="Tweedie distribution">Tweedie distribution</a></li> <li><a href="/wiki/Zero-inflated_model" title="Zero-inflated model">Zero-inflated model</a></li> <li><a href="/wiki/Zero-truncated_Poisson_distribution" title="Zero-truncated Poisson distribution">Zero-truncated Poisson distribution</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2></div> <div class="mw-heading mw-heading3"><h3 id="Citations">Citations</h3></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Haight1967-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Haight1967_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Haight1967_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHaight1967" class="citation book cs1">Haight, Frank A. (1967). <i>Handbook of the Poisson Distribution</i>. New York, NY, US: John Wiley &amp; Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-33932-8" title="Special:BookSources/978-0-471-33932-8"><bdi>978-0-471-33932-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+the+Poisson+Distribution&amp;rft.place=New+York%2C+NY%2C+US&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1967&amp;rft.isbn=978-0-471-33932-8&amp;rft.aulast=Haight&amp;rft.aufirst=Frank+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Yates2014-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Yates2014_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Yates2014_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYatesGoodman2014" class="citation book cs1">Yates, Roy D.; Goodman, David J. (2014). <i>Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers</i> (2nd&#160;ed.). Hoboken, NJ: Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-45259-1" title="Special:BookSources/978-0-471-45259-1"><bdi>978-0-471-45259-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Stochastic+Processes%3A+A+Friendly+Introduction+for+Electrical+and+Computer+Engineers&amp;rft.place=Hoboken%2C+NJ&amp;rft.edition=2nd&amp;rft.pub=Wiley&amp;rft.date=2014&amp;rft.isbn=978-0-471-45259-1&amp;rft.aulast=Yates&amp;rft.aufirst=Roy+D.&amp;rft.au=Goodman%2C+David+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoss2014" class="citation book cs1">Ross, Sheldon M. (2014). <i>Introduction to Probability Models</i> (11th&#160;ed.). Academic Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Probability+Models&amp;rft.edition=11th&amp;rft.pub=Academic+Press&amp;rft.date=2014&amp;rft.aulast=Ross&amp;rft.aufirst=Sheldon+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Poisson1837-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Poisson1837_4-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoisson1837" class="citation book cs1 cs1-prop-foreign-lang-source">Poisson, Siméon D. (1837). <a rel="nofollow" class="external text" href="https://gallica.bnf.fr/ark:/12148/bpt6k110193z/f218.image"><i>Probabilité des jugements en matière criminelle et en matière civile, précédées des règles générales du calcul des probabilités</i></a> &#91;<i>Research on the Probability of Judgments in Criminal and Civil Matters</i>&#93; (in French). Paris, France: Bachelier.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probabilit%C3%A9+des+jugements+en+mati%C3%A8re+criminelle+et+en+mati%C3%A8re+civile%2C+pr%C3%A9c%C3%A9d%C3%A9es+des+r%C3%A8gles+g%C3%A9n%C3%A9rales+du+calcul+des+probabilit%C3%A9s&amp;rft.place=Paris%2C+France&amp;rft.pub=Bachelier&amp;rft.date=1837&amp;rft.aulast=Poisson&amp;rft.aufirst=Sim%C3%A9on+D.&amp;rft_id=https%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k110193z%2Ff218.image&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-deMoivre1711-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-deMoivre1711_5-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_Moivre1711" class="citation journal cs1 cs1-prop-foreign-lang-source">de Moivre, Abraham (1711). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frstl.1710.0018">"De mensura sortis, seu, de probabilitate eventuum in ludis a casu fortuito pendentibus"</a> &#91;On the Measurement of Chance, or, on the Probability of Events in Games Depending Upon Fortuitous Chance&#93;. <i><a href="/wiki/Philosophical_Transactions_of_the_Royal_Society" title="Philosophical Transactions of the Royal Society">Philosophical Transactions of the Royal Society</a></i> (in Latin). <b>27</b> (329): <span class="nowrap">213–</span>264. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frstl.1710.0018">10.1098/rstl.1710.0018</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Transactions+of+the+Royal+Society&amp;rft.atitle=De+mensura+sortis%2C+seu%2C+de+probabilitate+eventuum+in+ludis+a+casu+fortuito+pendentibus&amp;rft.volume=27&amp;rft.issue=329&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E213-%3C%2Fspan%3E264&amp;rft.date=1711&amp;rft_id=info%3Adoi%2F10.1098%2Frstl.1710.0018&amp;rft.aulast=de+Moivre&amp;rft.aufirst=Abraham&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frstl.1710.0018&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-deMoivre1718-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-deMoivre1718_6-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_Moivre1718" class="citation book cs1">de Moivre, Abraham (1718). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3EPac6QpbuMC&amp;pg=PA14"><i>The Doctrine of Chances: Or, A Method of Calculating the Probability of Events in Play</i></a>. London, Great Britain: W. Pearson. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780598843753" title="Special:BookSources/9780598843753"><bdi>9780598843753</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Doctrine+of+Chances%3A+Or%2C+A+Method+of+Calculating+the+Probability+of+Events+in+Play&amp;rft.place=London%2C+Great+Britain&amp;rft.pub=W.+Pearson&amp;rft.date=1718&amp;rft.isbn=9780598843753&amp;rft.aulast=de+Moivre&amp;rft.aufirst=Abraham&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3EPac6QpbuMC%26pg%3DPA14&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-deMoivre1721-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-deMoivre1721_7-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_Moivre1721" class="citation book cs1 cs1-prop-foreign-lang-source">de Moivre, Abraham (1721). "Of the Laws of Chance". In Motte, Benjamin (ed.). <i>The Philosophical Transactions from the Year MDCC (where Mr. Lowthorp Ends) to the Year MDCCXX. Abridg'd, and Dispos'd Under General Heads</i> (in Latin). Vol.&#160;I. London, Great Britain: R. Wilkin, R. Robinson, S. Ballard, W. and J. Innys, and J. Osborn. pp.&#160;<span class="nowrap">190–</span>219.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Of+the+Laws+of+Chance&amp;rft.btitle=The+Philosophical+Transactions+from+the+Year+MDCC+%28where+Mr.+Lowthorp+Ends%29+to+the+Year+MDCCXX.+Abridg%27d%2C+and+Dispos%27d+Under+General+Heads&amp;rft.place=London%2C+Great+Britain&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E190-%3C%2Fspan%3E219&amp;rft.pub=R.+Wilkin%2C+R.+Robinson%2C+S.+Ballard%2C+W.+and+J.+Innys%2C+and+J.+Osborn&amp;rft.date=1721&amp;rft.aulast=de+Moivre&amp;rft.aufirst=Abraham&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Johnson2005-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Johnson2005_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Johnson2005_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Johnson2005_8-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Johnson2005_8-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Johnson2005_8-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Johnson2005_8-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Johnson2005_8-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Johnson2005_8-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Johnson2005_8-8"><sup><i><b>i</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnsonKempKotz2005" class="citation book cs1">Johnson, Norman L.; Kemp, Adrienne W.; Kotz, Samuel (2005). "Poisson Distribution". <i>Univariate Discrete Distributions</i> (3rd&#160;ed.). New York, NY, US: John Wiley &amp; Sons, Inc. pp.&#160;<span class="nowrap">156–</span>207. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F0471715816">10.1002/0471715816</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-27246-5" title="Special:BookSources/978-0-471-27246-5"><bdi>978-0-471-27246-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Poisson+Distribution&amp;rft.btitle=Univariate+Discrete+Distributions&amp;rft.place=New+York%2C+NY%2C+US&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E156-%3C%2Fspan%3E207&amp;rft.edition=3rd&amp;rft.pub=John+Wiley+%26+Sons%2C+Inc.&amp;rft.date=2005&amp;rft_id=info%3Adoi%2F10.1002%2F0471715816&amp;rft.isbn=978-0-471-27246-5&amp;rft.aulast=Johnson&amp;rft.aufirst=Norman+L.&amp;rft.au=Kemp%2C+Adrienne+W.&amp;rft.au=Kotz%2C+Samuel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Stigler1982-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stigler1982_9-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStigler1982" class="citation journal cs1">Stigler, Stephen M. (1982). "Poisson on the Poisson Distribution". <i>Statistics &amp; Probability Letters</i>. <b>1</b> (1): <span class="nowrap">33–</span>35. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0167-7152%2882%2990010-4">10.1016/0167-7152(82)90010-4</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Statistics+%26+Probability+Letters&amp;rft.atitle=Poisson+on+the+Poisson+Distribution&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E33-%3C%2Fspan%3E35&amp;rft.date=1982&amp;rft_id=info%3Adoi%2F10.1016%2F0167-7152%2882%2990010-4&amp;rft.aulast=Stigler&amp;rft.aufirst=Stephen+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Hald1984-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hald1984_10-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaldde_MoivreMcClintock1984" class="citation journal cs1">Hald, Anders; de Moivre, Abraham; McClintock, Bruce (1984). "A. de Moivre: 'De Mensura Sortis' or 'On the Measurement of Chance'<span class="cs1-kern-right"></span>". <i>International Statistical Review / Revue Internationale de Statistique</i>. <b>52</b> (3): <span class="nowrap">229–</span>262. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1403045">10.2307/1403045</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1403045">1403045</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Statistical+Review+%2F+Revue+Internationale+de+Statistique&amp;rft.atitle=A.+de+Moivre%3A+%27De+Mensura+Sortis%27+or+%27On+the+Measurement+of+Chance%27&amp;rft.volume=52&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E229-%3C%2Fspan%3E262&amp;rft.date=1984&amp;rft_id=info%3Adoi%2F10.2307%2F1403045&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1403045%23id-name%3DJSTOR&amp;rft.aulast=Hald&amp;rft.aufirst=Anders&amp;rft.au=de+Moivre%2C+Abraham&amp;rft.au=McClintock%2C+Bruce&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Newcomb1860-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Newcomb1860_11-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNewcomb1860" class="citation journal cs1">Newcomb, Simon (1860). <a rel="nofollow" class="external text" href="https://babel.hathitrust.org/cgi/pt?id=nyp.33433069075590&amp;seq=150">"Notes on the theory of probabilities"</a>. <i>The Mathematical Monthly</i>. <b>2</b> (4): <span class="nowrap">134–</span>140.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Mathematical+Monthly&amp;rft.atitle=Notes+on+the+theory+of+probabilities&amp;rft.volume=2&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E134-%3C%2Fspan%3E140&amp;rft.date=1860&amp;rft.aulast=Newcomb&amp;rft.aufirst=Simon&amp;rft_id=https%3A%2F%2Fbabel.hathitrust.org%2Fcgi%2Fpt%3Fid%3Dnyp.33433069075590%26seq%3D150&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-vonBortkiewitsch1898-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-vonBortkiewitsch1898_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-vonBortkiewitsch1898_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-vonBortkiewitsch1898_12-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Bortkiewitsch1898" class="citation book cs1 cs1-prop-foreign-lang-source">von Bortkiewitsch, Ladislaus (1898). <i>Das Gesetz der kleinen Zahlen</i> &#91;<i>The law of small numbers</i>&#93; (in German). Leipzig, Germany: B.G.&#160;Teubner. pp.&#160;1, <span class="nowrap">23–</span>25.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Das+Gesetz+der+kleinen+Zahlen&amp;rft.place=Leipzig%2C+Germany&amp;rft.pages=1%2C+%3Cspan+class%3D%22nowrap%22%3E23-%3C%2Fspan%3E25&amp;rft.pub=B.G.+Teubner&amp;rft.date=1898&amp;rft.aulast=von+Bortkiewitsch&amp;rft.aufirst=Ladislaus&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span> <dl><dd>On <a rel="nofollow" class="external text" href="https://digibus.ub.uni-stuttgart.de/viewer/object/1543508614348/13">page 1</a>, Bortkiewicz presents the Poisson distribution.</dd> <dd>On <a rel="nofollow" class="external text" href="https://digibus.ub.uni-stuttgart.de/viewer/object/1543508614348/35">pages 23–25</a>, Bortkiewitsch presents his analysis of "4. Beispiel: Die durch Schlag eines Pferdes im preußischen Heere Getöteten." [4. Example: Those killed in the Prussian army by a horse's kick.]</dd></dl> </span></li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">For the proof, see: <a href="https://proofwiki.org/wiki/Expectation_of_Poisson_Distribution" class="extiw" title="proofwiki:Expectation of Poisson Distribution">Proof wiki: expectation</a> and <a href="https://proofwiki.org/wiki/Variance_of_Poisson_Distribution" class="extiw" title="proofwiki:Variance of Poisson Distribution">Proof wiki: variance</a></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKardar2007" class="citation book cs1"><a href="/wiki/Mehran_Kardar" title="Mehran Kardar">Kardar, Mehran</a> (2007). <a href="/wiki/Statistical_Physics_of_Particles" title="Statistical Physics of Particles"><i>Statistical Physics of Particles</i></a>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. p.&#160;42. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-87342-0" title="Special:BookSources/978-0-521-87342-0"><bdi>978-0-521-87342-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/860391091">860391091</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistical+Physics+of+Particles&amp;rft.pages=42&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2007&amp;rft_id=info%3Aoclcnum%2F860391091&amp;rft.isbn=978-0-521-87342-0&amp;rft.aulast=Kardar&amp;rft.aufirst=Mehran&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDekkingKraaikampLopuhaäMeester2005" class="citation book cs1">Dekking, Frederik Michel; Kraaikamp, Cornelis; Lopuhaä, Hendrik Paul; Meester, Ludolf Erwin (2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1007/1-84628-168-7"><i>A Modern Introduction to Probability and Statistics</i></a>. Springer Texts in Statistics. p.&#160;167. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F1-84628-168-7">10.1007/1-84628-168-7</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-85233-896-1" title="Special:BookSources/978-1-85233-896-1"><bdi>978-1-85233-896-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Modern+Introduction+to+Probability+and+Statistics&amp;rft.series=Springer+Texts+in+Statistics&amp;rft.pages=167&amp;rft.date=2005&amp;rft_id=info%3Adoi%2F10.1007%2F1-84628-168-7&amp;rft.isbn=978-1-85233-896-1&amp;rft.aulast=Dekking&amp;rft.aufirst=Frederik+Michel&amp;rft.au=Kraaikamp%2C+Cornelis&amp;rft.au=Lopuha%C3%A4%2C+Hendrik+Paul&amp;rft.au=Meester%2C+Ludolf+Erwin&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2F1-84628-168-7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Ugarte2016-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ugarte2016_16-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUgarteMilitinoArnholt2016" class="citation book cs1"><a href="/wiki/Mar%C3%ADa_Dolores_Ugarte" title="María Dolores Ugarte">Ugarte, M.D.</a>; <a href="/wiki/Ana_Fern%C3%A1ndez_Militino" title="Ana Fernández Militino">Militino, A.F.</a>; Arnholt, A.T. (2016). <i>Probability and Statistics with R</i> (2nd&#160;ed.). Boca Raton, FL, US: CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4665-0439-4" title="Special:BookSources/978-1-4665-0439-4"><bdi>978-1-4665-0439-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Statistics+with+R&amp;rft.place=Boca+Raton%2C+FL%2C+US&amp;rft.edition=2nd&amp;rft.pub=CRC+Press&amp;rft.date=2016&amp;rft.isbn=978-1-4665-0439-4&amp;rft.aulast=Ugarte&amp;rft.aufirst=M.D.&amp;rft.au=Militino%2C+A.F.&amp;rft.au=Arnholt%2C+A.T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Helske2017-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-Helske2017_17-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHelske2017" class="citation journal cs1">Helske, Jouni (2017). <a rel="nofollow" class="external text" href="https://doi.org/10.18637%2Fjss.v078.i10">"KFAS: Exponential Family State Space Models in R"</a>. <i>Journal of Statistical Software</i>. <b>78</b> (10). <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1612.01907">1612.01907</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.18637%2Fjss.v078.i10">10.18637/jss.v078.i10</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14379617">14379617</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Statistical+Software&amp;rft.atitle=KFAS%3A+Exponential+Family+State+Space+Models+in+R&amp;rft.volume=78&amp;rft.issue=10&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1612.01907&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14379617%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.18637%2Fjss.v078.i10&amp;rft.aulast=Helske&amp;rft.aufirst=Jouni&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.18637%252Fjss.v078.i10&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Choi1994-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Choi1994_18-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChoi1994" class="citation journal cs1">Choi, Kwok P. (1994). <a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2160389">"On the medians of gamma distributions and an equation of Ramanujan"</a>. <i>Proceedings of the American Mathematical Society</i>. <b>121</b> (1): <span class="nowrap">245–</span>251. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2160389">10.2307/2160389</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2160389">2160389</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+American+Mathematical+Society&amp;rft.atitle=On+the+medians+of+gamma+distributions+and+an+equation+of+Ramanujan&amp;rft.volume=121&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E245-%3C%2Fspan%3E251&amp;rft.date=1994&amp;rft_id=info%3Adoi%2F10.2307%2F2160389&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2160389%23id-name%3DJSTOR&amp;rft.aulast=Choi&amp;rft.aufirst=Kwok+P.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.2307%252F2160389&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Riordan1937-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-Riordan1937_19-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiordan1937" class="citation journal cs1">Riordan, John (1937). <a rel="nofollow" class="external text" href="https://projecteuclid.org/download/pdf_1/euclid.aoms/1177732430">"Moment Recurrence Relations for Binomial, Poisson and Hypergeometric Frequency Distributions"</a> <span class="cs1-format">(PDF)</span>. <i>Annals of Mathematical Statistics</i>. <b>8</b> (2): <span class="nowrap">103–</span>111. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faoms%2F1177732430">10.1214/aoms/1177732430</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2957598">2957598</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Mathematical+Statistics&amp;rft.atitle=Moment+Recurrence+Relations+for+Binomial%2C+Poisson+and+Hypergeometric+Frequency+Distributions&amp;rft.volume=8&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E103-%3C%2Fspan%3E111&amp;rft.date=1937&amp;rft_id=info%3Adoi%2F10.1214%2Faoms%2F1177732430&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2957598%23id-name%3DJSTOR&amp;rft.aulast=Riordan&amp;rft.aufirst=John&amp;rft_id=https%3A%2F%2Fprojecteuclid.org%2Fdownload%2Fpdf_1%2Feuclid.aoms%2F1177732430&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD._Ahle2022" class="citation journal cs1">D. Ahle, Thomas (2022). "Sharp and simple bounds for the raw moments of the Binomial and Poisson distributions". <i>Statistics &amp; Probability Letters</i>. <b>182</b>: 109306. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2103.17027">2103.17027</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.spl.2021.109306">10.1016/j.spl.2021.109306</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Statistics+%26+Probability+Letters&amp;rft.atitle=Sharp+and+simple+bounds+for+the+raw+moments+of+the+Binomial+and+Poisson+distributions&amp;rft.volume=182&amp;rft.pages=109306&amp;rft.date=2022&amp;rft_id=info%3Aarxiv%2F2103.17027&amp;rft_id=info%3Adoi%2F10.1016%2Fj.spl.2021.109306&amp;rft.aulast=D.+Ahle&amp;rft.aufirst=Thomas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Lehmann1986-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lehmann1986_21-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLehmann1986" class="citation book cs1">Lehmann, Erich Leo (1986). <i>Testing Statistical Hypotheses</i> (2nd&#160;ed.). New York, NJ, US: Springer Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-94919-2" title="Special:BookSources/978-0-387-94919-2"><bdi>978-0-387-94919-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Testing+Statistical+Hypotheses&amp;rft.place=New+York%2C+NJ%2C+US&amp;rft.edition=2nd&amp;rft.pub=Springer+Verlag&amp;rft.date=1986&amp;rft.isbn=978-0-387-94919-2&amp;rft.aulast=Lehmann&amp;rft.aufirst=Erich+Leo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Raikov1937-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-Raikov1937_22-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaikov1937" class="citation journal cs1">Raikov, Dmitry (1937). "On the decomposition of Poisson laws". <i>Comptes Rendus de l'Académie des Sciences de l'URSS</i>. <b>14</b>: <span class="nowrap">9–</span>11.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Comptes+Rendus+de+l%27Acad%C3%A9mie+des+Sciences+de+l%27URSS&amp;rft.atitle=On+the+decomposition+of+Poisson+laws&amp;rft.volume=14&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E9-%3C%2Fspan%3E11&amp;rft.date=1937&amp;rft.aulast=Raikov&amp;rft.aufirst=Dmitry&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-vonMises1964-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-vonMises1964_23-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Mises1964" class="citation book cs1">von Mises, Richard (1964). <i>Mathematical Theory of Probability and Statistics</i>. New York, NJ, US: Academic Press. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FC2013-0-12460-9">10.1016/C2013-0-12460-9</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4832-3213-3" title="Special:BookSources/978-1-4832-3213-3"><bdi>978-1-4832-3213-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Theory+of+Probability+and+Statistics&amp;rft.place=New+York%2C+NJ%2C+US&amp;rft.pub=Academic+Press&amp;rft.date=1964&amp;rft_id=info%3Adoi%2F10.1016%2FC2013-0-12460-9&amp;rft.isbn=978-1-4832-3213-3&amp;rft.aulast=von+Mises&amp;rft.aufirst=Richard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarremoes2001" class="citation journal cs1">Harremoes, P. (July 2001). "Binomial and Poisson distributions as maximum entropy distributions". <i>IEEE Transactions on Information Theory</i>. <b>47</b> (5): <span class="nowrap">2039–</span>2041. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F18.930936">10.1109/18.930936</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16171405">16171405</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Information+Theory&amp;rft.atitle=Binomial+and+Poisson+distributions+as+maximum+entropy+distributions&amp;rft.volume=47&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2039-%3C%2Fspan%3E2041&amp;rft.date=2001-07&amp;rft_id=info%3Adoi%2F10.1109%2F18.930936&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16171405%23id-name%3DS2CID&amp;rft.aulast=Harremoes&amp;rft.aufirst=P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Laha1979-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Laha1979_25-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLahaRohatgi1979" class="citation book cs1">Laha, Radha G.; Rohatgi, Vijay K. (1979). <i>Probability Theory</i>. New York, NJ, US: John Wiley &amp; Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-03262-5" title="Special:BookSources/978-0-471-03262-5"><bdi>978-0-471-03262-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+Theory&amp;rft.place=New+York%2C+NJ%2C+US&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1979&amp;rft.isbn=978-0-471-03262-5&amp;rft.aulast=Laha&amp;rft.aufirst=Radha+G.&amp;rft.au=Rohatgi%2C+Vijay+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMitzenmacher2017" class="citation book cs1">Mitzenmacher, Michael (2017). <i>Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis</i>. Eli Upfal (2nd&#160;ed.). Cambridge, UK. Exercise&#160;5.14. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-15488-9" title="Special:BookSources/978-1-107-15488-9"><bdi>978-1-107-15488-9</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/960841613">960841613</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+computing%3A+Randomization+and+probabilistic+techniques+in+algorithms+and+data+analysis&amp;rft.place=Cambridge%2C+UK&amp;rft.pages=Exercise-5.14&amp;rft.edition=2nd&amp;rft.date=2017&amp;rft_id=info%3Aoclcnum%2F960841613&amp;rft.isbn=978-1-107-15488-9&amp;rft.aulast=Mitzenmacher&amp;rft.aufirst=Michael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-Mitzenmacher2005-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-Mitzenmacher2005_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Mitzenmacher2005_27-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMitzenmacherUpfal2005" class="citation book cs1"><a href="/wiki/Michael_Mitzenmacher" title="Michael Mitzenmacher">Mitzenmacher, Michael</a>; <a href="/wiki/Eli_Upfal" title="Eli Upfal">Upfal, Eli</a> (2005). <i>Probability and Computing: Randomized Algorithms and Probabilistic Analysis</i>. Cambridge, UK: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-83540-4" title="Special:BookSources/978-0-521-83540-4"><bdi>978-0-521-83540-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Computing%3A+Randomized+Algorithms+and+Probabilistic+Analysis&amp;rft.place=Cambridge%2C+UK&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2005&amp;rft.isbn=978-0-521-83540-4&amp;rft.aulast=Mitzenmacher&amp;rft.aufirst=Michael&amp;rft.au=Upfal%2C+Eli&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShort2013" class="citation journal cs1">Short, Michael (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2013%2F412958">"Improved Inequalities for the Poisson and Binomial Distribution and Upper Tail Quantile Functions"</a>. <i>ISRN Probability and Statistics</i>. <b>2013</b>. Corollary 6. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2013%2F412958">10.1155/2013/412958</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ISRN+Probability+and+Statistics&amp;rft.atitle=Improved+Inequalities+for+the+Poisson+and+Binomial+Distribution+and+Upper+Tail+Quantile+Functions&amp;rft.volume=2013&amp;rft.pages=Corollary+6&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1155%2F2013%2F412958&amp;rft.aulast=Short&amp;rft.aufirst=Michael&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2013%252F412958&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShort2013" class="citation journal cs1">Short, Michael (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2013%2F412958">"Improved Inequalities for the Poisson and Binomial Distribution and Upper Tail Quantile Functions"</a>. <i>ISRN Probability and Statistics</i>. <b>2013</b>. Theorem 2. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2013%2F412958">10.1155/2013/412958</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ISRN+Probability+and+Statistics&amp;rft.atitle=Improved+Inequalities+for+the+Poisson+and+Binomial+Distribution+and+Upper+Tail+Quantile+Functions&amp;rft.volume=2013&amp;rft.pages=Theorem+2&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1155%2F2013%2F412958&amp;rft.aulast=Short&amp;rft.aufirst=Michael&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2013%252F412958&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Kamath2015-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kamath2015_30-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKamathŞaşoğluTse2015" class="citation conference cs1">Kamath, Govinda M.; Şaşoğlu, Eren; Tse, David (14–19 June 2015). <i>Optimal haplotype assembly from high-throughput mate-pair reads</i>. 2015 IEEE International Symposium on Information Theory (ISIT). Hong Kong, China. pp.&#160;<span class="nowrap">914–</span>918. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1502.01975">1502.01975</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FISIT.2015.7282588">10.1109/ISIT.2015.7282588</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:128634">128634</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Optimal+haplotype+assembly+from+high-throughput+mate-pair+reads&amp;rft.place=Hong+Kong%2C+China&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E914-%3C%2Fspan%3E918&amp;rft.date=2015-06-14%2F2015-06-19&amp;rft_id=info%3Aarxiv%2F1502.01975&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A128634%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FISIT.2015.7282588&amp;rft.aulast=Kamath&amp;rft.aufirst=Govinda+M.&amp;rft.au=%C5%9Ea%C5%9Fo%C4%9Flu%2C+Eren&amp;rft.au=Tse%2C+David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-NIST2006-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-NIST2006_31-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrins2012" class="citation book cs1">Prins, Jack (2012). <a rel="nofollow" class="external text" href="http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc331.htm">"6.3.3.1. Counts Control Charts"</a>. <i>e-Handbook of Statistical Methods</i>. NIST/SEMATECH<span class="reference-accessdate">. Retrieved <span class="nowrap">20 September</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=6.3.3.1.+Counts+Control+Charts&amp;rft.btitle=e-Handbook+of+Statistical+Methods&amp;rft.pub=NIST%2FSEMATECH&amp;rft.date=2012&amp;rft.aulast=Prins&amp;rft.aufirst=Jack&amp;rft_id=http%3A%2F%2Fwww.itl.nist.gov%2Fdiv898%2Fhandbook%2Fpmc%2Fsection3%2Fpmc331.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeller" class="citation book cs1">Feller, William. <i>An Introduction to Probability Theory and its Applications</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Probability+Theory+and+its+Applications&amp;rft.aulast=Feller&amp;rft.aufirst=William&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Zhang2013-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zhang2013_33-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangLiuLi2014" class="citation journal cs1">Zhang, Huiming; Liu, Yunxiao; Li, Bo (2014). "Notes on discrete compound Poisson model with applications to risk theory". <i>Insurance: Mathematics and Economics</i>. <b>59</b>: <span class="nowrap">325–</span>336. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.insmatheco.2014.09.012">10.1016/j.insmatheco.2014.09.012</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Insurance%3A+Mathematics+and+Economics&amp;rft.atitle=Notes+on+discrete+compound+Poisson+model+with+applications+to+risk+theory&amp;rft.volume=59&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E325-%3C%2Fspan%3E336&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1016%2Fj.insmatheco.2014.09.012&amp;rft.aulast=Zhang&amp;rft.aufirst=Huiming&amp;rft.au=Liu%2C+Yunxiao&amp;rft.au=Li%2C+Bo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Zhang2016-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zhang2016_34-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangLi2016" class="citation journal cs1">Zhang, Huiming; Li, Bo (2016). "Characterizations of discrete compound Poisson distributions". <i>Communications in Statistics - Theory and Methods</i>. <b>45</b> (22): <span class="nowrap">6789–</span>6802. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F03610926.2014.901375">10.1080/03610926.2014.901375</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125475756">125475756</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+in+Statistics+-+Theory+and+Methods&amp;rft.atitle=Characterizations+of+discrete+compound+Poisson+distributions&amp;rft.volume=45&amp;rft.issue=22&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E6789-%3C%2Fspan%3E6802&amp;rft.date=2016&amp;rft_id=info%3Adoi%2F10.1080%2F03610926.2014.901375&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125475756%23id-name%3DS2CID&amp;rft.aulast=Zhang&amp;rft.aufirst=Huiming&amp;rft.au=Li%2C+Bo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-McCullagh1989-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-McCullagh1989_35-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcCullaghNelder1989" class="citation book cs1"><a href="/wiki/Peter_McCullagh" title="Peter McCullagh">McCullagh, Peter</a>; <a href="/wiki/John_Nelder" title="John Nelder">Nelder, John</a> (1989). <i>Generalized Linear Models</i>. Monographs on Statistics and Applied Probability. Vol.&#160;37. London, UK: Chapman and Hall. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-412-31760-6" title="Special:BookSources/978-0-412-31760-6"><bdi>978-0-412-31760-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Generalized+Linear+Models&amp;rft.place=London%2C+UK&amp;rft.series=Monographs+on+Statistics+and+Applied+Probability&amp;rft.pub=Chapman+and+Hall&amp;rft.date=1989&amp;rft.isbn=978-0-412-31760-6&amp;rft.aulast=McCullagh&amp;rft.aufirst=Peter&amp;rft.au=Nelder%2C+John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Anscombe1948-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-Anscombe1948_36-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnscombe1948" class="citation journal cs1"><a href="/wiki/Frank_Anscombe" title="Frank Anscombe">Anscombe, Francis J.</a> (1948). "The transformation of Poisson, binomial and negative binomial data". <i>Biometrika</i>. <b>35</b> (<span class="nowrap">3–</span>4): <span class="nowrap">246–</span>254. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbiomet%2F35.3-4.246">10.1093/biomet/35.3-4.246</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2332343">2332343</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrika&amp;rft.atitle=The+transformation+of+Poisson%2C+binomial+and+negative+binomial+data&amp;rft.volume=35&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E3%E2%80%93%3C%2Fspan%3E4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E246-%3C%2Fspan%3E254&amp;rft.date=1948&amp;rft_id=info%3Adoi%2F10.1093%2Fbiomet%2F35.3-4.246&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2332343%23id-name%3DJSTOR&amp;rft.aulast=Anscombe&amp;rft.aufirst=Francis+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Ross2010-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ross2010_37-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoss2010" class="citation book cs1">Ross, Sheldon M. (2010). <i>Introduction to Probability Models</i> (10th&#160;ed.). Boston, MA: Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-375686-2" title="Special:BookSources/978-0-12-375686-2"><bdi>978-0-12-375686-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Probability+Models&amp;rft.place=Boston%2C+MA&amp;rft.edition=10th&amp;rft.pub=Academic+Press&amp;rft.date=2010&amp;rft.isbn=978-0-12-375686-2&amp;rft.aulast=Ross&amp;rft.aufirst=Sheldon+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20190806195228/https://newonlinecourses.science.psu.edu/stat504/node/48/">"1.7.7 – Relationship between the Multinomial and Poisson &#124; STAT 504"</a>. Archived from <a rel="nofollow" class="external text" href="https://newonlinecourses.science.psu.edu/stat504/node/48/">the original</a> on 6 August 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">6 August</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=1.7.7+%E2%80%93+Relationship+between+the+Multinomial+and+Poisson+%26%23124%3B+STAT+504&amp;rft_id=https%3A%2F%2Fnewonlinecourses.science.psu.edu%2Fstat504%2Fnode%2F48%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Loukas1986-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-Loukas1986_39-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLoukasKemp1986" class="citation journal cs1">Loukas, Sotirios; Kemp, C. David (1986). "The Index of Dispersion Test for the Bivariate Poisson Distribution". <i>Biometrics</i>. <b>42</b> (4): <span class="nowrap">941–</span>948. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2530708">10.2307/2530708</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2530708">2530708</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrics&amp;rft.atitle=The+Index+of+Dispersion+Test+for+the+Bivariate+Poisson+Distribution&amp;rft.volume=42&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E941-%3C%2Fspan%3E948&amp;rft.date=1986&amp;rft_id=info%3Adoi%2F10.2307%2F2530708&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2530708%23id-name%3DJSTOR&amp;rft.aulast=Loukas&amp;rft.aufirst=Sotirios&amp;rft.au=Kemp%2C+C.+David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text">Free Random Variables by D. Voiculescu, K. Dykema, A. Nica, CRM Monograph Series, American Mathematical Society, Providence RI, 1992</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text">Alexandru Nica, Roland Speicher: <a rel="nofollow" class="external text" href="https://rolandspeicher.com/literature/nica-speicher/">Lectures on the Combinatorics of Free Probability</a>. London Mathematical Society Lecture Note Series, Vol. 335, Cambridge University Press, 2006.</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://rolandspeicher.com/literature/nica-speicher/">Lectures on the Combinatorics of Free Probability</a> by A. Nica and R. Speicher, pp. 203–204, Cambridge Univ. Press 2006</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaszek" class="citation web cs1">Paszek, Ewa. <a rel="nofollow" class="external text" href="http://cnx.org/content/m13500/latest/?collection=col10343/latest">"Maximum likelihood estimation – examples"</a>. <i>cnx.org</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=cnx.org&amp;rft.atitle=Maximum+likelihood+estimation+%E2%80%93+examples&amp;rft.aulast=Paszek&amp;rft.aufirst=Ewa&amp;rft_id=http%3A%2F%2Fcnx.org%2Fcontent%2Fm13500%2Flatest%2F%3Fcollection%3Dcol10343%2Flatest&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_Trees2013" class="citation book cs1">Van Trees, Harry L. (2013). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/851161356"><i>Detection estimation and modulation theory</i></a>. Kristine L. Bell, Zhi Tian (Second&#160;ed.). Hoboken, N.J. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-299-66515-6" title="Special:BookSources/978-1-299-66515-6"><bdi>978-1-299-66515-6</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/851161356">851161356</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Detection+estimation+and+modulation+theory.&amp;rft.place=Hoboken%2C+N.J.&amp;rft.edition=Second&amp;rft.date=2013&amp;rft_id=info%3Aoclcnum%2F851161356&amp;rft.isbn=978-1-299-66515-6&amp;rft.aulast=Van+Trees&amp;rft.aufirst=Harry+L.&amp;rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F851161356&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-Garwood1936-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-Garwood1936_45-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGarwood1936" class="citation journal cs1">Garwood, Frank (1936). "Fiducial Limits for the Poisson Distribution". <i>Biometrika</i>. <b>28</b> (3/4): <span class="nowrap">437–</span>442. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbiomet%2F28.3-4.437">10.1093/biomet/28.3-4.437</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2333958">2333958</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrika&amp;rft.atitle=Fiducial+Limits+for+the+Poisson+Distribution&amp;rft.volume=28&amp;rft.issue=3%2F4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E437-%3C%2Fspan%3E442&amp;rft.date=1936&amp;rft_id=info%3Adoi%2F10.1093%2Fbiomet%2F28.3-4.437&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2333958%23id-name%3DJSTOR&amp;rft.aulast=Garwood&amp;rft.aufirst=Frank&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Breslow1987-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-Breslow1987_46-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBreslowDay1987" class="citation book cs1 cs1-prop-long-vol"><a href="/wiki/Norman_Breslow" title="Norman Breslow">Breslow, Norman E.</a>; <a href="/wiki/Nick_Day_(statistician)" title="Nick Day (statistician)">Day, Nick E.</a> (1987). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180808161401/http://www.iarc.fr/en/publications/pdfs-online/stat/sp82/index.php"><i>Statistical Methods in Cancer Research</i></a>. Vol.&#160;2 — The Design and Analysis of Cohort Studies. Lyon, France: <a href="/wiki/International_Agency_for_Research_on_Cancer" title="International Agency for Research on Cancer">International Agency for Research on Cancer</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-92-832-0182-3" title="Special:BookSources/978-92-832-0182-3"><bdi>978-92-832-0182-3</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www.iarc.fr/en/publications/pdfs-online/stat/sp82/index.php">the original</a> on 8 August 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">11 March</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistical+Methods+in+Cancer+Research&amp;rft.place=Lyon%2C+France&amp;rft.pub=International+Agency+for+Research+on+Cancer&amp;rft.date=1987&amp;rft.isbn=978-92-832-0182-3&amp;rft.aulast=Breslow&amp;rft.aufirst=Norman+E.&amp;rft.au=Day%2C+Nick+E.&amp;rft_id=http%3A%2F%2Fwww.iarc.fr%2Fen%2Fpublications%2Fpdfs-online%2Fstat%2Fsp82%2Findex.php&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Fink1976-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fink1976_47-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFink1997" class="citation book cs1">Fink, Daniel (1997). <i>A Compendium of Conjugate Priors</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Compendium+of+Conjugate+Priors&amp;rft.date=1997&amp;rft.aulast=Fink&amp;rft.aufirst=Daniel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDytsoPoor2020" class="citation journal cs1">Dytso, Alex; Poor, H. Vincent (2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTIT.2020.2979978">"Estimation in Poisson noise: Properties of the conditional mean estimator"</a>. <i>IEEE Transactions on Information Theory</i>. <b>66</b> (7): <span class="nowrap">4304–</span>4323. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1911.03744">1911.03744</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTIT.2020.2979978">10.1109/TIT.2020.2979978</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:207853178">207853178</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Information+Theory&amp;rft.atitle=Estimation+in+Poisson+noise%3A+Properties+of+the+conditional+mean+estimator&amp;rft.volume=66&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E4304-%3C%2Fspan%3E4323&amp;rft.date=2020&amp;rft_id=info%3Aarxiv%2F1911.03744&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A207853178%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FTIT.2020.2979978&amp;rft.aulast=Dytso&amp;rft.aufirst=Alex&amp;rft.au=Poor%2C+H.+Vincent&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1109%252FTIT.2020.2979978&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Gelman2003-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gelman2003_49-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGelmanCarlinSternRubin2003" class="citation book cs1">Gelman; Carlin, John B.; Stern, Hal S.; Rubin, Donald B. (2003). <i>Bayesian Data Analysis</i> (2nd&#160;ed.). Boca Raton, FL, US: Chapman &amp; Hall/CRC. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-58488-388-X" title="Special:BookSources/1-58488-388-X"><bdi>1-58488-388-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bayesian+Data+Analysis&amp;rft.place=Boca+Raton%2C+FL%2C+US&amp;rft.edition=2nd&amp;rft.pub=Chapman+%26+Hall%2FCRC&amp;rft.date=2003&amp;rft.isbn=1-58488-388-X&amp;rft.au=Gelman&amp;rft.au=Carlin%2C+John+B.&amp;rft.au=Stern%2C+Hal+S.&amp;rft.au=Rubin%2C+Donald+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Clevenson1975-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-Clevenson1975_50-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClevensonZidek1975" class="citation journal cs1">Clevenson, M. Lawrence; Zidek, James V. (1975). "Simultaneous estimation of the means of independent Poisson laws". <i>Journal of the American Statistical Association</i>. <b>70</b> (351): <span class="nowrap">698–</span>705. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F01621459.1975.10482497">10.1080/01621459.1975.10482497</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2285958">2285958</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Statistical+Association&amp;rft.atitle=Simultaneous+estimation+of+the+means+of+independent+Poisson+laws&amp;rft.volume=70&amp;rft.issue=351&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E698-%3C%2Fspan%3E705&amp;rft.date=1975&amp;rft_id=info%3Adoi%2F10.1080%2F01621459.1975.10482497&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2285958%23id-name%3DJSTOR&amp;rft.aulast=Clevenson&amp;rft.aufirst=M.+Lawrence&amp;rft.au=Zidek%2C+James+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Berger1985-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-Berger1985_51-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerger1985" class="citation book cs1">Berger, James O. (1985). <i>Statistical Decision Theory and Bayesian Analysis</i>. Springer Series in Statistics (2nd&#160;ed.). New York, NY: Springer-Verlag. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1985sdtb.book.....B">1985sdtb.book.....B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4757-4286-2">10.1007/978-1-4757-4286-2</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-96098-2" title="Special:BookSources/978-0-387-96098-2"><bdi>978-0-387-96098-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistical+Decision+Theory+and+Bayesian+Analysis&amp;rft.place=New+York%2C+NY&amp;rft.series=Springer+Series+in+Statistics&amp;rft.edition=2nd&amp;rft.pub=Springer-Verlag&amp;rft.date=1985&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4757-4286-2&amp;rft_id=info%3Abibcode%2F1985sdtb.book.....B&amp;rft.isbn=978-0-387-96098-2&amp;rft.aulast=Berger&amp;rft.aufirst=James+O.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Rasch1963-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rasch1963_52-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRasch1963" class="citation conference cs1">Rasch, Georg (1963). <a rel="nofollow" class="external text" href="http://www.rasch.org/memo1963.pdf"><i>The Poisson Process as a Model for a Diversity of Behavioural Phenomena</i></a> <span class="cs1-format">(PDF)</span>. 17th International Congress of Psychology. Vol.&#160;2. Washington, DC: American Psychological Association. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1037%2Fe685262012-108">10.1037/e685262012-108</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=The+Poisson+Process+as+a+Model+for+a+Diversity+of+Behavioural+Phenomena&amp;rft.place=Washington%2C+DC&amp;rft.pub=American+Psychological+Association&amp;rft.date=1963&amp;rft_id=info%3Adoi%2F10.1037%2Fe685262012-108&amp;rft.aulast=Rasch&amp;rft.aufirst=Georg&amp;rft_id=http%3A%2F%2Fwww.rasch.org%2Fmemo1963.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Flory1940-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-Flory1940_53-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlory1940" class="citation journal cs1">Flory, Paul J. (1940). "Molecular Size Distribution in Ethylene Oxide Polymers". <i>Journal of the American Chemical Society</i>. <b>62</b> (6): <span class="nowrap">1561–</span>1565. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1940JAChS..62.1561F">1940JAChS..62.1561F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fja01863a066">10.1021/ja01863a066</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Chemical+Society&amp;rft.atitle=Molecular+Size+Distribution+in+Ethylene+Oxide+Polymers&amp;rft.volume=62&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1561-%3C%2Fspan%3E1565&amp;rft.date=1940&amp;rft_id=info%3Adoi%2F10.1021%2Fja01863a066&amp;rft_id=info%3Abibcode%2F1940JAChS..62.1561F&amp;rft.aulast=Flory&amp;rft.aufirst=Paul+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Lomnitz1994-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lomnitz1994_54-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLomnitz1994" class="citation book cs1">Lomnitz, Cinna (1994). <i>Fundamentals of Earthquake Prediction</i>. New York, NY: John Wiley &amp; Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-57419-8" title="Special:BookSources/0-471-57419-8"><bdi>0-471-57419-8</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/647404423">647404423</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fundamentals+of+Earthquake+Prediction&amp;rft.place=New+York%2C+NY&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1994&amp;rft_id=info%3Aoclcnum%2F647404423&amp;rft.isbn=0-471-57419-8&amp;rft.aulast=Lomnitz&amp;rft.aufirst=Cinna&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Student1907-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-Student1907_55-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFa_student1907" class="citation journal cs1"><a href="/wiki/William_Sealy_Gosset" title="William Sealy Gosset">a student</a> (1907). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1620891">"On the error of counting with a haemacytometer"</a>. <i>Biometrika</i>. <b>5</b> (3): <span class="nowrap">351–</span>360. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2331633">10.2307/2331633</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2331633">2331633</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrika&amp;rft.atitle=On+the+error+of+counting+with+a+haemacytometer&amp;rft.volume=5&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E351-%3C%2Fspan%3E360&amp;rft.date=1907&amp;rft_id=info%3Adoi%2F10.2307%2F2331633&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2331633%23id-name%3DJSTOR&amp;rft.au=a+student&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1620891&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Boland1984-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boland1984_56-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoland1984" class="citation journal cs1">Boland, Philip J. (1984). "A biographical glimpse of William Sealy Gosset". <i>The American Statistician</i>. <b>38</b> (3): <span class="nowrap">179–</span>183. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00031305.1984.10483195">10.1080/00031305.1984.10483195</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2683648">2683648</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Statistician&amp;rft.atitle=A+biographical+glimpse+of+William+Sealy+Gosset&amp;rft.volume=38&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E179-%3C%2Fspan%3E183&amp;rft.date=1984&amp;rft_id=info%3Adoi%2F10.1080%2F00031305.1984.10483195&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2683648%23id-name%3DJSTOR&amp;rft.aulast=Boland&amp;rft.aufirst=Philip+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Erlang1909-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-Erlang1909_57-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErlang1909" class="citation journal cs1 cs1-prop-foreign-lang-source">Erlang, Agner K. (1909). "Sandsynlighedsregning og Telefonsamtaler" &#91;Probability Calculation and Telephone Conversations&#93;. <i>Nyt Tidsskrift for Matematik</i> (in Danish). <b>20</b> (B): <span class="nowrap">33–</span>39. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/24528622">24528622</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nyt+Tidsskrift+for+Matematik&amp;rft.atitle=Sandsynlighedsregning+og+Telefonsamtaler&amp;rft.volume=20&amp;rft.issue=B&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E33-%3C%2Fspan%3E39&amp;rft.date=1909&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F24528622%23id-name%3DJSTOR&amp;rft.aulast=Erlang&amp;rft.aufirst=Agner+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Hornby2014-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hornby2014_58-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHornby2014" class="citation web cs1">Hornby, Dave (2014). <a rel="nofollow" class="external text" href="http://www.sportsbettingonline.net/strategy/football-prediction-model-poisson-distribution">"Football Prediction Model: Poisson Distribution"</a>. Sports Betting Online<span class="reference-accessdate">. Retrieved <span class="nowrap">19 September</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Football+Prediction+Model%3A+Poisson+Distribution&amp;rft.pub=Sports+Betting+Online&amp;rft.date=2014&amp;rft.aulast=Hornby&amp;rft.aufirst=Dave&amp;rft_id=http%3A%2F%2Fwww.sportsbettingonline.net%2Fstrategy%2Ffootball-prediction-model-poisson-distribution&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Koyama2016-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-Koyama2016_59-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoyamaHokunanHasegawaKawamura2016" class="citation journal cs1">Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu (2016). "Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation". <i>Food Microbiology</i>. <b>60</b>: <span class="nowrap">49–</span>53. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.fm.2016.05.019">10.1016/j.fm.2016.05.019</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27554145">27554145</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Food+Microbiology&amp;rft.atitle=Do+bacterial+cell+numbers+follow+a+theoretical+Poisson+distribution%3F+Comparison+of+experimentally+obtained+numbers+of+single+cells+with+random+number+generation+via+computer+simulation&amp;rft.volume=60&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E49-%3C%2Fspan%3E53&amp;rft.date=2016&amp;rft_id=info%3Adoi%2F10.1016%2Fj.fm.2016.05.019&amp;rft_id=info%3Apmid%2F27554145&amp;rft.aulast=Koyama&amp;rft.aufirst=Kento&amp;rft.au=Hokunan%2C+Hidekazu&amp;rft.au=Hasegawa%2C+Mayumi&amp;rft.au=Kawamura%2C+Shuso&amp;rft.au=Koseki%2C+Shigenobu&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Clarke1946-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-Clarke1946_60-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClarke1946" class="citation journal cs1">Clarke, R. D. (1946). <a rel="nofollow" class="external text" href="https://www.actuaries.org.uk/system/files/documents/pdf/0481.pdf">"An application of the Poisson distribution"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of the Institute of Actuaries</i>. <b>72</b> (3): 481. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0020268100035435">10.1017/S0020268100035435</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Institute+of+Actuaries&amp;rft.atitle=An+application+of+the+Poisson+distribution&amp;rft.volume=72&amp;rft.issue=3&amp;rft.pages=481&amp;rft.date=1946&amp;rft_id=info%3Adoi%2F10.1017%2FS0020268100035435&amp;rft.aulast=Clarke&amp;rft.aufirst=R.+D.&amp;rft_id=https%3A%2F%2Fwww.actuaries.org.uk%2Fsystem%2Ffiles%2Fdocuments%2Fpdf%2F0481.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Hardy1923-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hardy1923_61-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardyLittlewood1923" class="citation journal cs1"><a href="/wiki/G._H._Hardy" title="G. H. Hardy">Hardy, Godfrey H.</a>; <a href="/wiki/John_Edensor_Littlewood" title="John Edensor Littlewood">Littlewood, John E.</a> (1923). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02403921">"On some problems of "partitio numerorum" III: On the expression of a number as a sum of primes"</a>. <i>Acta Mathematica</i>. <b>44</b>: <span class="nowrap">1–</span>70. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02403921">10.1007/BF02403921</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Mathematica&amp;rft.atitle=On+some+problems+of+%22partitio+numerorum%22+III%3A+On+the+expression+of+a+number+as+a+sum+of+primes&amp;rft.volume=44&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E70&amp;rft.date=1923&amp;rft_id=info%3Adoi%2F10.1007%2FBF02403921&amp;rft.aulast=Hardy&amp;rft.aufirst=Godfrey+H.&amp;rft.au=Littlewood%2C+John+E.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252FBF02403921&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Gallagher1976-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gallagher1976_62-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGallagher1976" class="citation journal cs1">Gallagher, Patrick X. (1976). "On the distribution of primes in short intervals". <i><a href="/wiki/Mathematika" title="Mathematika">Mathematika</a></i>. <b>23</b> (1): <span class="nowrap">4–</span>9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fs0025579300016442">10.1112/s0025579300016442</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematika&amp;rft.atitle=On+the+distribution+of+primes+in+short+intervals&amp;rft.volume=23&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E4-%3C%2Fspan%3E9&amp;rft.date=1976&amp;rft_id=info%3Adoi%2F10.1112%2Fs0025579300016442&amp;rft.aulast=Gallagher&amp;rft.aufirst=Patrick+X.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Cameron1998-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cameron1998_63-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCameronTrivedi1998" class="citation book cs1">Cameron, A. Colin; Trivedi, Pravin K. (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=SKUXe_PjtRMC&amp;pg=PA5"><i>Regression Analysis of Count Data</i></a>. Cambridge, UK: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-63567-7" title="Special:BookSources/978-0-521-63567-7"><bdi>978-0-521-63567-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Regression+Analysis+of+Count+Data&amp;rft.place=Cambridge%2C+UK&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1998&amp;rft.isbn=978-0-521-63567-7&amp;rft.aulast=Cameron&amp;rft.aufirst=A.+Colin&amp;rft.au=Trivedi%2C+Pravin+K.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSKUXe_PjtRMC%26pg%3DPA5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Edgeworth1913-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-Edgeworth1913_64-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEdgeworth1913" class="citation journal cs1"><a href="/wiki/Francis_Ysidro_Edgeworth" title="Francis Ysidro Edgeworth">Edgeworth, F.Y.</a> (1913). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1449478">"On the use of the theory of probabilities in statistics relating to society"</a>. <i><a href="/wiki/Journal_of_the_Royal_Statistical_Society" title="Journal of the Royal Statistical Society">Journal of the Royal Statistical Society</a></i>. <b>76</b> (2): <span class="nowrap">165–</span>193. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2340091">10.2307/2340091</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2340091">2340091</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Royal+Statistical+Society&amp;rft.atitle=On+the+use+of+the+theory+of+probabilities+in+statistics+relating+to+society&amp;rft.volume=76&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E165-%3C%2Fspan%3E193&amp;rft.date=1913&amp;rft_id=info%3Adoi%2F10.2307%2F2340091&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2340091%23id-name%3DJSTOR&amp;rft.aulast=Edgeworth&amp;rft.aufirst=F.Y.&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1449478&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatzMiledi1972" class="citation journal cs1">Katz, B.; Miledi, R. (August 1972). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1113/jphysiol.1972.sp009918">"The statistical nature of the acetylcholine potential and its molecular components"</a>. <i>The Journal of Physiology</i>. <b>224</b> (3): <span class="nowrap">665–</span>699. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1113%2Fjphysiol.1972.sp009918">10.1113/jphysiol.1972.sp009918</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-3751">0022-3751</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1331515">1331515</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/5071933">5071933</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physiology&amp;rft.atitle=The+statistical+nature+of+the+acetylcholine+potential+and+its+molecular+components&amp;rft.volume=224&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E665-%3C%2Fspan%3E699&amp;rft.date=1972-08&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1331515%23id-name%3DPMC&amp;rft.issn=0022-3751&amp;rft_id=info%3Apmid%2F5071933&amp;rft_id=info%3Adoi%2F10.1113%2Fjphysiol.1972.sp009918&amp;rft.aulast=Katz&amp;rft.aufirst=B.&amp;rft.au=Miledi%2C+R.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1113%2Fjphysiol.1972.sp009918&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-:0-66"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_66-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_66-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNelsonBrombergHermundstadPrentice2015" class="citation book cs1">Nelson, Philip Charles; Bromberg, Sarina; Hermundstad, Ann; Prentice, Jason (2015). <a rel="nofollow" class="external text" href="https://www.worldcat.org/title/891121698"><i>Physical models of living systems</i></a>. New York, NY: W.H. Freeman &amp; Company, a Macmillan Education Imprint. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4641-4029-7" title="Special:BookSources/978-1-4641-4029-7"><bdi>978-1-4641-4029-7</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/891121698">891121698</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Physical+models+of+living+systems&amp;rft.place=New+York%2C+NY&amp;rft.pub=W.H.+Freeman+%26+Company%2C+a+Macmillan+Education+Imprint&amp;rft.date=2015&amp;rft_id=info%3Aoclcnum%2F891121698&amp;rft.isbn=978-1-4641-4029-7&amp;rft.aulast=Nelson&amp;rft.aufirst=Philip+Charles&amp;rft.au=Bromberg%2C+Sarina&amp;rft.au=Hermundstad%2C+Ann&amp;rft.au=Prentice%2C+Jason&amp;rft_id=https%3A%2F%2Fwww.worldcat.org%2Ftitle%2F891121698&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFoster2006" class="citation cs2">Foster, Patricia L. (1 January 2006), "Methods for Determining Spontaneous Mutation Rates", <i>DNA Repair, Part B</i>, Methods in Enzymology, vol.&#160;409, Academic Press, pp.&#160;<span class="nowrap">195–</span>213, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0076-6879%2805%2909012-9">10.1016/S0076-6879(05)09012-9</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-182814-1" title="Special:BookSources/978-0-12-182814-1"><bdi>978-0-12-182814-1</bdi></a>, <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2041832">2041832</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16793403">16793403</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Methods+for+Determining+Spontaneous+Mutation+Rates&amp;rft.btitle=DNA+Repair%2C+Part+B&amp;rft.series=Methods+in+Enzymology&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E195-%3C%2Fspan%3E213&amp;rft.pub=Academic+Press&amp;rft.date=2006-01-01&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2041832%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F16793403&amp;rft_id=info%3Adoi%2F10.1016%2FS0076-6879%2805%2909012-9&amp;rft.isbn=978-0-12-182814-1&amp;rft.aulast=Foster&amp;rft.aufirst=Patricia+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-WLPoissonRefPage-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-WLPoissonRefPage_68-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://reference.wolfram.com/language/ref/PoissonDistribution.html">"Wolfram Language: PoissonDistribution reference page"</a>. <i>wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">8 April</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=wolfram.com&amp;rft.atitle=Wolfram+Language%3A+PoissonDistribution+reference+page&amp;rft_id=http%3A%2F%2Freference.wolfram.com%2Flanguage%2Fref%2FPoissonDistribution.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-WLMvPoissonRefPage-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-WLMvPoissonRefPage_69-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://reference.wolfram.com/language/ref/MultivariatePoissonDistribution.html">"Wolfram Language: MultivariatePoissonDistribution reference page"</a>. <i>wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">8 April</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=wolfram.com&amp;rft.atitle=Wolfram+Language%3A+MultivariatePoissonDistribution+reference+page&amp;rft_id=http%3A%2F%2Freference.wolfram.com%2Flanguage%2Fref%2FMultivariatePoissonDistribution.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Knuth1997-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-Knuth1997_70-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth1997" class="citation book cs1">Knuth, Donald Ervin (1997). <i>Seminumerical Algorithms</i>. <a href="/wiki/The_Art_of_Computer_Programming" title="The Art of Computer Programming">The Art of Computer Programming</a>. Vol.&#160;2 (3rd&#160;ed.). <a href="/wiki/Addison_Wesley" class="mw-redirect" title="Addison Wesley">Addison Wesley</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-89684-8" title="Special:BookSources/978-0-201-89684-8"><bdi>978-0-201-89684-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Seminumerical+Algorithms&amp;rft.series=The+Art+of+Computer+Programming&amp;rft.edition=3rd&amp;rft.pub=Addison+Wesley&amp;rft.date=1997&amp;rft.isbn=978-0-201-89684-8&amp;rft.aulast=Knuth&amp;rft.aufirst=Donald+Ervin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Devroye1986-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-Devroye1986_71-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDevroye1986" class="citation book cs1"><a href="/wiki/Luc_Devroye" title="Luc Devroye">Devroye, Luc</a> (1986). <a rel="nofollow" class="external text" href="http://luc.devroye.org/chapter_ten.pdf">"Discrete Univariate Distributions"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="http://luc.devroye.org/rnbookindex.html"><i>Non-Uniform Random Variate Generation</i></a>. New York, NY: Springer-Verlag. pp.&#160;<span class="nowrap">485–</span>553. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4613-8643-8_10">10.1007/978-1-4613-8643-8_10</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4613-8645-2" title="Special:BookSources/978-1-4613-8645-2"><bdi>978-1-4613-8645-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Discrete+Univariate+Distributions&amp;rft.btitle=Non-Uniform+Random+Variate+Generation&amp;rft.place=New+York%2C+NY&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E485-%3C%2Fspan%3E553&amp;rft.pub=Springer-Verlag&amp;rft.date=1986&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4613-8643-8_10&amp;rft.isbn=978-1-4613-8645-2&amp;rft.aulast=Devroye&amp;rft.aufirst=Luc&amp;rft_id=http%3A%2F%2Fluc.devroye.org%2Fchapter_ten.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading3"><h3 id="Sources">Sources</h3></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhrensDieter1974" class="citation journal cs1">Ahrens, Joachim H.; Dieter, Ulrich (1974). "Computer Methods for Sampling from Gamma, Beta, Poisson and Binomial Distributions". <i>Computing</i>. <b>12</b> (3): <span class="nowrap">223–</span>246. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02293108">10.1007/BF02293108</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:37484126">37484126</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computing&amp;rft.atitle=Computer+Methods+for+Sampling+from+Gamma%2C+Beta%2C+Poisson+and+Binomial+Distributions&amp;rft.volume=12&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E223-%3C%2Fspan%3E246&amp;rft.date=1974&amp;rft_id=info%3Adoi%2F10.1007%2FBF02293108&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A37484126%23id-name%3DS2CID&amp;rft.aulast=Ahrens&amp;rft.aufirst=Joachim+H.&amp;rft.au=Dieter%2C+Ulrich&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhrensDieter1982" class="citation journal cs1">Ahrens, Joachim H.; Dieter, Ulrich (1982). <a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F355993.355997">"Computer Generation of Poisson Deviates"</a>. <i>ACM Transactions on Mathematical Software</i>. <b>8</b> (2): <span class="nowrap">163–</span>179. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F355993.355997">10.1145/355993.355997</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12410131">12410131</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACM+Transactions+on+Mathematical+Software&amp;rft.atitle=Computer+Generation+of+Poisson+Deviates&amp;rft.volume=8&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E163-%3C%2Fspan%3E179&amp;rft.date=1982&amp;rft_id=info%3Adoi%2F10.1145%2F355993.355997&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12410131%23id-name%3DS2CID&amp;rft.aulast=Ahrens&amp;rft.aufirst=Joachim+H.&amp;rft.au=Dieter%2C+Ulrich&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1145%252F355993.355997&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEvansBoersmaBlachmanJagers1988" class="citation journal cs1">Evans, Ronald J.; Boersma, J.; Blachman, N. M.; Jagers, A. A. (1988). <a rel="nofollow" class="external text" href="https://research.tue.nl/nl/publications/solution-to-problem-876--the-entropy-of-a-poisson-distribution(94cf6dd2-b35e-41c8-9da7-6ec69ca391a0).html">"The Entropy of a Poisson Distribution: Problem 87-6"</a>. <i>SIAM Review</i>. <b>30</b> (2): <span class="nowrap">314–</span>317. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F1030059">10.1137/1030059</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SIAM+Review&amp;rft.atitle=The+Entropy+of+a+Poisson+Distribution%3A+Problem+87-6&amp;rft.volume=30&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E314-%3C%2Fspan%3E317&amp;rft.date=1988&amp;rft_id=info%3Adoi%2F10.1137%2F1030059&amp;rft.aulast=Evans&amp;rft.aufirst=Ronald+J.&amp;rft.au=Boersma%2C+J.&amp;rft.au=Blachman%2C+N.+M.&amp;rft.au=Jagers%2C+A.+A.&amp;rft_id=https%3A%2F%2Fresearch.tue.nl%2Fnl%2Fpublications%2Fsolution-to-problem-876--the-entropy-of-a-poisson-distribution%2894cf6dd2-b35e-41c8-9da7-6ec69ca391a0%29.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+distribution" class="Z3988"></span></li></ul> </div> <div style="clear:both;" class=""></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"></div><div role="navigation" class="navbox" aria-labelledby="Probability_distributions_(list)587" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Probability_distributions" title="Template:Probability distributions"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Probability_distributions" title="Template talk:Probability distributions"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Probability_distributions" title="Special:EditPage/Template:Probability distributions"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Probability_distributions_(list)587" style="font-size:114%;margin:0 4em"><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distributions</a> (<a href="/wiki/List_of_probability_distributions" title="List of probability distributions">list</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Discrete <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">with finite <br />support</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benford%27s_law" title="Benford&#39;s law">Benford</a></li> <li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a></li> <li><a href="/wiki/Beta-binomial_distribution" title="Beta-binomial distribution">Beta-binomial</a></li> <li><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial</a></li> <li><a href="/wiki/Categorical_distribution" title="Categorical distribution">Categorical</a></li> <li><a href="/wiki/Hypergeometric_distribution" title="Hypergeometric distribution">Hypergeometric</a> <ul><li><a href="/wiki/Negative_hypergeometric_distribution" title="Negative hypergeometric distribution">Negative</a></li></ul></li> <li><a href="/wiki/Poisson_binomial_distribution" title="Poisson binomial distribution">Poisson binomial</a></li> <li><a href="/wiki/Rademacher_distribution" title="Rademacher distribution">Rademacher</a></li> <li><a href="/wiki/Soliton_distribution" title="Soliton distribution">Soliton</a></li> <li><a href="/wiki/Discrete_uniform_distribution" title="Discrete uniform distribution">Discrete uniform</a></li> <li><a href="/wiki/Zipf%27s_law" title="Zipf&#39;s law">Zipf</a></li> <li><a href="/wiki/Zipf%E2%80%93Mandelbrot_law" title="Zipf–Mandelbrot law">Zipf–Mandelbrot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with infinite <br />support</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beta_negative_binomial_distribution" title="Beta negative binomial distribution">Beta negative binomial</a></li> <li><a href="/wiki/Borel_distribution" title="Borel distribution">Borel</a></li> <li><a href="/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution" title="Conway–Maxwell–Poisson distribution">Conway–Maxwell–Poisson</a></li> <li><a href="/wiki/Discrete_phase-type_distribution" title="Discrete phase-type distribution">Discrete phase-type</a></li> <li><a href="/wiki/Delaporte_distribution" title="Delaporte distribution">Delaporte</a></li> <li><a href="/wiki/Extended_negative_binomial_distribution" title="Extended negative binomial distribution">Extended negative binomial</a></li> <li><a href="/wiki/Flory%E2%80%93Schulz_distribution" title="Flory–Schulz distribution">Flory–Schulz</a></li> <li><a href="/wiki/Gauss%E2%80%93Kuzmin_distribution" title="Gauss–Kuzmin distribution">Gauss–Kuzmin</a></li> <li><a href="/wiki/Geometric_distribution" title="Geometric distribution">Geometric</a></li> <li><a href="/wiki/Logarithmic_distribution" title="Logarithmic distribution">Logarithmic</a></li> <li><a href="/wiki/Mixed_Poisson_distribution" title="Mixed Poisson distribution">Mixed Poisson</a></li> <li><a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">Negative binomial</a></li> <li><a href="/wiki/(a,b,0)_class_of_distributions" title="(a,b,0) class of distributions">Panjer</a></li> <li><a href="/wiki/Parabolic_fractal_distribution" title="Parabolic fractal distribution">Parabolic fractal</a></li> <li><a class="mw-selflink selflink">Poisson</a></li> <li><a href="/wiki/Skellam_distribution" title="Skellam distribution">Skellam</a></li> <li><a href="/wiki/Yule%E2%80%93Simon_distribution" title="Yule–Simon distribution">Yule–Simon</a></li> <li><a href="/wiki/Zeta_distribution" title="Zeta distribution">Zeta</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Continuous <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />bounded interval</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arcsine_distribution" title="Arcsine distribution">Arcsine</a></li> <li><a href="/wiki/ARGUS_distribution" title="ARGUS distribution">ARGUS</a></li> <li><a href="/wiki/Balding%E2%80%93Nichols_model" title="Balding–Nichols model">Balding–Nichols</a></li> <li><a href="/wiki/Bates_distribution" title="Bates distribution">Bates</a></li> <li><a href="/wiki/Beta_distribution" title="Beta distribution">Beta</a> <ul><li><a href="/wiki/Generalized_beta_distribution" title="Generalized beta distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Beta_rectangular_distribution" title="Beta rectangular distribution">Beta rectangular</a></li> <li><a href="/wiki/Continuous_Bernoulli_distribution" title="Continuous Bernoulli distribution">Continuous Bernoulli</a></li> <li><a href="/wiki/Irwin%E2%80%93Hall_distribution" title="Irwin–Hall distribution">Irwin–Hall</a></li> <li><a href="/wiki/Kumaraswamy_distribution" title="Kumaraswamy distribution">Kumaraswamy</a></li> <li><a href="/wiki/Logit-normal_distribution" title="Logit-normal distribution">Logit-normal</a></li> <li><a href="/wiki/Noncentral_beta_distribution" title="Noncentral beta distribution">Noncentral beta</a></li> <li><a href="/wiki/PERT_distribution" title="PERT distribution">PERT</a></li> <li><a href="/wiki/Raised_cosine_distribution" title="Raised cosine distribution">Raised cosine</a></li> <li><a href="/wiki/Reciprocal_distribution" title="Reciprocal distribution">Reciprocal</a></li> <li><a href="/wiki/Triangular_distribution" title="Triangular distribution">Triangular</a></li> <li><a href="/wiki/U-quadratic_distribution" title="U-quadratic distribution">U-quadratic</a></li> <li><a href="/wiki/Continuous_uniform_distribution" title="Continuous uniform distribution">Uniform</a></li> <li><a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />semi-infinite <br />interval</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benini_distribution" title="Benini distribution">Benini</a></li> <li><a href="/wiki/Benktander_type_I_distribution" title="Benktander type I distribution">Benktander 1st kind</a></li> <li><a href="/wiki/Benktander_type_II_distribution" title="Benktander type II distribution">Benktander 2nd kind</a></li> <li><a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">Beta prime</a></li> <li><a href="/wiki/Burr_distribution" title="Burr distribution">Burr</a></li> <li><a href="/wiki/Chi_distribution" title="Chi distribution">Chi</a></li> <li><a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">Chi-squared</a> <ul><li><a href="/wiki/Noncentral_chi-squared_distribution" title="Noncentral chi-squared distribution">Noncentral</a></li> <li><a href="/wiki/Inverse-chi-squared_distribution" title="Inverse-chi-squared distribution">Inverse</a> <ul><li><a href="/wiki/Scaled_inverse_chi-squared_distribution" title="Scaled inverse chi-squared distribution">Scaled</a></li></ul></li></ul></li> <li><a href="/wiki/Dagum_distribution" title="Dagum distribution">Dagum</a></li> <li><a href="/wiki/Davis_distribution" title="Davis distribution">Davis</a></li> <li><a href="/wiki/Erlang_distribution" title="Erlang distribution">Erlang</a> <ul><li><a href="/wiki/Hyper-Erlang_distribution" title="Hyper-Erlang distribution">Hyper</a></li></ul></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential</a> <ul><li><a href="/wiki/Hyperexponential_distribution" title="Hyperexponential distribution">Hyperexponential</a></li> <li><a href="/wiki/Hypoexponential_distribution" title="Hypoexponential distribution">Hypoexponential</a></li> <li><a href="/wiki/Exponential-logarithmic_distribution" title="Exponential-logarithmic distribution">Logarithmic</a></li></ul></li> <li><a href="/wiki/F-distribution" title="F-distribution"><i>F</i></a> <ul><li><a href="/wiki/Noncentral_F-distribution" title="Noncentral F-distribution">Noncentral</a></li></ul></li> <li><a href="/wiki/Folded_normal_distribution" title="Folded normal distribution">Folded normal</a></li> <li><a href="/wiki/Fr%C3%A9chet_distribution" title="Fréchet distribution">Fréchet</a></li> <li><a href="/wiki/Gamma_distribution" title="Gamma distribution">Gamma</a> <ul><li><a href="/wiki/Generalized_gamma_distribution" title="Generalized gamma distribution">Generalized</a></li> <li><a href="/wiki/Inverse-gamma_distribution" title="Inverse-gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Gamma/Gompertz_distribution" title="Gamma/Gompertz distribution">gamma/Gompertz</a></li> <li><a href="/wiki/Gompertz_distribution" title="Gompertz distribution">Gompertz</a> <ul><li><a href="/wiki/Shifted_Gompertz_distribution" title="Shifted Gompertz distribution">Shifted</a></li></ul></li> <li><a href="/wiki/Half-logistic_distribution" title="Half-logistic distribution">Half-logistic</a></li> <li><a href="/wiki/Half-normal_distribution" title="Half-normal distribution">Half-normal</a></li> <li><a href="/wiki/Hotelling%27s_T-squared_distribution" title="Hotelling&#39;s T-squared distribution">Hotelling's <i>T</i>-squared</a></li> <li><a href="/wiki/Hartman%E2%80%93Watson_distribution" title="Hartman–Watson distribution">Hartman–Watson</a></li> <li><a href="/wiki/Inverse_Gaussian_distribution" title="Inverse Gaussian distribution">Inverse Gaussian</a> <ul><li><a href="/wiki/Generalized_inverse_Gaussian_distribution" title="Generalized inverse Gaussian distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="Kolmogorov–Smirnov test">Kolmogorov</a></li> <li><a href="/wiki/L%C3%A9vy_distribution" title="Lévy distribution">Lévy</a></li> <li><a href="/wiki/Log-Cauchy_distribution" title="Log-Cauchy distribution">Log-Cauchy</a></li> <li><a href="/wiki/Log-Laplace_distribution" title="Log-Laplace distribution">Log-Laplace</a></li> <li><a href="/wiki/Log-logistic_distribution" title="Log-logistic distribution">Log-logistic</a></li> <li><a href="/wiki/Log-normal_distribution" title="Log-normal distribution">Log-normal</a></li> <li><a href="/wiki/Log-t_distribution" title="Log-t distribution">Log-t</a></li> <li><a href="/wiki/Lomax_distribution" title="Lomax distribution">Lomax</a></li> <li><a href="/wiki/Matrix-exponential_distribution" title="Matrix-exponential distribution">Matrix-exponential</a></li> <li><a href="/wiki/Maxwell%E2%80%93Boltzmann_distribution" title="Maxwell–Boltzmann distribution">Maxwell–Boltzmann</a></li> <li><a href="/wiki/Maxwell%E2%80%93J%C3%BCttner_distribution" title="Maxwell–Jüttner distribution">Maxwell–Jüttner</a></li> <li><a href="/wiki/Mittag-Leffler_distribution" title="Mittag-Leffler distribution">Mittag-Leffler</a></li> <li><a href="/wiki/Nakagami_distribution" title="Nakagami distribution">Nakagami</a></li> <li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto</a></li> <li><a href="/wiki/Phase-type_distribution" title="Phase-type distribution">Phase-type</a></li> <li><a href="/wiki/Poly-Weibull_distribution" title="Poly-Weibull distribution">Poly-Weibull</a></li> <li><a href="/wiki/Rayleigh_distribution" title="Rayleigh distribution">Rayleigh</a></li> <li><a href="/wiki/Relativistic_Breit%E2%80%93Wigner_distribution" title="Relativistic Breit–Wigner distribution">Relativistic Breit–Wigner</a></li> <li><a href="/wiki/Rice_distribution" title="Rice distribution">Rice</a></li> <li><a href="/wiki/Truncated_normal_distribution" title="Truncated normal distribution">Truncated normal</a></li> <li><a href="/wiki/Type-2_Gumbel_distribution" title="Type-2 Gumbel distribution">type-2 Gumbel</a></li> <li><a href="/wiki/Weibull_distribution" title="Weibull distribution">Weibull</a> <ul><li><a href="/wiki/Discrete_Weibull_distribution" title="Discrete Weibull distribution">Discrete</a></li></ul></li> <li><a href="/wiki/Wilks%27s_lambda_distribution" title="Wilks&#39;s lambda distribution">Wilks's lambda</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported <br />on the whole <br />real line</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy</a></li> <li><a href="/wiki/Generalized_normal_distribution#Version_1" title="Generalized normal distribution">Exponential power</a></li> <li><a href="/wiki/Fisher%27s_z-distribution" title="Fisher&#39;s z-distribution">Fisher's <i>z</i></a></li> <li><a href="/wiki/Kaniadakis_Gaussian_distribution" title="Kaniadakis Gaussian distribution">Kaniadakis κ-Gaussian</a></li> <li><a href="/wiki/Gaussian_q-distribution" title="Gaussian q-distribution">Gaussian <i>q</i></a></li> <li><a href="/wiki/Generalized_normal_distribution" title="Generalized normal distribution">Generalized normal</a></li> <li><a href="/wiki/Generalised_hyperbolic_distribution" title="Generalised hyperbolic distribution">Generalized hyperbolic</a></li> <li><a href="/wiki/Geometric_stable_distribution" title="Geometric stable distribution">Geometric stable</a></li> <li><a href="/wiki/Gumbel_distribution" title="Gumbel distribution">Gumbel</a></li> <li><a href="/wiki/Holtsmark_distribution" title="Holtsmark distribution">Holtsmark</a></li> <li><a href="/wiki/Hyperbolic_secant_distribution" title="Hyperbolic secant distribution">Hyperbolic secant</a></li> <li><a href="/wiki/Johnson%27s_SU-distribution" title="Johnson&#39;s SU-distribution">Johnson's <i>S<sub>U</sub></i></a></li> <li><a href="/wiki/Landau_distribution" title="Landau distribution">Landau</a></li> <li><a href="/wiki/Laplace_distribution" title="Laplace distribution">Laplace</a> <ul><li><a href="/wiki/Asymmetric_Laplace_distribution" title="Asymmetric Laplace distribution">Asymmetric</a></li></ul></li> <li><a href="/wiki/Logistic_distribution" title="Logistic distribution">Logistic</a></li> <li><a href="/wiki/Noncentral_t-distribution" title="Noncentral t-distribution">Noncentral <i>t</i></a></li> <li><a href="/wiki/Normal_distribution" title="Normal distribution">Normal (Gaussian)</a></li> <li><a href="/wiki/Normal-inverse_Gaussian_distribution" title="Normal-inverse Gaussian distribution">Normal-inverse Gaussian</a></li> <li><a href="/wiki/Skew_normal_distribution" title="Skew normal distribution">Skew normal</a></li> <li><a href="/wiki/Slash_distribution" title="Slash distribution">Slash</a></li> <li><a href="/wiki/Stable_distribution" title="Stable distribution">Stable</a></li> <li><a href="/wiki/Student%27s_t-distribution" title="Student&#39;s t-distribution">Student's <i>t</i></a></li> <li><a href="/wiki/Tracy%E2%80%93Widom_distribution" title="Tracy–Widom distribution">Tracy–Widom</a></li> <li><a href="/wiki/Variance-gamma_distribution" title="Variance-gamma distribution">Variance-gamma</a></li> <li><a href="/wiki/Voigt_profile" title="Voigt profile">Voigt</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with support <br />whose type varies</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Generalized_chi-squared_distribution" title="Generalized chi-squared distribution">Generalized chi-squared</a></li> <li><a href="/wiki/Generalized_extreme_value_distribution" title="Generalized extreme value distribution">Generalized extreme value</a></li> <li><a href="/wiki/Generalized_Pareto_distribution" title="Generalized Pareto distribution">Generalized Pareto</a></li> <li><a href="/wiki/Marchenko%E2%80%93Pastur_distribution" title="Marchenko–Pastur distribution">Marchenko–Pastur</a></li> <li><a href="/wiki/Kaniadakis_Exponential_distribution" class="mw-redirect" title="Kaniadakis Exponential distribution">Kaniadakis <i>κ</i>-exponential</a></li> <li><a href="/wiki/Kaniadakis_Gamma_distribution" title="Kaniadakis Gamma distribution">Kaniadakis <i>κ</i>-Gamma</a></li> <li><a href="/wiki/Kaniadakis_Weibull_distribution" title="Kaniadakis Weibull distribution">Kaniadakis <i>κ</i>-Weibull</a></li> <li><a href="/wiki/Kaniadakis_Logistic_distribution" class="mw-redirect" title="Kaniadakis Logistic distribution">Kaniadakis <i>κ</i>-Logistic</a></li> <li><a href="/wiki/Kaniadakis_Erlang_distribution" title="Kaniadakis Erlang distribution">Kaniadakis <i>κ</i>-Erlang</a></li> <li><a href="/wiki/Q-exponential_distribution" title="Q-exponential distribution"><i>q</i>-exponential</a></li> <li><a href="/wiki/Q-Gaussian_distribution" title="Q-Gaussian distribution"><i>q</i>-Gaussian</a></li> <li><a href="/wiki/Q-Weibull_distribution" title="Q-Weibull distribution"><i>q</i>-Weibull</a></li> <li><a href="/wiki/Shifted_log-logistic_distribution" title="Shifted log-logistic distribution">Shifted log-logistic</a></li> <li><a href="/wiki/Tukey_lambda_distribution" title="Tukey lambda distribution">Tukey lambda</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mixed <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">continuous-<br />discrete</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Rectified_Gaussian_distribution" title="Rectified Gaussian distribution">Rectified Gaussian</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Multivariate <br />(joint)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="nobold"><i>Discrete: </i></span></li> <li><a href="/wiki/Ewens%27s_sampling_formula" title="Ewens&#39;s sampling formula">Ewens</a></li> <li><a href="/wiki/Multinomial_distribution" title="Multinomial distribution">Multinomial</a> <ul><li><a href="/wiki/Dirichlet-multinomial_distribution" title="Dirichlet-multinomial distribution">Dirichlet</a></li> <li><a href="/wiki/Negative_multinomial_distribution" title="Negative multinomial distribution">Negative</a></li></ul></li> <li><span class="nobold"><i>Continuous: </i></span></li> <li><a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">Dirichlet</a> <ul><li><a href="/wiki/Generalized_Dirichlet_distribution" title="Generalized Dirichlet distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Multivariate_Laplace_distribution" title="Multivariate Laplace distribution">Multivariate Laplace</a></li> <li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">Multivariate normal</a></li> <li><a href="/wiki/Multivariate_stable_distribution" title="Multivariate stable distribution">Multivariate stable</a></li> <li><a href="/wiki/Multivariate_t-distribution" title="Multivariate t-distribution">Multivariate <i>t</i></a></li> <li><a href="/wiki/Normal-gamma_distribution" title="Normal-gamma distribution">Normal-gamma</a> <ul><li><a href="/wiki/Normal-inverse-gamma_distribution" title="Normal-inverse-gamma distribution">Inverse</a></li></ul></li> <li><span class="nobold"><i><a href="/wiki/Random_matrix" title="Random matrix">Matrix-valued: </a></i></span></li> <li><a href="/wiki/Lewandowski-Kurowicka-Joe_distribution" title="Lewandowski-Kurowicka-Joe distribution">LKJ</a></li> <li><a href="/wiki/Matrix_variate_beta_distribution" title="Matrix variate beta distribution">Matrix beta</a></li> <li><a href="/wiki/Matrix_normal_distribution" title="Matrix normal distribution">Matrix normal</a></li> <li><a href="/wiki/Matrix_t-distribution" title="Matrix t-distribution">Matrix <i>t</i></a></li> <li><a href="/wiki/Matrix_gamma_distribution" title="Matrix gamma distribution">Matrix gamma</a> <ul><li><a href="/wiki/Inverse_matrix_gamma_distribution" title="Inverse matrix gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Wishart_distribution" title="Wishart distribution">Wishart</a> <ul><li><a href="/wiki/Normal-Wishart_distribution" title="Normal-Wishart distribution">Normal</a></li> <li><a href="/wiki/Inverse-Wishart_distribution" title="Inverse-Wishart distribution">Inverse</a></li> <li><a href="/wiki/Normal-inverse-Wishart_distribution" title="Normal-inverse-Wishart distribution">Normal-inverse</a></li> <li><a href="/wiki/Complex_Wishart_distribution" title="Complex Wishart distribution">Complex</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Directional_statistics" title="Directional statistics">Directional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Univariate (circular) <a href="/wiki/Directional_statistics" title="Directional statistics">directional</a></i></span></dt> <dd><a href="/wiki/Circular_uniform_distribution" title="Circular uniform distribution">Circular uniform</a></dd> <dd><a href="/wiki/Von_Mises_distribution" title="Von Mises distribution">Univariate von Mises</a></dd> <dd><a href="/wiki/Wrapped_normal_distribution" title="Wrapped normal distribution">Wrapped normal</a></dd> <dd><a href="/wiki/Wrapped_Cauchy_distribution" title="Wrapped Cauchy distribution">Wrapped Cauchy</a></dd> <dd><a href="/wiki/Wrapped_exponential_distribution" title="Wrapped exponential distribution">Wrapped exponential</a></dd> <dd><a href="/wiki/Wrapped_asymmetric_Laplace_distribution" title="Wrapped asymmetric Laplace distribution">Wrapped asymmetric Laplace</a></dd> <dd><a href="/wiki/Wrapped_L%C3%A9vy_distribution" title="Wrapped Lévy distribution">Wrapped Lévy</a></dd> <dt><span class="nobold"><i>Bivariate (spherical)</i></span></dt> <dd><a href="/wiki/Kent_distribution" title="Kent distribution">Kent</a></dd> <dt><span class="nobold"><i>Bivariate (toroidal)</i></span></dt> <dd><a href="/wiki/Bivariate_von_Mises_distribution" title="Bivariate von Mises distribution">Bivariate von Mises</a></dd> <dt><span class="nobold"><i>Multivariate</i></span></dt> <dd><a href="/wiki/Von_Mises%E2%80%93Fisher_distribution" title="Von Mises–Fisher distribution">von Mises–Fisher</a></dd> <dd><a href="/wiki/Bingham_distribution" title="Bingham distribution">Bingham</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Degenerate_distribution" title="Degenerate distribution">Degenerate</a> <br />and <a href="/wiki/Singular_distribution" title="Singular distribution">singular</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Degenerate</i></span></dt> <dd><a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a></dd> <dt><span class="nobold"><i>Singular</i></span></dt> <dd><a href="/wiki/Cantor_distribution" title="Cantor distribution">Cantor</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Families</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Circular_distribution" title="Circular distribution">Circular</a></li> <li><a href="/wiki/Compound_Poisson_distribution" title="Compound Poisson distribution">Compound Poisson</a></li> <li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">Elliptical</a></li> <li><a href="/wiki/Exponential_family" title="Exponential family">Exponential</a></li> <li><a href="/wiki/Natural_exponential_family" title="Natural exponential family">Natural exponential</a></li> <li><a href="/wiki/Location%E2%80%93scale_family" title="Location–scale family">Location–scale</a></li> <li><a href="/wiki/Maximum_entropy_probability_distribution" title="Maximum entropy probability distribution">Maximum entropy</a></li> <li><a href="/wiki/Mixture_distribution" title="Mixture distribution">Mixture</a></li> <li><a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson</a></li> <li><a href="/wiki/Tweedie_distribution" title="Tweedie distribution">Tweedie</a></li> <li><a href="/wiki/Wrapped_distribution" title="Wrapped distribution">Wrapped</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Probability_distributions" title="Category:Probability distributions">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Probability_distributions" class="extiw" title="commons:Category:Probability distributions">Commons</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox793" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q205692#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4253010-6">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85103956">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00569122">Japan</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://kopkatalogs.lv/F?func=direct&amp;local_base=lnc10&amp;doc_number=000327249&amp;P_CON_LNG=ENG">Latvia</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.nli.org.il/en/authorities/987007558217205171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐57bccb6b4d‐phfcb Cached time: 20250223111910 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.044 seconds Real time usage: 2.482 seconds Preprocessor visited node count: 27358/1000000 Post‐expand include size: 274751/2097152 bytes Template argument size: 13871/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 15/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 288476/5000000 bytes Lua time usage: 0.986/10.000 seconds Lua memory usage: 9130471/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1821.337 1 -total 31.82% 579.478 1 Template:Reflist 22.61% 411.769 59 Template:R 21.56% 392.758 62 Template:R/ref 15.54% 283.085 30 Template:Cite_book 12.42% 226.132 62 Template:R/superscript 11.49% 209.306 32 Template:Cite_journal 8.31% 151.399 1 Template:Short_description 7.12% 129.752 118 Template:R/where 6.41% 116.679 4 Template:Navbox --> <!-- Saved in parser cache with key enwiki:pcache:23009144:|#|:idhash:canonical and timestamp 20250223111910 and revision id 1271823617. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Poisson_distribution&amp;oldid=1271823617">https://en.wikipedia.org/w/index.php?title=Poisson_distribution&amp;oldid=1271823617</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:1711_introductions" title="Category:1711 introductions">1711 introductions</a></li><li><a href="/wiki/Category:Poisson_distribution" title="Category:Poisson distribution">Poisson distribution</a></li><li><a href="/wiki/Category:Conjugate_prior_distributions" title="Category:Conjugate prior distributions">Conjugate prior distributions</a></li><li><a href="/wiki/Category:Factorial_and_binomial_topics" title="Category:Factorial and binomial topics">Factorial and binomial topics</a></li><li><a href="/wiki/Category:Infinitely_divisible_probability_distributions" title="Category:Infinitely divisible probability distributions">Infinitely divisible probability distributions</a></li><li><a href="/wiki/Category:Abraham_de_Moivre" title="Category:Abraham de Moivre">Abraham de Moivre</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:CS1_Latin-language_sources_(la)" title="Category:CS1 Latin-language sources (la)">CS1 Latin-language sources (la)</a></li><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:CS1_Danish-language_sources_(da)" title="Category:CS1 Danish-language sources (da)">CS1 Danish-language sources (da)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_pages_semi-protected_against_vandalism" title="Category:Wikipedia pages semi-protected against vandalism">Wikipedia pages semi-protected against vandalism</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_October_2023" title="Category:Use dmy dates from October 2023">Use dmy dates from October 2023</a></li><li><a href="/wiki/Category:All_articles_with_failed_verification" title="Category:All articles with failed verification">All articles with failed verification</a></li><li><a href="/wiki/Category:Articles_with_failed_verification_from_January_2024" title="Category:Articles with failed verification from January 2024">Articles with failed verification from January 2024</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2012" title="Category:Articles with unsourced statements from May 2012">Articles with unsourced statements from May 2012</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_December_2019" title="Category:Articles needing additional references from December 2019">Articles needing additional references from December 2019</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_April_2012" title="Category:Articles with unsourced statements from April 2012">Articles with unsourced statements from April 2012</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_February_2024" title="Category:Articles with unsourced statements from February 2024">Articles with unsourced statements from February 2024</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_March_2019" title="Category:Articles with unsourced statements from March 2019">Articles with unsourced statements from March 2019</a></li><li><a href="/wiki/Category:Articles_with_example_pseudocode" title="Category:Articles with example pseudocode">Articles with example pseudocode</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 25 January 2025, at 22:24<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Poisson_distribution&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Poisson distribution</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>51 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-d8647bfd6-gfbl7","wgBackendResponseTime":160,"wgPageParseReport":{"limitreport":{"cputime":"2.044","walltime":"2.482","ppvisitednodes":{"value":27358,"limit":1000000},"postexpandincludesize":{"value":274751,"limit":2097152},"templateargumentsize":{"value":13871,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":15,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":288476,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1821.337 1 -total"," 31.82% 579.478 1 Template:Reflist"," 22.61% 411.769 59 Template:R"," 21.56% 392.758 62 Template:R/ref"," 15.54% 283.085 30 Template:Cite_book"," 12.42% 226.132 62 Template:R/superscript"," 11.49% 209.306 32 Template:Cite_journal"," 8.31% 151.399 1 Template:Short_description"," 7.12% 129.752 118 Template:R/where"," 6.41% 116.679 4 Template:Navbox"]},"scribunto":{"limitreport-timeusage":{"value":"0.986","limit":"10.000"},"limitreport-memusage":{"value":9130471,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-57bccb6b4d-phfcb","timestamp":"20250223111910","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Poisson distribution","url":"https:\/\/en.wikipedia.org\/wiki\/Poisson_distribution","sameAs":"http:\/\/www.wikidata.org\/entity\/Q205692","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q205692","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-02-25T23:53:03Z","dateModified":"2025-01-25T22:24:13Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/1\/16\/Poisson_pmf.svg","headline":"discrete probability distribution"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10